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ABSTRACT
In this paper, a new computational algorithm for the numerical solution of the adjoint equations for the nonlin-

ear optimal control problem is introduced. To this end, the main features of the optimal control theory are briefly
reviewed and effectively employed to derive the adjoint equations for the active control of a mechanical system
forced by external excitations. A general nonlinear formulation of the cost functional is assumed and a feedforward
(open-loop) control scheme is considered in the analytical structure of the control architecture. By doing so, the
adjoint equations resulting from the optimal control theory enter into the formulation of a nonlinear differential-
algebraic two-point boundary value problem, which mathematically describes the solution of the motion control
problem under consideration. For the numerical solution of the problem at hand, an adjoint-based control op-
timization computational procedure is developed in this work to effectively and efficiently compute a nonlinear
optimal control policy. A numerical example is provided in the paper to show the principal analytical aspects of
the adjoint method. In particular, the feasibility and the effectiveness of the proposed adjoint-based numerical
procedure are demonstrated for the reduction of the mechanical vibrations of a nonlinear two-degree-of-freedom
dynamical system.

1 Introduction
From a general perspective, the adjoint method is a versatile mathematical tool for solving the optimal control problem in

the general case of nonlinear mechanical systems [1]. The main feature of the adjoint sensitivity analysis can be described as
follows: in the case of an initial value problem for a nonlinear mechanical system subjected to a prescribed control action, the
sensitivity of a given objective function with respect to the controlled input parameters can be effectively computed by using a
linear adjoint procedure that has approximately the same computational cost of the original dynamical simulation [2], [3], [4].
On the other hand, in the conventional linearization approach, a set of separate linearized problems needs to be independently
solved for each increment of the controlled input variables in order to find an optimal control policy [5]. As a result,
the application of the linearization method to optimal control problems leads to the well-known dynamic programming
computational procedure [6]. The dynamic programming method suffers from the important drawback of the so-called curse
of dimensionality. The curse of dimensionality is a general phenomenon in the domain of numerical analysis. In particular,
for nonlinear control optimization problems, the curse of dimensionality means that the dimension and the complexity of the



problem at hand grow exponentially with respect to the number of the state and control variables [7]. Thus, the linearization
procedure is considerably less general and less efficient compared to the adjoint method [8], [9]. Furthermore, another
important aspect of the adjoint method is the fact that it can be successfully employed to deal with linear as well as nonlinear
optimal control problems in a simple and general way [10], [11]. In the case of linear dynamical systems, several effective
algorithms based on the adjoint method were developed for fluid mechanics applications in order to solve large optimal
control problems bypassing the solution of the Riccati equations [12], [13]. On the other hand, only recently the adjoint
method has been employed in the field of robotics and for the design, optimization, and control of mechanical systems [14],
[15], [16]. Thus, the use of the adjoint analysis in the general field of applied mechanics is still at an early stage. This paper
represents a step towards a further analytical and computational development of the adjoint-based analysis for controlling
rigid and flexible multibody systems characterized by nonlinear differential-algebraic equations of motion [17]. To this
end, a novel method to derive feedforward control actions for solving the optimal control problem of nonlinear mechanical
systems is proposed in this investigation. More specifically, the general-purpose computational method developed in this
work is called the adjoint-based control optimization procedure and is applied for solving the control problem of nonlinear
vibrations.

The study of the nonlinear behavior of mechanical systems represents an important research topic in many fields of
engineering and physics [18], [19], [20], [21], [22]. In general, a mechanical system can exhibit a linear or a nonlinear
dynamical behavior [23], [24]. In particular, mechanical systems are generally influenced by different energy sources that
can excite linear or nonlinear vibrations [25], [26], [27]. In many engineering applications, the problem of vibration control
is of primary importance and a large amount of research has been devoted to this issue [28], [29], [30]. From a general
perspective, the control strategies adopted to address this issue can be classified into two general categories, namely the
active control approach and the passive control approach [31], [32]. Active control systems can be more advantageous
than their passive counterparts featuring comparable performances [33], [34]. While passive control systems are relatively
simple to realize, the design of an effective control policy for a nonlinear mechanical system controlled using the active
approach is generally more complex, especially in the case of flexible multibody systems [35], [36], [37], [38]. In recent
years, considerable research efforts have been devoted to the design of control strategies for the simultaneous suppression
of structural vibrations and attenuation of contact forces in nonlinear mechanical systems [39], [40], [41]. In fact, a crucial
aspect of the motion control problem for nonlinear mechanical systems is the capacity to handle the interaction between
the system and the external environment [42], [43]. The adjoint method, on the other hand, can be employed as a control
optimization strategy which is suitable to deal with a broad class of nonlinear dynamical problems [44], [45], [46], [47].
As shown in the paper, the adjoint-based control optimization procedure developed in this investigation can be effectively
employed for solving the vibration and interaction control problem of nonlinear mechanical systems.

This paper is organized as follows. Section 2 recalls the main mathematical features of the adjoint method for nonlinear
optimal control. In Section 3, the numerical implementation of the proposed adjoint-based nonlinear control optimization
algorithm is discussed. Subsequently, Section 4 describes a demonstrative numerical example based on a two-degree-of-
freedom nonlinear dynamical system in order to analyze the active control problem and the external isolation problem in the
case of mechanical vibrations. Finally, Section 5 includes a summary and the conclusions of the paper.

2 Adjoint Method for Nonlinear Optimal Control
In this section, the basic elements of the optimal control theory and the practical implementation of the adjoint method

are briefly reviewed. To this end, the necessary conditions that arise from the analytical solution of the nonlinear optimal
control problem for continuous-time dynamical systems are derived considering a general case in which a feedforward
control strategy is employed.

A feedforward or open-loop controller is a control policy determined as an explicit function of time and of the specific
initial conditions of the dynamical system under examination [48], [49]. Consider a set of n nonlinear differential equations
which describes the state evolution of a continuous-time dynamical system:

{
ż = f

z|t=0 = z0
(1)

where t is time, z≡ z(t) denotes a n-dimensional vector representing the system state, z0 is a n-dimensional vector represent-
ing the system initial conditions, f≡ f(t,z,u,r) identifies a n-dimensional vector function that regulates the time evolution of
the system state, u≡ u(t) is a mu-dimensional vector of feedforward control actions and r≡ r(t) denotes a mr-dimensional
vector of external inputs. The vector function f represents a set of n nonlinear ordinary differential equations that mathemat-
ically describes the dynamics of the continuous-time system or plant to be controlled. On the other hand, one can assume a



scalar cost functional J ≡ J(z0) featuring the following analytical form:

J = h|t=T +
∫ T

0
gdt (2)

where T is a fixed time domain for the control actuation, h ≡ h(t,z, z̃) is a scalar function that identifies the terminal cost
function, g≡ g(t,z, z̃,u, ũ,r, F̃) is a scalar function that denotes the current cost function, z̃≡ z̃(t) is a n-dimensional vector
representing a preassigned reference state trajectory, ũ≡ ũ(t) is a mu-dimensional vector representing a precomputed refer-
ence control action and F̃ ≡ F̃(t) is an l-dimensional vector representing an assumed reference interaction vector. Without
loss of generality, the reference functions z̃, ũ, and F̃ are typically set equal to zero vectors in the case of regulation problems
whereas in tracking problems these functions result from the numerical solution of a previously solved motion planning
problem. It is important to note that the performance index J is selected by the analyst in order to make the plant exhibit a
desired type of dynamical behaviour. In fact, the cost functional J is a mathematical entity which reflects how well a specific
control law u meets the design goals and, therefore, it is employed as a metric to quantitatively assess the performances of a
dynamical system subjected to a particular set of control actions. Thus, in the case of a feedforward controller, the optimal
control problem consists of finding an optimal feedforward control action u∗ ≡ u∗(t) which causes the dynamical system to
follow an optimal trajectory z∗ ≡ z∗(t) that corresponds to a global minimum of the cost functional J∗ ≡ J∗(z0) [50], [51].
In other words, from a mathematical point of view, the problem at hand for the feedforward optimal control is to find the
minimum of the cost functional (2) subjected to a set of differential constraint equations which represents analytically the
system dynamical model (1). Thus, the key idea to solve this challenging mathematical problem is to consider the system dy-
namical model as a set of differential constraint equations for the minimization problem under consideration and, therefore,
the adjoint method can be employed to define an augmented cost functional J̄ ≡ J̄(z0). To this end, the system state-space
equations of motion (1) can be adjoined to the cost functional (2) in order to obtain an augmented cost functional defined as
follows:

J̄ = h|t=T +
∫ T

0
g+λ

T (f− ż)dt (3)

where λ≡ λ(t) defines a costate or adjoint state vector which identifies the Lagrange multipliers resulting from the adjoining
process of the system equations of motion to the cost functional. An effective method to address the problem under study is
to resort to the Pontryagin minimum principle. In order to simplify the mathematical derivation of the necessary equations
which lead to the minimum of the augmented cost functional (3), a Hamiltonian function H ≡ H(t,z, z̃,u, ũ,r, F̃) can be
utilized. The Hamiltonian function H is defined as:

H = g+λ
T f (4)

According to the Pontryagin minimum principle, an optimal control action u∗ ≡ u∗(t) produces an optimal state trajectory
z∗ ≡ z∗(t) that corresponds to an unconstrained minimum of the Hamiltonian function H∗ ≡H∗(t,z∗, z̃,u∗, ũ,r, F̃) [52], [53].
Hence, using the definition of the Hamiltonian function (4), the augmented cost functional (3) can be rewritten as:

J̄ = h|t=T +
∫ T

0
H−λ

T żdt (5)

The augmented cost functional J̄ can be reformulated by using the integration by parts rule in order to explicitly obtain the
time derivative of the adjoint state λ as follows:

J̄ = h|t=T − λ
T z
∣∣
t=T + λ

T z
∣∣
t=0 +

∫ T

0
H + λ̇

T zdt (6)

By virtue of the fundamental theorem of the calculus of variation, the variation of the augmented cost functional J̄ vanishes
on an extremal state trajectory z∗ caused by an extremal control policy u∗ [54]. Indeed, the first variation of the augmented



cost functional J̄ with respect to the system state z and with respect to the control action u yields:

δJ̄ =

((
∂h
∂z

)T
−λ

)T

δz

∣∣∣∣∣
t=T

+ λT δz
∣∣
t=0+

+
∫ T

0

((
∂H
∂z

)T
+ λ̇

)T

δz+ ∂H
∂u δudt

(7)

The mathematical form of the variation of the augmented cost functional (7) can be considerably simplified introducing the
following definitions: 

A = ∂f
∂z , B = ∂f

∂u

ν = ∂h
∂z , ϕ = ∂g

∂z , ψ = ∂g
∂u

(8)

where A≡A(t,z,u,r) is a n×n matrix that represents the sensitivity of the system state function f with respect to the system
state z, B≡ B(t,z,u,r) denotes a n×mu matrix representing the sensitivity of the system state function f with respect to the
control action u, ν ≡ ν(t,z, z̃) identify a n-dimensional vector that describes the sensitivity of the terminal cost function h
with respect to the state vector z, ϕ≡ ϕ(t,z, z̃,u, ũ,r, F̃) is a n-dimensional vector describing the sensitivity of the current cost
function g with respect to the system state z and ψ≡ψ(t,z, z̃,u, ũ,r, F̃) is a mu-dimensional vector that denotes the sensitivity
of the current cost function g with respect to the control vector u. By using the definitions of the system sensitivity matrices
and vectors provided by the equations (8), the variation of the augmented cost functional (7) can be rewritten as:

δJ̄ =
(
νT −λ

)T
δz
∣∣∣
t=T

+ λT δz
∣∣
t=0+

+
∫ T

0

(
ϕT +AT λ+ λ̇

)T
δzdt+

+
∫ T

0
(
ψT +BT λ

)T
δudt = 0

(9)

Finally, assuming that the system initial state z0 is given and considering a fixed time horizon T , the necessary conditions
which identify an optimal feedforward controller can be derived setting equal to zero the coefficients of the first variation of
the augmented cost functional J̄ with respect to the system state z and with respect to the control action u as follows:

ż = f, z|t=0 = z0

−λ̇ = ϕT +AT λ, λ|t=T = νT
∣∣
t=T

ψT +BT λ = 0

(10)

The resulting differential-algebraic equations given by (10) constitute a nonlinear two-point boundary value problem and
represent the necessary conditions which define the minimum of the augmented cost functional J̄ [55], [56]. In particular,
the first vector equation of the set (10) mathematically describes the direct problem, namely the dynamical evolution of the
system state z based on the system initial conditions, whereas the second vector equation of the set (10) mathematically
represents the adjoint problem, namely the dynamical evolution of the adjoint state λ based on the corresponding set of
boundary or terminal conditions. On the other hand, the third vector equation of the set (10) is called the stationarity equation
and defines the minimum of the Hamiltonian function H. It is important to note that the nonlinear ordinary differential
equations representing the direct problem, the linear ordinary differential equations that characterize the adjoint problem, and
the linear algebraic equations which identify the stationarity conditions are highly coupled and form a nonlinear differential-
algebraic two-point boundary value problem. In general, these problems are challenging to solve analytically. However,
there are some numerical procedures that can be effectively used to solve this type of mathematical problems. For instance,
among the gradient-based optimization techniques, the iterative adjoint-based control optimization algorithm is an efficient
and effective computational method capable of designing feedforward control actions for nonlinear mechanical systems [57],
[58]. However, since the adjoint analysis represents a general analytical framework rather than a specific implementation
procedure, in this paper the adjoint-based control optimization algorithm is developed as a numerical resolution tool in order
to practically address the control problem for nonlinear mechanical systems.



3 Adjoint-Based Nonlinear Control Optimization Procedure
In this section, the numerical implementation of the adjoint-based control optimization method is discussed in detail and

the complete procedure for the computer implementation of the proposed iterative technique is described step by step. In
fact, the variational approach presented in the corresponding previous subsection leads to a nonlinear differential-algebraic
two-point boundary value problem that, in general, cannot be solved analytically to obtain an optimal feedforward control
law. Therefore, one must resort to numerical methods in order to solve such challenging nonlinear problems. To this end,
there are three general classes of computational methods that can be employed to solve the problem at hand numerically,
namely the neighboring extremal methods, the quasilinearization methods, and the gradient methods [59]. In particular, the
numerical technique presented here belongs to the class of the gradient-based optimization methods and is able to determine
an optimal feedforward control action together with the corresponding state trajectory.

The adjoint-based control optimization method represents an iterative numerical algorithm that can be effectively used to
find an approximate solution to the nonlinear differential-algebraic two-point boundary value problem defined by equations
(10) which identifies an optimal feedforward controller and the corresponding evolution of the system state. The main
concept behind this numerical method originates from the field of computational fluid dynamics and is particularly suitable
to compute in an efficient and effective way a set of feedforward control actions for mechanical systems featuring a large
number of degrees of freedom. The fundamental idea of this gradient-based method is to cleverly exploit the information of
the cost functional gradient, which is known analytically, in order to solve the minimization problem at hand via nonlinear
optimization techniques. For this purpose, the stationarity equations are rewritten as follows for the sake of simplicity:

ψ
T +BT

λ = 0 (11)

Indeed, for a general state trajectory corresponding to a non-optimal feedforward control action, the sationarity equations
are not satisfied and, therfore, the non-zero cost functional gradient can be computed using the stationarity conditions (11)
as follows:

G = ψ
T +BT

λ (12)

where G ≡ G(t,z, z̃,u, ũ,r, F̃) is a n-dimensional vector that represents the cost functional gradient with respect to the
feedforward control action for a given instant of time. For the sake of clarity, the adjoint state equations are rewritten here:

−λ̇ = ϕT +AT λ

λ|t=T = νT
∣∣
t=T

(13)

Note that in correspondence to a non-optimal feedforward control action u that yields a non-extremal state trajectory z, the
cost functional gradient G is not a zero vector. Thus, considering a trial time history of the control action uk, where the
superscript k refers to the index of the iterative algorithm, first the system state equations (1) must be solved numerically by
using the trial time history of the feedforward control action uk and then the system adjoint equations (13) must be solved
numerically in order to obtain, respectively, a trial time history of the system state zk and a trial time history of the adjoint state
λk. The numerical solutions zk and λk obtained following this procedure will satisfy, respectively, the initial conditions and
the terminal conditions. Subsequently, considering a general step of the iterative adjoint-based control optimization method,
the time histories zk and λk arising from the numerical procedure will not identify the minimum of the cost functional and,
therefore, the norm of the corresponding time history of the cost functional gradient Gk will be different from zero. The time
history of the cost functional gradient Gk can be computed explicitly from the gradient equations (12) once the time history
of the system state zk and the time history of the adjoint state λk are known as follows:

Gk =
(

ψ
k
)T

+
(

Bk
)T

λ
k (14)

where ψk and Bk denote respectively the time history of the cost-to-go sensitivity vector with respect to the control action
and the time history of the state function sensitivity matrix with respect to the control action, both corresponding to the
trial solution uk. The time history of the cost functional gradient Gk can be used in an iterative gradient-based optimization
algorithm in order to gradually improve the time history of the control action uk towards the minimum of the cost functional.
Typically, to accomplish this task a line search algorithm is used. In general, the line search strategy leads to three general



families of minimization methods, namely the steepest descent method, the conjugate gradient methods, and the quasi-
Newton methods [60]. For this purpose, all the algorithms based on the line search strategy utilize the information of the cost
functional gradient Gk to determine a time history of the descent direction ek and search the minimum of the cost functional
along this direction. For instance, the steepest descent method simply sets the descent direction equal to the opposite of the
cost function gradient:

ek =−Gk (15)

The basic idea is to perform the line search of the minimum along the direction where the cost function decreases more
rapidly. However, it can be shown that this method leads to a slow convergence rate in some optimization problems because
the choice of the descent direction is too rigid. On the other hand, in the nonlinear conjugate gradient method the descent
direction is defined as follows:

ek =−Gk +β
kek−1 (16)

where βk ≡ βk(ek,ek−1) is a correction parameter which optimizes the direction search ek and ensures that the descent
directions ek and ek−1 are reciprocally conjugate [61]. Furthermore, in the the quasi-Newton methods the selection of
the search direction is based on an approximate estimation of the Hessian matrix computed employing the time history
of the gradient vector and, as a result, a more complex calculation is involved for determining the descent direction ek ≡
ek(ek−1,Gk,Gk−1). After the selection of the search direction, a minimization procedure can be employed to optimize the
time history of the control action. The minimization process starts from the current time history of the control action uk and
leads to the next time history of the control action uk+1 that corresponds to a lower value of the cost functional. Thus, using
a line search method the time history of the control input can be iteratively updated as follows:

uk+1 = uk +α
kek (17)

where αk is a scalar line parameter which represents the step length corresponding to the current iteration. The minimization
algorithms based on a line search strategy differ from each other on the computational method employed to determine the
time history of the descent direction ek using the time history of the cost functional gradient Gk. Once the time history of the
descent direction ek is set, the solution for the step length αk can be found by employing a minimum search algorithm. That
is:

α
k = argmin

α

(J) (18)

The complete procedure necessary for the implementation of the adjoint-based control optimization method can be summa-
rized as follows:

Step 1 - Direct Problem Solution: use the current time history of the feedforward control action uk (or a trial feedforward
control time history u0 for the first iteration) to integrate the system state-space equations (1) numerically forward in
time starting from the set of initial conditions z|0 = z0 in order to obtain the current state trajectory zk. For instance, the
explicit or implicit Runge-Kutta methods can be used to accomplish this task.
Step 2 - Adjoint Problem Solution: use the current state trajectory zk to integrate the system adjoint state equations (13)
numerically backward in time starting from the set of terminal conditions λ|T = ν|T in order to obtain the current adjoint
state trajectory λk. The explicit or implicit Runge-Kutta methods can be used to accomplish this task as well.
Step 3 - Gradient Computation: use the current state trajectory zk and the current adjoint state trajectory λk to compute
the current time history of the cost functional gradient Gk by using its explicit expression (14) which derives from the
stationary equations (11).
Step 4 - Search Direction Computation: use the current time history of the cost functional gradient Gk to compute the
current time history of the search direction ek. For instance, the steepest descent method, the conjugate gradient methods
(such as the Fletcher-Reeves algorithm, the Polak-Ribiere algorithm, or the Hestenes-Stiefel algorithm), or the quasi-
Newton methods (such as the Davidon-Fletcher-Powell algorithm or the Broyden-Fletcher-Goldfarb-Shanno algorithm)
can be used to accomplish this task.
Step 5 - Initial Guess Computation: determine an initial guess for the step length α0 in order to initialize the minimum
search algorithm. For instance, the Taylor series method can be used to accomplish this task.



Step 6 - Bracketing: use the initial guess for the step length α0 to bracket the minimum of the cost functional J in an
interval a0, b0, and c0 along the time history of the search direction ek. For instance, the Fibonacci method or the golden
section method can be used to accomplish this task.
Step 7 - Minimization: use the bracketed interval a0, b0, and c0 to minimize the cost functional J along the time history
of the search direction ek in order to find the corresponding step length αk and to update the time history of the control
action uk+1 using the line search strategy (17). For instance, the Fibonacci search method, the golden section search
method, or the Brent search method can be used to accomplish this task. If the selected convergence criteria are not
satisfied, restart from step 1. For instance, a tolerance on the absolute value of the difference between the current cost
functional value Jk and the past cost functional value Jk−1 or a tolerance on the norm of current time history of the cost
functional gradient Gk can be used to accomplish this task.

The iterative adjoint-based control optimization method leads to a numerical solution of the nonlinear differential-
algebraic two-point boundary value problem defined by the equations (10) and provides the time history of the feedforward
control action u∗, the time history of the system state trajectory z∗, and the time history of the adjoint state trajectory λ∗

corresponding to a minimum of the cost functional J∗.

4 Numerical Results and Discussion
In this section, a numerical example is provided in order to describe the computer implementation of the adjoint-based

control optimization procedure and demonstrate the effectiveness of the adjoint method for solving nonlinear optimal control
problems. The nonlinear dynamical system analyzed in this numerical example features a simple but illustrative structure so
that the sensitivity matrices necessary to implement the adjoint equations can be analytically derived.

The dynamical system considered as case-study is a lumped parameter nonlinear mechanical system featuring two
degrees of freedom and is shown in figure 1. In figure 1, the first mass is denoted with m1 and the second mass is denoted with
m2. The displacement of the first mass is represented by the coordinate x1 ≡ x1(t) while the displacement of the second mass
is represented by the coordinate x2≡ x2(t). The whole system is subjected to a constant gravitational field whose gravitational
acceleration is g. The mechanical system under consideration features three elastic components which exert three different
force fields. The first, the second, and the third elastic components provide stiffness coefficients respectively denoted with
k1, k2, and k3 while the corresponding force fields feature degrees of nonlinearity that are respectively represented by the
parameters η1, η2, and η3. The cubic nonlinear characteristics of the first elastic components are meant to model in a simple
manner the stiffening phenomenon of the system springs. Therefore, the nonlinear force fields produced by the elastic
components are respectively denoted with Fk1 ≡ Fk1(t,x1), Fk2 ≡ Fk2(t,x1,x2), and Fk3 ≡ Fk3(t,x2) whereas their structures
are assumed as follows: 

Fk1 =−k1∆1
(
1+η1∆2

1
)

Fk2 =−k2∆2
(
1+η2∆2

2
)

Fk3 =−k3∆3
(
1+η3∆2

3
) (19)

where: 
∆1 = x1

∆2 = x1− x2

∆3 = x2−L− s

(20)

The first, the second, and the third dissipative components shown in figure 1 produce three linear dissipative force fields
whose damping are represented respectively by the coefficients r1, r2, and r3. The system is hinged on a moving support
located at a height L. The displacement of the floating support is identified by the time-dependent variable s≡ s(t). For the
sake of simplicity, its mathematical structure is assumed to be a superposition of two harmonic functions as follows:

s = S1 sin(2π f1t)+S2 sin(2π f2t) (21)

where S1 and S2 denote the amplitudes of the two external displacements while f1 and f2 identify respectively the corre-
sponding frequencies of the two harmonic signals. A control actuator is interposed between the two masses in order to reduce



the amplitude of the system vibrations induced by the floating support. To this end, a feedforward controller is considered for
the structure of the control scheme and, therefore, the time-dependent action of the control actuator is denoted with u≡ u(t).
A comprehensive list of all the system data is reported in table 1.

The mechanical system represented in figure 1 features n2 = 2 degrees of freedom. Therefore, the system configuration
can be easily identified considering a set of two generalized coordinates grouped in a vector q≡ q(t) and defined as:

q =

 x1

x2

 (22)

where x1 and x2 denote the displacements of the two masses as shown in figure 1. Employing the analytical techniques of
the Lagrangian mechanics [62], [63], the system equations of motion can be formally written as:

Mq̈ = Q (23)

where M≡M(t,q) is a n2×n2 matrix representing the system mass matrix and Q≡Q(t,q, q̇,s, ṡ) is a n2-dimensional vector
denoting the vector of the external generalized forces acting on the system. For the problem on hand, the system mass matrix
and the vector of the generalised external forces can be readily derived by using the D’Alemebert-Lagrange principle of
virtual work [64], [65]. This well-established method leads to the following mathematical expressions:

M =

m1 0

0 m2

 (24)

Q =



−m1g− k1x1
(
1+η1x2

1
)
+

−k2 (x1− x2)
(

1+η2(x1− x2)
2
)
+

−r1ẋ1− r2 (ẋ1− ẋ2)

−m2g− k2 (x2− x1)
(

1+η2(x1− x2)
2
)
+

−k3 (x2−L− s)
(

1+η3(x2−L− s)2
)
+

−r2 (ẋ2− ẋ1)− r3 (ẋ2− ṡ)


(25)

The system equations of motion (23) form a set of n2 = 2 nonlinear second-order ordinary differential equations which
requires a set of 2n2 = 4 initial conditions q0 and q̇0. When a control action is applied on the system, the system equations
of motion changes accordingly as follows:

Mq̈ = Q+Qc (26)

where Qc ≡ Qc(t,q, q̇,u) is a n2-dimensional vector representing the vector of generalized forces arising from the control
action. For the system under study, the control action is exerted by a force generated by an actuator acting between the two
masses. Thus, in the case of a feedforward controller, the Lagrangian component of the control action Qc can be expressed
as follows:

Qc =

−u

u

 (27)

For the particular type and structure of control strategy considered, the controlled system results in an underactuated mechan-
ical system because it features two degrees of freedom but there is only one control input. Underactuated systems represent
a general class of dynamical systems particularly challenging to control and, therefore, this kind of mechanical systems is



often used to demonstrate the use of novel control methodologies [66], [67]. In order to convert the system equations of
motion (23) from the configuration space to the state space, the system state vector z can be readily defined as:

z =

q

q̇

=



x1

x2

ẋ1

ẋ2


(28)

Also, the vector of uncontrollable external actions r≡ r(t) can be written as follows:

r =

 s

ṡ

 (29)

where s and ṡ denote respectively the displacement of the moving support and its time derivative. Once the state vector has
been defined, the state space representation of the system dynamical model can be obtained by adding an identity relating
the derivative of the configuration vector to the state vector so that the state space model can be formally written to give:

ż = f (30)

where f represents the system state function. In the case of the feedforward controller considered for the problem at hand,
the system state function f can be readily computed as:

f =

 q̇

M−1 (Q+Qc)

=

=



ẋ1

ẋ2

−g− k1
m1

x1
(
1+η1x2

1
)
+

− k2
m1

(x1− x2)
(

1+η2(x1− x2)
2
)
+

− r1
m1

ẋ1− r2
m1

(ẋ1− ẋ2)− u
m1

−g− k2
m2

(x2− x1)
(

1+η2(x1− x2)
2
)
+

− k3
m2

(x2−L− s)
(

1+η3(x2−L− s)2
)
+

− r2
m2

(ẋ2− ẋ1)− r3
m2

(ẋ2− ṡ)+ u
m2



(31)

On the other hand, the sensitivity matrix of the system state function with respect to the system state A can be derived by



computing the Jacobian matrix of the system state function f with respect to the system state z to yield:

A = ∂f
∂z =

=



0 0 1 0

0 0 0 1

− k1
m1

(
1+3η1x2

1
)
+

− k2
m1

(
1+3η2(x1− x2)

2
) k2

m1

(
1+3η2(x1− x2)

2
)

− r1+r2
m1

r2
m1

k2
m2

(
1+3η2(x1− x2)

2
) − k2

m2

(
1+3η2(x1− x2)

2
)
+

− k3
m2

(
1+3η3(x2−L− s)2

) r2
m2

− r2+r3
m2



(32)

Furthermore, the sensitivity matrix of the system state function with respect to the vector of control actions B can be calcu-
lated considering the Jacobian matrix of the system state function f with respect to the control vector u as:

B =
∂f
∂u

=



0

0

− 1
m1

1
m2


(33)

It is worth to note that the sensitivity matrix A depends explicitly on the system state vector z. Finally, the system state space
model (30) constitutes a set of n = 2n2 = 4 nonlinear first-order ordinary differential equations and requires the identification
of the initial state z0 which arises from the set of n = 2n2 = 4 initial conditions q0 and q̇0.

The feedforward controller described here is an open-loop controller designed using the adjoint-based control optimiza-
tion method. The control scheme which describes how the feedforward controller acts on the mechanical system under study
is represented in figure 2. The purpose of this feedforward controller is to reduce the amplitudes of the vibrations induced by
the moving support and, at the same time, to reduce more drastically the amplitude of the contact force between the second
mass and the moving support representing the interaction of the mechanical system with the external environment. For the
problem at hand, the contact force F can be expressed as follows:

F =−k3 (L+ s− x2)
(

1+η3(x2−L− s)2
)
− r3 (ṡ− ẋ2) (34)

The terminal cost function h is designed assuming the following quadratic form:

h = 1
2 (z− z̃)T QT (z− z̃) =

= 1
2

(
QT,1x2

1 +QT,2x2
2 +QT,3ẋ2

1 +QT,4ẋ2
2
) (35)

where QT is a diagonal weight matrix which characterizes the mathematical structure of the terminal cost function h. On the
other hand, the cost-to-go function g is assumed quadratic as well and it is designed as:

g = 1
2 (z− z̃)T Qz (z− z̃)+ 1

2 (u− ũ)T Qu (u− ũ)+ 1
2

(
F− F̃

)T QF
(
F− F̃

)
=

= 1
2

(
Qz,1x2

1 +Qz,2x2
2 +Qz,3ẋ2

1 +Qz,4ẋ2
2
)
+ 1

2 Quu2 + 1
2 QF F2 =

= 1
2

(
Qz,1x2

1 +Qz,2x2
2 +Qz,3ẋ2

1 +Qz,4ẋ2
2
)
+ 1

2 Quu2+

+ 1
2 QF

(
k3 (L+ s− x2)

(
1+η3(x2−L− s)2

)
+ r3 (ṡ− ẋ2)

)2

(36)



where Qz, Qu and QF are diagonal weight matrices which characterize the structure of the cost-to-go function g. The
terminal cost sensitivity vector with respect to the system state ν can be readily derived by calculating the Jacobian matrix
of the terminal cost function h with respect to the system state z to yield:

ν =
∂h
∂z

= (z− z̃)T QT =



QT,1x1

QT,2x2

QT,3ẋ1

QT,1ẋ2



T

(37)

On the other hand, the cost-to-go sensitivity vector with respect to the system state ϕ can be obtained by computing the
Jacobian matrix of the cost-to-go function g with respect to the system state z as follows:

ϕ = ∂g
∂z = (z− z̃)T Qz +

(
F− F̃

)T QF
∂F
∂z =

=



Qz,1x1

Qz,2x2 +QF Fk3

(
1+3η3(x2−L− s)2

)
Qz,3ẋ1

Qz,4ẋ2 +QF Fr3ẋ2



T

(38)

The cost-to-go sensitivity vector with respect to the control action ψ can be obtained by deriving the Jacobian matrix of the
cost-to-go function g with respect to the control action u as follows:

ψ =
∂g
∂u

= (u− ũ)T Qu = Qu (u− ũ) (39)

The weight matrices which characterise the cost function are set as follows:



QT = diag(10,10,10,10)

Qz = diag(102,102,102,102)

Qu = 10−2

QF = 102

(40)

For the design of the feedforward controller, the reference trajectory, the reference control action, and the reference interac-
tion force are set as:


z̃ = 0

ũ = 0

F̃ = 0

(41)

where z̃ denotes the reference trajectory, ũ denotes the reference control action, and F̃ denotes the reference interaction
force. Using the terminal cost sensitivity vector ν and the cost-to-go sensitivity vectors φ and ψ, the synthesis of a feedfor-
ward controller can be performed in order to numerically compute an optimal control action and the corresponding evolution



of the system state. Once the necessary system sensitivity matrices and vectors are identified, the adjoint-based control
optimization method is implemented in order to derive an optimal feedforward controller following the computational steps
described in the paper. To this end, the numerical solutions of the direct problem and of the adjoint problem, which repre-
sent steps 1 and 2 of the adjoint-based procedure, are obtained by means of the classical explicit fourth-order Runge-Kutta
method considering a time step of 10−3 seconds and a time span of 10 seconds. The gradient-based optimization, which
represents steps 3 and 4 of the adjoint-based optimization method, is performed using a quasi-Newton method based on the
Broyden-Fletcher-Goldfarb-Shanno iterative algorithm. The computation of the initial guess for the minimization procedure,
that represents the step 5 of the complete algorithm, is realized employing a Taylor series expansion. The bracketing and the
minimization for the research of the cost functional minimum, which represent steps 6 and 7 of the proposed computational
procedure, are both carried out through the implementation of the Fibonacci search technique featuring a tolerance of 10−9

on the relative difference of the cost functional and a tolerance of 10−3 for the norm of the cost functional gradient. The
numerical integration necessary to evaluate the cost functional corresponding to a given set of control actions is performed
using the Simpson method featuring the 3/8-rule. The resulting iterative convergence of the relative cost functional com-
puted with respect to the minimum reached by the numerical algorithm as Jk

r = (Jk− J∗)/J∗ is shown in figure 3, where the
corresponding minimum value of the cost function obtained by the numerical optimization procedure is J∗= 6.276 ·108. This
figure shows that, in this numerical example related to the design of a feedforward control action, the adjoint-based control
optimization method features a rapid convergence. However, the number of iterations necessary to achieve convergence for
a preassigned set of tolerances is strongly problem-dependent. In general, the main factors that influence the convergence
rate of an optimization algorithm are the initial guess and the problem parameters that define the local shape of the objective
function. This issue is particularly important in the case of a dynamical optimization problem in which the resulting geo-
metrical shape of the hypersurface associated with the performance index depends on the dynamical behavior of the system
analyzed and, consequently, on the parameters that characterize the nature of the mechanical system and its initial state [68].
One simple method to address this issue is to run the adjoint-based numerical optimization procedure using multiple starting
configurations and compare the numerical value of the minima obtained. This simple method was adopted for obtaining the
numerical results presented in the paper. The optimal feedforward control action resulting from the adjoint-based control
optimization method is depicted in figure 4. In figures 5 and 6, the dashed lines represent, respectively, the displacements of
the first and second mass when the system is uncontrolled whereas the solid lines represent, respectively, the displacements
of the first and second mass when the feedforward controller acts on the system. In figures 7 and 8, the dashed lines repre-
sent, respectively, the velocities of the first and second mass when the system is uncontrolled while the solid lines represent,
respectively, the velocities of the first and second mass when the feedforward controller acts on the system. Qualitatively,
these figures show that the effect of the feedforward control action is a considerable amplitude reduction of the system vi-
brations. In figure 9, the dashed line represents the interaction force when the system is uncontrolled whereas the solid line
represents the interaction force when the feedforward controller acts on the system. Qualitatively, it is apparent that the
action of the feedforward controller yields a sensible amplitude reduction of the system interaction force. Furthermore, the
amplitude reductions of the system displacements, velocities, and interaction force can be assessed quantitatively by com-
paring the standard deviation values of the system response with and without the feedforward controller as shown in table 2.
In this table, λx1,u, λx2,u, λẋ1,u, λẋ2,u, and λF,u denote, respectively, the standard deviation values of the system displacements,
velocities, and interaction force when there is no control action whereas λx1,c, λx2,c, λẋ1,c, λẋ2,c, and λF,c denote, respectively,
the standard deviation values of the system displacements, velocities, and interaction force when the feedforward controller
acts on the system. The numerical results presented in this illustrative example demonstrate that the feedforward control
action designed by using the proposed adjoint-based computational procedure has a good performance in general and show
the effectiveness of the proposed methodology.

5 Summary and Conclusions
The main research goal of the authors is to develop new, effective and efficient methods to perform accurate analytic

modeling [69], [70], [71], [72], [73], experimental parameter identification [74], [75], and numerical control optimization
[76], [77], [78] of rigid as well as flexible mechanical systems exploiting the deep connections between multibody dynamics,
system identification, and control theory.

In this investigation, the analytical derivation and the computer implementation of the adjoint method for optimal control
of nonlinear mechanical systems were analyzed. To this end, the optimal control problem for nonlinear dynamical systems
was addressed and numerically solved employing an iterative adjoint-based control optimization method. In particular, the
numerical procedure proposed in the paper was designed in order to implement the active control paradigm for the suppres-
sion of the structural vibrations of an archetypical nonlinear dynamical system and, simultaneously, for the attenuation of
the contact forces which result from the interaction of the mechanical system under consideration with the external environ-
ment. By means of numerical simulations, the synthesis of an optimal feedforward controller was obtained together with the
corresponding time histories of the system state. Numerical experiments show a considerable attenuation of the amplitude
of the mechanical vibrations and of the magnitude of the interaction forces, thereby demonstrating the effectiveness of the



adjoint-based computational procedure proposed in this investigation.
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DESCRIPTIONS SYMBOLS DATA [UNITS]

First Mass m1 3 [kg]

Second Mass m2 4 [kg]

First Stiffness k1 50
[
kg · s−2

]
Second Stiffness k2 150

[
kg · s−2

]
Third Stiffness k3 75

[
kg · s−2

]
First Stiffness Degree of Nonlinearity η1 7

[
m−2

]
Second Stiffness Degree of Nonlinearity η2 11

[
m−2

]
Third Stiffness Degree of Nonlinearity η3 9

[
m−2

]
First Damping r1 2

[
kg · s−1

]
Second Damping r2 3

[
kg · s−1

]
Third Damping r3 4

[
kg · s−1

]
Gravity Acceleration g 9.81

[
m · s−2

]
Support Height L 2 [m]

Support Displacement - Amplitude 1 S1 0.4 [m]

Support Displacement - Amplitude 2 S2 0.07 [m]

Support Displacement - Frequency 1 f1 3
[
s−1
]

Support Displacement - Frequency 2 f2 15
[
s−1
]

Initial Displacement of First Mass x1,0 0.01 [m]

Initial Displacement of Second Mass x2,0 0.02 [m]

Initial Velocity of First Mass v1,0 0.1
[
m · s−1

]
Initial Velocity of Second Mass v2,0 0.2

[
m · s−1

]
Table 1. Mechanical System Data

DESCRIPTIONS SYMBOLS DATA [UNITS]

Displacement Amplitude Reduction of the First Mass λx1 =
λx1 ,u−λx1 ,c

λx1 ,u
53.554 [%]

Displacement Amplitude Reduction of the Second Mass λx2 =
λx2 ,u−λx2 ,c

λx2 ,u
52.227 [%]

Velocity Amplitude Reduction of the First Mass λẋ1 =
λẋ1 ,u−λẋ1 ,c

λẋ1 ,u
35.374 [%]

Velocity Amplitude Reduction of the Second Mass λẋ2 =
λẋ2 ,u−λẋ2 ,c

λẋ2 ,u
41.237 [%]

Amplitude Reduction of the Interaction Force λF =
λF,u−λF,c

λF,u
46.875 [%]

Table 2. Control System Performance
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Fig. 7. Uncontrolled and Controlled Velocity - ẋ1
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Fig. 8. Uncontrolled and Controlled Velocity - ẋ2
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Fig. 9. Uncontrolled and Controlled Force - F


