
A Novel Discretization Scheme for the Close Enough
Traveling Salesman Problem

Francesco Carrabs1,⇤, Carmine Cerrone3, Ra↵aele Cerulli1, Manlio Gaudioso2

Abstract

This paper addresses a variant of the Euclidean traveling salesman problem in

which the traveler visits a node if it passes through the neighborhood set of that

node. The problem is known as the close-enough traveling salesman problem.

We introduce a new e↵ective discretization scheme that allows us to compute

both a lower and an upper bound for the optimal solution. Moreover, we ap-

ply a graph reduction algorithm that significantly reduces the problem size and

speeds up computation of the bounds. We evaluate the e↵ectiveness and the per-

formance of our approach on several benchmark instances. The computational

results show that our algorithm is faster than the other algorithms available in

the literature and that the bounds it provides are almost always more accurate.

Keywords: Close-Enough, Traveling Salesman Problem, Discretization scheme

1. Introduction

This paper concerns the close-enough variant CETSP of the classic traveling

salesman problem (TSP). Given a set of target points in any Euclidean space,

the TSP consists in determining a minimum length tour that starts and ends

at a ”depot” while visiting each target point exactly once. In CETSP to each

⇤Corresponding author
Email addresses: fcarrabs@unisa.it (Francesco Carrabs), carmine.cerrone@unimol.it

(Carmine Cerrone), raffaele@unisa.it (Ra↵aele Cerulli), manlio.gaudioso@unical.it
(Manlio Gaudioso)

1Department of Mathematics, University of Salerno, Italy.
2Department of Mechanical, Energy and Management Engineering - University of Calabria,

Italy.
3Department of Biosciences and Territory, University of Molise, Italy.

Preprint submitted to Elsevier May 4, 2016

https://doi.org/10.1016/j.cor.2016.09.003

target point v is associated a neighborhood, that is a compact region of the

space containing v. In fact CETSP consist in finding the shortest tour that

starts and ends at the depot and intersects each neighborhood once. Usually,

there are no constraints on the shape of the neighborhood, on the other hand

the disc shape is the mostly adopted one, thus we keep this assumption in our

paper.

The CETSP has a number of practical applications. For instance, let us con-

sider a district where a certain number of radio frequency identification (RFID)

readers are located to record electricity or water or gas consumption. Each

meter reader plays the role of a target point and its information can be relayed

within a fixed range r. Consequently, the neighborhood is defined as a disc of

radius r centered at each target point. The reading process of the RFID reader

meters can be performed by flying a drone within the neighborhood of each

target point, speeding up the classic door-to-door reading. Other applications

of CETSP arise in the robot monitoring of wireless sensor networks [13] and

in the context of Unmanned Aerial Vehicles for aerial forest fire detection or

military surveillance.

The CETSP was introduced by Gulczynski et al. [7] and the authors pro-

posed six heuristics to solve the problem under the assumption that all neigh-

borhoods were discs of the same radius. For the same problem, Dong et al. [4]

introduced two heuristics based on the concept of supernodes. A supernode S is

a set of points of the plane such that for each target point v there exists at least

one point in S whose distance from v is at most r, the radius of the disc. Su-

pernodes are generated by using convex hull and clustering techniques. A mixed

integer nonlinear programming formulation of CETSP was provided too, but it

was not specifically used in algorithm design. Mennell et al. [10, 11] proposed

another heuristic based on the intersection of the neighborhoods, named Steiner

zone. Yuan et al. [13] developed an e↵ective evolutionary approach which was

able to find the shortest tour on all the benchmark instances, although with

large computation time. Other heuristics were proposed by Shuttleworth et

al. [12] to solve the CETSP over a street network for the specific RFID meter

2

reader application described above. Finally, some special cases of CETSP were

solved by polynomial-time approximation algorithms introduced by Arkin and

Hassin [1], Mata and Mitchell [9] and Dumitrescu and Mitchell [5].

In this paper we introduce an approach to compute upper and lower bounds

for the CETSP problem by discretizing the solution space and solving on the

resulting graph the classic Generalized TSP problem. Starting from the dis-

cretization approaches already proposed in literature, we introduce a new ef-

fective discretization scheme which provides better bounds, thanks to a novel

adaptive approach to select appropriately the number of discretization points to

be used for each neighborhood. Finally, we apply a graph reduction algorithm

that significantly reduces the size of the Generalized TSP problem to solve, al-

lowing us to increase the number of discretization points without penalizing the

performance of our approach in terms of CPU time. The computational results,

carried out on benchmark instances, reveal that our approach outperforms the

ones proposed in [2].

The remainder of the paper is organized as follows. Section 2 introduces

the definitions and the notations that are used throughout the paper. Section 3

and Section 5 present our discretization scheme and our graph reduction algo-

rithm, respectively. The mixed-integer programming model (MIP) is described

in Section 6 and it is followed by the computational results in Section 7. Finally,

conclusions are presented in Section 8.

2. Definitions and Notation

Let N be a set of points in a two-dimensional plane, with |N | = n, and let

p0 be the depot point. We will refer to the elements in N as the target points.

To each target point v is associated a sphere Cv with center v and radius rv

(Figure 1(a)) which will be referred to as the neighborhood N(v) of v. W.l.o.g.,

we suppose that p0 /2 N(v) 8v 2 N . The CETSP consists in finding a shortest

tour T
⇤ that starts from the depot p0, intersects every neighborhood N(v) (in

any order), and ends in p0. The points of any tour T where a direction change

3

Figure 1: (a) Neighborhood N(v) of the target point v. (b) A feasible tour for the CETSP

problem.

occurs are the turn points and any tour can be uniquely identified through its

turn points. For instance, in Figure 1(b) it is shown a feasible tour T for the

CETSP which is identified by the turn points p1, p2 and p3. Given a couple of

turn points pi and pj , the length of the edge (pi, pj) is given by the euclidean

distance between pi and pj . The total cost of a tour T is denoted by w(T) and

it is equal to the sum of the edge lengths in T .

Given the neighborhood N(v) depicted in Figure 1(a), let di and dj be two

points of the boundary of Cv. We denote by di, dj the chord between these two

points and by d̆i, dj the circular arc from di to dj in the clockwise direction.

For any additional definition and notation on the graphs we refer to [3].

3. The Perimetral Discretization scheme

Since each neighborhood N(v), v 2 N , contains an infinite number of turn

points, then the number of feasible tours for CETSP is infinite as well. However,

a finite number of turn points occur for any feasible tour. For this reason, we can

associate to each feasible solution a discrete set of points. More in details, each

neighborhood N(v) is discretized by using a fixed number k of discretization

points. We denote by N̂(v) such set of points. Consequently, a graph G =

4

(V, E), where V =
[

v2N

N̂(v) and E = {(x, y) : x 2 N(u), y 2 N(v), u 6= v}, is

build. It is easy to see that the weight of any tour T̂ , that starts and ends at the

depot and that visits exactly one discretization point in each neighborhood, is

an upper bound to w(T ⇤). From now on, we will denote by T and T̂ the feasible

tours of the CETSP computed by using the points of N(v) and of N̂(v), v 2 N ,

respectively.

In order to have an upper bound of w(T ⇤) as tight as possible, we com-

pute the shortest tour T̂
⇤ in G, namely we solve the Generalized TSP problem

(GTSP) on G. The quality of the bound T̂
⇤ for w(T ⇤) heavily depends on the

number of points used to carry out the discretization and on their placement

in each neighborhood. Obviously greater the number of discretization points

tighter will be w(T̂ ⇤), but, on the other hand, greater will be the size of G with

increasing computational cost to calculate T̂
⇤. For this reason it is necessary to

find an appropriate trade-o↵ between the quality of the upper bound and the

time spent to compute it. Moreover, it is crucial to use a discretization scheme

that minimizes the discretization error carried out in each neighborhood due to

the use of discretization points. More in details, let us consider the example

in Figure 2 where N = {v1, v2, v3} and T
⇤ is the optimal tour for the CETSP,

identified by the turn points p1, p2, p3 and the depot p0. Note that the turn

points of T
⇤ are always on the boundary of the spheres (see Proposition 1 in

the sequel). Each neighborhood is discretized by using only k = 2 discretization

points placed on the corresponding circumference.

Let us build now the walk Q = {p0, p1, d1, p1, p2, d2, p2, p3, p0}. In practice

Q is built by following the edges of T
⇤ and, for each turn point pi 2 Cvi , the

closest discretization point di 2 N̂(vi) is detected and the chord pi, di is crossed

twice. We define the discretization error ⇠(vi) as two times the length of pi, di.

Thus ⇠(vi) represents the error in N̂(vi) with respect to T
⇤, due to the choice

of the discretization points. It is easy to see that:

w(Q) = w(T ⇤) +
X

v2N

⇠(v) (1)

5

Figure 2: The discretization error carried out in each neighborhood.

Since Q starts and ends at the depot p0 and visits one discretization point

for each neighborhood, then w(T̂ ⇤) w(Q). This means that the lower is

the discretization error carried out in each neighborhood, the tighter will be

w(T̂ ⇤). For this reason, it is very important to apply a discretization scheme

that minimizes
P

v2N ⇠(v).

The following proposition ([2]) suggests a possible discretization scheme.

Proposition 1. Any optimal solution T
⇤
to the CETSP can be represented by a

finite set of connected line segments (p0, p1), (p1, p2), (pk�1, pk), (pk, p0), where

k n, and for each point pi, i = 1 . . . k, there exists at least one v 2 N such

that pi is on the circumference Cv.

From Proposition 1, a quite intuitive discretization scheme consists in placing

the discretization points on the circumferences associated to the target points.

Such a scheme is named perimetral discretization (PD) scheme. More in details,

let k be the number of points used to discretize each neighborhood N(v). Then

the PD scheme divides each circumference Cv in k equal circular arcs and places

the discretization points at the extremes of these circular arcs. Let ↵ be the

angle associated to any circular arc d̆i, dj that is ↵ = 2⇡
k . The Figure 3(a) shows

a PD scheme for k = 3, where ↵ = 120� and N̂(v) = {d1, d2, d3}.

It is necessary now to evaluate the maximal discretization error associated to

6

Figure 3: (a) Perimetral discretization for k = 3 with N(v) = {d1, d2, d3} and ↵ = 120�. (b)

The maximum discretization error for the PD scheme.

PD scheme. Given a neighborhood N̂(v), the worst case occurs when the turn

point p1 of T
⇤ touches the circumference Cv in the middle of the circular arc

d̆1, d2 (Figure 3(b)). Indeed, in this case we have the maximum distance between

p1 and the closest discretization point d1 (or d2). We have w(p1, d2) = 2rv sin(
↵
4)

and then ⇠(v) = 4rv sin(
↵
4). In general, once the number of discretization points

k is fixed, the maximum error for the PD scheme in N̂(v) is ⇠(v) = 4rv sin(
⇡
2k).

4. The Internal Discretization scheme

In the previous section we described an intuitive and widely used discretiza-

tion scheme for the CETSP problem. In this section we prove that it is possible

to reduce the discretization error with respect to PD scheme, by placing the dis-

cretization points inside the neighborhoods rather than on the circumferences

as suggested by the following Proposition 1. This new scheme is named internal

point discretization (IP) and works as follows. Given kthe number of discretiza-

tion points, the IP scheme divides Cv in k equal circular arcs and, for each arc

â, b, places a discretization point in the middle of the chord a, b. In Figure 4(a)

the IP schemes are shown for k = 3 and k = 4.

Application of the IP scheme assures that whenever the touch point p1 of

T
⇤ is on the circular arc â, b, the maximum distance between p1 and the closest

7

b

a

Figure 4: (a) The internal point discretization scheme for k = 3 and k = 4. (b) The maximum

error in the IP scheme.

0"

0.5"

1"

1.5"

2"

2.5"

3"

2" 4" 6" 8"

4r*sin(π/2k)"

2r*sin(π/k)"

(a)

0"

0.5"

1"

1.5"

2"

2.5"

3"

2" 4" 6" 8"

4r*sin(π/2k)"

2r*sin(π/2k)"

(b)

Figure 5: (a) The maximum discretization error of PD (red) and IP (blue) schemes. (b) The

maximum discretization error for AIP and ADS on a neighborhood intersecting the boundary

of the convex hull.

discretization point of N̂(v) is equal to half the length of the w(a, b) segment

(Figure 4(b)). It is w(a, b) = rv sin(
↵
2), where ↵ is the angle associated to the

circular arc â, b. As consequence, for fixed k, the maximum error associated to

the IP scheme in N̂(v) is equal to ⇠(v) = 2rv sin(
⇡
k).

We compared the discretization errors of PD and IP schemes for radius equal

to 1 and k equal to 2, 4, 6 and 8. The result of this comparison is depicted in

Figure 5(a).

Note that the discretization error of IP scheme is always lower than the one

of PD scheme. In particular, the smaller is k the greater is the gap between

the two discretization errors. For instance, when k = 2 the gap between the

8

two errors is equal to 0.8. This means that, in the worst case, our solution is

0.8 ⇥ n units lower than the solution produced by PD scheme with k = 2. By

increasing the value of k the gap decreases and for k = 8 it is fairly small. In [2]

only 4 discretization points are used to discretize each neighborhood due to

performance problem. This means that, in the worst case, a discretization error

equal to 1.5 occurs in each neighborhood. Instead, our approach is so fast that

we can use 8 discretization points for each neighborhood without penalizing the

performance. As a consequence, in the worst case we pay an error equal to 0.76,

instead that 1.5, as shown in Figure 5(a).

In next section we will describe a methodology to further reduce the dis-

cretization error of IP scheme which will allow us to get better upper bounds.

4.1. Convex Hull Strategy

A significant result about discretization of CETSP problem is the following

proposition proven in [2]:

Proposition 2. Let T be an optimal CETSP tour that is characterized by a set

of turn points p0, · · · , pk. Then pi 2 conv(N [{p0}), for i = 1, · · · , k, where

conv denotes the convex hull of any set of points.

This proposition states that all points that are outside conv(N [{p0}) can

be discarded because they cannot belong to the optimal solution. In other

words, the discretization points should be used only to discretize the circular

arcs within the convex hull rather than the whole circumference. From now on

the circular arcs within the convex hull are referred to as feasible circular arcs

(fca). Moreover, given a target point vi, we denote by v̆0
i, v

00
i the fca of Cvi and

by ↵i the central angle associated to v̆0
i, v

00
i . In [2] such idea is implemented by

discretizing the fca but only for the neighborhoods located at the corners of the

convex hull. In Figure 6(a) this type of discretization named arc discretization

scheme (ADS) is depicted.

The discretization points are placed on the fca (in blue) of the circumferences

Cv1 ,Cv2 ,Cv4 ,Cv5 and Cv7 . Instead, for the neighborhoods N̂(v3) and N̂(v6) the

9

v1 v2

v3
v4

v5

v6

v7

v̆0
2, v

00
2

v1 v2

v3
v4

v5

v6

v7

v̆0
2, v

00
2

↵2 ↵2

Figure 6: (a) The arc discretization scheme. (b) Our adaptive internal point scheme.

discretization points are placed on whole circumferences Cv3 and Cv6 because

they are not at the corners of the convex hull.

By using Proposition 2, we introduce a new discretization scheme, which is

referred to as internal arc discretization (AIP) scheme. It is more e↵ective than

IP and can be obtained on the basis of the following two ideas.

The first one consists in discretizing only the fca for all the neighborhoods,

with no use of discretization points for circular arcs which are outside the convex

hull. To this end, it is necessary to detect any neighborhood N(v) that intersects

a boundary of the convex hull at two points because, under this condition, v̆0, v00

is smaller than Cv. For instance, in Figure 6(b) the AIP will discretize the two

fca v̆0
3, v

00
3 and v̆0

6, v
00
6 rather than the whole circumferences as carried out by the

ADS scheme. As a consequence, for the same k, the discretization error made

by AIP on N̂(v3) and N̂(v6) is lower than the discretization error made by the

ADS scheme because for the AIP scheme the value of ↵ is smaller. More in

details, let us consider the circumference Cv6 whose center is on the boundary

of the convex hull (Figure 6(b)). By applying the AIP scheme we discretize the

fca v̆0
6, v

00
6 and then ↵6 = ⇡ and the discretization error is ⇠(v6) = 2rv6 sin(

⇡
2k).

Instead, the ADS scheme discretizes the whole Cv6 and then ↵6 = 2⇡ and

⇠(v6) = 2rv6 sin(
⇡
k). Figure 5(b) shows the discretization error associated to the

two schemes for neighborhood N(v6). The results for the ADS are the same as

PD while the discretization error for AIP is significantly lower than IP.

Second idea comes from the observation (see Figure 5(b)) that the length of

10

the various fca can vary largely. Thus, rather than using the same number k

of points for each fca we introduce an adaptive approach fixing the number of

discretization points to be used for each fca according to its length. Note that,

for instance, the approaches currently adopted use k points to discretize both

v̆0
6, v

00
6 and v̆0

4, v
00
4 (Figure 6(b)) even if their lengths are quite di↵erent. In fact,

in terms of error, k discretization points would be too many for v̆0
4, v

00
4 and too

few for v̆0
6, v

00
6 .

Summing up, given a neighborhood N(vi), we apply an adaptive approach

that selects the number of discretization points according to the degree range

of ↵i. More in details, let ↵̂ be the degree step given by the ratio between

the sum of all central angles ↵i and the total number of discretization points

k|N |. Formally, ↵̂ =

P
vi2N ↵i

k|N | . Then, the fca v̆0
i, v

00
i is discretized by using

↵i
↵̂ points. According to the two improvements described in this section, the

new discretization error ⇠(vi), carried out by AIP on the neighborhood N̂(vi),

is expressed as: ⇠(vi) = 2rvi sin(
↵i
2ki

) = 2rvi sin(
↵̂
2) where ki =

↵i
↵̂ .

5. Graph Reduction Algorithm (GRA)

In previous section 4 we have described how to compute an upper bound

for w(T ⇤) by finding the shortest tour T̂
⇤ on the graph G(V, E). The size of G

depends on the number of target points n and the number of discretization points

k used (it is |V | = nk and |E| = k2n(n�1)
2). The selection of an appropriate value

for k is crucial for both the performance and the e↵ectiveness of the MIP model

because for high values of k the upper bound we obtain is tighter but calculation

of T̂
⇤ is expensive, while, for low values of k, T̂

⇤ can be found quickly, at the

expenses of an usually poor upper bound.

In this section we introduce an algorithm which detects the useless edges of

G, that is those edges that cannot belong to the optimal solution T̂
⇤. Thanks

to this algorithm the size of G is significantly reduced, allowing us to use the

double of the discretization points adopted by [2], which results in a beneficial

e↵ect on the quality of the solution, without impairing performance in terms of

11

di dj

u v

w

Figure 7: The idea behind the graph reduction algorithm.

computational time.

The idea of applying a preprocessing phase on a graph G before solving the

GTSP problem has been already introduced in [8]. However, the idea behind

our Graph Reduction Algorithm (GRA), described in the following, allows an

easier implementation with respect to the algorithm proposed in [8], because it

not requires sorting operations.

GRA works as follows. Given a target point w 2 N , let di and dj be

two discretization points such that di 2 N̂(u), dj 2 N̂(v) and u 6= v 6= w

(Figure 7). According to the euclidean distance, the GRA computes the shortest

path between di and dj , passing through d, for each point d 2 N̂(w), and it

marks as needed the two edges of the shortest path. The algorithm repeats this

operation for each target point w 2 N and for all possible couples di and dj . At

the end of the computation, GRA removes all not-marked edges. Proposition

3 ensures that the edges removed by GRA cannot belong to T̂
⇤.

Proposition 3. Given a target point w 2 N , let S be the set of shortest paths

from di 2 N̂(u) to dj 2 N̂(v) passing through any point d 2 N̂(w), with u 6=

v 6= w. Then any edge (dx, dy) 2 E, incident to N̂(w) and outside all shortest

path of S, cannot belong to the optimal solution T̂
⇤
.

Proof. The proof is by contradiction. Suppose that (dx, dy) belongs to T̂
⇤ and

w.l.o.g. let dx 2 N̂(w) and dr be the discretization point coming just before

12

dx in T̂
⇤. Since (dx, dy) does not belong to any shortest path in S, then there

exists another discretization point d
0
x 2 N̂(w) such that the path {dr, d

0
x, dy} is

shorter than {dr, dx, dy}. By replacing {dr, dx, dy} with {dr, d
0
x, dy} in T̂

⇤, we

obtain a discretized tour better than the optimal one. A contradiction. ⇤

The application of the GRA algorithm has a tremendous impact on the

performance of our MIP model because T̂
⇤ is computed on a reduced graph

G
0 with a fairly smaller set of edges with respect to G. Indeed, during our

computational tests we observed reductions up to 80% of |E|.

As far as complexity is concerned, observe that we define first N = nk, the

total number of discretization points in G. For any fixed target point w and a

couple of discretization points di and dj , the computation of the shortest path

from di to dj passing through a discretization point of N̂(w) can be carried out

in O(k), as each possible path is composed by only two edges and then it is

su�cient to compare the cost of the k possible paths to detect the shortest one.

Now, this operation is repeated for each discretization point w 2 N , that is n

times, and for all the possible couples of discretization points di 2 N̂(u) and

dj 2 N̂(v) such that u 6= v 6= w. An upper bound on the number of such couples

is
�N

2

�
= O(N 2). As a consequence, the running time of GRA is O(N 3).

6. Mathematical Formulation

The input of the MIP model is the reduced graph G
0(V, E

0) obtained by

applying the GRA algorithm to G(V, E). To formulate the GTSP problem, we

associate to each edge (i, j) 2 E
0 a binary variable xij taking value 1 if and only

if (i, j) belongs to the solution. Moreover, we associate to each discretization

node i the binary variable yi taking value 1 if and only if i belongs to the

solution. Finally, we let cij be the euclidean distance between the discretization

points i and j and define the set E(S) as follows:

E(S) = {(i, j) 2 E
0 : i, j 2

[

v2S

N̂(v)}

for S ✓ N . Our integer linear programming model for the GTSP is the following:

13

(MIP) min
X

(i,j)2E0

cijxij (2)

X

i2N̂(v)

yi = 1 8v 2 N (3)

X

i2N̂(u),j2N̂(v)

xij 1 u, v 2 N, u 6= v (4)

X

(i,j)2E0

xij = 2yi 8i 2 V (5)

X

(i,j)2E(S)

xij |S|� 1 8S ✓ N, S 6= ; (6)

The objective function (2) minimizes the cost of the tour. Constraints (4)

ensure that at most one edge connecting two neighborhoods is selected. Con-

straints (5) bind the two sets of variables by letting yi equal to 1 if and only if

vi belongs to the solution. Finally, constraints (6) are the subtour elimination

constraints adapted to the Generalized TSP [6].

The MIP model returns the optimal tour T̂
⇤ with w(T̂ ⇤) being our upper

bound to the optimal solution T
⇤ of CETSP. A lower bound for T

⇤ can be

found too by removing from w(T̂ ⇤) the maximum discretization error value ⇠(v)

for each target point v. Formally, LB = w(T̂ ⇤) �
P

v2V ⇠(v). Note that lower

bound calculation is useful in view of comparison with other algorithms on the

basis of the gap between upper and lower bound.

Finally, once the solution T̂
⇤ has been found, we carry out an additional

step to possibly improve the upper bound.

In fact the solution T̂
⇤ can be improved by changing the position of the

discretization points used. More in details, the idea is to apply an elastic force

on all the edges of T̂
⇤, which attracts the discretization points. The two forces

on the two edges incident to a discretization point v move this point along the

bisector of the angle between the two edges towards the border of the neighbor-

hoods. Obviously we forbid the crossing of these borders. As a result, a new

tour cheaper than T̂
⇤ is obtained. In the rest of the paper T̂

⇤ denotes such final

14

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

6" 14" 16" 18" 20"

Reduc&on(%),

Figure 8: Arc set reduction obtained by applying the GRA algorithm.

tour.

7. Computational Results

This section presents the results of our computational test phase on the

benchmark instances proposed in [2], where the authors introduce three ap-

proaches: a two-stage MIP formulation (LB3), a Bender Decomposition (BD)

and an iterative Algorithm (IA), that are used to solve the various scenarios

proposed. On the contrary, we use for all the scenarios a single approach,

named ULB, consisting of i) applying the AIP scheme to discretize the neigh-

borhoods, ii) applying the GRA algorithm to reduce the size of the graph G
0,

iii) solving the GTSP problem on the graph G
0, by using the MIP model and

iv) applying the elastic force algorithm to improve the upper bound. ULB was

coded in Java on a OSX platform running on an Intel Core i5 2.9GHz processor

with 16GB RAM, equipped with the IBM ILOG CPLEX 12.5.1 solver and the

Concert Technology Library for the mathematical formulations. We start our

computational study by evaluating the e↵ectiveness of GRA algorithm.

In Figure 8 the percentage of edges removed from GRA algorithm is shown.

The five scenarios, with 6, 14, 16, 18 and 20 target points, are reported on the

15

x-axis, each one composed by ten instances. It is interesting to observe that

almost always more than 50% of edges are removed from GRA. In the worst

case the reduction is around 45% but in the best case it reaches the 80%. Since

the reduced graph G
0 contains a much smaller number of edges, the MIP model

requires less computational time to find the optimal tour T̂
⇤. This allows us

to use k = 8 discretization points for each neighborhood, instead of the 4 used

by Behdani and Smith, without significantly penalizing the performance of the

algorithm ULB in terms of Cpu time. On the other hand, by using a higher

value of k we expect to obtain more accurate bounds.

Before carrying out the comparison between ULB and the other algorithms

proposed in literature, it is interesting to investigate the contribution to the

ULB e↵ectiveness given by the Convex Hull strategy and by the Elastic Force

algorithm. As explained in section 4.1, the Convex Hull strategy allows to re-

duce the discretization error carried out at each neighborhood. Since our lower

bound is computed according to this value, the lower the discretization error,

the better is the computed lower bound. Accordingly, we expect an improve-

ment of the lower bounds by applying the Convex Hull strategy. Instead, the

Elastic Force algorithm is designed to improve only the upper bound computed

by the MIP model and then it does not a↵ect the lower bound. In order to

verify the contribution of these two components, we implemented three variants

of our algorithm. The Basic version is the ULB algorithm in which neither

the Convex Hull strategy nor the Elastic Force algorithm are applied. The Ba-

sic+CH version is the basic version enriched by the Convex Hull strategy, while

the Basic+EL one is the basic version plus the Elastic Force algorithm.

By comparing the upper and lower bounds computed by these three versions,

we are able to quantify the e↵ectiveness of the Convex Hull strategy and of the

Elastic Force algorithm. Table 1 reports the results of this comparison. The

computational tests are carried out on the largest instances proposed in [2] with

a radius equal to 0.5. The first column of the table reports the scenario while the

remaining six columns show the upper (UB) and lower (LB) bounds of Basic,

Basic+CH and Basic+EL algorithms, respectively.

16

Scenario Basic Basic+CH Basic+EL

UB LB UB LB UB LB

CETSP-14-01 39.478 33.980 39.150 35.294 38.907 33.980

CETSP-14-02 37.490 31.992 37.143 33.199 36.934 31.992

CETSP-14-03 34.595 29.097 34.262 31.266 34.202 29.097

CETSP-14-04 38.552 33.054 38.225 34.551 37.945 33.054

CETSP-14-05 34.726 29.228 34.401 31.349 34.309 29.228

CETSP-14-06 34.612 29.114 34.355 30.731 34.164 29.114

CETSP-14-07 39.671 34.173 39.323 35.721 39.128 34.173

CETSP-14-08 35.172 29.674 34.851 31.159 34.590 29.674

CETSP-14-09 36.442 30.944 36.192 32.418 36.029 30.944

CETSP-14-10 35.415 29.917 35.228 31.383 34.984 29.917

CETSP-16-01 44.415 38.132 44.080 39.649 43.814 38.132

CETSP-16-02 35.959 29.676 35.615 31.174 35.356 29.676

CETSP-16-03 41.505 35.222 41.272 36.632 40.969 35.222

CETSP-16-04 37.071 30.788 36.780 32.562 36.537 30.788

CETSP-16-05 36.830 30.547 36.550 31.982 36.326 30.547

CETSP-16-06 41.260 34.977 40.832 36.851 40.626 34.977

CETSP-16-07 37.693 31.410 37.258 33.124 36.941 31.410

CETSP-16-08 36.857 30.574 36.556 32.467 36.340 30.574

CETSP-16-09 33.771 27.488 33.536 29.343 33.333 27.488

CETSP-16-10 35.211 28.928 34.862 30.660 34.641 28.928

CETSP-18-01 45.437 38.368 45.099 39.988 44.780 38.368

CETSP-18-02 38.781 31.712 38.363 33.497 38.078 31.712

CETSP-18-03 41.888 34.819 41.581 36.198 41.230 34.819

CETSP-18-04 42.432 35.363 41.996 37.159 41.763 35.363

CETSP-18-05 38.693 31.624 38.319 33.630 38.093 31.624

CETSP-18-06 37.818 30.749 37.497 32.550 37.224 30.749

CETSP-18-07 36.897 29.828 36.597 31.953 36.395 29.828

CETSP-18-08 34.084 27.015 33.836 29.250 33.712 27.015

CETSP-18-09 35.449 28.380 35.077 30.223 34.849 28.380

CETSP-18-10 42.227 35.158 41.873 36.806 41.546 35.158

CETSP-20-01 45.715 37.861 45.367 39.594 45.025 37.861

CETSP-20-02 36.684 28.830 36.192 31.199 35.925 28.830

CETSP-20-03 48.488 40.634 48.268 42.181 47.754 40.634

CETSP-20-04 39.491 31.637 39.166 33.328 38.803 31.637

CETSP-20-05 43.397 35.543 43.155 37.150 42.830 35.543

CETSP-20-06 44.142 36.288 43.760 38.095 43.403 36.288

CETSP-20-07 40.290 32.436 40.063 33.827 39.753 32.436

CETSP-20-08 39.036 31.182 38.772 33.110 38.487 31.182

CETSP-20-09 43.404 35.550 43.102 37.249 42.693 35.550

CETSP-20-10 43.099 35.245 42.827 36.903 42.302 35.245

Table 1: Impact evaluation of the Convex Hull strategy and Elastic algorithm on the e↵ec-

tiveness of our algorithm.

17

The upper bounds computed by Basic+CH are slightly better than the ones

computed by Basic with a percentage gap that ranges from 0.45% (CETSP- 20-

03) to 1.34% (CETSP-20-02). Instead, the Basic+CH lower bounds are much

better than the Basic lower bounds with a percentage gap that ranges from

3.64% (CETSP-14-02) to 7.64% (CETSP-18-08). On 18 out of 40 scenarios

this gap is greater than 5% and in 7 cases it is greater than 6%. These results

highlight the relevant contribution given by Convex Hull strategy to the quality

of lower bounds computed by ULB algorithm.

The LB values found by Basic and by Basic+EL are the same because the

Elastic Force algorithm does not a↵ect the lower bounds. The upper bounds

computed by Basic+EL are better than the ones computed by Basic with a

percentage gap that ranges from 1.09% (CETSP-18-08) to 2.07% (CETSP-20-

02). The contribution given by the Elastic Force algorithm is not so great, if

compared to the contribution given by the Convex Hull strategy for the lower

bounds. However it is enough to guarantee better upper bounds for ULB than

the ones provided by other algorithms proposed in literature.

Table 2 reports the upper and lower bounds computed by the LB3 algo-

rithm of [2] and by our MIP model on the smallest scenarios CETSP-6. The

best bounds are shown in bold. Moreover, the column T ime reports the CPU

Time, in seconds, required by the two algorithms and the last column Gap(%)

represents the gap, in percentage, between the upper and lower bounds, com-

puted with the formula (UB�LB)
UB .

On these scenarios, our algorithm always finds better upper and lower bounds

with respect to LB3. Moreover, since the gap values are often lower than 2%,

the upper bounds of our algorithm are close to the optimal solution. Instead,

the gap values of the LB3 algorithm are often twice bigger than those of the

MIP model and, in the worst case (6-05), this gap value is almost 7%. The

computational time is negligible for both the algorithms since it is always lower

than 2 seconds.

In Table 3 the results of Bender Decomposition (BD) and ULB algorithms

are reported and two radius size, r = 0.25 and r = 0.5 are considered. On the

18

Scenario LB3 ULB Gap (%)

UB LB Time UB LB Time LB3 MIP

CETSP-6-01 34.2768 33.1604 0.8 33.8625 33.2953 0.4 3.3 1.7

CETSP-6-02 27.8568 27.0615 0.8 27.6407 27.2558 0.7 2.9 1.4

CETSP-6-03 25.6439 24.7048 1.6 25.3920 24.9301 0.3 3.7 1.8

CETSP-6-04 37.0838 36.1009 0.5 36.7576 36.2682 0.3 2.7 1.3

CETSP-6-05 22.9133 21.3865 1.2 22.1507 21.5609 0.3 6.7 2.7

CETSP-6-06 28.1387 27.1195 0.8 27.9028 27.3950 0.3 3.6 1.8

CETSP-6-07 35.0102 33.9480 0.7 34.7630 34.2264 0.3 3.0 1.5

CETSP-6-08 24.5140 23.4709 1.5 24.1722 23.6503 0.3 4.3 2.2

CETSP-6-09 29.0243 27.8231 0.8 28.4734 27.8739 0.3 4.1 2.1

CETSP-6-10 34.9533 33.6742 0.9 34.7182 34.0544 0.3 3.7 1.9

Table 2: The results of LB3 and ULB algorithms on the smallest scenarios.

scenarios with r = 0.25, ULB is more e↵ective and faster than BD. Indeed, on

all the scenarios the gaps given by ULB are lower than the gaps of BD and

often there is a 50% of di↵erence between them. Moreover, the gaps of ULB

range from 4.0% to 7.0% while the gaps of BD range from 7.8% to 13.7%. This

shows that the bounds produced by our algorithm are much better than the

bounds of BD. Regarding the performance, ULB is almost always faster than

BD and on the largest instances with 20 target points the di↵erence in terms of

computation time starts to be significant.

Obviously, the greater is the radius r the higher is the complexity of the

scenarios and then we expect worst results of the algorithms when r = 0.5. The

values in the Table 3 confirm our expectation because the gap of both ULB

and BD are doubled. This means that again the gap values of ULB are the

half of the gap values of BD. It is interesting to observe that, with respect to

ULB, the performance of BD looks heavily a↵ected by the radius value. The

computational time spent by ULB to solve an instance with r = 0.5 is usually

two times the time spent for the same scenario but with r = 0.25. Instead,

for BD the situation is much di↵erent with scenarios solved by spending ten

or hundred times the computational time required for the same scenario with

r = 0.25. Actually there are three scenarios (18-08, 20-07 and 20-08) where

BD reaches the time limit of 1500 seconds while ULB solves these scenarios in

less than 80 seconds. Moreover, there are several scenarios (16-09, 18-02, 18-

19

Scenario r=0.25 r=0.5

BD ULB BD ULB

Gap Time Gap Time Gap Time Gap Time

CETSP-14-01 9.3 2.5 4.4 2.6 21.3 5.3 9.3 3.8

CETSP-14-02 9.5 1.5 4.5 1.3 19.8 2.2 10.1 3.2

CETSP-14-03 9.2 6.4 4.3 1.6 18.9 11.7 8.6 4.2

CETSP-14-04 8.5 2.6 4.5 1.3 18.6 4.5 8.9 3.4

CETSP-14-05 9.3 2.1 4.2 1.1 16.3 3.3 8.6 1.5

CETSP-14-06 9.6 3.7 4.9 2.0 21.9 2.5 10.0 3.3

CETSP-14-07 7.8 2.4 4.0 1.0 18.9 2.8 8.7 2.2

CETSP-14-08 9.8 6.3 4.7 1.3 20.2 7.4 9.9 2.9

CETSP-14-09 11.5 2.9 5.0 1.4 22.3 1.9 10.0 3.5

CETSP-14-10 10.2 3.4 4.9 2.0 20.5 6.0 10.3 4.5

CETSP-16-01 9.4 5.0 4.7 2.4 21.9 8.3 9.5 7.1

CETSP-16-02 11.5 1.8 5.6 1.1 22.8 8.7 11.8 3.5

CETSP-16-03 10.9 6.7 5.2 1.5 22.1 9.7 10.6 5.3

CETSP-16-04 9.7 3.0 5.0 1.3 20.0 13.8 10.9 4.8

CETSP-16-05 11.1 3.2 5.7 2.3 25.0 8.4 12.0 5.9

CETSP-16-06 8.3 4.0 4.3 3.2 19.9 14.2 9.3 3.6

CETSP-16-07 9.9 7.5 4.7 3.1 21.6 15.6 10.3 14.5

CETSP-16-08 9.9 2.0 5.2 1.1 19.9 7.2 10.7 2.5

CETSP-16-09 12.0 11.6 5.8 3.0 25.9 520.1 12.0 10.6

CETSP-16-10 11.7 5.2 5.6 2.2 24.8 15.8 11.5 6.8

CETSP-18-01 10.3 8.1 5.1 4.0 24.0 35.6 10.7 8.4

CETSP-18-02 12.8 12.8 5.7 4.6 24.3 202.0 12.0 8.9

CETSP-18-03 10.7 9.1 5.6 4.7 24.5 102.9 12.2 13.9

CETSP-18-04 11.8 2.7 5.2 2.4 22.7 11.0 11.0 4.7

CETSP-18-05 11.7 4.7 5.8 3.9 22.5 28.0 11.7 5.7

CETSP-18-06 12.5 13.4 5.8 5.4 28.0 173.9 12.6 11.9

CETSP-18-07 13.5 4.2 6.1 3.3 27.7 11.4 12.2 7.3

CETSP-18-08 12.9 22.0 6.3 4.5 33.4 1501.0 13.2 12.5

CETSP-18-09 13.0 5.7 6.3 2.2 27.3 38.4 13.3 9.0

CETSP-18-10 10.4 4.7 5.2 3.9 22.8 36.2 11.4 9.8

CETSP-20-01 11.9 11.7 5.6 4.0 23.8 556.4 12.1 12.5

CETSP-20-02 13.2 11.8 6.1 5.1 28.7 135.4 13.2 10.0

CETSP-20-03 10.2 8.3 5.3 1.9 24.6 41.5 11.7 13.6

CETSP-20-04 12.6 9.2 6.5 5.2 28.1 84.6 14.1 11.0

CETSP-20-05 12.3 8.2 6.2 4.4 25.7 716.9 13.3 8.4

CETSP-20-06 11.7 15.0 5.7 4.0 24.4 177.3 12.2 11.1

CETSP-20-07 13.7 15.8 7.0 6.8 31.9 1501.3 14.9 23.5

CETSP-20-08 13.4 39.4 6.6 7.5 30.8 1501.0 14.0 78.5

CETSP-20-09 11.5 17.4 5.8 3.1 27.3 57.0 12.7 8.3

CETSP-20-10 11.3 10.1 5.8 5.7 26.6 21.4 12.8 10.6

Table 3: Test results of the Bender Decomposition and ULB algorithms on the scenarios up

to 20 target points.

20

Scenario r=0.5 r=1

IA ULB IA ULB

LB Time LB Time LB Time LB Time

CETSP-12-01 32.308 17.6 31.185 2.7 23.913 1000.0 25.849 26.7

CETSP-12-02 43.535 4.3 42.304 1.0 37.560 1000.0 35.251 3.7

CETSP-12-03 31.225 6.8 30.419 1.0 25.587 1000.0 24.08 3.4

CETSP-12-04 31.792 16.5 30.607 3.4 23.795 1000.0 24.920 11.4

CETSP-12-05 36.059 10.4 35.003 2.1 27.768 429.5 26.256 8.2

CETSP-12-06 34.346 2.9 33.157 2.2 29.670 150.2 28.536 7.6

CETSP-12-07 32.689 3.5 31.89 2.1 25.902 1000.0 26.199 4.7

CETSP-12-08 36.986 3.4 35.739 0.9 31.105 812.6 28.771 3.6

CETSP-12-09 30.938 11.1 29.447 2.3 23.908 1000.0 22.412 5.3

CETSP-12-10 38.745 4.4 37.537 1.6 31.166 439.2 30.155 3.0

Table 4: Lower bounds computed by ULB and by IA on the scenarios with 12 target points.

06, 18-08, 20-01, 20-02, 20-05, 20-06, 20-07, 20-08) where ULB is an order of

magnitude faster than BD.

The last set of scenarios is composed by 12 target points and two radii r = 0.5

and r = 1. The first comparison is carried out on the lower bounds computed

by ULB and IA and the results are reported in Table 4. For r = 0.5 all the lower

bounds computed by IA are better than the lower bounds of our algorithm. This

is not surprising because, as explained in the previous section, our approach is

developed to compute tighter upper bounds while the lower bounds are just

computed by subtracting the discretization error of each neighborhood from

the upper bound. Regarding the performance ULB is always faster than IA

but the di↵erences in computational times are not particularly relevant. The

situation changes significantly when r = 1. We observe that IA is less e↵ective

on these scenarios and, indeed, three times (12-01, 12-04, 12-07) ULB finds the

best lower bound. What is really impressive is the decay of the performance

of IA that reaches the time limit of 1000 seconds on six scenarios and requires

from 150 to 800 seconds to solve the remaining four scenarios. Instead, all these

scenarios are solved by ULB in less than 4 seconds. These results highlight that

the radius size heavily a↵ects the performance of IA algorithm, as already shown

for the BD algorithm in Table 3, while for ULB is fairly less relevant since all

scenarios with r = 1 are solved in less than 30 seconds.

Finally, in Table 5 the upper bound values computed by IA and ULB are

21

Scenario r=0.5 r=1

IA ULB IA ULB

UB Time UB Time UB Time UB Time

CETSP-12-01 34.113 224.9 34.113 2.7 31.398 1000.0 31.300 26.7

CETSP-12-02 45.235 14.8 45.216 1.0 41.051 1000.0 41.044 3.7

CETSP-12-03 33.204 37.6 33.169 1.0 29.458 1000.0 29.444 3.4

CETSP-12-04 33.253 97.0 33.260 3.4 29.880 1000.0 29.861 11.4

CETSP-12-05 38.077 205.7 38.046 2.1 32.623 1000.0 32.584 8.2

CETSP-12-06 36.163 6.6 36.154 2.2 34.192 1000.0 34.125 7.6

CETSP-12-07 35.092 34.4 35.055 2.1 31.988 1000.0 32.138 4.7

CETSP-12-08 38.410 9.8 38.393 0.9 34.191 1000.0 34.151 3.6

CETSP-12-09 32.572 81.8 32.558 2.3 28.688 1000.0 28.672 5.3

CETSP-12-10 40.716 32.1 40.702 1.6 36.589 1000.0 36.543 3.0

Table 5: Upper bounds computed by ULB and by IA on the scenarios with 12 target points.

reported. For r = 0.5 the upper bounds of ULB are always better than the

upper those of IA and they are computed in less time. In particular often ULB

is an order of magnitude faster then IA. By increasing the radius to 1, ULB is

less e↵ective and IA finds the best upper bound three times. However, on these

scenarios IA always reaches the time limit of 1000 seconds while ULB remains

under 30 seconds. Obviously, we could obtain better bounds by increasing the

value k of the discretization points but we prefer to have a very fast algorithm

producing reasonably good bounds, in view of possible embedding of ULB into

exact approaches, where it is crucial to quickly generate good solutions.

In order to evaluate how the running time of ULB is a↵ected by problem

size, we generated a set of larger instances, with 25 and 30 targets, according

to the procedure reported in [2]. More in details, the target locations and the

depot are chosen randomly on a rectangle with length equal to 16 and width

equal to 10. The neighborhoods of the targets are discs of identical radius r=0.5.

The results of ULB on these new instances are reported in Table 6.

In this Table the first column identifies the scenario while the second and

third ones report the upper bounds computed by TSP and TSP+EL algorithms,

respectively. TSP algorithm computes the shortest tour that starts from the

depot and visits all target points. Instead, TSP+EL applies the elastic force

algorithm on the solution found by TSP to derive a better solution. The next

22

Scenario TSP TSP+EL ULB Gap

UB UB UB LB Time UB

CETSP-25-01 55.389 44.621 42.854 35.923 95.630 3.96%

CETSP-25-02 59.395 49.759 47.321 40.687 16.644 4.90%

CETSP-25-03 56.628 48.473 45.281 38.787 102.008 6.59%

CETSP-25-04 58.218 48.466 47.412 40.261 21.188 2.17%

CETSP-25-05 58.107 48.974 46.364 39.449 55.106 5.33%

CETSP-25-06 56.478 48.252 45.564 38.550 93.906 5.57%

CETSP-25-07 59.830 49.993 49.032 42.140 28.697 1.92%

CETSP-25-08 57.853 50.022 48.264 41.607 57.222 3.51%

CETSP-25-09 54.967 46.121 43.366 36.684 132.461 5.97%

CETSP-25-10 56.194 47.107 44.823 37.585 49.672 4.85%

CETSP-30-01 62.132 51.877 48.844 40.108 82.275 5.85%

CETSP-30-02 58.520 46.599 44.936 36.487 78.372 3.57%

CETSP-30-03 63.318 53.478 51.463 43.300 334.090 3.77%

CETSP-30-04 60.218 49.173 48.489 39.124 866.008 1.39%

CETSP-30-05 57.776 48.836 46.572 38.117 129.343 4.64%

CETSP-30-06 62.263 52.599 50.333 41.886 56.073 4.31%

CETSP-30-07 63.613 52.042 49.914 41.640 537.379 4.09%

CETSP-30-08 63.478 54.583 50.723 42.489 76.075 7.07%

CETSP-30-09 60.151 49.952 48.492 39.744 331.810 2.92%

CETSP-30-10 59.575 50.387 47.686 39.251 232.453 5.36%

Table 6: Computational results of ULB and of TSP+EL algorithms on the the larger instances

with r=0.5.

three columns of the table report the upper and lower bounds and the computa-

tional time of ULB, respectively. Finally, the last column shows the percentage

gap between the upper bounds computed by TSP+EL and ULB.

The comparison between TSP and TSP+EL allows us to further investigate

the e↵ectiveness of the elastic force algorithm. It is evident from the results that

the upper bounds found by TSP+EL are much better than the upper bounds

of TSP with a percentage gap that ranges from 13% to 20%. These values

highlight the e↵ectiveness of the elastic force algorithm that is able to produce

good upper bounds starting from the tsp solution whose value is usually far

from the optimal solution value.

Despite the remarkable improvement obtained by elastic force algorithm,

it is not su�cient to reach the upper bounds computed by ULB algorithm as

23

shown by results of Gap column. From this last column it is apparent that the

ULB solutions are always better than the TSP+EL solutions and the percentage

gap ranges from 1.39% (CETSP-30-03) to 7.07% (CETSP-30-07).

Regarding the performance, obviously TSP+EL is very fast and its com-

putational time is negligible because lower than 1 second. For this reason, we

did not report this value into the table. Instead, for the ULB algorithm we

observe a computational time increase, in particular on the scenarios with 30

targets where the GTSP has to be solved on graphs with 240 discretization

points. All the scenarios with 25 target points, except CETSP-25-09, are solved

in less than two minutes. Instead, on the scenarios with 30 target points, the

computational time ranges from 1 to 15 minutes. These results show that, as

expected, the greater the size of the problem, the greater is the computational

time required by ULB due to the resolution of the GTSP problem. Anyway, it

is always possible to find an appropriate trade-o↵ between the e↵ectiveness and

the performance of ULB algorithm by increasing or by reducing the number of

discretization points to be used for each neighborhood.

8. Conclusion

In this work we studied the Close Enough Traveling Salesman Problem and

developed an approach to compute upper and lower bounds for the optimal

solution. The main contribution of our work is the introduction of a new dis-

cretization scheme that, by reducing the discretization error, improves the qual-

ity of the upper and lower bounds found. Moreover, we introduced an e↵ective

graph reduction algorithm. The numerical experiments demonstrate that our

approach significantly outperform previous approaches to CETSP, in terms of

both computational time and quality of the bounds.

References

[1] E. M. Arkin, R. Hassin, Approximation algorithms for the geometric cov-

ering salesman problem, Discrete Applied Mathematics 55 (1995) 197–218.

24

[2] B. Behdani, J. Smith, An integer-programming-based approach to the

close-enough traveling salesman problem, INFORMS Journal on Comput-

ing 26 (3) (2014) 415–432.

[3] T. Cormen, C. Leiserson, R. R.L., S. C., Introduction to Algorithms, MIT

Press, 2009.

[4] J. Dong, N. Yang, M. Chen, Heuristic approaches for a tsp variant: The au-

tomatic meter reading shortest tour problem, Operations Research/ Com-

puter Science Interfaces Series 37 (2007) 145–163.

[5] A. Dumitrescu, J. Mitchell, Approximation algorithms for tsp with neigh-

borhoods in the plane, J. Algorithms 48 (1) (2003) 135–159.

[6] M. Fischetti, J. Salazar-Gonzalez, P. Toth, The generalized traveling sales-

man and orienteering problems, in: The Traveling Salesman Problem and

Its Variations, vol. 12 of Combinatorial Optimization, Springer US, 2007,

pp. 609–662.

[7] D. Gulczynski, J. Heath, C. Price, Close enough traveling salesman prob-

lem: A discussion of several heuristics, in: Perspectives in Operations Re-

search, vol. 36 of Operations Research/Computer Science Interfaces Series,

Springer US, 2006, pp. 271–283.

[8] G. Gutin, D. Karapetyan, Generalized traveling salesman problem reduc-

tion algorithms, Algorithmic Operations Research 4 (2009) 144–154.

[9] C. S. Mata, J. S. B. Mitchell, Approximation algorithms for geometric tour

and network design problems (extended abstract), in: Proceedings of the

Eleventh Annual Symposium on Computational Geometry, SCG ’95, ACM,

New York, NY, USA, 1995, pp. 360–369.

[10] W. Mennell, Heuristics for solving three routing problems: Close-enough

traveling salesman problem, close-enough vehi- cle routing problem,

sequence-dependent team orienteering problem, Ph.D. thesis, The Robert

H. Smith School of Business, University of Maryland, College Park. (2009).

25

[11] W. Mennell, B. Golden, E. Wasil, A steiner-zone heuristic for solving the

close-enough traveling salesman problem, in: 2th INFORMS Computing

Society Conference: Operations Research, Computing, and Homeland De-

fense, 2011.

[12] R. Shuttleworth, B. Golden, S. Smith, E. Wasil, Advances in meter reading:

Heuristic solution of the close enough traveling salesman problem over a

street network, Operations Research/ Computer Science Interfaces Series

43 (2008) 487–501.

[13] B. Yuan, M. Orlowska, S. Sadiq, On the optimal robot routing problem

in wireless sensor networks, IEEE Transactions on Knowledge and Data

Engineering 19 (9) (2007) 1252–1261.

26

