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Abstract

In this work we study the asympototic behaviour of a class of quasilinear elliptic problems
posed in a domain perforated by ε-periodic holes of size ε. The quasilinear equations present
a nonlinear singular lower order term fζ(uε), where uε is the solution of the problem at ε-
level, ζ is a continuous function singular in zero and f a function whose summability depends
on the growth of ζ near its singularity. We prescribe a nonlinear Robin condition on the
boundary of the holes contained in Ω and a homogeneous Dirichlet condition on the exterior
boundary. The particular case of a Neumann boundary condition on the holes is already
new.
The main tool in the homogenization process consists in proving a suitable convergence
result, which shows that the gradient of uε behaves like that of the solution of a suitable
linear problem associated with a weak cluster point of the sequence {uε}, as ε → 0. This
allows us not only to pass to the limit in the quasilinear term, but also to study the singular
term near its singularity, via an accurate a priori estimate. We also get a corrector result for
our problem.
The main novelty of this work is that for the first time the unfolding method is used to treat
a singular term as fζ(uε). This plays an essential role in order to get an almost everywhere
convergence of the solution uε, needed in the study the asymptotic behavior of the problem.

Keywords: perforated domains, homogenization, periodic unfolding method, quasilinear el-
liptic equations, singular equations, nonlinear boundary conditions.
MSC: 35B27, 35J62, 35J66, 35J75

1 Introduction

In this paper we deal with the homogenization of a class of quasilinear elliptic problems with
singular lower order terms posed in periodically perforated domains. In our study, we use the
periodic unfolding method, originally introduced in [13] and [14]. The perforated domain Ω∗ε is
obtained by removing from a connected bounded open set Ω of RN , N ≥ 2, a set of ε-periodic
holes of size ε. The boundary of Ω∗ε is decomposed into Γε1 and Γε0, which denote the boundary
of the holes well contained in Ω and the remaining exterior boundary, respectively (see Section
2 for details). We prescribe a nonlinear Robin condition on Γε1 and a homogeneous Dirichlet
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condition on Γε0.
More precisely, we study the asymptotic behavior, as ε goes to zero, of the following problem:

−div(Aε(x, uε)∇uε) = fζ(uε) in Ω∗ε,

uε = 0 on Γε0,

(Aε(x, uε)∇uε)ν + εγρε(x)h(uε) = gε on Γε1,

where ν is the unit outward normal to the holes.
The oscillating coefficients’ matrix fieldAε in the quasilinear diffusion term is defined byAε(x, t) =
A
(
x
ε , t
)
, where the matrix field A is uniformly elliptic, bounded, periodic in the first variable

and Carathéodory. The nonlinear real function ζ(s) is nonnegative and singular at s = 0, while
f is a nonnegative datum whose summability depends on the growth of ζ near its singularity.
Concerning the Robin boundary condition, ρε(x) = ρ

(
x
ε

)
where the function ρ is assumed to be

periodic, nonnegative and bounded on ∂T , the nonlinear boundary term h is an increasing and
continuously differentiable function whose derivative satisfies suitable growth assumptions, and
gε(x) = εg

(
x
ε

)
, where g is a periodic nonnegative function with prescribed summability.

From the physical point of view, the quasilinear diffusion term describes the behavior of some
materials, like glass or wood, in which the heat diffusion depends on the temperature (see [26]
for more details). A source term depending on the solution itself and becoming infinite when the
solution vanishes may model an electrical conductor, where each point becomes a source of heat
as a current flows in it (see [23, Section 3]). Moreover, nonlinear Robin boundary conditions
describe certain chemical reactions at the boundaries of perforations (e.g. [21]).
The existence and uniqueness of the weak solution of the problem, for every fixed ε, have already
been proved by the authors in [25]. Uniform a priori estimates of the solution uε are obtained by
adapting to our case some arguments introduced in [25]. Let us mention that the third bound
(cf. Proposition 4.4) provides an estimate of the integral of the singular term close to the singular
set {uε = 0}, in terms of the quasilinear one.
In the homogenization process we have to pass to the limit in the quasilinear term, in the singular
one and in the nonlinear Robin condition. In order to study the quasilinear term, we prove a
crucial convergence, given by Theorem 5.5, which is the main tool when proving our results.
It shows that the gradient of uε behaves like that of the solution of a suitable linear problem
associated with a weak cluster point of the sequence {uε}, as ε → 0. This idea was originally
introduced in [5] (see also [4]) where some nonlinear problems with quadratic growth are con-
sidered. The main difference with respect to [5] consists in the choice of the test functions used
in the proof. Indeed, in the quadratic growth case the authors take exponential test functions,
while here we have to use appropriate test functions that allow us to treat the singular term. To
construct these functions, taking into account the homogenization results of [10], we adapt to
our needs some techniques from [23].
As far as it concerns the singular term, as done in [23] and [25], we split it into the sum of two
integrals: one on the set where the solution is close to the singularity and one where is it far
from it, which results not singular. Near the singularity, we make use of the estimate given by
Proposition 4.4. In this way, we shift the study of the singular term to that of the quasilinear
one, for which we can use the previous result.
Let us point out that for h ≡ 0 we obtain, as a particular case, homogenization and corrector
results for the problem when a (homogeneous or not) Neumann boundary condition on Γε1 is
prescribed, which are already new in the literature.
Concerning the nonlinear Robin boundary condition, the arguments used in [10] to study the
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boundary terms still apply to our case, with appropriate considerations, the hypotheses being
slightly different.
Finally, Theorem 5.5 states that the correctors for the nonsingular quasilinear problem in perfo-
rated domains studied in [10] are also correctors for our problem.
As already mentioned, all the results of this paper are proved by means of the periodic unfolding
method. It was introduced by D. Cioranescu, A. Damlamian and G. Griso in [13] and [14] for
fixed domains and extended to perforated ones in [16] and [17].
The main novelty of this work is that, for the first time, the unfolding method is used to treat
a singular term as fζ(uε). This is essential in order to get the almost everywhere convergences
needed to study the asymptotic behavior of the problem. Although in [23] the problem presents
the same singular term, it is posed through rough surface. Whence, since the measure of the
interface is zero, a compactness result in L2(Ω) from [24] gives the almost everywhere conver-
gences. In our case, due to the presence of the holes, this argument does not apply, and the
almost everywhere convergences can be obtained only by using the unfolding method.
We refer to [4], [5] for the first results on the periodic homogenization of quadratic nonlinear
elliptic problems, and to [2], [3] for that of quasilinear problems, in the case of fixed domains.
The homogenization of quasilinear problems in periodically perforated domains with nonlinear
Robin boundary conditions has been considered in [8], [10], and in [11], where is also considered
a nonlinear term which is quadratic with respect to the gradient. The homogenization of various
singular elliptic problems has been studied, for instance, in [6], [23] and [27].
The paper is organized as follows:
In Section 2 we present the setting of the problem and we state the main results.
In Section 3 we give a short presentation of the periodic unfolding operator for perforated do-
mains.
In Section 4 we prove two a priori estimates uniform with respect to ε and we give an estimate
of the integral of the singular term close to the singular set {uε = 0}.
In Section 5 we state and prove the crucial auxiliary convergence result given by Theorem 5.5.
In Section 6 we prove the homogenization theorem.

2 Setting of the problem and main results

Throughout all the paper, we use the notation introduced in [12] and [14] for the periodic
unfolding method in perforated domains.
For N ∈ N, N ≥ 2, we suppose that Ω is a connected bounded open set in RN whose boundary
∂Ω is Lipschitz-continuous. Let b = {b1, ..., bN} be a basis of RN and define by Y the following
reference cell:

Y
.
=

{
y ∈ RN : y =

N∑
i=1

yibi, (y1, ..., yN ) ∈ (0, 1)N

}
. (2.1)

Also, T denotes the reference hole, which is a (nonempty) open subset of RN such that T ⊂ Y ,
and ∂T is Lipschitz-continuous with a finite number of connected components.
The perforated cell, that is the part of the cell occupied by the material, is defined by Y ∗ .= Y \T .
Let {ε}ε>0 be a positive parameter taking values in a sequence converging to zero and set

G
.
=

{
ξ ∈ RN : ξ =

N∑
i=1

kibi, (k1, ..., kN ) ∈ ZN
}

Tε
.
=
⋃
ξ∈G

ε(ξ + T ),
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where ε(ξ + T ) are disjoint traslated sets of T rescaled by ε.
The perforated domain Ω∗ε is defined by removing from Ω the closure of holes Tε, that is (see
Figure 1)

Ω∗ε
.
= Ω \ T ε.

Moreover, we define by Ω̂ε the interior of the largest union of cells ε(ξ + Y ) completely included
in Ω and by Λε its complement with respect to Ω that contains the cells ε(ξ + Y ) intersecting
∂Ω, i.e.

Ω̂ε
.
= interior

 ⋃
ξ∈Ξε

ε(ξ + Y )

 and Λε
.
= Ω \ Ω̂ε,

where
Ξε

.
= {ξ ∈ G, ε(ξ + Y ) ⊂ Ω} .

The corresponding perforated sets are

Ω̂∗ε
.
= Ω̂ε \ T ε and Λ∗ε

.
= Ω∗ε \ Ω̂∗ε.

We decompose the boundary of the perforated domain Ω∗ε as done, for instance, in [17],[18], [8]
and [10], that is

∂Ω∗ε = Γε0 ∪ Γε1 where Γε1
.
= ∂Ω̂∗ε ∩ ∂Tε and Γε0

.
= ∂Ω∗ε \ Γε1.

Figure 1: The perforated domain Ω∗ε, Ω̂∗ε, Λ∗ε and the reference cell Y

In the sequel, we also denote by:

• MY ∗(v)
.
= 1
|Y ∗|

∫
Y ∗ v(y)dy the average of any function v ∈ L1(Y ∗),

• M∂T (v)
.
= 1
|∂T |

∫
∂T v(y)dσy the average of any function v ∈ L1(∂T ),

• ∼ the zero extension to the whole of Ω of functions defined on Ω∗ε,

• ν the unit outward normal to Ω or Y ∗,

• θ .
= |Y ∗|
|Y | the proportion of the material,

• c different positive constants independent of ε,
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• M(α, β, Y ) the set of matrix fields A = (ai,j)1≤i,j≤N ∈ (L∞(Y ))N×N such that

(A(x)λ, λ) ≥ α|λ|2 and |A(x)λ| ≤ β|λ|, ∀λ ∈ RN and a.e. in Y ,

with α, β ∈ R, 0 < α < β,

• {e1, ..., eN} the canonical basis of RN .

Furthermore let us recall the classical decomposition for every real function u

u = u+ − u−, u+ .
= max{u, 0} and u−

.
= −min{u, 0} a.e. in Ω, (2.2)

where u+ and u− are both nonnegative. We also recall that

χ
Ω∗ε
⇀ θ weakly∗ in L∞(Ω), as ε→ 0.

Definition 2.1. Let f be a function defined almost everywhere in RN and Y given by (2.1).
The function f is called Y − periodic if and only if

f(x+ kyibi) = f(x) a.e. in RN , ∀k ∈ Z and ∀i = 1, ..., N.

The problem
Our aim is to study the asymptotic behavior, as ε goes to zero, of the following problem:

−div(Aε(x, uε)∇uε) = fζ(uε) in Ω∗ε,

uε = 0 on Γε0,

(Aε(x, uε)∇uε)ν + εγρε(x)h(uε) = gε on Γε1,

(2.3)

where a nonlinear Robin condition on the boundary of the holes Γε1 and a homogeneous Dirichlet
condition on the exterior boundary Γε0 are prescribed. The matrix field Aε is defined in (2.4),
and the functions ρε and gε in (2.5).

Assumptions on the data
Throughout this paper, we make the following hypotheses, where the Y -periodicity is taken in
the sense of Definition 2.1:
H1) The real N × N matrix field A : (y, t) ∈ Y × R 7→ A(y, t) = (ai,j(y, t))i,j=1,...,N ∈ RN2

satisfies the following conditions:

i) A(·, t) is Y -periodic for every t;

ii) A is a Carathéodory function, i.e.

− A(y, ·) is continuous for a.e. y ∈ Y ,

− A(·, t) is measurable for every t ∈ R;

iii) A(·, t) ∈M(α, β, Y ), for every t ∈ R;

iv) there exists a real function ω : R→ R satisfying the following conditions:

− ω is continuous and non decreasing, with ω(t) > 0 ∀ t > 0,

− |A(y, t1)−A(y, t2)| ≤ ω(|t1 − t2|) for a.e. y ∈ Y,∀ t1 6= t2,

− ∀s > 0, lim
y→0+

∫ s

y

dt

ω(t)
= +∞.
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H2) The functions ζ and f verify

i) ζ : [0,+∞[→ [0,+∞] is a function such that

ζ ∈ C0([0,+∞[), 0 ≤ ζ(s) ≤ 1

sk
for every s ∈]0,+∞[, with 0 < k ≤ 1;

ii) ζ is non increasing;

iii) f ≥ 0 a.e. in Ω, with f ∈ Ll(Ω), for l ≥ 2

1 + k
(≥ 1).

H3) Either

i) 0 ≤ g ∈ Ls(∂T ), withM∂T (g) 6= 0 and

 s ≥ 2(N − 1)

N
if N > 2,

s > 1 if N = 2;

or
ii) g ≡ 0.

H4) Either f 6≡ 0 or g 6≡ 0.

H5) γ ≥ 1, and ρ is a nonnegative Y -periodic function in L∞(∂T ).

H6) The function h is an increasing and continuously differentiable function such that for some
positive constant C and an exponent q one has

h(0) = 0,

|h′(s)| ≤ C(1 + |s|q−1),∀s ∈ R,

with 1 ≤ q <∞ if N = 2, and 1 ≤ q ≤ N

N − 2
if N > 2.

�

Under the above assumptions we set, for almost every x ∈ Ω and every t ∈ R,

Aε(x, t)
.
= A

(x
ε
, t
)
, (2.4)

and, for almost every x ∈ Γε1,

gε(x)
.
= εg

(x
ε

)
, ρε(x)

.
= ρ

(x
ε

)
. (2.5)

Now we introduce the natural framework for the study of problem (2.3), that is the space

Vε
.
= {v ∈ H1(Ω∗ε) : v = 0 on Γε0}.

Remark 2.2. It is known (see for instance [19, Lemma 1], [20]) that the Poincaré inequality
in Vε holds with a constant cP independent of ε, that is

‖v‖L2(Ω∗ε) ≤ cP ‖∇v‖L2(Ω∗ε) ∀v ∈ Vε. (2.6)

Consequently, the space Vε can be equipped by the norm

‖v‖Vε
.
= ‖∇v‖L2(Ω∗ε) ∀v ∈ Vε,

which is equivalent to the H1-norm via a constant independent on ε.
Moreover, the Sobolev embedding theorems also apply to Vε independently on ε.
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The variational formulation associated with problem (2.3) reads

Find uε ∈ Vε such that uε > 0 a.e. in Ω∗ε,∫
Ω∗ε

fζ(uε)ϕdx < +∞ and∫
Ω∗ε

Aε(x, uε)∇uε∇ϕdx+ εγ
∫

Γε
1

ρεh(uε)ϕdσ

=

∫
Ω∗ε

fζ(uε)ϕdx+

∫
Γε
1

gεϕdσ, ∀ϕ ∈ Vε.

(2.7)

Let us point out that the Lipschitz-continuous assumption on ∂T is necessary in order to write
here the surface integrals on the boundary of the holes.
We recall the following result:

Theorem 2.3 ([25]). Under assumptions H1)- H6), problem (2.7) admits a unique solution.

Remark 2.4. It can be seen from [25, proofs of Theorems 5.2 and 6.2]), that hypotheses
H1)i,ii,iii, H2)i,iii, H3-H6) provide the existence of at least a solution of our problem. To ensure
the uniqueness of the solution, as usual in the literature, some additional hypotheses on the
matrix field A and on the nonlinear function ζ are required. This is why in [25] the uniqueness
is proved assuming that the quasilinear term verifies hypothesis H1)iv, which was originally
introduced in [9] by M. Chipot for quasilinear nonsingular problems (see also [7]). Concerning
the function ζ the monotonicity hypothesis H2)ii is assumed, as done in [23] and [28].
Let us mention that if A is uniformly Lipschitz-continuous in t with constant L, then w(t)

.
= Lt

satisfies the assumption H1)iv.

Let us introduce here, for every fixed t ∈ R, the homogenized matrix field A0(t), defined by

A0(t)λ
.
=

1

|Y |

∫
Y ∗
A(y, t)∇yω̂λ(y, t)dy ∀λ ∈ RN , (2.8)

where, for every t ∈ R and λ ∈ RN ,

ω̂λ(y, t) = λ · y − χ̂
λ
(y, t)

and χ̂
λ
(y, t) is solution of the following problem:

−div(A(·, t)∇yχ̂λ(·, t)) = −div(A(·, t)λ) in Y ∗,

A(·, t)(λ−∇yχ̂λ(·, t))ν = 0 on ∂T,

χ̂
λ
(·, t) Y-periodic,

1

|Y ∗|

∫
Y ∗
χ̂
λ
(y, t)dy = 0.

(2.9)

The homogenized matrix A0 is that originally introduced in [19] for linear problems with Neu-
mann conditions in perforated domain, successively extended to quasilinear ones in [2], [3].
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We recall (see [8] and [19]) that the matrix A0 satisfies the following properties:

i) A0 is continuous and A0(t) ∈M
(
α,
β2

α
,Ω

)
for every t ∈ R;

ii) there exists a positive constant C, depending only on α, β, Y and T such that

|A0(t1)−A0(t2)| ≤ Cω(|t1 − t2|)

for every t1, t2 ∈ R, with t1 6= t2, where ω is the function given in H1).

(2.10)

Now we state the main results of this paper. The following one is proved in Section 4:

Proposition 2.5. Under assumptions H1)- H6), let uε ∈ Vε be the unique solution of problem
(2.7). Then, there exist a subsequence (still denoted by ε) and two functions u0 ∈ H1

0 (Ω) and
û ∈ L2(Ω;H1

per(Y
∗)) withMY ∗(û) = 0, such that

i) T ∗ε (uε)→ u0 strongly in L2(Ω;H1(Y ∗)) and a.e. in Ω× Y ∗,

ii) T ∗ε (ζ(uε))→ ζ(u0) a.e. in Ω× Y ∗,

iii) ũε ⇀ θu0 weakly in L2(Ω),

iv) T ∗ε (∇uε) ⇀ ∇u0 +∇yû weakly in L2(Ω× Y ∗),

v) T bε (h(uε))→ h(u0) strongly in Lt(Ω;W 1− 1
t
,t(∂T )),

(2.11)

where

t
.
=


∈ (1; 2) if N = 2 and q > 1,

2N

q(N − 2) + 2
otherwise;

(2.12)

and q is given by H6). Moreover,

u0 ≥ 0 a.e. in Ω and
∫

Ω
fζ(u0)ϕdx < +∞, ∀ϕ ∈ H1

0 (Ω) ∩ L∞(Ω). (2.13)

We also have the result below, which is proved at the end of Section 5.

Proposition 2.6. Under assumptions H1)- H6), let (u0, û) be given by Proposition 2.5. Then

û(y, x) = −
N∑
i=1

χ̂
ei

(y, u0(x))
∂u0

∂xi
(x) ∈ L2(Ω;H1

per(Y
∗)).

Remark 2.7. The proof of Proposition 2.6 makes use of some results from [10] and [11], where
is also considered the case g 6≡ 0 with M∂T (g) = 0. Here, since we need to assume g ≥ 0, we
can only have the casesM∂T (g) 6= 0 or g ≡ 0.

The homogenization result for problem (2.7) is given by the following theorem, whose proof is
presented in Section 6:
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Theorem 2.8. Under assumptions H1)- H6), let uε ∈ Vε be the unique solution of problem
(2.7) and (u0, û) be given by Propositions 2.5-2.6. Then the pair (u0, û) is the unique solution of
the limit equation

∀ϕ ∈ H1
0 (Ω) ∩ L∞(Ω) and ∀ψ ∈ L2(Ω;H1

per(Y
∗))∫

Ω×Y ∗
A(y, u0)(∇u0 +∇yû)(∇ϕ+∇yψ)dxdy + |Y |cγ

∫
Ω
h(u0)ϕdx

= |Y ∗|
∫

Ω
fζ(u0)ϕdx+ |∂T |M∂T (g)

∫
Ω
ϕdx,

(2.14)

where cγ is defined by

cγ
.
=


|∂T |
|Y |
M∂T (ρ) if γ = 1,

0 if γ > 1.
(2.15)

Finally, u0 > 0 almost everywhere in Ω and u0 is the unique solution of the following singular
limit problem: −div(A0(u0)∇u0) + cγh(u0) = θfζ(u0) +

|∂T |
|Y |
M∂T (g) in Ω,

u0 = 0 on ∂Ω,
(2.16)

where the homogenized matrix A0(t) is given by (2.8) and verifies

A0(u0)∇u0 =
1

|Y |

∫
Y ∗
A(y, u0)(∇u0 +∇yû)dy. (2.17)

Consequently, convergences (2.11) hold for the whole sequence.

Also let us introduce the usual corrector matrix field for perforated domains Cε (see [22]), defined
by

Cε(·, t) =
(
Cεi,j(·, t)

)
i,j=1,...,N

∈ RN
2
, for every t ∈ R,

where 
Cε(x, t) = C

(x
ε
, t
)

a.e. in Ω∗ε,

Ci,j(y, t) =
∂ω̂j
∂yi

(y, t), i, j = 1, ..., N a.e. on Y ∗.
(2.18)

Finally, we prove the following corrector result, which shows that the corrector of a suitable
associated non-singular problem introduced in Section 5 (see (5.3)) is also a corrector for our
problem:

Theorem 2.9. Under assumptions of Theorem 2.8, let Cε be defined by (2.18). Then

lim
ε→0
‖∇uε − Cε(·, uε)∇u0‖L1(Ω∗ε) = 0.

Proof. This result is a direct consequence of Theorem 5.5 in Section 5 and the corrector result
for the non-singular case given by [10, Theorem 4.11].
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3 The periodic unfolding method

As already mentioned in the introduction, the periodic unfolding method was introduced by
D. Cioranescu, A. Damlamian and G. Griso in [13] and [14] for fixed domains and extended
to perforated ones in [17]-[16]. In this section, we give a short presentation of the periodic
unfolding operator for perforated domains. We refer to [12] and [14] for detailed proofs of the
results presented here.
Let z ∈ RN , we denote by [z]Y its integer part such that z − [z]Y belongs to Y and set {z}Y

.
=

z − [z]Y . Then, for every positive ε,

x = ε
([x
ε

]
Y

+
{x
ε

}
Y

)
∀x ∈ RN .

Definition 3.1. For any Lebesgue-measurable function φ on Ω∗ε, the unfolding operator T ∗ε is
defined as follows:

T ∗ε (φ)(x, y)
.
=

{
φ
(
ε
[
x
ε

]
Y

+ εy
)

a.e. for (x, y) ∈ Ω̂ε × Y ∗,
0 a.e. for (x, y) ∈ Λε × Y ∗.

(3.1)

This definition makes sense even if φ is Lebesgue-measurable on Ω̂∗ε, since we extend it by zero
in Λ∗ε. Observe that, by definition, one has

T ∗ε (ζ(φ))(x, y) =

{
ζ(T ∗ε (φ)(x, y)) a.e. in Ω̂ε × Y ∗,

0 a.e. in Λε × Y ∗,
(3.2)

for all measurable fucntions φ on Ω∗ε and any function ζ satisfying H2)i. Moreover, the unfolding
operator T ∗ε has the properties listed below:

Proposition 3.2 ([12][14][17]). Let p ∈ [1,+∞).

1. T ∗ε is a linear and continuous operator from Lp(Ω∗ε) to Lp(Ω× Y ∗).

2. T ∗ε (φψ) = T ∗ε (φ)T ∗ε (ψ) for every φ, ψ ∈ Lp(Ω∗ε).

3. Let φ ∈ Lp(Y ∗) be a Y -periodic function and set φε(x) = φ(xε ). Then

T ∗ε (φε)(x, y) = φ(y) a.e. in Ω̂ε × Y ∗.

4. For all φ ∈ L1(Ω∗ε), the following integration formula holds:∫
Ω̂∗ε

φ(x)dx =

∫
Ω∗ε

φ(x)dx−
∫

Λ∗ε

φ(x)dx =
1

|Y |

∫
Ω×Y ∗

T ∗ε (φ)(x, y)dxdy.

5. ‖T ∗ε (φ)‖Lp(Ω×Y ∗) ≤ |Y |
1
p ‖φ‖Lp(Ω∗ε) for every φ ∈ Lp(Ω∗ε).

6. For φ ∈ Lp(Ω),
T ∗ε (φ)→ φ strongly in Lp(Ω× Y ∗).

7. Let {φε} be a sequence in Lp(Ω) such that φε → φ strongly in Lp(Ω). Then

T ∗ε (φε)→ φ strongly in Lp(Ω× Y ∗).
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Corollary 3.3 ([14]) (Unfolding criterion for integrals (u.c.i.)). Let φε be in L1(Ω∗ε). If∫
Λ∗ε

|φε|dx→ 0,

then ∫
Ω∗ε

φεdx−
1

|Y |

∫
Ω×Y ∗

T ∗ε (φε)dxdy → 0.

In the sequel, if {φε} is a sequence satisfying u.c.i., we write∫
Ω∗ε

φεdx '
1

|Y |

∫
Ω×Y ∗

T ∗ε (φε)dxdy.

Proposition 3.4 ([14]). The following properties hold:

• Let {φε} ⊂ Lp(Ω∗ε) such that ‖φε‖Lp(Ω∗ε) ≤ c, with p ∈ (1,+∞), and ψ ∈ Lp′(Ω∗ε), then∫
Ω∗ε

φεψdx '
1

|Y |

∫
Ω×Y ∗

T ∗ε (φε)T ∗ε (ψ)dxdy.

• Let {φε} ⊂ Lp(Ω∗ε) such that ‖φε‖Lp(Ω∗ε) ≤ c, with p ∈ (1,+∞), and {ψε} a bounded
sequence in Lp0(Ω∗ε) with 1

p + 1
p0
< 1. Then∫

Ω∗ε

φεψεdx '
1

|Y |

∫
Ω×Y ∗

T ∗ε (φε)T ∗ε (ψε)dxdy.

As a consequence of the previous proposition, the following convergence result holds:

Proposition 3.5 ([12][14][17]). Let {φε} ⊂ Lp(Ω∗ε) such that ‖φε‖Lp(Ω∗ε) ≤ c, with p ∈ [1,+∞).
If

T ∗ε (φε) ⇀ φ weakly in Lp(Ω× Y ∗),

then
φ̃ε ⇀ θMY ∗(φ) weakly in Lp(Ω).

We also recall the definition and some properties of the boundary unfolding operator.

Definition 3.6. For any Lebesgue-measurable function φ on ∂Ω̂∗ε∩∂Tε, the boundary unfolding
operator T bε is defined as follows:

T bε (φ)(x, y)
.
=

{
φ
(
ε
[
x
ε

]
Y

+ εy
)

a.e. for (x, y) ∈ Ω̂ε × ∂T,
0 a.e. for (x, y) ∈ Λε × ∂T.

(3.3)

Proposition 3.7 ([12][14][17]). Let p ∈ (1,+∞).

1. T bε is a linear and continuous operator from Lp(∂Ω̂∗ε ∩ ∂Tε) to Lp(Ω× ∂T ).

2. T bε (φψ) = T bε (φ)T bε (ψ) for every φ, ψ ∈ Lp(∂Ω̂∗ε ∩ ∂Tε).

3. Let φ ∈ Lp(∂T ) be a Y -periodic function and set φε(x) = φ(xε ). Then

T bε (φε)(x, y) = φ(y) a.e. in Ω̂ε × ∂T.
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4. For all φ ∈ L1(∂Ω̂∗ε ∩ ∂Tε), the integration formula is given by∫
Γε
1

φ(x)dσx =
1

ε|Y |

∫
Ω×∂T

T bε (φ)(x, y)dxdσy.

5. ‖T bε (φ)‖Lp(Ω×∂T ) ≤ ε
1
p |Y |

1
p ‖φ‖Lp(∂Tε) for every φ ∈ Lp(∂Ω̂∗ε ∩ ∂Tε).

6. For φ ∈ Lp(∂Ω̂∗ε ∩ ∂Tε),

T bε (φ)→ φ strongly in Lp(Ω× ∂T ).

We summarize in the proposition below some results that have been obtained in the literature
(we refer to [16], [17] as well to [12] for convergences i)− iv), and to [8] for v)).

Proposition 3.8. Let {wε} be a sequence such that wε ∈ Vε and ‖wε‖Vε ≤ c. Then, there
exist a subsequence (still denoted by ε) and two functions (w0, ŵ) ∈ H1

0 (Ω) × L2(Ω;H1
per(Y

∗))
withMY ∗(ŵ) = 0, such that

i) T ∗ε (wε)→ w0 strongly in L2(Ω;H1(Y ∗)),

ii) T ∗ε (∇wε) ⇀ ∇w0 +∇yŵ weakly in L2(Ω× Y ∗),

iii) w̃ε ⇀ θw0 weakly in L2(Ω),

iv) T bε (h(wε))→ h(w0) strongly in Lt(Ω;W 1− 1
t
,t(∂T )),

v) T ∗ε (Aε(x,wε))→ A(y, w0) a.e. in Ω× Y ∗,

(3.4)

where

t
.
=


∈ (1; 2) if N = 2 and q > 1,

2N

q(N − 2) + 2
otherwise;

(3.5)

and q given by H6).

Here, let us just point out that

T ∗ε (Aε(x, uε(x))) =

{
A(y, T ∗ε (uε)(x, y)) a.e. for (x, y) ∈ Ω̂ε × Y ∗,

0 a.e. for (x, y) ∈ Λε × Y ∗.
(3.6)

We recall now an important result, which plays an essential role when treating surface integrals
containing periodic functions. It was originally proved in [15], then revisited and improved by
unfolding in [12] and [17] (see also [10, Propositions 3.7-3.8] for the case g ∈ Ls).

Proposition 3.9 ([10]). Let g be a function satisfying hypothesis H3)i. Then, for every ϕ ∈ Vε,
the following inequality holds:∣∣∣∣∣

∫
Γε
1

g
(x
ε

)
ϕ(x)dσ

∣∣∣∣∣ ≤ c

ε
(|M∂T (g)|+ ε)‖∇ϕ‖L2(Ω∗ε).
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Furthermore, ifM∂T (g) = 0, then for every ϕ ∈ Vε, one has

lim
ε→0

∫
Γε
1

g
(x
ε

)
ϕ(x)dσ = 0.

Moreover, if {wε} ⊂ Vε is a sequence such that (3.4)i holds, then

lim
ε→0

ε

∫
Γε
1

g
(x
ε

)
wεdσ =

|∂T |
|Y |
M∂T (g)

∫
Ω
w0dx.

4 A priori estimates

In the following propositions we establish two a priori estimates for a solution of problem (2.7),
which are uniform with respect to ε. Let us point out that in the sequel we can suppose ε < 1
without loss of generality, since ε will tend to zero.

Proposition 4.1. Under assumptions H1)- H6), let uε ∈ Vε be the solution of problem (2.7).
The following a priori estimate holds:

‖uε‖Vε ≤ c, (4.1)

where c depends on α, cP , ‖f‖Ll(Ω) andM∂T (g).

Proof. Let uε ∈ Vε be the solution of problem (2.3) and let us choose uε as test function in its
variational formulation (2.7). The same computation made in the proof of the [25, Proposition
3.1], together with the nonnegativity of ε and γ, gives

α‖∇uε‖2L2(Ω∗ε) ≤
∫

Ω∗ε

Aε(x, uε)∇uε∇uεdx+ εγ
∫

Γε
1

ρεh(uε)uεdσ

≤
∫

Ω∗ε

fu1−k
ε dx+

∫
Γε
1

gεuεdσ.

Applying the Young inequality with exponents 2
1−k and 2

1+k , we have for every η1 > 0,

fu1−k
ε ≤ c(η1)f

2
1+k + η1u

2
ε.

This implies, in view of the Poincaré inequality (2.6), that

α‖∇uε‖2L2(Ω∗ε) ≤ η1c
2
P ‖∇uε‖2L2(Ω∗ε) + c(η1)‖f‖

2
1+k

L
2

1+k (Ω)
+

∫
Γε
1

gεuεdσ,

where cP is the Poincaré constant in Vε. Moreover, in view of the definition of gε and Proposition
3.9, for the Young inequality we have∫

Γε
1

gεuεdσ ≤ c(|M∂T (g)|+ ε)‖uε‖Vε ≤ η2‖uε‖2Vε + c(η2),

independently on ε. Whence, choosing η1 and η2 sufficiently small so that α− η1c
2
P − η2 > 0, we

deduce that there exists a constant c, independent on ε, such that

‖uε‖Vε ≤ c,

where c depends on α, cP , ‖f‖Ll(Ω) andM∂T (g).
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In the next a priori estimate, we will use the following property that we prove for the reader’s
convenience:

Lemma 4.2. Let Ω1 be a bounded open set in RN with ∂Ω1 Lipschitz-continuous. If u belongs
to H1(Ω1) ∩ L∞(Ω1), then u ∈ L∞(∂Ω1).

Proof. Set k := ‖u‖L∞(Ω1) and take un ∈ D(Ω1) such that

un → u strongly in H1(Ω1).

Then, by known results, if Tk denotes the truncation function at level k, we have

Tk(un)→ Tk(u) = u strongly in H1(Ω1),

as n→ +∞. Hence
Tk(un)→ u strongly in L2(∂Ω1),

and, up to a subsequence, almost everywhere on ∂Ω1. Since |Tk(un)| ≤ k, this gives

u ≤ k a.e. on ∂Ω1,

which implies the result.

Proposition 4.3. Under assumptions H1)- H6), let uε ∈ Vε be the solution of problem (2.7).
Then, up to a subsequence,

‖fζ(uε)ϕ‖L1(Ω∗ε) ≤ c, (4.2)

for every nonnegative ϕ ∈ H1
0 (Ω) ∩ L∞(Ω) with c depending on α, β, cP , |Y |, ‖ρ‖L∞(∂T ),

‖∇ϕ‖L2(Ω), ‖f‖Ll(Ω) andM∂T (g).

Proof. Let uε ∈ Vε be the solution of problem (2.7) and let us choose a nonnegative function
ϕ ∈ H1

0 (Ω) ∩ L∞(Ω) as test function. Since f , ζ, g and ϕ are nonnegative, using H1) together
with the Hölder inequality, we have

0 ≤
∫

Ω∗ε

fζ(uε)ϕdx =

∫
Ω∗ε

Aε(x, uε)∇uε∇ϕdx+ εγ
∫

Γε
1

ρεh(uε)ϕdσ −
∫

Γε
1

gεϕdσ

≤ β‖∇uε‖L2(Ω∗ε)‖∇ϕ‖L2(Ω∗ε) + εγ
∫

Γε
1

ρεh(uε)ϕdσ.

As far as it concerns the surface integral, thanks to the properties of the boundary unfolding
operator (see Proposition 3.7) and H5), we get

εγ
∫

Γε
1

ρεh(uε)ϕdσ =
εγ−1

|Y |

∫
Ω×∂T

T bε (ρε)T bε (h(uε))T bε (ϕ)dxdσy

=
εγ−1

|Y |

∫
Ω×∂T

ρ(y)T bε (h(uε))T bε (ϕ)dxdσy

≤ εγ−1

|Y |
‖ρ‖L∞(∂T )

∫
Ω×∂T

T bε (h(uε))T bε (ϕ)dxdσy.

(4.3)
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In order to estimate the right-hand side of (4.3), let t be a real number veryfing (3.5). Thanks
to a priori estimate (4.1), Proposition 3.8 holds true; so that, up to a subsequence, T bε (h(uε)) is
bounded in Lt(Ω×∂T ). In addition, by using the assumption on ϕ, Lemma 4.2 and Proposition
3.76 one has the boundedness of T bε (ϕ) in Lt′(Ω× ∂T ), where t′ is the coniugate of t. Applying
the Hölder inequality we obtain

εγ−1

|Y |
‖ρ‖L∞(∂T )

∫
Ω×∂T

T bε (h(uε))T bε (ϕ)dxdσy

≤ εγ−1

|Y |
‖ρ‖L∞(∂T )‖T bε (h(uε))‖Lt(Ω×∂T )‖T bε (ϕ)‖Lt′ (Ω×∂T ).

This, together with (4.1) and hypothesis H5), allows to state that

0 ≤
∫

Ω∗ε

fζ(uε)ϕdx ≤ c,

where the constant c depends on α, β, cP , |Y |, ‖ρ‖L∞(∂T ), ‖∇ϕ‖L2(Ω), ‖f‖Ll(Ω) andM∂T (g).

The following result gives an estimate of the integral of the singular term close to the singular
set {uε = 0}. It is inspired by arguments used in [27], [28] and [23], which present a similar
singular term. The estimate follows immediately from the a priori estimate [25, Proposition 3.3]
in view of [30, Lemma 2.7].

Proposition 4.4 ([25]). Under assumptions H1)- H6), let uε ∈ Vε be the solution of problem
(2.7) and δ a fixed positive real number. Then,∫

{0<uε≤δ}
fζ(uε)ϕdx ≤

∫
Ω∗ε

Aε(x, uε)∇uε∇ϕZδ(uε)dx+ cεγ−
1
2h(2δ)‖ρ‖L∞(∂T )‖ϕ‖Vε ,

for every ϕ ∈ Vε, ϕ ≥ 0 and c independent on ε, where Zδ is an auxiliary function defined by

Zδ(s) =


1, if 0 ≤ s ≤ δ,

−s
δ

+ 2, if δ ≤ s ≤ 2δ,

0, if s ≥ 2δ.

The estimate given in Proposition 4.3 allows us to prove Proposition 2.5.

Proof of Proposition 2.5. Let uε be the solution of problem (2.7). Proposition 4.1 allows us
to apply Proposition 3.8 which provides the existence of u0 ∈ H1

0 (Ω) and û ∈ L2(Ω;H1
per(Y

∗))
withMY ∗(û) = 0 such that, up to a subsequence, one has convergences (2.11)i, (2.11)iii-(2.11)v,
where T ∗ε is the unfolding operator defined by (3.1).
To prove (2.11)ii, observe that, by construction, for every x ∈ Ω there exists εx > 0 such that

x ∈ Ω̂ε, ∀ε ≤ εx.

Consequently, since (3.2) holds true, for almost every (x, y) ∈ Ω × Y ∗, there exists εx > 0 such
that

T ∗ε (ζ(uε)) = ζ(T ∗ε (uε)), ∀ε ≤ εx. (4.4)
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On the other hand, using the continuity of ζ and (2.11)i, we have

ζ(T ∗ε (uε))→ ζ(u0) a.e. in Ω× Y ∗. (4.5)

This, together with (4.4), gives (2.11)ii.
To show that u0 is nonnegative almost everywhere in Ω, we note that every solution uε is positive
almost everywhere in Ω∗ε, by Theorem 2.3. Then, the definition of the unfolding operator implies
T ∗ε (uε) ≥ 0 almost everywhere in Ω× Y ∗ so that, in view of (2.11)i,

u0 ≥ 0 a.e. in Ω.

It remains to prove the second condition in (2.13). Let us choose first a nonnegative ϕ ∈
H1

0 (Ω) ∩ L∞(Ω). Propositions 3.22,4 and 4.3, for the subsequence mentioned before, lead to

lim inf
ε→0

1

|Y |

∫
Ω×Y ∗

T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (ϕ)dxdy ≤ lim inf
ε→0

∫
Ω∗ε

fζ(uε)ϕdx < +∞. (4.6)

Now, from Proposition 3.26, T ∗ε (f) and T ∗ε (ϕ) converge to f and ϕ, respectively, almost every-
where in Ω× Y ∗, up to a subsequence. Thus, by (2.11)ii,

T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (ϕ)→ fζ(u0)ϕ a.e. in Ω× Y ∗.

Since T ∗ε (f), T ∗ε (ζ(uε)) and T ∗ε (ϕ) are nonnegative functions, we can use Fatou’s lemma and
(4.6) to obtain

1

|Y |

∫
Ω×Y ∗

fζ(u0)ϕdxdy ≤ lim inf
ε→0

1

|Y |

∫
Ω×Y ∗

T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (ϕ)dxdy < +∞.

Being the functions f and u0 independent on y, this implies in particular that

θ

∫
Ω
fζ(u0)ϕdx < +∞

and ends the proof for ϕ ≥ 0. For ϕ with any sign, it suffices to decompose it as in (2.2). �

5 A crucial auxiliary result

In this section we state and prove the convergence result given in Theorem 5.5, which is our main
tool when proving Theorem 2.8. Let u0 a weak cluster point of the sequence {uε}. Then, Theorem
5.5 shows that the gradient of our solution uε is equivalent to the gradient of the solution vε of a
suitable linear problem, (5.5), associated with u0. This idea was originally introduced in [5] (see
also [4]) in the homogenization of some nonlinear problem with quadratic growth. We refer to
[22] and [11] for the case of perforated domains. We also refer to [23] for the case of a singular
nonlinearity verifying H2)i, in a two-component domain with a oscillating interface. Here we
adapt some techniques from [11] and [23], taking into account the homogenization results proved
in [10].
In order to prove Theorem 5.5, the following preliminary result is needed (see [10] and [11,
Remark 3.1]).
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Proposition 5.1 ([11]). There exists a linear operator Lε : H−1(Ω) → V ′ε satisfying the
following condition:
If {ϕε} is a sequence such that

‖ϕε‖Vε ≤ c and ϕ̃ε ⇀ θϕ0 weakly in L2(Ω), (5.1)

then
lim
ε→0
〈Lε(Z), ϕε〉V ′ε ,Vε = 〈Z,ϕ0〉H−1(Ω),H1

0 (Ω). (5.2)

Notice that, see [11, Remark 3.1], if (5.1) holds, one has ϕ0 ∈ H1
0 (Ω).

Remark 5.2. Let us point out that our sequence {uε} satisfies (5.1), thanks to Proposition
4.1 and (2.11)iii.

Here, as in [11], the suitable linear problem associated with problem (2.3) is
−div(Aε(x, uε)∇vε) = Lε(−div(A0(u0)∇u0) + cγh(u0)− |∂T |

|Y |
M∂T (g)) in Ω∗ε,

vε = 0 on Γε0,

(Aε(x, uε)∇vε)ν + εγρε(x)h(uε) = gε on Γε1,

(5.3)

where cγ is defined by (2.15) and whose homogenization has been studied in [10]. One can easily
check (see [11]), using this homogenization result, that{

−div(A0(u0)∇v0) = −div(A0(u0)∇u0) in Ω,

v0 = 0 on ∂Ω.

Then, the uniqueness of this problem gives the following result stated in [11]:

Lemma 5.3 ([11]). Under the assumptions of Proposition 2.5, let vε be the solution of problem
(5.5). Then, vε satisfies

‖vε‖Vε ≤ c and ṽε ⇀ θu0 weakly in L2(Ω), (5.4)

with u0 given by Proposition 2.5.

Hence, the gradient of the solution vε of problem (5.3) appears to be a natural candidate in order
to show its equivalence (in the L2-norm) to the gradient of our solution uε.
The variational formulation of problem (5.3) is∫

Ω∗ε

Aε(x, uε)∇vε∇ϕdx+ εγ
∫

Γε
1

ρεh(uε)ϕdσ

=

∫
Γε
1

gεϕdσ + 〈Lε(−div(A0(u0)∇u0) + cγh(u0)− |∂T |
|Y |
M∂T (g)), ϕ〉V ′ε ,Vε , ∀ϕ ∈ Vε.

(5.5)

Unlike the problem treated in [11], under our assumptions, the functions vε are not necessarily
bounded. Hence, as in [23], we define the following auxiliary functions um:

∀m ∈ N,m ≥ 1, um
.
= Tm(u0),
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where Tm is the usual truncation function at level m, so that

0 ≤ um ≤ u0 and um → u0 strongly in H1
0 (Ω), as m→ +∞. (5.6)

Then, we define by vmε the solution of the following problem:
−div(Aε(x, uε)∇vmε ) = Lε(−div(A0(u0)∇um) + cγh(u0)− |∂T |

|Y |
M∂T (g)) in Ω∗ε,

vmε = 0 on Γε0,

(Aε(x, uε)∇vmε )ν + εγρε(x)h(uε) = gε on Γε1,

whose variational formulation is∫
Ω∗ε

Aε(x, uε)∇vmε ∇ϕdx+ εγ
∫

Γε
1

ρεh(uε)ϕdσ

=

∫
Γε
1

gεϕdσ + 〈Lε(−div(A0(u0)∇um) + cγh(u0)− |∂T |
|Y |
M∂T (g)), ϕ〉V ′ε ,Vε , ∀ϕ ∈ Vε.

(5.7)

The existence and the uniqueness of such a solution vmε ∈ Vε is straightforward proved by
using the Lax-Milgram theorem. Also, from [10, Corollary 4.6] written for zε = uε and for

Z = −div(A0(u0)∇um) + cγh(u0)− |∂T |
|Y |
M∂T (g), one has, for every fixed m,

‖vmε ‖Vε ≤ c and ṽmε ⇀ θum weakly in L2(Ω), (5.8)

with c independent onm and ε. Hence, vmε satisfies (5.1) and, from Proposition 3.8, the following
convergence holds true, up to a subsequence:

T ∗ε (vmε )→ um strongly in L2(Ω;H1(Y ∗)). (5.9)

Moreover, by classical results from [31], we have that for every fixed m

‖vmε ‖L∞(Ω∗ε) ≤ cm, for every ε. (5.10)

Lemma 5.4. The sequence {(vmε )−} satisfies conditions (5.1). Moreover

T bε ((vmε )−) ⇀ 0 weakly in Lr(Ω× ∂T ), ∀r ≥ 1. (5.11)

Proof. In view of the estimate in (5.8), one has

‖(vmε )−‖Vε ≤ ‖vmε ‖Vε ≤ c.

Hence, Proposition 3.8 implies

T ∗ε ((vmε )−)→ u−m = 0 strongly in L2(Ω;H1(Y ∗)), (5.12)

since um ≥ 0 and (5.9) implies convergence (5.12) in L2(Ω × Y ∗). Also, by using Proposition
3.5, one has

(̃vmε )− ⇀ θMY ∗(u
−
m) = 0 weakly in L2(Ω).

Moreover, from (5.12) we get in particular

T ∗ε ((vmε )−) ⇀ u−m = 0 weakly in L2(Ω× ∂T ),

and the convergence (5.11) derives from (5.10) and Lemma 4.2.
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We can now state the main result of this section.

Theorem 5.5. Under assumptions H1)- H6), let uε and vε be solutions of problems (2.7) and
(5.5), respectively. Then, for the subsequence verifying (2.11),

lim
ε→0
‖∇uε −∇vε‖L2(Ω∗ε) = 0.

Proof. The proof is done in 3 steps. It makes use of some ideas from [23] concerning the singular
term, splitted into two terms: one near the singularity and one far from it which results not
singular.
Step 1. Let us prove that

lim
ε→0

∫
Ω∗ε

[(vmε )−]2dx = 0. (5.13)

Observe that, from the Poincaré inequality (2.6),

0 ≤
∫

Ω∗ε

[(vmε )−]2dx ≤ c2
P

∫
Ω∗ε

|∇(vmε )−|2dx, (5.14)

for any fixed m ≥ 1. Then it suffices to prove that

lim
ε→0

∫
Ω∗ε

|∇(vmε )−|2dx = 0 ∀m ≥ 1. (5.15)

Let us choose −(vmε )− ∈ Vε as test fuction in (5.7) getting

−
∫

Ω∗ε

Aε(x, uε)∇vmε ∇(vmε )−dx− εγ
∫

Γε
1

ρεh(uε)(v
m
ε )−dσ

= −
∫

Γε
1

gε(v
m
ε )−dσ + 〈Lε(−div(A0(u0)∇um) + cγh(u0)− |∂T |

|Y |
M∂T (g)),−(vmε )−〉V ′ε ,Vε .

From the ellipticity of A and observing that ∇vmε = ∇(vmε )+ −∇(vmε )− and∫
Ω∗ε

Aε(x, uε)∇(vmε )+∇(vmε )−dx = 0,

we have

α‖∇(vmε )−‖2L2(Ω∗ε) ≤
∫

Ω∗ε

Aε(x, uε)∇(vmε )−∇(vmε )−dx+

∫
Γε
1

gε(v
m
ε )−dσ

= εγ
∫

Γε
1

ρεh(uε)(v
m
ε )−dσ + 〈Lε(−div(A0(u0)∇um) + cγh(u0)− |∂T |

|Y |
M∂T (g)),−(vmε )−〉V ′ε ,Vε .

(5.16)
From Lemma 5.4 and Proposition 5.1, we get

lim
ε→0
〈Lε(−div(A0(u0)∇um) + cγh(u0)− |∂T |

|Y |
M∂T (g)),−(vmε )−〉V ′ε ,Vε

= 〈−div(A0(u0)∇um) + cγh(u0)− |∂T |
|Y |
M∂T (g)), 0〉H−1(Ω),H1

0 (Ω) = 0.

(5.17)
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Also, by using Proposition 3.72,3,4, (2.11)v and (5.11) of Lemma 5.4, we get

0 ≤ lim
ε→0

εγ
∫

Γε
1

ρεh(uε)(v
m
ε )−dσ = lim

ε→0

εγ−1

|Y |

∫
Ω×∂T

ρ(y)T bε (h(uε))T bε ((vmε )−)dxdσy

≤ lim
ε→0

εγ−1

|Y |
‖ρ‖L∞(∂T )

∫
Ω×∂T

T bε (h(uε))T bε ((vmε )−)dxdσy = 0,

which, together with (5.16)-(5.17), gives (5.15).
Step 2. In this step we show that

lim
m→+∞

lim
ε→0

∫
Ω∗ε

|∇(uε − vmε )|2dx = 0. (5.18)

To do that, let us choose uε − vmε ∈ Vε as test function in (2.7) and (5.7). By subtraction and
H1)iii, one has

α‖∇(uε − vmε )‖2L2(Ω∗ε) ≤
∫

Ω∗ε

Aε(x, uε)∇(uε − vmε )∇(uε − vmε )dx =

∫
Ω∗ε

fζ(uε)(uε − vmε )dx

− 〈Lε(−div(A0(u0)∇um) + cγh(u0)− |∂T |
|Y |
M∂T (g)), uε − vmε 〉V ′ε ,Vε .

(5.19)
First we pass to the limit as ε→ 0, and then as m→ +∞. Let us prove that, as ε→ 0, we have

α lim sup
ε→0

‖∇(uε − vmε )‖2L2(Ω∗ε) ≤ θ
∫

Ω
fζ(u0)(u0 − um)χ{u0>0}dx

− 〈−div(A0(u0)∇um) + cγh(u0)− |∂T |
|Y |
M∂T (g)), u0 − um〉H−1(Ω),H1

0 (Ω).

(5.20)

Concerning the second term in the right-hand side of (5.19), let us observe that uε− vmε satisfies
(5.1), from Remark 5.2 and (5.8). So that, by Proposition 5.1

lim
ε→0
〈Lε(−div(A0(u0)∇um) + cγh(u0)− |∂T |

|Y |
M∂T (g)), uε − vmε 〉V ′ε ,Vε

= 〈−div(A0(u0)∇um) + cγh(u0)− |∂T |
|Y |
M∂T (g)), u0 − um〉H−1(Ω),H1

0 (Ω).

(5.21)

Let δ > 0. We split the integral of the singular term in (5.19) into two terms and write∫
Ω∗ε

fζ(uε)(uε − vmε )dx =

∫
Ω∗ε

fζ(uε)(uε − (vmε )+)dx+

∫
Ω∗ε

fζ(uε)(v
m
ε )−dx

≤ Iδε + Jδε +Kε,

(5.22)

where

Iδε
.
=

∫
Ω∗ε∩{0<uε≤δ}

fζ(uε)uεdx, Jδε
.
=

∫
Ω∗ε∩{uε>δ}

fζ(uε)(uε − (vmε )+)dx
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and Kε
.
=

∫
Ω∗ε

fζ(uε)(v
m
ε )−dx.

We will compute separately these three limits.
Limit of Iδε : When k < 1 we get

0 ≤ Iδε ≤
∫

Ω∗ε∩{0<uε≤δ}
fu1−k

ε dx ≤ δ1−k
∫

Ω
fχ{0<uε≤δ}

dx ≤ cδ1−k,

since the functions involved are all nonnegative, f ∈ L1(Ω) and for the growth conditions on ζ
near its singularity (see H2)i). Consequently,

lim
δ→0

lim
ε→0

Iδε = 0. (5.23)

While in the case k = 1, one has

0 ≤ Iδε ≤
∫

Ω∗ε∩{0<uε≤δ}
f

1

uε
uεdx =

∫
Ω∗ε

fχ{0<uε≤δ}
χ{u0 6=δ}

dx+

∫
Ω∗ε

fχ{0<uε≤δ}
χ{u0=δ}dx. (5.24)

Observe that ∫
Ω∗ε

fχ{0<uε≤δ}
χ{u0=δ}dx = 0, (5.25)

for every δ ∈ R+\D, where D is the countable set given by

D = {δ ∈ R+ : |{(x, y) ∈ Ω× Y ∗ : u0(x) = δ}| > 0} (5.26)

(see for instance [29], [23] and [25]).
In what follows, we take δ ∈ R+ \D. In order to study the first term in the right-hand side, we
make use of the periodic unfolding method. From Proposition 3.22,4 one has

lim
ε→0

∫
Ω∗ε

fχ{0<uε≤δ}
χ{u0 6=δ}

dx

= lim
ε→0

1

|Y |

∫
Ω×Y ∗

T ∗ε (f)T ∗ε (χ{0<uε≤δ}
)T ∗ε (χ{u0 6=δ}

)dxdy + lim
ε→0

∫
Λ∗ε

fχ{0<uε≤δ}
χ{u0 6=δ}

dx

= lim
ε→0

1

|Y |

∫
Ω×Y ∗

T ∗ε (f)T ∗ε (χ{0<uε≤δ}
)T ∗ε (χ{u0 6=δ}

)dxdy,

(5.27)

since f ∈ L1(Ω) and |Λε| = 0 when ε → 0. Moreover, by definition of the unfolding operator,
one has

T ∗ε
(
χ{0<uε≤δ}

)
(x, y) =

{
χ{0<T ∗ε (uε)(x,y)≤δ} a.e. in Ω̂ε × Y ∗,

0 a.e. in Λε × Y ∗,

and, in view of (2.11)i, up to a subsequence,

T ∗ε (χ{0<uε≤δ}
)→ χ{0<u0≤δ}

a.e. in Ω× Y ∗. (5.28)

Consequently, by Proposition 3.26, up to a subsequence,

T ∗ε (f)T ∗ε (χ{0<uε≤δ}
)T ∗ε (χ{u0 6=δ}

)→ fχ{0<u0≤δ}
χ{u0 6=δ}

= fχ{0<u0<δ}
a.e. in Ω× Y ∗. (5.29)
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Moreover from Proposition 3.25 we have∫
E×Y ∗

T ∗ε (f)T ∗ε (χ{0<uε≤δ}
)T ∗ε (χ{u0 6=δ}

)dxdy ≤
∫
E×Y ∗

T ∗ε (f)dxdy ≤ |Y | ‖f‖L1(E),

for any measurable set E × Y ∗ ⊂ Ω× Y ∗. Via the absolute continuity of the Lebesgue integral
and applying the Vitali theorem, from (5.29) we obtain

lim
ε→0

1

|Y |

∫
Ω×Y ∗

T ∗ε (f)T ∗ε (χ{0<uε≤δ}
)T ∗ε (χ{u0 6=δ}

)dxdy =
1

|Y |

∫
Ω×Y ∗

fχ{0<u0<δ}
dxdy.

Then, since δ ∈ R+\D, by (5.24), (5.25) and (5.27),

0 ≤ lim
ε→0

Iδε ≤ lim
ε→0

∫
Ω∗ε

fχ{0<uε≤δ}
χ{u0 6=δ}

dx = θ

∫
Ω
fχ{0<u0<δ}

dx.

Using here the Lebesgue theorem,

0 ≤ lim
δ→0

lim
ε→0

Iδε ≤ lim
δ→0

θ

∫
Ω
fχ{0<u0<δ}

dx = θ

∫
Ω
fχ{u0=0}dx.

Now observe that, since ζ(u0) = +∞ when u0 = 0, (2.13) implies that

meas({x ∈ Ω | u0 = 0 and f > 0}) = 0.

Hence, fχ{u0=0} = 0 a.e. in Ω and also

lim
δ→0

lim
ε→0

Iδε = 0. (5.30)

Limit of Jδε : We write

Jδε =

∫
Ω∗ε

fζ(uε)(uε − (vmε )+)χ{uε>δ}
χ{u0 6=δ}

dx+

∫
Ω∗ε

fζ(uε)(uε − (vmε )+)χ{uε>δ}
χ{u0=δ}dx,

(5.31)

where, as before,
∫

Ω∗ε

fζ(uε)(uε − (vmε )+)χ{uε>δ}
χ{u0=δ}dx = 0 except for a countable set of

values of δ which will be excluded. Hence, by unfolding

Jδε =

∫
Ω∗ε

fζ(uε)(uε − (vmε )+)χ{uε>δ}
χ{u0 6=δ}

dx

=
1

|Y |

∫
Ω×Y ∗

T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (uε − (vmε )+)T ∗ε (χ{uε>δ}
)T ∗ε (χ{u0 6=δ}

)dxdy

+

∫
Λ∗ε

fζ(uε)(uε − (vmε )+)χ{uε>δ}
χ{u0 6=δ}

dx.

(5.32)

By using the fact that uε − (vmε )+ ≤ uε, the Hölder inequality with exponents 2
1+k and 2

1−k ,
Remark 5.2 and H2), since l ≥ 2

1+k , we have, as ε→ 0,∫
Λ∗ε

fζ(uε)(uε − (vmε )+)χ{uε>δ}
χ{u0 6=δ}

dx ≤
∫

Λ∗ε

fζ(uε)uεdx

≤
∫

Λ∗ε

fu1−k
ε dx ≤ ‖f‖

L
2

1+k (Λ∗ε)
‖uε‖1−kL2(Ω∗ε)

≤ ‖f‖Ll(Λ∗ε)‖uε‖1−kL2(Ω∗ε)
→ 0.

(5.33)

22



On the other hand, in order to apply the Vitali theorem to the first integral on the right-hand
side of (5.32), let us first observe that (2.11)i and (5.9) yield, up to a subsequence,

T ∗ε (uε − (vmε )+)→ u0 − um a.e. in Ω× Y ∗.

Hence, by (2.11)ii and the same arguments used to prove (5.29), we have that, almost everywhere
in Ω× Y ∗,

T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (uε − (vmε )+)T ∗ε (χ{uε>δ}
)T ∗ε (χ{u0 6=δ}

)→ fζ(u0)(u0 − um)χ{u0>δ}
. (5.34)

Moreover, from the growth condition on ζ one has

T ∗ε (ζ(uε)) <
1

δk
on the set {uε > δ}, (5.35)

so that ∫
E×Y ∗

|T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (uε − (vmε )+)T ∗ε (χ{uε>δ}
)T ∗ε (χ{u0 6=δ}

)|dxdy

≤
∫
E×Y ∗

T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (uε)dxdy +
1

δk

∫
E×Y ∗

T ∗ε (f)T ∗ε ((vmε )+)dxdy,

(5.36)

for any measurable set E × Y ∗ ⊂ Ω × Y ∗. By using (3.2), H2)i, the Hölder inequality with
exponents 2

1+k and 2
1−k , Proposition 3.25, (2.6) and estimate (4.1), we obtain∫

E×Y ∗
T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (uε)dxdy ≤

∫
E×Y ∗

T ∗ε (f)[T ∗ε (uε)]
1−kdxdy ≤ c‖f‖

L
2

1+k (E)
. (5.37)

Next, in view of Proposition 3.25 and (5.10),

1

δk

∫
E×Y ∗

T ∗ε (f)T ∗ε ((vmε )+)dxdy ≤ |Y |
δk
cm‖f‖L1(E). (5.38)

Hence, from (5.32), using (5.33) and the Vitali theorem (in view of (5.34) and (5.36)-(5.38)), we
obtain

lim
ε→0

Jδε = θ

∫
Ω
fζ(u0)(u0 − um)χ{u0>δ}

dx.

On the other hand, assumption H2) and the Hölder inequality imply that∫
Ω
fu1−k

0 dx ≤ ‖f‖
L

2
1+k (Ω)

‖u1−k
0 ‖

L
2

1−k (Ω)
≤ ‖f‖Ll(Ω)‖u0‖1−kL2(Ω)

< +∞. (5.39)

Consequently, from H2)i, (5.39), the boundedness of um and (2.13) of Propositon 2.5,

0 ≤ fζ(u0)(u0 − um)χ{u0>δ}
≤ fu1−k

0 + fζ(u0)um ∈ L1(Ω),

which, applying the Lebesgue dominated convergence theorem, provides

lim
δ→0

lim
ε→0

Jδε = θ

∫
Ω
fζ(u0)(u0 − um)χ{u0>0}dx. (5.40)
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Limit of Kε: Using similar arguments as in [23], we prove now that

lim
ε→0

∫
Ω∗ε

fζ(uε)(v
m
ε )−dx = 0. (5.41)

Let us observe that for every δ ∈ R+ \D, where D is given by (5.26), we have∫
Ω∗ε∩{uε>δ}

fζ(uε)(v
m
ε )−χ{u0=δ}dx = 0.

Hence, for δ0 ∈ R+ \D, we can write∫
Ω∗ε

fζ(uε)(v
m
ε )−dx =

∫
Ω∗ε∩{0<uε≤δ0}

fζ(uε)(v
m
ε )−dx

+

∫
Ω∗ε∩{uε>δ0}

fζ(uε)(v
m
ε )−χ{u0 6=δ0}

dx
.
= Aε +Bε.

(5.42)

From Proposition 4.4 written for δ = δ0 we get

0 ≤ Aε ≤
∫

Ω∗ε

Aε(x, uε)∇uε∇(vmε )−Zδ0(uε)dx+ cεγ−
1
2h(2δ0)‖ρ‖L∞(∂T )‖(vmε )−‖Vε .

This implies, by using H1)iii, H5), H6), the Hölder inequality and (4.1),

0 ≤ Aε ≤ β‖∇uε‖L2(Ω∗ε)‖Zδ0(uε)∇(vmε )−‖L2(Ω∗ε) + cεγ−
1
2h(2δ0)‖ρ‖L∞(∂T )‖(vmε )−‖Vε

≤ (c+ εγ−
1
2 c1)‖∇(vmε )−‖L2(Ω∗ε),

which gives, via (5.15) and H5),
lim
ε→0

Aε = 0. (5.43)

In order to prove that also
lim
ε→0

Bε = 0, (5.44)

by using the integration formula (see Proposition 3.2), we write Bε as follows:

Bε =
1

|Y |

∫
Ω×Y ∗

T ∗ε (f)T ∗ε (ζ(uε))T ∗ε ((vmε )−)T ∗ε (χ{uε>δ0}
)T ∗ε (χ{u0 6=δ0}

)dxdy

+

∫
Λ∗ε

fζ(uε)(v
m
ε )−χ{uε>δ0}

χ{u0 6=δ0}
dx.

Concerning the second term in the right-hand side of the previous equation, from the growth
condition on ζ on the set {uε > δ0} and (5.10) it results∫

Λ∗ε

fζ(uε)(v
m
ε )−χ{uε>δ0}

χ{u0 6=δ0}
dx ≤ 1

δk0

∫
Λ∗ε

f(vmε )−dx

≤ 1

δk0
‖(vmε )−‖L∞(Ω∗ε)‖f‖L1(Λ∗ε) → 0, as ε→ 0;
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while for treating the first one we can use the Vitali theorem. Indeed, from (5.35), Proposition
3.25, the Hölder inequality and (5.10), we have∫

E×Y ∗
T ∗ε (f)T ∗ε (ζ(uε))T ∗ε ((vmε )−)T ∗ε (χ{uε>δ0}

)T ∗ε (χ{u0 6=δ0}
)dxdy

≤ |Y | 1

δk0

∫
Ω∗ε∩E

f(vmε )−dx ≤ |Y |
δk0
cm‖f‖L1(E),

for any measurable set E × Y ∗ ⊂ Ω × Y ∗. Also, by Lemma 5.4 and the same arguments used
before to prove (5.34), we get, up to a subsequence,

T ∗ε (f)T ∗ε (ζ(uε))T ∗ε ((vmε )−)T ∗ε (χ{uε>δ0}
)T ∗ε (χ{u0 6=δ0}

)→ fζ(u0)u−m χ{u0>δ0}
= 0 a.e. in Ω× Y ∗,

since um is nonnegative by definition. Hence, putting together (5.42)-(5.44), we get (5.41).

At present, in order to prove (5.18), we collect (5.19), (5.21)-(5.23), (5.30), (5.40)-(5.41), getting
(5.20).
It remains now to pass to the limit as m→ +∞ in (5.20). In this inequality the second term in
the right-hand side goes to zero in view of (5.6). The first one also goes to zero via the Lebesgue
theorem, since

0 ≤ fζ(u0)(u0 − um)χ{u0>0} ≤ fζ(u0)u0χ{u0>0} ≤ fu
1−k
0 ∈ L1(Ω),

due to (5.39). Thus we obtain (5.18).
Step 3. The final step is to show that

lim
m→+∞

lim
ε→0

∫
Ω∗ε

|∇(vmε − vε)|2dx = 0. (5.45)

We take vmε − vε as test function in the variational formulations (5.7) and (5.5). By subtraction,
we have∫

Ω∗ε

Aε(x, uε)∇(vmε − vε)∇(vmε − vε)dx = 〈Lε(−div(A0(u0)∇(um − u0))), vmε − vε〉V ′ε ,Vε .

Passing to the limit on ε, for H1) and Proposition 5.1 (whose assumptions are satisfied both by
vε and vmε thanks to (5.4) and (5.8)), we get

0 ≤ α lim
ε→0
‖∇(vmε − vε)‖2L2(Ω∗ε) ≤ lim

ε→0
〈Lε(−div(A0(u0)∇(um − u0))), vmε − vε〉V ′ε ,Vε

= 〈−div(A0(u0)∇(um − u0)), um − u0〉H−1(Ω),H1
0 (Ω).

This together with (5.6) gives

0 ≤ lim
m→+∞

lim
ε→0

α‖∇(vmε − vε)‖2L2(Ω∗ε) ≤ lim
m→+∞

∫
Ω
A0(u0)∇(um − u0)∇(um − u0)dx = 0.

Finally combining convergences (5.18) and (5.45), we obtain the desired result.
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As an important consequence of Theorem 5.5, we are able now to prove Proposition 2.6.

Proof of Proposition 2.6. Let vε the solution of problem (5.5). The homogenization result
given in [10, Theorem 4.5] for v0 = u0 gives, for the subsequence verifying (2.11),

T ∗ε (∇vε) ⇀ ∇u0 +∇yv̂ weakly in L2(Ω× Y ∗), (5.46)

where, in our case M∂T (g) 6= 0 or g = 0 (see [10, (5.22)]), v̂ is a function in L2(Ω;H1
per(Y

∗))
withMY ∗(v̂) = 0 , such that

v̂(x, y) = −
N∑
i=1

χ̂
ei

(y, u0(x))
∂u0

∂xi
(x),

with χ̂
ei

solution of (2.9), written for λ = ei. Now let us observe that, from Theorem 5.5 and
Proposition 3.27, we get

T ∗ε (∇uε −∇vε)→ 0 strongly in L2(Ω× Y ∗).

This, together with (2.11)iv and (5.46), leads to

∇yv̂ = ∇yû a.e. in Ω× Y ∗, (5.47)

which implies v̂ = û + w(x), for some function w only depending on x. Since MY ∗(v̂) =
MY ∗(û) = 0 and

MY ∗(v̂) =MY ∗(û) +MY ∗(w),

we derive w = 0 and
v̂ = û.

Whence we obtain the convergence

T ∗ε (∇vε) ⇀ ∇u0 +∇yû weakly in L2(Ω× Y ∗), (5.48)

and the claimed expression of û. �

6 Proof of Theorem 2.8

First, let us observe that, under our assumptions, convergences (2.11) hold true for a subsequence
of uε (still denoted by ε), where u0 ∈ H1

0 (Ω) is a nonnegative function and û ∈ L2(Ω;H1
per(Y

∗))
is given by Proposition 2.6. Also we have the validity of (2.13).
Then, we now identify the limit problem satisfied by (u0, û). To do that, we take ϕ ∈ H1

0 (Ω) ∩
L∞(Ω), φ ∈ D(Ω) and ξ ∈ C1

per(Y
∗), and use

ψε(x) = ϕ(x) + εφ(x)ξ
(x
ε

)
∈ Vε

as test function in (2.7), obtaining∫
Ω∗ε

Aε(x, uε)∇uε∇ψεdx+ εγ
∫

Γε
1

ρεh(uε)ψεdσ =

∫
Ω∗ε

fζ(uε)ψεdx+

∫
Γε
1

gεψεdσ. (6.1)
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Let us consider the solution vε of problem (5.5) and write

lim
ε→0

∫
Ω∗ε

Aε(x, uε)∇uε∇ψεdx = lim
ε→0

∫
Ω∗ε

Aε(x, uε)∇vε∇ψεdx

+ lim
ε→0

∫
Ω∗ε

Aε(x, uε)∇(uε − vε)∇ψεdx.
(6.2)

By using assumption H1), the Hölder inequality and Theorem 5.5, one has

lim
ε→0

∫
Ω∗ε

Aε(x, uε)∇(uε − vε)∇ψεdx = 0, (6.3)

taking into account that the norm of ψε is bounded in Vε.
Moreover, by the same arguments used in the proof of Theorem 4.5 of [10] when showing (5.5)

and (5.16) (written for zε = uε and Z = −div(A0(u0)∇u0) + cγh(u0)− |∂T |
|Y |
M∂T (g)), we obtain

lim
ε→0

∫
Ω∗ε

Aε(x, uε)∇vε∇ψεdx =
1

|Y |

∫
Ω×Y ∗

A(y, u0)(∇u0 +∇yû)(∇ϕ+ φ∇yξ)dxdy, (6.4)

in view of (5.48). Let us notice that in [10] the function ϕ is taken in D(Ω) and then a density
argument is used. Here this is not possible due to the presence of the singular term, so that we
need to choose ϕ ∈ H1

0 (Ω)∩L∞(Ω). The only difference with respect to [10] is that now we have
to compute the following additional limit:∫

Λ∗ε

Aε(x, uε)∇vε∇ϕdx ≤ β‖∇vε‖L2(Ω∗ε)‖∇ϕ‖L2(Λ∗ε) → 0, as ε→ 0.

The main difficulty is then to pass to the limit in the singular term. Let us show that

lim
ε→0

∫
Ω∗ε

fζ(uε)ψεdx = θ

∫
Ω
fζ(u0)ϕχ{u0>0}dx. (6.5)

Let us define
µε(x)

.
= εφ(x)ξ

(x
ε

)
, that is ψε = ϕ+ µε. (6.6)

We remark that, from Propositions 3.22,3,6-3.72,3, one has

T ∗ε (µε) = εT ∗ε (φ)ξ, T bε (µε) = εT bε (φ)ξ and ∇µε = ε∇φξ
( ·
ε

)
+ φ∇yξ

( ·
ε

)
,

and {
i) T ∗ε (µε)→ 0 strongly in L2(Ω× Y ∗),

ii) T ∗ε (∇µε)→ φ∇yξ strongly in L2(Ω× Y ∗).
(6.7)

From now on, without loss of generality we can assume ϕ ≥ 0 and µε ≥ 0 in (6.6). Indeed we
can decompose the functions in their positive and negative parts as in (2.2). As in the proof of
Theorem 5.5, we split the singular integral into two terms: one near the singularity and one far
from it. Then, for every positive δ we write

0 ≤
∫

Ω∗ε

fζ(uε)ψεdx =

∫
{0<uε≤δ}

fζ(uε)ψεdx+

∫
{uε>δ}

fζ(uε)ψεdx
.
= Iδε + Jδε . (6.8)
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In view of Proposition 4.4 written for ϕ, µε ≥ 0 we have

0 ≤ lim sup
ε→0

Iδε ≤ lim sup
ε→0

[∫
Ω∗ε

Aε(x, uε)∇uε∇ψεZδ(uε)dx+ cεγ−
1
2h(2δ)‖ρ‖L∞(∂T )‖ψε‖Vε

]
.

From H5), H6) and the boundedness of the norm of ψε in Vε, the second term in the right-hand
side of the above inequality vanishes as ε approches to zero, for every positive δ.
Then, by Proposition 3.22,4 we have

lim sup
ε→0

Iδε ≤ lim sup
ε→0

1

|Y |

∫
Ω×Y ∗

T ∗ε (Aε(x, uε))T ∗ε (∇uε)T ∗ε (∇ψεZδ(uε))dxdy

+ lim sup
ε→0

∫
Λ∗ε

Aε(x, uε)∇uε∇ψεZδ(uε)dx.

In view of assumption H1), the Hölder inequality, Proposition 4.1 and the construction of ψε we
get

lim sup
ε→0

∫
Λ∗ε

Aε(x, uε)∇uε∇ψεZδ(uε)dx = 0.

Then, if tA denotes the transposed matrix field of A,

0 ≤ lim sup
ε→0

Iδε ≤ lim sup
ε→0

1

|Y |

∫
Ω×Y ∗

T ∗ε (Aε(x, uε))T ∗ε (∇uε)T ∗ε (∇ψεZδ(uε))dxdy

= lim sup
ε→0

1

|Y |

∫
Ω×Y ∗

T ∗ε (tAε(x, uε))T ∗ε (∇ψεZδ(uε))T ∗ε (∇uε)dxdy.

(6.9)

We now apply the Vitali theorem to prove that

T ∗ε (tAε(x, uε))T ∗ε (∇ψεZδ(uε))→ tA(y, u0)(∇ϕ+φ∇yξ)Zδ(u0) strongly in L2(Ω×Y ∗). (6.10)

By the same arguments used to prove (2.11)ii (see proof of Proposition 2.5), we obtain, up to a
subsequence,

T ∗ε (Zδ(uε))→ Zδ(u0) a.e. in Ω× Y ∗. (6.11)

From (3.4)v, Proposition 3.26, (6.7)ii and (6.11) follows that, up to a subsequence,

T ∗ε (tAε(x, uε))T ∗ε (∇ψε)T ∗ε (Zδ(uε))→ tA(y, u0)(∇ϕ+ φ∇yξ)Zδ(u0) a.e. in Ω× Y ∗. (6.12)

Moreover, from (3.6), H1), Proposition 3.22,5 and the definitions of ψε and Zδ, we get∫
E×Y ∗

|T ∗ε (tAε(x, uε))T ∗ε (∇ψε)T ∗ε (Zδ(uε))|2dxdy ≤ β2

∫
E×Y ∗

|T ∗ε (∇ψε)|2dxdy

≤ β2|Y |
∫
E∩Ω∗ε

|∇ψε|2dx ≤ c
∫
E
|∇ϕ|2dx+ c

∫
E
|∇Φ ξ|2dx+ c

∫
E
|Φ∇ξ|2dx,

for any measurable set E × Y ∗ ⊂ Ω × Y ∗. This, together with (6.12), allows us to apply the
Vitali theorem to get (6.10). Using this convergence in (6.9), together with (2.11)iv, we have

0 ≤ lim sup
ε→0

Iδε ≤
1

|Y |

∫
Ω×Y ∗

A(y, u0)(∇u0 +∇yû)(∇ϕ+ φ∇yξ)Zδ(u0)dxdy.
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In order to pass to the limit as δ goes to zero in this inequality, let us observe that

Zδ(u0)→ χ{u0=0} a.e. in Ω and Zδ(u0) ≤ 1.

Hence, using the Lebesgue dominated convergence theorem,

0 ≤ lim
δ→0

lim sup
ε→0

Iδε ≤
1

|Y |

∫
Ω×Y ∗

A(y, u0)(∇u0 +∇yû)(∇ϕ+ φ∇yξ)χ{u0=0}dxdy = 0, (6.13)

since, due to the expression of û given by Proposition 2.6, the functions ∇u0 and ∇yû vanish
where u0 is equal to 0.
On the other hand, in order to study the limit behaviour of the term Jδε defined in (6.8), observe
first that ∫

Λ∗ε

fζ(uε)ψεχ{uε>δ}
dx ≤ 1

δk

∫
Λ∗ε

fψεdx ≤
c

δk
‖f‖L1(Λ∗ε) → 0, as ε→ 0,

since ψε is, in particular, in L∞(Ω). Hence, arguing as in (5.31), and using the integration
formula from Proposition 3.2, we can write:

0 ≤ lim
ε→0

Jδε = lim
ε→0

1

|Y |

∫
Ω×Y ∗

T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (ψε)T ∗ε (χ{uε>δ}
)dxdy

= lim
ε→0

1

|Y |

∫
Ω×Y ∗

T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (ψε)T ∗ε (χ{uε>δ}
)T ∗ε (χ{u0 6=δ}

)dxdy

+ lim
ε→0

1

|Y |

∫
Ω×Y ∗

T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (ψε)T ∗ε (χ{uε>δ}
)T ∗ε (χ{u0=δ})dxdy.

(6.14)

As in the proof of (6.10), we apply the Vitali theorem to the first term in the right-hand side of
(6.14). From (5.35), Proposition 3.22,5 and the fact that ψε ∈ L∞(Ω), one has∫

E×Y ∗
|T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (ψε)T ∗ε (χ{uε>δ}

)T ∗ε (χ{u0 6=δ}
)|dxdy

≤ |Y |
δk

∫
Ω∗ε∩E

|fψε|dx ≤
c

δk
‖f‖L1(E),

for any measurable set E × Y ∗ ⊂ Ω × Y ∗. Since, by Proposition 3.26 and (6.7)i, up to a
subsequence,

T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (ψε)T ∗ε (χ{uε>δ}
)T ∗ε (χ{u0 6=δ}

)→ fζ(u0)ϕχ{u0>δ}
a.e. in Ω× Y ∗,

the Vitali theorem gives

lim
ε→0

1

|Y |

∫
Ω×Y ∗

T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (ψε)T ∗ε (χ{uε>δ}
)T ∗ε (χ{u0 6=δ}

)dxdy

=
1

|Y |

∫
Ω×Y ∗

fζ(u0)ϕχ{u0>δ}
dxdy = θ

∫
Ω
fζ(u0)ϕχ{u0>δ}

dx.
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Finally, in order to pass to the limit in the last equality, as δ goes to zero, we use again the
Lebesgue theorem. Since

fζ(u0)ϕχ{u0>δ}
→ fζ(u0)ϕχ{u0>0} a.e. in Ω

and by the estimate in (2.13)

0 ≤ fζ(u0)ϕχ{u0>δ}
≤ fζ(u0)ϕ ∈ L1(Ω),

we obtain

lim
δ→0

lim
ε→0

1

|Y |

∫
Ω×Y ∗

T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (ψε)T ∗ε (χ{uε>δ}
)T ∗ε (χ{u0 6=δ}

)dxdy

= θ

∫
Ω
fζ(u0)ϕχ{u0>0}dx.

(6.15)

As for the second term in the right-hand side of (6.14), for every δ ∈ R+\D, with D given by
(5.26), it results

1

|Y |

∫
Ω×Y ∗

T ∗ε (f)T ∗ε (ζ(uε))T ∗ε (ψε)T ∗ε (χ{uε>δ}
)T ∗ε (χ{u0=δ})dxdy = 0. (6.16)

Consequently, we collect (6.14)-(6.16) and get

lim
δ→0

lim
ε→0

Jδε = θ

∫
Ω
fζ(u0)ϕχ{u0>0}dx, (6.17)

which implies, by (6.8) and (6.13), that (6.5) holds true.
Observe now that the arguments used in the proof of [10, Theorem 4.5], when ϕ ∈ D(Ω), still
apply to the case ϕ ∈ H1

0 (Ω) ∩ L∞(Ω), giving

lim
ε→0

εγ
∫

Γε
1

ρεh(uε)ψεdσ = cγ

∫
Ω
h(u0)ϕdx, (6.18)

with cγ defined by (2.15). On the other hand, as a consequence of convergences (6.7),

T ∗ε (µε)→ 0 strongly in L2(Ω;H1(Y ∗)),

so that
lim
ε→0

∫
Γε
1

gεψεdσ = lim
ε→0

ε

∫
Γε
1

g
(x
ε

)
(ϕ+ µε)dσ =

|∂T |
|Y |
M∂T (g)

∫
Ω
ϕdx, (6.19)

by using Proposition 3.9 written first for ωε = ϕ and then for ωε = µε.
Then, when passing to the limit in (6.1), we combine (6.2)-(6.5), (6.18)-(6.19) and have∫

Ω×Y ∗
A(y, u0)(∇u0 +∇yû)(∇ϕ+ φ∇yξ)dxdy + |Y |cγ

∫
Ω
h(u0)ϕdx

= |Y ∗|
∫

Ω
fζ(u0)ϕχ{u0>0}dx+ |∂T |M∂T (g)

∫
Ω
ϕdx,
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for every ϕ ∈ H1
0 (Ω) ∩ L∞(Ω), φ ∈ D(Ω) and ξ ∈ C1

per(Y
∗). By density we obtain∫

Ω×Y ∗
A(y, u0)(∇u0 +∇yû)(∇ϕ+∇yψ)dxdy + |Y |cγ

∫
Ω
h(u0)ϕdx

= |Y ∗|
∫

Ω
fζ(u0)ϕχ{u0>0}dx+ |∂T |M∂T (g)

∫
Ω
ϕdx,

(6.20)

for every ϕ ∈ H1
0 (Ω) ∩ L∞(Ω) and ψ ∈ L2(Ω;H1

per(Y
∗)).

Let us now notice that formula (2.17) is a known consequence of the expression of û given in
Proposition 2.6. Moreover, in view of (2.17), a standard computation shows that u0 is a solution
of the following problem: −div(A0(u0)∇u0) + cγh(u0) = θfζ(u0)χ{u0>0} +

|∂T |
|Y |
M∂T (g) in Ω,

u0 = 0 on ∂Ω.
(6.21)

Also, u0 results the unique solution of this problem, since [25, Theorem 6.2] holds under assump-
tions H2)- H6) and the conditions satisfied by A0 given in (2.10). This implies the uniqueness of
û under the condition MY ∗(û) = 0, in view of Proposition 2.6. The uniqueness of u0 provides
the validity of convergence (2.11) for the whole sequence.
It remains to show that u0 > 0 almost everywhere in Ω. To do that, we prove that v .

= −u0 < 0
a.e. in Ω. Observe that, since (2.13) holds, v ≤ 0 in Ω and v = 0 on ∂Ω, so that supΩ v = 0.
Now, if we suppose there exists a ball B well contained in Ω such that supBv = 0 = supΩ v,
then, from the strong maximum principle, by using the boundary condition on ∂Ω, we derive
v ≡ 0 in Ω, that is u0 ≡ 0 in Ω.
Since u0 is a solution of problem (6.21), whose variational formulation is∫

Ω
A0(u0)∇u0∇ϕdx+ cγ

∫
Ω
h(u0)ϕdx = θ

∫
Ω
fζ(u0)χ{u0>0}ϕdx+

|∂T |
|Y |
M∂T (g)

∫
Ω
ϕdx,

∀ϕ ∈ H1
0 (Ω) ∩ L∞(Ω). The hypothesis h(0) = 0, the positivity of θ, f , ζ and g imply that each

integral on the right-hand side above is zero, for every ϕ ∈ D(Ω). This means that f ≡ 0 on Ω
and g ≡ 0 on ∂T , which contradicts assumption H4). Consequently u0 > 0 almost everywhere
in Ω and χ{u0>0} ≡ 1. Then u0 satisfies the limit equation (2.16). �
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