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Abstract: A non-homogeneous Ornstein-Uhlembeck (OU) diffusion process is considered as a model
for the membrane potential activity of a single neuron. We assume that, in the absence of stimuli, the
neuron activity is described via a time-homogeneous process with linear drift and constant infinitesimal
variance. When a sequence of inhibitory and excitatory post-synaptic potentials occurres with gener-
ally time-dependent rates, the membrane potential is then modeled by means of a non-homogeneous
OU-type process. From a biological point of view it becomes important to understand the behavior
of the membrane potential in the presence of such stimuli. This issue means, from a statistical point
of view, to make inference on the resulting process modeling the phenomenon. To this aim, we de-
rive some probabilistic properties of a non-homogeneous OU-type process and we provide a statistical
procedure to fit the constant parameters and the time-dependent functions involved in the model. The
proposed methodology is based on two steps: the first one is able to estimate the constant parameters,
while the second one fits the non-homogeneous terms of the process. Related to the second step two
methods are considered. Some numerical evaluations based on simulation studies are performed to
validate and to compare the proposed procedures.
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1. Introduction and background

The first attempt to construct a stochastic model able to describe the spontaneous activity of a single
neuron was due in 1964 to Gernstein and Mandelbrot in [1]. The authors assumed that the behavior of
the neuronal membrane potential, subject to several simultaneous and independent acting potentials,
is described by means of a stochastic diffusion process. They also proved that, by suitably choosing
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the involved parameters, the histograms of the experimentally recorded interspike intervals (ISI) can be
approximated by the first passage time (FPT) probability density function (pdf) of a time-homogeneous
Wiener process. Later, other models were proposed to include more characteristics of the behaviour
of the membrane potential. Specifically, to describe the effect of inhibitory and excitatory inputs and
to introduce the exponential decay of the membrane potential, models based on Ornstein-Uhlenbeck
(OU) and Feller processes were considered (see, for example, [2] and reference therein).

Recently, studies also have been focused on the estimation of the parameters involved in neuronal
models (see [3–7]) in order to understand information processing in neuronal mechanisms. An exten-
sive review is also provided in [8]. In [3,4,6] estimators of the OU neuronal model input parameters are
derived by looking at the firing regime of the process. Moreover, in [5], several estimation methods are
compared in three different regimes: sub-threshold, threshold and supra-threshold. In the first regime
the equilibrium point of the process is much smaller than the threshold and firing is caused only by ran-
dom fluctuations and firings can be approximating by a Poissonian distribution. In the threshold regime
the equilibrium point of the process is very closed to the firing threshold. In the supra-threshold regime
the equilibrium point of the process is far above the firing threshold and the ISI are relatively regular
(deterministic firing - which means that the neuron is active also in the absence of noise). In [5] it is
shown that the moments method works best in moderate sub-threshold regime, the Laplace transform
method only works in supra-threshold regime and the Integral equation method works in the entire
parameter space. In [7] Bayesian estimators of the rates of the excitatory and inhibitory are provided
to the aim to describe the stimulation effects on the synaptic input.

In [9–11] the OU process modeling the membrane potential is generalized assuming that in addition
to the constant input there is a random component changing from two subsequent interspike intervals,
generally caused by the naturally occurring variations of environment signaling or by other sources of
noise not included in the model. In particular, in [9,10], the Gaussian assumption for the random effect
is made and the the estimators of the parameters are explicitly obtained by MLE. In [11] non parametric
estimators of the random effect are provided, by using a kernel strategy and the deconvolution method.

A wide literature on neuronal processing focuses on inputs arriving with generally non-constant fre-
quencies and, in particular, on periodic inputs (see, for example, [12–17]). Generally, the periodic input
signals are handled by means of a first passage time, viewed as the interval between two consecutive
spikes.

In the present paper we consider a model for the activity of a single neuron based on a time
non-homogeneous OU process and we propose a two-step procedure to infer the model. Specifically,
we assume that, in the absence of input, the neuron membrane potential exponentially decays to
a resting potential, with a time constant. Moreover, we assume that the neuron is stimulated by a
sequence of inhibitory and excitatory postsynaptic potentials (PSP’s) of constant amplitude occurring
according to a Poisson’s process with time-dependent rates. In this way we have two different process:
one, referred as the control group, describes the membrane potential activity when the neuron is not
stimulated, the other, denoted as a treated group, represents the neuronal membrane potential under
the effect of the inhibitory and excitatory PSP’s. Under the assumption of exponential decay, the
control group is described by a time-homogeneous OU process, whereas the treated group is generally
a non-homogeneous OU-type diffusion process.

The estimation procedure of the two processes consists of a first step in which the constant
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parameters of the control group are estimated, based on the Maximum Likelihood Estimation
(MLE); in the second step of the procedure, by using the parameters estimated in the first step,
the fit of the time-dependent functions involved in the treated group is performed by means of a
generalized method of moments. Related to the second step, two methods are proposed: one based on
the sample variance, while the second one is based on the sample covariance of the paths of the process.

We point out that the focus is on the time interval between two consecutive spikes in which the OU
process is unlimited, in the sense that no absorbing or reflecting condition is considered. Nevertheless
our procedures can be generalized in the case in which the control group as well as the treated group
are described via a OU process restricted by suitable boundary conditions. This topic is beyond the
aim of the present paper and it will be treated in future works.

The layout of the paper is the following. In Section 2 we describe the model and we derive some
theoretical results for the resulting non-homogeneous diffusion process. Section 3 provides the two-
step procedures to infer the neuronal model. In Section 4 some simulation experiments are performed
to evaluate the effectiveness of the proposed procedures and to compare the performances of them.

2. The model

We assume that, in the absence of stimuli, the behavior of the membrane potential of the neuron
is described by a time-homogeneous OU diffusion process {X(t), t ≥ t0} defined in R with drift and
infinitesimal variance :

A1(x) = −
x
ϑ

+ µ, A2 = σ2, (2.1)

respectively. In Eq. (2.1), the parameter ϑ > 0 is the time constant characterizing the exponential
decay; µ is related to the resting potential % = ϑµ; finally, σ2 > 0 represents the noise intensity. Hence,
we assume that in the absence of inputs the membrane potential, described by the diffusion process
X(t), spontaneously decays to the resting potential % with a time constant ϑ.

By stimulating the neuron with a sequence of constant inputs occurring with time-dependent rate,
making use of standard procedure (see, for example, [23]), it can be proved that the evolution of
the neuronal membrane potential is described via a generally time non-homogeneous OU diffusion
process. Specifically, we assume that the neuron is reached by inhibitory and excitatory PSP’s charac-
terized by constant magnitude ε occurring with rates:

αi(t) =
ai(t)
ε

+
u(t)
2 ε2 , αe(t) =

ae(t)
ε

+
u(t)
2 ε2 (2.2)

where ai(t), ae(t), u(t) are positive functions of time. Here, αi(t) denotes the rate of the inhibitory
inputs whereas αe(t) represents the rate of the excitatory inputs. It can be proved that the dynamics
of the neuronal membrane potential is described via a generally time non-homogeneous OU diffusion
process {XS (t), t ≥ t0} defined in R whose infinitesimal moments are related to the rates given in (2.2).
In particular, the drift and infinitesimal variance of XS (t) are

B1(x, t) = −
x
ϑ

+ µ + m(t), B2(t) = u(t), (2.3)
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respectively, with

m(t) = lim
ε→0

ε [αe(t) − αi(t)], u(t) = lim
ε→0

ε2[αe(t) + αi(t)].

The sample-paths of XS (t) are solutions of the following stochastic differential equation:

dXS (t) =
[
−

XS (t)
ϑ

+ µ + m(t)
]

dt +
√

u(t) dW(t) P[XS (t0) = x0] = 1, (2.4)

where t0 is the initial time; x0 denotes the starting value and it is often assumed equal to the resting
potential; W(t) is a standard Brownian motion. The solution of (2.4) is

XS (t) = x0 e−(t−t0)/ϑ +

∫ t

t0
e−(t−ξ)/ϑ [µ + m(ξ)] dξ +

∫ t

t0
e−(t−ξ)/ϑ

√
u(ξ) dW(ξ). (2.5)

Clearly, the equation for the control group X(t) can be obtained from (2.5) taking m(t) = 0 and u(t) =

σ2.
We note that (2.3) and (2.4) characterize a non-homogeneous OU process, known also as leaky-

integrate-and-fire (LIF) model, describing the evolution of the membrane potential (see, for exam-
ple, [13, 18–20] and references therein). The theoretical study on the LIF model essentially concerns
the analysis of the first passage time density viewed as the interspikes density, its asymptotic approx-
imations (see, for example, [17, 21]) and the analysis in the presence of a lower reflecting boundary
(cf. [15, 17, 22]).

In the present paper we focus on the inference of model (2.3) and (2.4). Differently from [3–
6], in which the focus is on the firing regime, in our assumptions, both X(t) and XS (t) describe the
neuronal membrane potential between two consecutive spikes, so no boundary conditions are assumed.
This case was also considered in [9–11], in which the membrane potential, during a generic ISI, is a
stationary OU process with a random equilibrium point having an assigned distribution; so the effect of
the neuronal input remains constant within each ISI and it changes randomly from one ISI to another.
Further, the input is able to influence only the drift of the process.

Moreover, we assume that the membrane potential, during the generic ISI, is a generally non-
stationary process. Moreover, in our model, the neuronal inputs can influence both the drift and the
infinitesimal variance by means of the two time-dependent functions m(t) and u(t).

2.1. Probabilistic properties

The transition pdf fS (x, t|x0, t0) of XS (t) is solution of the Kolmogorov equation

∂ fS (x, t|x0, t0)
∂t0

+
[
−

x0

ϑ
+ µ + m(t0)

]∂ fS (x, t|x0, t0)
∂x0

+
u(t0)

2
∂2 fS (x, t|x0, t0)

∂x2
0

= 0 (2.6)

and of Fokker-Plank equation

∂ fS (x, t|x0, t0)
∂t

= −
∂

∂x

{
−
[ x
ϑ

+ µ + m(t)
]
fS (x, t|x0, t0)

}
+

u(t)
2
∂2 fS (x, t|x0, t0)

∂x2 . (2.7)

Moreover, the transition pdf satisfies the initial delta condition

lim
t↓t0

fS (x, t|x0, t0) = lim
t0↑t

fS (x, t|x0, t0) = δ(x − x0).
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By using the transformation:

ψ(x, t) = x et/ϑ −

∫ t

[µ + m(ξ)] eξ/ϑdξ, ϕ(t) =

∫ t

u(ξ) eξ/ϑ dξ,

the equations (2.6) and (2.7) can be reduced to the analogous equations of a standard Wiener process
for which the end points of the diffusion interval, ±∞, are natural boundaries. So we obtain that
fS (x, t|x0, t0) is a normal pdf:

fS (x, t|x0, t0) =
1

√
2πVS (t|t0)

exp
{
−

[x − MS (t|x0, t0)]2

2VS (t|t0)

}
(2.8)

with conditional mean and variance given by

MS (t|x0, t0) = x0 e−(t−t0)/ϑ + µϑ
[
1 − e−(t−t0)/ϑ] +

∫ t

t0
m(ξ)e−(t−ξ)/ϑdξ,

VS (t|t0) =

∫ t

t0
u(ξ)e−2(t−ξ)/ϑdξ, (2.9)

respectively.
The transition pdf f (x, t|x0, t0) of X(t) can be obtained from (2.8) setting m(t) = 0 and u(t) = σ2 so,

for t ≥ t0, it is normal with conditional mean and variance

M(t|x0, t0) = x0 e−(t−t0)/ϑ + µϑ
[
1 − e−(t−t0)/ϑ], (2.10)

V(t|t0) =
σ2ϑ

2
[
1 − e−2(t−t0)/ϑ]. (2.11)

We note that

MS (t|x0, t0) = M(t|x0, t0) +

∫ t

t0
m(ξ) e−(t−ξ)/ϑ dξ. (2.12)

Further, the process X(t) admits an asymptotic behaviour with steady-state density:

w(x) = lim
t→∞

f (x, t|x0, t0) =
1

√
πσ2ϑ

exp
{
−

[x − µϑ]2

σ2ϑ

}
.

Under suitable hypothesis on the functions m(t) and u(t), also XS (t) admits an asymptotic behaviour.
In particular, if the following limits:

L1 = lim
t→+∞

∫ t

t0
m(ξ) e−(t−ξ)/ϑ dξ L2 = lim

t→+∞

∫ t

t0
u(ξ) e−2(t−ξ)/ϑ dξ

exist finite, the steady state pdf wS (x) of XS (t) is normal with mean µϑ + L1 and variance L2.
Finally, we remark that XS (t) is a Gauss-Markov process with mean and covariance functions:

E
[
XS (t)

]
= µϑ

(
1 − et/ϑ) +

∫ t

0
m(ξ)e−(t−ξ)/ϑdξ = MS (t|0, 0), (2.13)

cS (τ, t) = cov
[
XS (τ), XS (t)

]
= e−(t−τ)/ϑ

∫ τ

0
u(ξ)e−2(τ−ξ)/ϑdξ

= e−(t−τ)/ϑVS (τ|0), (2.14)
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with t > 0 and 0 < τ < t, respectively. From (2.13) and (2.14) it is easy to obtain the mean and
covariance for the control group X(t):

E[X(t)] = µϑ
(
1 − et/ϑ) = M(t|0, 0)

c(τ, t) = cov[X(τ), X(t)] =
σ2ϑ

2
e−(t−τ)/ϑ[1 − e2 τ/ϑ] = e−(t−τ)/ϑV(τ|0).

(2.15)

3. Fitting the model

In this section we consider a two-step procedure to infer the model. Firstly, we use the control
group, modeled by the process X(t) given in (2.1), to estimate the constant parameters ϑ, µ and σ2 via
the MLE, and secondly, we use a treated groups described by XS (t) defined in (2.3) to fit the unknown
functions m(t) and u(t). We suppose that the control group and the treated group are observed at
the same discrete time instants. In the neuronal context this means to record the data of two groups
of identical neurons, the first one without time-dependent stimuli and the second one with generally
time-dependent inputs.

3.1. Estimation of the constant parameters

In the following we consider a discrete sampling of the process X(t) in (2.1) based on d1 sample
paths at the times ti j for i = 1, . . . , d1 and j = 1, . . . , n with ti 1 = t1 for i = 1, . . . , d1. Let xi j

be the observed values at times ti j. We assume that the observations xi j are equally spaced at ∆ =

ti j − ti j−1 ∀i, j. Further, we assume xi 1 = x0 for i = 1, 2, . . . , d1.
The likelihood function for the parameters (ϑ, µ, σ2) is

L(ϑ, µ, σ2) =

d1∏
i=1

n∏
j=2

f (xi j, t j|xi j−1, t j−1).

The MLE can be explicitly obtained (see, for example, [3, 4]):

ϑ̂ = −
∆

log(̂β1)
, µ̂ =

β̂2

ϑ̂
, σ̂2 =

2

ϑ̂

β̂3

1 − β̂2
1

, (3.1)

where

β̂1 =
1

[d1(n − 1)]−1 ∑d1
i=1

∑n
j=2 x2

i j−1 − [d1(n − 1)]−2
(∑d1

i=1

∑n
j=2 xi j−1

)2

×

{
[d1(n − 1)]−1

d1∑
i=1

n∑
j=2

xi jxi j−1 − [d1(n − 1)]−2
d1∑
i=1

n∑
j=2

xi j

d1∑
i=1

n∑
j=2

xi j−1

}

β̂2 =
[d1(n − 1)]−1 ∑d1

i=1

∑n
j=2(xi j − β̂1xi j−1)

1 − β̂1

β̂3 = [d1(n − 1)]−1
d1∑
i=1

n∑
j=2

{xi j − β̂1xi j−1 − β̂2(1 − β̂1)}2.
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Since the process XS (t) is characterized by the same constant parameters with respect to the control
group X(t), the estimates ϑ̂, µ̂, σ̂2 obtained by (3.1) will be used in the second step of the procedure to
fit the unknown functions m(t) and u(t) in (2.4).

3.2. Fitting the functions m(t) and u(t)

In order to fit the functions m(t) and u(t) in (2.4) in Propositions 1, 2 and 3 we provide equations
related to suitable characteristics of the process XS (t).

Proposition 1. The function m(t) in (2.4) is given by

m(t) =
1
ϑ

h(t) +
d
dt

h(t), (3.2)

with
h(t) ≡ h(t|x0, t0) = MS (t|x0, t0) − M(t|x0, t0), (3.3)

where MS (t|x0, t0) and M(t|x0, t0) are the conditional means of the processes XS (t) and X(t), respec-
tively.

Proof. From (2.12), we obtain: ∫ t

t0
m(ξ)eξ/ϑ dξ = et/ϑh(t), (3.4)

with h(t) given in (3.3). From (3.4), deriving with respect to t, we derive (3.2). �

Proposition 2. The function u(t) in (2.4) is given by

u(t) =
2
ϑ

VS (t|t0) +
dVS (t|t0)

dt
, (3.5)

where VS (t|t0) is the conditional variance of the treated group XS (t).

Proof. Deriving both sides of (2.9) with respect to t, we obtain:

dVS (t|t0)
dt

= u(t) −
2
ϑ

VS (t|t0),

from which one has Eq. (3.5). �

Alternatively, the unknown function u(t) in (2.4) can be obtained by looking at the covariance
function cS (·, ·) of the process XS (t) as shown in the following proposition.

Proposition 3. The function u(t) in (2.4) is given by

u(τ) = e(t−τ)/ϑ
{cS (τ, t)

ϑ
+

d cS (τ, t)
dτ

}
(0 < τ < t). (3.6)

Proof. Eq. (3.6) is obtained from (2.14) by deriving both sides with respect to τ. �

Proposition 1 can be used to fit the function m(t) in (2.4), Propositions 2 and 3 are able to provide
two different estimates of the function u(t). In the following we specify the procedures.
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3.3. Procedure 1

Let us consider a discrete sampling of the process XS (t) in (2.4) based on d2 sample paths at the
times ti j for i = 1, . . . , d2 and j = 1, . . . , n with ti 1 = t1 for i = 1, . . . , d2. Let x(S )

i j be the observed
values at times ti j, i = 1, . . . , d2 and j = 1, . . . , n. We assume, as for the control group, that the step
between two consecutive observations is ∆ and x(S )

i 1 = x0 for i = 1, 2, . . . , d2. Note that, in order to
apply Eq. (3.2), data from the control and treated groups have to be observed at the same time instants.
Considering Proposition 1 and Proposition 2, the following procedure can be formulated:

1. From the data of the control group, estimate the parameters of process X(t), obtaining the ML
estimate ϑ̂, µ̂, σ̂2.

2. Let

x j =
1
d1

d1∑
i=1

xi, j and x(S )
j =

1
d2

d2∑
i=1

x(S )
i, j ( j = 1, 2, . . . , n)

be the sample means of X(t) and XS (t), respectively, for j = 1, 2, . . . , n.
3. Obtain the points:

h j = x(S )
j − x j. (3.7)

4. Interpolate the points h j in (3.7) to obtain an estimate, ĥ(t), of the function h(t) in (3.3).
5. Consider

m̂(t) =
1

ϑ̂
ĥ(t) +

d
dt

ĥ(t)

as approximation of the function m(t).
6. Obtain the points

v j =
1

d2 − 1

d2∑
i=1

[
x(S )

i, j − x(S )
j

]2
. (3.8)

7. Interpolate the points v j in (3.8) to obtain an estimate, v̂(t), of the function VS (t|t0) in (2.9).
8. A fitted function of u(t) in (2.4) is:

ûv(t) =
2

ϑ̂
v̂(t) +

d
dt

v̂(t).

3.4. Procedure 2

An alternative procedure can be obtained by looking at Eq. (3.6) instead of Eq. (3.5). Precisely, by
considering a discrete sampling of the process XS (t) as in Procedure 1, Procedure 2 works as before till
point 5., whereas the function u(t) is fitted by using Proposition 3. Therefore, the next steps change in

6′. Obtain the points

c j =
1

d2 − 1

d2∑
i=1

[
x(S )

i, j−1 − x(S )
j−1

][
[x(S )

i, j − x(S )
j

]
. (3.9)

7′. Interpolate the points c j in (3.9) to obtain an estimate, ĉ(t), of the function cS (t − 1, t) in (2.14).
8′. A fitted function of u(t) in (2.4) is:

ûc(t) = e∆/ϑ̂
{ ĉ(t)

ϑ̂
+

d ĉ(t)
dt

}
.
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We point out that the two suggested procedures differ between them only in the fit of the infinitesimal
variance u(t).

4. Simulation results

In order to evaluate the proposed procedures we present some experiments in which 50 sample-
paths including 500 observations of the processes X(t) and XS (t) with t0 = 0, ∆ = 0.1, x0 = −70
(representing the resting potential) are simulated.

We point out that the simulation experiments can be performed starting from the classical Euler’s
discretization of the corresponding stochastic differential equation. Since the process XS (t) is Gauss-
Markov, an alternative way to simulate sample-paths of the process XS (t) in (2.4) is to consider the
following discretization (see, for example, [24]):

XS (tk) = E[XS (tk)] +
[
XS (tk−1) − E(XS (tk−1)

]
e−∆/ϑ + ξk

√
VS (tk|tk−1), (4.1)

with tk = t0 + k∆, k = 1, . . . 499. Here, ξ1, ξ2, . . . is a sequence of independent and identically
distributed random variables with standard Gaussian distribution. Clearly, setting m(t) = 0 and
u(t) = σ2 for all t in (4.1), sample-paths of X(t) can be obtained.

We simulated the sample paths of the processes X(t) and XS (t) by using both Eq. (2.4) and Eq. (4.1),
the obtained estimates in two cases do not seem to show relevant differences, so in the following our
simulation experiments are based on the simplest Euler’s discretization.
We have chosen several functions m(t) and u(t), obtaining 4 non-homogeneous OU processes XS (t).
Specifically, we have considered periodic functions in the drift and in the infinitesimal variance of the
process, so to model periodic neuronal input widely admitted in the literature. Further, the infinitesimal
variance of Case 3 was also chosen in [17]. Finally, some test cases are also considered to validate our
procedures.

In all the cases, for the process modeling the control group we have chosen the following values for
the parameters: ϑ = 1, µ = −70, σ = 0.05, so the original homogeneous model has infinitesimal drift
and variance

A1(x) = −x − 70, A2 = 0.052.

For each process we apply the procedures proposed in Sections 3.3 - 3.4 and we compare the true
functions with their fitted versions. Moreover, to find out whether there are significant differences
between the two fitting methods for the function u(t), based on the sample variance and on the sample
covariance, we compare the theoretical conditional mean and variance of the process XS (t) with the
corresponding fitted functions. Finally, the simulation study includes the calculation of the Mean
Absolute Error (MAE) for the conditional mean and the variance of XS (t).

First of all, by focusing on the control group, we remark that the use of MLE as described in
Section 3.1 has provided the following results:

ϑ̂ = 1.01027, µ̂ = −69.28929, σ̂2 = 0.00253.
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4.1. Simulation results for the process X(1)
S (t)

We consider the process X(1)
S (t) characterized by the following infinitesimal moments:

B(1)
1 (x, t) = −

x
ϑ

+ µ + m1(t), B(1)
2 (x, t) = u1(t), (4.2)

where m1(t) = c [b + sin(ω t)] and u1(t) = σ2. In this case we assume that the inputs rates influences
only the drift of the treated process. For this process from (2.9), (2.12), (2.13) and (2.14) we have:

M(1)
S (t|y, τ) = M(t|y, τ) + b cϑ

[
1 − e−(t−τ)/ϑ] +

cϑ
1 + ω2ϑ2

{
sin(ω t) − ωϑ cos(ω t)

−e−(t−ϑ)/ϑ [
sin(ωτ) − ωϑ cos(ωτ)

]}
E
[
X(1)

S (t)
]

= M(1)
S (t|0, 0), V (1)

S (t|τ) = V(t|τ), c(1)
S (τ, t) = c(τ, t),

where M(t|y, τ) and V(t|τ), defined in (2.10) and (2.11), are the conditional mean and variance of the
control group, whereas c(τ, t) is the covariance function of X(t) defined in (2.15).

We assume b = 0, c = 0.1 and ω = 1. In Figure 1 the function m̂1(t) (green line) along with the
true function m1(t) (red line) are shown on the top. Smoothed version of m̂1(t) is also displayed. On the
bottom the results obtained for u1(t) are plotted: on the left we show the results obtained making use of
Procedure 1, whereas on the right the results obtained by Procedure 2 are plotted. We note that both the
procedures give satisfactory results. Moreover, the approximation of u1(t) based on Procedure 1 shows
an higher variability with respect to that one obtained by Procedure 2. Further, the approximation based
on Procedure 2 seems to systematically underestimate the true function u1(t). To further investigate the
comparison of the two suggested procedures, in Figure 2 the conditional mean (on the left) and variance
(on the right) of the process (4.2) are plotted together with their fitted versions. We can see that he fitted
conditional mean is able to capture the period structure of the conditional mean and also the amplitude
of its periodicity. Further, the conditional variance of X(1)

S (t) in (4.2) seems to be well fitted by using
Procedure 2, while Procedure 1 seems to overestimate the true conditional variance.

Finally, we simulate N = 50 replications of model (4.2) for several choices of the parameter σ and
of the observation step ∆. For each Monte Carlo replication, indexed by r = 1, 2, . . . ,N, the absolute
errors for both the procedures with respect to the mean and the variance of the process XS (t) have
been calculated. In particular, denoting by (M̂S (t|x0, t0))r the fitted conditional mean at the replication
r and by (V (v)

S (t|t0))r and (V (c)
S (t|t0))r the fitted conditional variance obtained by the Procedure 1 and 2,

respectively, we consider the following absolute errors

er,M(t) =
∣∣∣MS (t|x0, t0) − (M̂S (t|x0, t0))r

∣∣∣,
e(v)

r,V(t) =
∣∣∣VS (t|t0) − (V̂ (v)

S (t|t0))r

∣∣∣,
e(c)

r,V(t) =
∣∣∣VS (t|t0) − (V̂ (c)

S (t|t0))r

∣∣∣.
Then, we derive the mean absolute errors as follows

MAEM(t) =
1
N

N∑
r=1

er,M(t),
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Figure 1. For the process X(1)
S (t) defined in (4.2), on the top the estimate of m1(t), on the

bottom the estimate of u(t) = σ2 via Procedure 1 (on the left) and via Procedure 2 (on the
right).

MAE(v)
V (t) =

1
N

N∑
r=1

e(v)
r,V(t),

MAE(c)
V (t) =

1
N

N∑
r=1

e(c)
r,V(t).

We point out that the MAEs are dependent on time. In order to give a measure of the errors, we consider
the mean over the time of the MAEs for each estimated functions, for example for the function M(t)

mean(MAEM(t)) =
1

500

499∑
k=0

MAEM(tk).

The obtained values of mean(MAEM(t)),mean(MAE(v)
V (t)) and mean(MAE(c)

V (t)) are listed in Table 1
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Figure 2. Comparison between M(1)
S (t| − 70, 0) and the corresponding fitting function (on the

left) and between V (1)
S (t|0) and the its fitting functions (on the right).

for several choices of the parameter σ and of the observation step ∆. Clearly, in almost all the cases the
errors increases as σ and the step ∆ increase. This is more evident in the second column in which the
errors on the conditional variance of X(1)

S (t) by Procedure 1 are shown. Further, comparing the errors
on the conditional variance by the two procedures we can see that Procedure 2 provides always smaller
mean errors, suggesting that it is to prefer when one is interested to the conditional mean and variance.

Table 1. Errors for the process X(1)
S (t).

σ Step mean(MAEM(t)) mean(MAE(v)
V (t)) mean(MAE(c)

V (t))
σ = 0.05 ∆ = 0.01 0.04178 0.00115 0.00041

∆ = 0.1 0.04438 0.00125 0.00020
∆ = 0.5 0.04940 0.00131 0.00049

σ = 0.1 ∆ = 0.01 0.04456 0.00443 0.00150
∆ = 0.1 0.04621 0.00500 0.00082
∆ = 0.5 0.04548 0.00522 0.00196

σ = 0.5 ∆ = 0.01 0.10452 0.10903 0.04237
∆ = 0.1 0.09540 0.12596 0.02002
∆ = 0.5 0.06412 0.13169 0.04851

σ = 1 ∆ = 0.01 0.18915 0.45787 0.17219
∆ = 0.1 0.17724 0.49276 0.08436
∆ = 0.5 0.10775 0.52634 0.19468
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4.2. Simulation results for the process X(2)
S (t)

Let X(2)
S (t) be the stochastic diffusion process having infinitesimal moments:

B(2)
1 (x, t) = −

x
ϑ

+ µ + m2(t), B(2)
2 (x, t) = u2(t). (4.3)

with m2(t) = c t + d and u2(t) = σ2. Also in this case the inputs rates influences only the drift of the
treated process. For the process X(2)(t) from (2.9), (2.12), (2.13) and (2.14) we have:

M(2)
S (t|y, τ) = M(t|y, τ) + d ϑ[1 − e−(t−τ)/ϑ] + cϑ [t − ϑ + (ϑ − τ) e−(t−τ)/ϑ]
E(2)

S (t) = M(2)
S (t|0, 0), V (2)

S (t|τ) = V(t|τ), c(2)
S (τ, t) = c(τ, t),

where M(t|y, τ) and V(t|τ), defined in (2.10) and (2.11), are the conditional mean and variance of the
control group, whereas c(τ, t) is the covariance function of X(t) defined in (2.15).

We assume c = 0.01 and d = 0. In Figure 3 and in Figure 4 the same analysis as in Figure 1 and
2 is performed. Also in this case the fitted functions seem to be very close to the true ones although
Procedure 2 underestimates the true infinitesimal variance u2(t). Further, Figure 4 shows that the fitted
conditional mean well recognizes the linear trend of the conditional mean M(2)

S (t|x0, t0) and only slightly
overestimate its slope. By looking at the conditional variance V (2)

S (t|τ), we observe similar results with
respect the case in Section 4.1.

In Table 2 the errors on the conditional variance by the two procedures for the process X(2)
S (t) are

listed for the same choices of Section 4.1, and they confirm the results of Table 1.

Table 2. Errors for the process X(2)
S (t).

σ Step mean(MAEM(t)) mean(MAE(v)
V (t)) mean(MAE(c)

V (t))
σ = 0.05 ∆ = 0.01 0.01984 0.00115 0.00043

∆ = 0.1 0.23981 0.00126 0.00021
∆ = 0.5 1.23502 0.00131 0.00049

σ = 0.1 ∆ = 0.01 0.02817 0.00458 0.00183
∆ = 0.1 0.23958 0.00505 0.00082
∆ = 0.5 1.23497 0.00522 0.00196

σ = 0.5 ∆ = 0.01 0.09679 0.11184 0.00424
∆ = 0.1 0.25660 0.12555 0.02065
∆ = 0.5 1.23836 0.13106 0.04882

σ = 1 ∆ = 0.01 0.18682 0.44296 0.16401
∆ = 0.1 0.28073 0.50265 0.08271
∆ = 0.5 1.24534 0.52284 0.19582

4.3. Simulation results for the process X(3)
S (t)

We consider the process X(3)
S (t) with infinitesimal moments:

B(3)
1 (x, t) = −

x
ϑ

+ µ + m3(t), B(3)
2 (x, t) = u3(t), (4.4)
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Figure 3. For the process X(2)
S (t) defined in (4.3), on the top the estimate of m2(t) = 0.01 t, on

the bottom the estimate of u2(t) = σ2 via procedure 1 (on the left) and via procedure 2 (on
the right).

where m3(t) = c (b + sin(ω t)) and u3(t) = σ2 (1 − e−2 t/ϑ)2. In this case the inputs rates influences both
the drift and the infinitesimal variance of the treated process. For the process X(3)(t) from (2.9), (2.12),
(2.13) and (2.14) we have:

M(3)
S (t|y, τ) = M(1)

S (t|y, τ), E
[
X(3)

S (t)
]

= E
[
X(1)

S (t)
]
,

V (3)
S (t|τ) = e−2t/ϑσ2 c2

[
−2 t + 2 τ + ϑ sinh

(2t
ϑ

)
− ϑ sinh

(2τ
ϑ

)]
,

c(3)
S (τ, t) = e−2 (t−τ)/ϑ V (3)

S (τ|0) = e−2τ/ϑσ2
[
−2 τ + ϑ sinh

(2 τ
ϑ

)]
.

with M(1)(t|y, τ) given in (2.10). We set c = 0.1, b = 1.2 and ω = 1. In Figure 5, on the top, the
function m3(t) along with its approximation and its smoothed version are plotted. On the bottom the
results obtained for u3(t) for the two procedures are shown. Also in this case, the approximation of
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Figure 4. Comparison between M(2)
S (t| − 70, 0) and the corresponding fitting function (on the

left) and between V (2)
S (t|0) and the its fitting functions (on the right).

u3(t) based on the sample variance of the process shows an higher variability with respect to that one
obtained by Procedure 2 and this latter seems to underestimate the function u3(t). Figure 6, showing the
conditional mean and variance, this latter approximated by the two procedures, shows the behaviour
observed in Section 4.1 and 4.2. In Table 3 the mean errors of the conditional mean and variance are
listed for various choices of σ2 and of the step ∆.

Table 3. Errors for Case 3.

σ Step mean(MAEEX) mean(MAEvar X) mean(MAEvar X)
σ = 0.05 ∆ = 0.01 0.12285 0.00093 0.00037

∆ = 0.1 0.11852 0.00123 0.00020
∆ = 0.5 0.12010 0.00129 0.00049

σ = 0.1 ∆ = 0.01 0.12328 0.00370 0.00161
∆ = 0.1 0.11865 0.00489 0.00080
∆ = 0.5 0.12025 0.00524 0.00193

σ = 0.5 ∆ = 0.01 0.14681 0.09447 0.04388
∆ = 0.1 0.14135 0.12339 0.01991
∆ = 0.5 0.12405 0.12975 0.04859

σ = 1 ∆ = 0.01 0.21759 0.36846 0.15951
∆ = 0.1 0.19573 0.49398 0.07963
∆ = 0.5 0.14582 0.52598 0.19158
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Figure 5. For the process X(3)
S (t) defined in (4.4), on the top the estimate of m3(t) = 0.1 (1.2+

sin(t)), on the bottom the estimate of u3(t) = σ2 (1− e−2 t/ϑ)2 via procedure 1 (on the left) and
via procedure 2 (on the right).

4.4. Simulation results for the process X(4)
S (t)

For the last simulation experiment we consider the process X(4)
S (t) with:

B(4)
1 (x, t) = −

x
ϑ

+ µ + m4(t), B(4)
2 (x, t) = u4(t), (4.5)

where m4(t) = 0 and u4(t) = σ2 c (b + sin(t)).
In this case the inputs rates influences only the infinitesimal variance of the treated process. For the

process X(4)(t) from (2.9), (2.12), (2.13) and (2.14) we have:

M(4)
S (t|y, τ) = M(t|y, τ), E

[
X(4)

S (t)
]

= M(4)
S (t|0, 0),

V (4)
S (t|τ) = σ2 c

{bϑ
2

[
1 − e−2(t−τ)/ϑ

]
+

ϑ

4 + ω2ϑ2

[
−ωϑ cos(ω t) + 2 sin(ω t)

]
Mathematical Biosciences and Engineering Volume 17, Issue 1, 328–348.



344

0 10 20 30 40 50

−
8

0
−

7
5

−
7

0
−

6
5

−
6

0

Time

MS

(3)(t | x0,0)
MS

(3)(t | x0,0)

0 10 20 30 40 50

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

Time

VS

(3)(t | 0)
VS

(3)(t | 0) by Procedure 1

VS

(3)(t | 0) by Procedure 2

Figure 6. Comparison between M(3)
S (t| − 70, 0) and the corresponding fitting function (on the

left) and between V (3)
S (t|0) and the its fitting functions (on the right).

Table 4. Errors for Case 4.

σ Step mean(MAEEX) mean(MAEvar X) mean(MAEvar X)
σ = 0.05 ∆ = 0.01 0.00675 0.00017 0.00010

∆ = 0.1 0.00632 0.00015 0.00009
∆ = 0.5 0.00350 0.00016 0.00008

σ = 0.1 ∆ = 0.01 0.01417 0.00066 0.00038
∆ = 0.1 0.01288 0.00061 0.00040
∆ = 0.5 0.00731 0.00064 0.00033

σ = 0.5 ∆ = 0.01 0.06852 0.01630 0.00879
∆ = 0.1 0.06479 0.01525 0.00971
∆ = 0.5 0.03586 0.01587 0.00828

σ = 1 ∆ = 0.01 0.13745 0.06381 0.03816
∆ = 0.1 0.12409 0.05984 0.03734
∆ = 0.5 0.07120 0.06305 0.03330

+e−2(t−τ)/ϑ[ωϑ cos(ωτ) − 2 sin(ωτ)
]}
,

c(4)
S (τ, t) = e−(t−τ)/ϑV (4)

S (τ|0),

where M(t|y, τ) denotes the conditional mean of the control group modeled via X(t). The numerical
study is performed for c = 0.1, b = 1.2 and ω = 1. The fitted functions along with the true one
are plotted in Figure 7. As shown in Figure 8, both the suggested procedures are able to detect the
periodicity in the infinitesimal variance, although Procedure 2 provides a fitted conditional variance
slightly delayed with respect the true one. In Table 4 the related mean errors are listed for various
choices of σ2 and of the step ∆.
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Figure 7. For the process X(4)
S (t) defined in (4.5), on the top the estimate of m4(t) = 0), on

the bottom the estimate of u4(t) = 0.1σ2 (1.2 + sin(t)) via procedure 1 (on the left) and via
procedure 2 (on the right).

5. Conclusions

In this paper we have considered a time non-homogeneous OU process. It can be viewed as a
model for the membrane potential activity of a single neuron, stimulated by a sequence of inhibitory
and excitatory post-synaptic potentials with generally time-dependent rates. We have proposed a two-
step procedure to infer the model. It uses a control group modelled by means of a homogeneous OU
process, and a treated group. In the first step the constant parameters of the model are estimated making
use of a MLE applied to the control group. In the second step we are able to fit the non-homogeneous
terms of the process. This second step uses the estimates obtained in the first step and, by a generalized
method of moments, it provides the fit of the time-dependent functions in the process describing the
treated group. To estimate the infinitesimal variance of the non-homogeneous OU process, we propose
two procedures: the first one is based on the conditional variance and the second one is based on the
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Figure 8. Comparison between M(4)
S (t| − 70, 0) and the corresponding fitting function (on the

left) and between V (42)
S (t|0) and the its fitting functions (on the right).

covariance function of the treated group. Several numerical simulations show that the first procedure
seems to be able to well capture the time-dependent infinitesimal variance, whereas the second one
better fits the conditional variance of the process.
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