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Abstract  9 

An accurate solar potential estimation of a specific location is basic for the solar systems 10 

evaluation. Generally, the global solar radiation is determined without considering its 11 

different contributes, but systems as those concentrating solar require an accurate direct 12 

normal irradiance (DNI) evaluation. Solar radiation variability and measurement stations 13 

non-availability for each location require accurate prediction models. In this paper two 14 

Artificial Neural Network (ANN) models are developed to predict daily global radiation 15 

(GR) and hourly direct normal irradiance (DNI). Two heterogeneous set of parameters as 16 

climatic, astronomic and radiometric variables are introduced and the data are obtained by 17 

databases and experimental measurements. For each ANN model a multi layer perceptron 18 

(MLP) is trained and validated investigating nine topological network configurations. The 19 

best ANN configurations for predicting GR and DNI are tested on different new dataset. 20 

MAPE, RMSE and R2 for the GR model are respectively equal to 4.57%, 160.3 Wh/m2 and 21 

0.9918, while for the DNI they are equal to 5.57%, 17.7 W/m2 and 0.994. Hence, the 22 

proposed models show a good correlation both between measured and predicted data and 23 

with the literature. The main results obtained are the DNI and the GR models predicting 24 

which have allowed the evaluation of the electric energy production by means of two 25 

different photovoltaic systems used for a residential building. Hence, the developed ANN 26 

models represent a good tool to support the assessment of the green energy production 27 

evaluation. 28 
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1. Introduction  31 

The solar radiation prediction is a basic aspect in the modeling and performance evaluation 32 

of the solar systems (Wild et al., 2015), when the energy demands of different kind of users 33 

have to be satisfied (Meade and Islam, 2015). The solar energy can be used in many 34 

applications as: electrical energy demand balancing in the national grids, environmental 35 

pollution reduction, design and size of integrated energy systems, thermal load analysis in 36 

the buildings, atmospheric energy balance studies (Eicker et al., 2015). Sunlight is 37 

principally composed by the direct and diffuse components. The solar energy analysis takes 38 

usually into account the global solar radiation for a specific location without considering its 39 

different contributes. Although the most applications adopt the global radiation, the 40 

concentrating photovoltaic systems (CPV) require, generally, an accurate evaluation of the 41 

direct normal irradiance (DNI) also for a domestic application (Renno and Petito, 2015). The 42 

solar resource data availability can play a strategic role in the solar systems assessment (Qazi 43 

et al., 2015). Generally, different measurement equipments are adopted in the solar energy 44 

evaluation such as pyranometer, solarimeter and pyroheliometer. The solar radiation 45 

variability and the measurement stations non-availability for each location require accurate 46 

prediction models which include different variables. This is fundamental when the direct 47 

normal irradiance has to be predicted. In particular, the use of an ANN which predicts the 48 

DNI could be also a key factor in order to assess the residential CPV/T systems potential 49 

(Sharaf and Orhan, 2015). Hence, for the assessment, control and optimization of the solar 50 

systems an integrated forecast is necessary, able to consider the different solar radiation 51 

components and a temporal level of the prevision from one hour up to one day or one month 52 

in advance. So, an accurate evaluation of the solar energy potential for different locations is 53 
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a basic factor in order to configure a solar system. In particular, it allows to support the 54 

evaluation of a cleaner production for different locations, taking into account different 55 

components of the solar source.  The solar radiation prediction is complex because affected 56 

by several variables such as meteorological, climatic and radiometric. Several methods have 57 

been developed in order to deal with prediction shortcomings by employing data from 58 

different measurements sites (Lazzaroni et al., 2015). Other models can be employed in order 59 

to ensure an effective forecasting of the solar energy amount for different locations.  60 

There are empirical (Loutzenhier et al., 2007), numerical and statistical models (Noorian et 61 

al., 2008) or physical models. In literature there are different examples of physical models 62 

which principally employ several linear equations for the solar radiation prediction. These 63 

works exploit decomposition models (Yao et al., 2015), atmospheric parameters (Polo et al., 64 

2016) or meteorological analysis (Kambezidis et al.,2016). Anyway they do not always 65 

guarantee an accurate prediction when the solar energy varies hour by hour or day by day. 66 

A very interesting solution adopts an artificial intelligence which represents a good tool in 67 

order to solve non-linear problems. The Artificial Neural Network (ANN) models allow to 68 

investigate tasks which depend on many physical phenomena and are also employed for a 69 

large variety of applications such as: classification, data mining, pattern recognition, image 70 

compression, process modeling, etc (Linares-Rodriguez et al., 2013). ANNs adopt long-term 71 

data series, working as a “black box” and obtaining a higher level of reliability in order to 72 

carry out a non-linear mapping. ANN techniques are alternative methods to traditional 73 

models in order to predict the solar energy potential for different locations (Sahin et al., 74 

2013; Hasni et al., 2012). In particular, the ANN models can estimate the solar radiation and 75 

its components. Hence, the global solar radiation or the direct one can be exploited as 76 

function of the solar system characteristics. The ANN use in renewable energy systems has 77 

initially been reviewed by Kalogirou (Kalogirou, 2001), and then, it has been applied for 78 
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several energy system analyzes. As for the thermal analysis and heat exchanger (Mohanraj 79 

et al., 2015), for energy analysis of buildings (Kumar et al., 2013) and for solar radiation 80 

prediction (Yadav and Chandel, 2014). Many studies concerning the solar energy prediction 81 

by means of ANNs have been developed involving several parameters as function of the 82 

target application and the data availability; the main literature results are presented in Section 83 

2, focusing on the ANN configuration in terms of selected input and topologic 84 

characterization. In this paper two ANN models have been investigated in order to forecast 85 

the daily global solar radiation (GR) and the hourly DNI for University of Salerno (Fisciano, 86 

40°46’23’’N, 14°47’52’’E). Different set of heterogeneous parameters such as climatic, 87 

astronomical and radiometric variables have been introduced for the ANNs. The data have 88 

been obtained adopting databases and experimental measurements, then they have been 89 

trained and tested by a multi layer perceptron (MLP) analyzing several kinds of network 90 

topological configurations. In particular, each ANN model has been realized investigating 91 

nine different network configurations. The best topological configuration of the ANN for 92 

predicting daily GR and DNI has been validated with different sets of new data, including 93 

different locations; the results have been compared with different ANN models present in 94 

the literature. The ANN model results have been employed in order to compare two different 95 

photovoltaic systems adopted for a residential building. Hence, the models have been applied 96 

to a residential case study, analyzing their impact in terms of a cleaner energy production of 97 

different renewable systems.  The paper is organized as follow; in Section 2 different 98 

literature examples for the prediction of solar radiation by means of ANN are described. 99 

Section 3 shows the methodology used in order to develop the ANNs, while the ANN 100 

configurations for daily GR and hourly DNI are presented in Section 4. In Section 5 the 101 

results for the investigated models are reported showing the selected configurations for each 102 

ANN. Moreover, exploiting the ANN predictions, a comparison between two photovoltaic 103 
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systems for a residential application is presented. Finally, the conclusions are given in 104 

Section 6. 105 

2. ANN literature review for modeling the solar energy potential 106 

 ANNs represent a mathematical tool used for a wide tasks variety. The ANN modeling 107 

allows to carry out the required output starting from corresponding input vectors without 108 

considering the assumption of any determinate relationship between the input and output 109 

(Celik and Muneer, 2012). ANNs operate principally adopting the interconnection of a 110 

neurons number which represent localized processing centers between input and output 111 

layers. Hence, they work as “black box” employing distinct features such as: input, hidden 112 

and output layers of neurons, training functions for the learning process from a set of past 113 

data, transfer functions between layers that allow the information flow. There are many types 114 

of connection for the data transfer, the most used is the multi layer perceptron (MLP) (Chen 115 

et al., 2013). It is a feed-forward ANN where data flow from input layer to the output layer 116 

without any feedback.  117 

In literature many ANNs have been developed for the GR predicting, while the DNI 118 

estimation has been less investigated (Teke et al., 2015). A significant number of studies 119 

about the GR modeling and forecasting by means of ANNs has been undertaken, offering a 120 

wide range of possibilities which differ for number and type of input variables considered 121 

(Yadav et al., 2014), time level of the analysis and network configuration. In Table 1 a 122 

literature analysis on ANN for predicting solar radiation is reported together with the main 123 

characteristics of the neural networks developed; in particular, for each analyzed paper, a list 124 

of advantages and disadvantages has been reported. Many models for the solar radiation 125 

estimation are developed taking into account a monthly input (Qazi et al., 2015). Azadeh et 126 

al. have developed a multilayer feed-forward network in order to estimate monthly the GR 127 

for six cities in Iran adopting climatic and meteorological data collected for six years 128 
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(Azadeh et al., 2009).  Wang et al. estimate the hourly GR exploiting data of the National 129 

Renewable Energy Laboratory (NREL), collected in four years (Wang et al., 2011). The 130 

transfer functions are respectively, for the hidden and the output layer, hyperbolic tangent 131 

and sigmoid. Khatib et al. employ a MLP that estimates the clearness index in order to 132 

calculate the daily GR and the diffuse solar irradiation for different stations (Khatib et al., 133 

2012). Data of twenty-eight stations have been collected: twenty-three stations for the 134 

network training and five for its testing. The global solar radiation estimation by means of 135 

ANN models requires the analysis of the input parameters. Yadav et al. have employed  the 136 

Rapid Miner technique for input variable selection in order to predict the solar radiation 137 

using different ANN techniques, such as radial basis function (RBF) and generalized 138 

regression ANN (Yadav et al., 2015). Celik et al. evaluate the ANN potential in order to 139 

estimate the global solar radiation from different variation of input parameters in Eastern 140 

Mediterranean Region of Turkey (Celik et al., 2016). Behrang et al. have developed a MLP 141 

and a radial basis function  based on six combinations of the inputs reported (Beharang et 142 

al., 2010). The data have been taken between 2002 and 2006 for Dezful city in Iran (32°16’N, 143 

48°25’E). The measured data between 2002 and 2005 are used to train the neural networks, 144 

while the data from 2006 represent the test set. A RBF is also investigated by Zervas el al. 145 

trying to use the minimum number of inputs such as the weather conditions and the duration 146 

of daylight (Zervas et al., 2008).  Gairaa et al. have investigated a combined approach to the 147 

solar radiation prediction coupling Box-Jenkings and ANN models (Gairaa et al., 2016). 148 

Benghanem and Mellit have investigated a MLP and a RBF for predicting the daily GR 149 

(Benghanem and Mellit, 2010). They have used four different input combinations. Data have 150 

been collected by NREL from 1998 to 2002 at Al-Madinah (Saudi Arabia). Yacef et al. have 151 

developed a classical ANN and different Bayesian Neural Networks (BNN) for estimating 152 

the daily GR (Yacef et al., 2012). Amrouche and Privert developed two models that exploit 153 
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the local forecasting data; hence, the two ANNs can predict the GR for locations where the 154 

measurements are not possible (Amrouche and Privert, 2014). Moreover, Bilgili and 155 

Ozgoren have modeled the daily GR in Adana, city of Turkey, by means of a multi-linear 156 

regression (MLR), a multi-nonlinear regression (MNLR) and a MLP artificial neural 157 

network (Bilgili and Ozgoren, 2011). Finally, the solar potential estimation of western 158 

Himalayan Indian state of Himachal Pradesh is conducted by Yadav and Chadel, employing 159 

the J48 algorithm for the selection of input parameters for ANN model. They have 160 

established that the most relevant input parameters are temperature, altitude and sunshine 161 

hours and developed five ANN models for the GR estimation (Yadav and Chandel, 2015). 162 

The ANN can also be used for the DNI prediction in order to assess the solar systems that 163 

operate only with the solar radiation direct component (Renno and De Giacomo, 2014) as 164 

the concentrating photovoltaic systems (Renno, 2014). Yadav and Chandel have reviewed 165 

different ANN techniques for the solar radiation evaluation, but techniques able to estimate 166 

the DNI have been not considered  (Yadav and Chadel, 2014). A MLP neural network has 167 

been investigated, by Mellit et al., to evaluate the hourly DNI and to compare it with an 168 

adaptive model (Mellit et al., 2013). A feed-forward ANN has also been applied by Kuashika 169 

et al. for the clearness index evaluation of the DNI, collecting data by eleven stations in India 170 

(Kaushika et al., 2014). Finally, clearness index has also been evaluated with ANN model 171 

by Kheradmand et al.  by considering environmental and meteorological factors 172 

(Kheradmand et al., 2016). So, different ANN models for the global radiation prediction 173 

have been developed in literature. They use principally a specific set of input parameters and 174 

don’t investigate the different topology solutions. On the other hand, ANN models have been 175 

not implemented specifically for the hourly DNI.  176 

In this paper, on the contrary, two neural networks are presented; they allow the GR and 177 

DNI prediction by means of a set of heterogeneous parameters. In particular, astronomical 178 
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variables, generally not considered, combined to other types of variables, radiometric and 179 

climatic, have been adopted to estimate GR and DNI. Moreover, the DNI is not considered 180 

in many papers that are focused on GR and its different estimation tools (MLP, RBF, 181 

regression models, adaptive models, BNN etc.). In addition, in this paper the part of choice 182 

of the best network is deepened showing the process that allows to realize different 183 

alternatives of the network and the choice. Finally, respect to many papers present in 184 

literature the network results are used for a practical application.. In particular the estimated 185 

data for daily GR and hourly DNI are respectively  employed for the energy comparison 186 

between the PV and CPV systems. 187 

3. ANN models development method 188 

The ANN modeling for mapping non-linear problems requires the implementation of 189 

different steps. Each phase is characterized by the choice of features which impact both on 190 

previous and subsequent steps (Khatiba et al., 2012). A statistical analysis has been 191 

conducted in order to select the right ANN topological configuration for predicting daily GR 192 

and hourly DNI. The ANN designing involves the definition of inputs, type of network, 193 

topology, training paradigm and transfer functions. In particular, the modeling process can 194 

be basically divided in three steps. The first considers the topology network design taking 195 

into account the input parameters, the ANN type, the number of hidden layers and neurons. 196 

This step also involves the choice of the training algorithm, the transfer functions and the 197 

training and validation samples. The second step constitutes the training phase where the 198 

samples are implemented in the ANN models in order to adjust weights and biases as 199 

function of a predetermined condition. The last step is the validation, the ANN models are 200 

tested with a new set of data and their accuracy can be evaluated by means of statistical 201 

parameters. 202 
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The developed methodology is based on two main aspects. The first is related to the use of 203 

a heterogeneous set of unconventional input variables such as meteorological, radiometric, 204 

astronomical and geographical parameters for the daily GR and hourly DNI prediction. The 205 

second considers the network architecture; hence, each model has been performed after 206 

training and validating of nine different topological configurations. Hence, the input 207 

selection constitutes the first aspects examined, since it  allows the successive network 208 

topological analysis. A statistical analysis, based on the times-series, has been conducted for 209 

the selection of the type and the number of input variables. The time series is a collection of 210 

observations ordered in the time, each one recorded at a specific time. In the first 211 

approximation, a time series model assumes that the past patterns will occur in the future. In 212 

fact, a time series model could be used only to provide a synthetic time series similar 213 

statistically to the original one. The modeling of the series begins with the selection of a 214 

suitable mathematical model for the data. The artificial neural networks are intelligent 215 

systems that have the capacity to learn, memorize and create relationships among data. They 216 

could represent a non-linear tool for time series modeling (Voyant et al., 2013). In order to 217 

determine which of the exogenous and endogenous parameters have to be considered in the 218 

ANN models a correlation measure is computed for the input variables. The correlation 219 

between two variables reflects the degree by which the variables are linked. The most 220 

common correlation measure is the Pearson’s correlation. A correlation of +1 (or -1) means 221 

that there is a perfect positive (or negative) linear relationship between variables and a value 222 

of 0 implies that there is no linear correlation between the variables. The Pearson correlation 223 

coefficient (R) between two variables is defined by covariance and variance of the two 224 

variables. For a series the estimation of R is given by: 225 

R =  
∑ (xk−x̅) (yk−y̅)n

K=1

√∑ (xk−x̅)2 ∑ (yk−y̅)2n
K=1  n

K=1

                   (1) 226 
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The significance of each variables x has been correlated to the output of interest y: the daily 227 

GR for the first ANN model and the hourly DNI for the second ANN model. 228 

Hence, after choosing the model exogenous and endogenous variables, considering the time-229 

series analysis, an optimization process, which has evaluated the best network configuration 230 

for the daily GR and the hourly DNI, has been conducted. Generally, the features involved 231 

in the recombination process are the type of transfer functions, the number of hidden layers 232 

and the number of hidden neurons. All these configurations expect a feed-forward network 233 

such as the MLP one. The training, validation and test data have been obtained by 234 

experimental measurements and database for different locations. The models accuracy is 235 

evaluated by means of the validation results for the nine topological network configurations. 236 

The statistical indicators employed for comparison are mean squared error (MSE), root mean 237 

squared error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE) 238 

and goodness of fit (R2).  239 

They are given by the following relationships:  240 

MSE =
1

n
∑ (yi − yî)

2n
i=1                     (2)            241 

RMSE = √
1

n
∑ (yi − yî)2n

i=1                      (3)                                242 

MAPE =
1

n
∑

|ŷi−yi|

yi

n
i=1                            (4)            243 

MAE =
1

n
∑ |yi − yî|

n
i=1                    (5) 244 

R2 =
∑ (yî−y̅)2n

i=1

∑ (yi−y̅)2n
i=1

                    (6) 245 

where 𝑛 is the cardinality of dataset involved in the analysis, 𝑦𝑖 is the variable to estimate, 246 

�̅� is the mean value of 𝑦𝑖 and 𝑦�̂� is the value calculated by the model. MAPE determines the 247 

accuracy and RMSE represents the standard deviation between predicted values and actual 248 

values; it is a good parameter to compare the forecasting error of different models related to 249 

the same variable. MAE measures as the predictions are close to observed values, while R2 250 
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calculates the ratio between the variation evaluated by a regression model and the sample 251 

data variation; R2 is an important parameter since it evaluates the general accuracy of a 252 

regression model. The best configurations both for daily GR and hourly DNI are tested with 253 

different set of data and the results are compared with models present in literature. In Figure 254 

1 the main steps of the proposed method for the ANN model development are reported. The 255 

same procedure is applied to estimate daily GR and hourly DNI in order to define, finally, 256 

the solar energy potential for a solar system located at University of Salerno.  257 

4. ANN models for daily GR and hourly DNI 258 

In this section the elements of the ANNs used for the solar energy potential modeling are 259 

described. The main aim is to develop an accurate model for predicting GR and DNI, in 260 

order to evaluate the solar potential for solar systems application located at University of 261 

Salerno (Fisciano, 40°46’23’’N, 14°47’52’’E). In this paper, the neural network tool of 262 

MATLAB (Matlab, LTD) has been used for the models implementation. For both models 263 

the selected architecture is constituted by a feed-forward neural network trained with 264 

Levenberg – Marquardt (LM) algorithm. The MLP learning rule adopted is the error Back-265 

Propagation (BP) algorithm. It calculates the gradient of the network error related to its 266 

modifiable weights. The BP learning approach can be implemented considering different 267 

topologies and transfer functions. This typical problem, during the ANN development, is 268 

solved by means of the cross-validation which is a validation technique to estimate how a 269 

model generalizes an independent data set. First of all, the input variables have been selected 270 

exploiting the correlation factor (R) and  the time series; then, also the number of input 271 

variables has been evaluated by means of a statistical comparison based on normalized 272 

RMSE. Once defined the input sets,  nine different configurations are investigated for both 273 

ANNs in order to choose the configuration that assures the best performances. The network 274 

architecture, the paradigm and the learning algorithm of the ANNs has been fixed thanks to 275 
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the information of the literature that has clearly indicated MLP, BP and LM, as reported in 276 

Table 1. The values of the transfer function, the number of hidden neurons and the number 277 

of hidden layers have been changed considering a set of plausible values. The different pairs 278 

of transfer functions, for the hidden layer and the output layer, have been chosen referring 279 

to the literature where for the output layer the linear function is often chosen. So, the transfer 280 

function of the hidden layer should necessarily be non-linear and the sigmoid function is 281 

chosen because allows better results respect to tanh as reported in some simulations, 282 

conducted in Matlab, where the networks compared were the same except for the hidden 283 

layer transfer function. The functions tanh-tanh have been chosen because, after some tests 284 

where it only the MSE has been determined, the function tanh, both for the hidden layer and 285 

for the output layer, presents the best results considering two non-linear function instead of 286 

one.  287 

Finally, assuming to use one hidden layer or two hidden layers, thanks to the results of the 288 

approximation theorem universal, several combinations of the transfer functions have been 289 

investigated, using two hidden layers, and by means of simulations in Matlab. These 290 

simulations have shown only the MSE trend and its final value, and, at the end, has been 291 

chosen tanh-tanh-linear as a combination of transfer functions that give the best results, 292 

referring respectively to the first hidden layer, the second and the output layer. On the 293 

contrary, as regards the number of hidden neurons, for the network which estimates the GR, 294 

a low number of neurons has been initially considered, 8, until the simulations have given 295 

decreasing values of MSE, using only one hidden layer. In fact, the simulations has been 296 

interrupted when 12 hidden neurons have given worst performance than 10. But for defining 297 

this number of neurons, the performance of the networks and of those for which the increase 298 

of the neurons number seemed to give improvements, or at least results comparable, has 299 

been deepened. The same has been made with the two hidden layers and for the network 300 
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which estimates the DNI. At the end, combining different values, nine different 301 

configurations have been obtained for both networks. The data have been obtained between 302 

2013, 2014 and 2015 by means of experimental measurements and database, taking into 303 

account different locations. The data are divided in three subsets, the first represents the 304 

training set used to compute the gradient and to update the network weights and biases by 305 

means of the training algorithm. The second is the validation set which calculates the error 306 

avoiding overfitting; the early stopping technique is used in order to improve the network 307 

generalization capability. This technique saves network weights and biases when the 308 

minimum validation error is reached. The validations results allow to select the best 309 

configurations, which are tested by means of the third data set (test set) in order to confirm 310 

the networks predictive power. The data treatment represents a key point in order to build 311 

the ANN models, because a big amount of data of different locations and years has been 312 

employed. They have been obtained from databases and exploiting a set of experimental 313 

measurements. All the employed data have been pre-processed in order to have a training 314 

phase that would lead to a correct generalization as fast as possible. In particular, abnormal 315 

values or outlier have been excluded. This set of data represents values which completely 316 

differ from all other obtained values. Hence, they have been not considered in order to avoid 317 

a wrong influence during the training phase. As suggested by (Muneer , 2004), the outliers 318 

have been excluded calculating the first and third percentile, and evaluating the following 319 

data range: 320 

[Q1 − k(Q3 − Q1), Q3 + k(Q3 − Q1)]                  (7) 321 

where Qi represents the percentile and k is a constant value, set to 1.5. The data not included 322 

in the range obtained by means of the Equation 7, have been excluded because they have 323 

been considered outliers (Muneer, 2004). Then, the data have been normalized in the range 324 

[-1,1]. The normalization represents a good tool when a big set of data without outliers is 325 
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available. In fact, the presence of outliers could lead to misalignments in the training phase 326 

because most of the data will be concentrated in a small range. The use of the normalization 327 

rather than the standardization allows to avoid the variables measurement units and the range 328 

magnitude influence in the training phase. Moreover, exploiting the sigmoid function during 329 

the training phase, it has been necessary a small range of values because this function already 330 

reaches its asymptote with an input equal to 3 or -3. Hence, when the net input is greater 331 

than three at the beginning of the training process, the gradients will be very small, and the 332 

network training will be very slow. (Azadeh et al. 2008; Wang et al. 2011). Abnormal values 333 

appear for two reasons due to the kind of data obtained. The first reason depends on the 334 

database data which can be affected by the measurement errors. The second reason depends 335 

on the measurement station in Salerno; in fact, for a certain period there have been some 336 

measurement problems from which this abnormal values derive. By means of the Matlab 337 

function “mapminmax”, the normalization interval [-1,1] is defined. At the end of the test 338 

phase, the “mapminmax” function is also used in post-processing with the purpose to put 339 

outputs into original domain.  340 

4.1. ANN implementation for predicting the daily GR 341 

The daily GR prediction has been performed adopting database values of different locations 342 

and measurements for the target site of University of Salerno. In particular, the database 343 

considered includes a mix of climatic and meteorological values obtained by the Agro-344 

meteorological Regional Center (Campania Region, 2014) referring to four specific 345 

locations: Sessa Aurunca (41°14’N, 13°56’E), Greci (41°15’10’’N, 15°10’12’’E), 346 

Montemarano (40°54’58’’N, 14°59’54’’E) and Policastro Bussentino 347 

(40°04’06’’N, 15°31’05’’E). The experimental measurements, especially employed for the 348 

validation and test set construction, have been obtained by means of a pyranometer, with a 349 

measuring and spectral range respectively equal to 0-2000 W/m2 and 335-2200 nm, and a 350 

http://tools.wmflabs.org/geohack/geohack.php?language=it&pagename=Greci_%28Italia%29&params=41_15_10_N_15_10_12_E_type:adm3rd_scale:1000000&title=Greci
http://tools.wmflabs.org/geohack/geohack.php?language=it&pagename=Montemarano&params=40_54_58_N_14_59_54_E_type:adm3rd_scale:1000000&title=Montemarano
http://tools.wmflabs.org/geohack/geohack.php?language=it&pagename=Policastro_Bussentino&params=40_4_6_N_15_31_5_E_type:city_scale:500000&title=Policastro+Bussentino
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platinum thermo-resistance. The target location and its surroundings stations for data 351 

collection are shown in Figure 2. 352 

The input set selection constitutes a key factor in the model implementation. The 353 

correlation analysis for the input variables in order to predict the daily GR has been reported 354 

in Table 2. In particular, a set of nine heterogeneous parameters have been considered: 355 

latitude (Lt), longitude (Lg), mean temperature (T), sunshine duration (SD), total 356 

precipitation (P), daylight hours (H) declination angle (δ). wind speed (WS) and humidity 357 

(Hu).  As reported in Table 2, the most effectiveness input parameter is sunshine duration, 358 

which is a radiometric parameter and gives an indication about the location cloudiness 359 

(Yadav and Chadel, 2012). SD is defined as the sum of sub-period when the solar irradiance 360 

exceeds 120 W/m2 (Benghanem and Joraid, 2007). In order to define a model for the GR in 361 

different locations, geographic variables such as latitude and longitude have been included 362 

also if their correlation is low. Wind speed, humidity and precipitation usually allow to 363 

characterize the meteorological situation (Wang et al., 2011). Anyway, wind speed and 364 

humidity have been found to be the least incident and they have been not considered. Finally, 365 

there are two astronomical variables such as the daylight hours and declination angle. The 366 

first defines the period of the year considered, considering also the important information 367 

about the cloudiness especially if it is compared with the sunshine duration. The second takes 368 

into account the specific day considered. They have been evaluated by means of analytic 369 

expressions (Renno and Petito, 2013). Once defined the input variables, considering the 370 

correlation value,  their number has been chosen. Different ANNs have been trained and 371 

validated by changing the number of input variables and evaluating their nRMSE 372 

(normalized root mean squared error) value. In Table 3 all the analyzed combinations for the 373 

daily GR have been reported together with the respective value of  nRMSE. It can be noted 374 

that the network with seven input variables (latitude (Lt), longitude (Lg), mean temperature 375 
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(T), sunshine duration (SD), total precipitation (P), daylight hours (H) and declination angle 376 

(δ)) reaches the best results for the daily GR model. Hence, the daily GR can be written in 377 

this way: 378 

GR = f(Lt, Lg, T, SD, P, H, δ)                   (8) 379 

Once defined the input set, different topological network configurations are trained and 380 

validated varying different features. In particular, for this model a training set of ten months 381 

has been chosen while the validation set considers three months. Nine configurations are 382 

investigated from GR1 to GR9 as shown in Table 4. The number of hidden layers, hidden 383 

neurons and the transfer functions type are charged in order to obtain an accurate predicting 384 

model. The solutions proposed expects principally one or two hidden layers; the transfer 385 

functions analyzed are sigmoid, linear and hyperbolic tangent. They describes how the 386 

information flow both from the input to the hidden layer and from the hidden layer to the 387 

output. The best configuration, resulting from the statistical analysis, is tested on different 388 

test sets. A first set considers as testing location the University of Salerno, collecting data 389 

for March, July and November 2014. In order to prove the good prediction capability of the 390 

GR model, other test sets are employed. In particular, respect to the first test set, different 391 

locations and years are considered: the four stations (Sessa Aurunca, Policastro Bussentino, 392 

Montemarano, Greci) used for training, with data from 2013 to 2014, are selected also in the 393 

test phase. Data for January, March and June 2015 are introduced for testing the proposed 394 

ANN. The proposed neural network calculates the outputs as follow: 395 

yk = f {[∑ wjg ((∑ pjixik
7
i=1 ) + bj)

Z
j=1 ] + a}   with |K| = No. patterns                            (9) 396 

where f and g are respectively the output layer and the hidden layer transfer functions 397 

adopted, pji is the weights matrix of hidden neurons j and input neurons i, wj is the vector of 398 

weights referred to the hidden neurons j and the output neuron, z is the number of hidden 399 
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neurons, xik is the matrix of input, bi is the vector of hidden neurons biases, a is the value of 400 

the output neurons bias, yk is the value of the output for k-th day. 401 

4.2. ANN implementation for forecasting the hourly DNI 402 

The DNI forecasting represents an important aspect for a full solar energy potential 403 

evaluation. While global radiation measurements are usually obtained in most of the 404 

radiometric stations, the data availability of its components is more limited. Moreover, when 405 

the DNI is measured, there is no extensive data series. Mathematical models are need in 406 

order to establish a typical behavior of the direct solar resources for energy applications. The 407 

DNI analysis for a specific location is often calculated starting from the global irradiance 408 

data registered. It is estimated by means of the decomposition model based on the regression 409 

between two indices: the clearness index kt (horizontal global irradiance/horizontal 410 

extraterrestrial irradiance) and the direct solar transmittance kb (direct normal 411 

irradiance/extraterrestrial irradiance) (Lopez et al., 2005). Anyway, the DNI evaluation is 412 

affected by the increasing complexity due to relationship non-linearity between the variables 413 

on which it depends (Gueymard et al., 2011). Hence, traditional statistical methods are not 414 

efficient. The ANN can exploit a mix of experimental data and calculated values for the DNI 415 

prediction. An ANN model to evaluate the hourly DNI is introduced investigating different 416 

solutions. 417 

To overcome the lack of experimental data, a measurement system has been installed at 418 

University of Salerno. The data have been obtained with a sampling interval of one hour. 419 

The measurements refer to the direct irradiance by means of a pyrheliometer; other necessary 420 

data are related to the global irradiance on a normal plane and air temperature, part of this 421 

data have been also exploited for the global radiation predicting. The training data are 422 

referred to six months, while the validation subset is of two months. As for the GR model, 423 

the DNI model analysis  starts with the input set definition. In Table 5, the correlation 424 
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analysis of  four astronomical and radiometric variables: clearness index (kt), declination 425 

angle (δ), hour angle (HRA) and global normal irradiance (Gni) is reported, and it can be 426 

observed as the global normal irradiance (Gni) reaches a values very close to 1. 427 

In Table 6, different combinations of these variables have been indicated together with the 428 

respective value of nRMSE and the better solution is represented by the use of all the 429 

indicated variables: 430 

DNI = f (kt, δ, HRA, Gni)                 (10) 431 

The declination angle and hour angle allow the ANN training considering information about 432 

the day considered and its sunlight duration. In particular, the HRA influences the optical 433 

path length through the atmosphere; hence, it can replace the relative air mass. The clearness 434 

index represents the most relevant factor in the DNI prediction. The clearness index is 435 

defined as the ratio between the horizontal global irradiance and the horizontal 436 

extraterrestrial irradiance. It constitutes an indirect measure of the atmosphere filtering 437 

action. Last variables included is the global normal irradiance which provides information 438 

about the meteorological and climatic effects in the evaluation process. As in the previous 439 

case, the LM algorithm has been adopted for the network training, due to its better 440 

performance (Sfetsos and Coonick, 2000). Nine topologic network configurations (DNT1- 441 

DNT9) are simulated on validation subset as shown in Table 7. The best configuration is 442 

finally tested on a test subset of one month. The output of the proposed neural network for 443 

the prediction of the hourly DNI is calculated as: 444 

yk = f {[∑ wjg ((∑ pjixik
4
i=1 ) + bj)

z
j=1 ] + a}  with |k| = No. patterns                           (11) 445 

5. Results and discussion 446 

The proposed methodology provides three different levels of analysis. After the input 447 

selection and the preliminary network configuration, for each ANN model nine topological 448 
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schemes are trained and validated. The first step allows the best configuration definition as 449 

function of RMSE, MAPE, MAE and R2. In the second phase the selected configurations 450 

are tested and their results are evaluated. The third step expects the comparison between the 451 

developed stable models and literature. The models constitute an integrated tool for the solar 452 

energy potential estimation at University of Salerno. Moreover, the ANN model for daily 453 

GR has been implemented taking into account different locations; hence, it allows the GR 454 

estimation for each site. The model of the hourly DNI has been obtained by investigating a 455 

great amount of data and parameters. Anyway, the lack of experimental data for the hourly 456 

direct solar irradiance for other locations different from Salerno, has not allowed a test phase 457 

for other location. So, even if it is limited to the selected location, the DNI prediction by 458 

ANN results more accurate than classical methods based on different equations that do not 459 

take into account some factors such as the cloudiness. Hence, the predicted values are closer 460 

to the measured values than the calculated one allowing a detailed analysis because it is 461 

hourly. The test of the DNI ANN has been conducted taking into account a hourly temporal 462 

level characterized by weather variations; hence it represents a more reliable test that has 463 

shown the accuracy of the model.    464 

 465 

 466 

5.1 Selected configurations for ANN models and testing results 467 

The solar energy potential estimation is affected by the networks forecasting capabilities 468 

for daily GR and hourly DNI. The evaluation of the solar energy main components allows 469 

different solar energy system assessment. Hence, it is possible to determine the effectiveness 470 

potential for systems based on the exploitation of the global and direct radiation. The 471 
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uniqueness of the present ANN modeling approach is that it investigates the network 472 

predicting power analyzing nine topological configurations for each ANN model.  473 

Hence, the neural models are initially constructed based on preliminary choices such as the 474 

input set selection and the training algorithm definition, and after the recombination process, 475 

illustrated in Figure 2, they are performed in order to obtain a more accurate prediction. The 476 

main aspects analyzed in the recombination process have concerned the transfer function 477 

type, the number of hidden layers and hidden neurons. 478 

The ANN model for daily the GR estimation has been determined implementing three types 479 

of transfer functions for the hidden layer and the output layer: sigmoid, linear and hyperbolic 480 

tangent. Two solutions in term of hidden layers have been investigated: one or two layers. 481 

The hidden neurons number has been varied between a minimum of eight and a maximum 482 

of twelve. In Table 8, the statistical results for the nine topological configurations have been 483 

reported. The selected ANN network is GNT2 which expects one hidden layer, ten hidden 484 

neurons, a sigmoid transfer function for the hidden layer and a linear for the output layer. 485 

This configuration presents the best results in term of RMSE, MAPE and MAE, respectively 486 

equal to 153.5 Wh/m2, 4.46% and 125.7 Wh/m2. Although the R2 values are not the best in 487 

absolute terms, GNT2 has showed a better overall predicting power, as reported in the 488 

scatterplots of Figure 3. The scatterplots show important indications referring to the 489 

correlation between measured and predicted data. Hence, the good agreements achieved 490 

between previsions and measured values are clearly proved for GNT2 (Figure 3b), other 491 

scatterplots refer respectively to GNT1 (a), GNT6 (c) and GNT7 (d).  Hence, a solution with 492 

two hidden layers (GNT7) or 12 hidden neurons (GNT6) shows both RMSE and MAPE 493 

higher than the selected one with only one hidden layer and ten hidden neurons. 494 

As for the hourly DNI, the topological solutions have been investigated considering one or 495 

two hidden layers, sigmoid, linear and hyperbolic tangent transfer functions and a number 496 
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of hidden neurons between four and six. In Table 9  the validation results for hourly DNI 497 

configurations are reported. DNT5 has been found as the best solution for all statistical 498 

parameters adopted. Its RMSE, MAPE, MAE and R2 values are respectively equal to 17.1 499 

W/m2, 5.38%, 13.4 W/m2 and 0.9956. The same result can be observed in Figure 4, where 500 

the predicted and measured data have been compared for DNT3 (a), DNT5 (b), DNT6 (c) 501 

and DNT8 (d). In Figures 3 and 4 only four graphs are shown instead of nine since only 502 

some aspects have been displayed. These aspects are three: the effect of the neurons number 503 

increase, the use of two non-linear transfer functions instead of one, and finally use of two 504 

hidden layers. These effects have been outlined, respectively, for the GR, in the transition 505 

between GNT1 and GNT2 and then considering GNT6 (use-tanh tanh) and GNT7 (uses two 506 

hidden layers). The same has been done for the DNI. Hence, it has been chosen only the 507 

number of graphs necessary to show these aspects avoiding to display the other part that has 508 

a similar trend. The proposed ANNs structures for daily GR and hourly DNI are reported in 509 

the Figures 5a and 5b (Gairaa et al., 2016; Yadav et al., 2015; Alsina et al. 2016; Shaddel et 510 

al. 2016). The ANN for DNI presents four input neurons and a hidden layer with five 511 

neurons.  512 

The good results obtained by the selected topological configurations for GR model and 513 

DNI model, can be observed also in the Figures 6a and 6b. In particular, these scatterplots 514 

show the regression respect to the target in the training phase. The trend between  predicted 515 

and measured values, during the training for the selected configuration (GNT2) of the daily 516 

GR network and for the selected configuration (DNT 5) of the hourly DNI model reflect the 517 

good achievements of the subsequent validation phase. 518 

The selected ANN model configurations for GR and DNI have been tested on the respective 519 

test subset previously defined. The test step for daily GR has been developed referring to 520 

different locations and years. In particular, a first test set refers to March, July and November 521 
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2014 for the target location of University of Salerno. These months have been selected 522 

because they present different climatic conditions. In Figure 7 the comparison between 523 

predicted and measures values for the GR have been reported. So, for the different months 524 

considered the ANN model estimates with high correlation the global radiation. Based on 525 

test set results, MSE, MAPE, MAE, R2, RMSE and nRMSE  have been used as statistical 526 

indicators. These parameters present values higher than the validation results. This result is 527 

partially expected because the validation and test data are different; moreover, in order to 528 

evaluate the network prediction capability, the test set has been chosen with months 529 

characterized by a greater heterogeneity. Anyway, results show good correlation with a 530 

MAPE of 4.57%, a RMSE of 160.3 Wh/m2 and a R2 of 0.9918. In order to support the good 531 

prediction capability of the developed ANN model for daily GR, new test sets, considering 532 

different locations, have been employed. In particular, new data for January, March and June 533 

2015 have been considered for the four locations (Sessa Aurunca, Montemarano Policastro, 534 

Greci, Bussentino) employed in the training phase with data from 2013 to 2014. In Figure 8, 535 

the trend between predicted and measured values for the new locations and months are 536 

reported as scatterplot figures. Once again, the results show high correlation as confirmed 537 

by the calculated statistical results. In particular, the RMSE, MAPE and R2 are respectively 538 

of 212 Wh/m2, 8.1% and 0.9831 for Sessa Aurunca (a); 135 Wh/m2, 5.21% and 0.9911 for 539 

Montemarano (b); 122 Wh/m2, 4.1% and 0.9926 for Greci (c) and 173 Wh/m2, 5.71% and 540 

0.9884 for Policastro Bussentino (d).    541 

As for the DNI test step, the trend of the predicted and measured values, referred to April 542 

2014, has been illustrated in Figure 9. The forecast capabilities of the ANN model for the 543 

hourly DNI has been confirmed by means of the calculated MAPE, RMSE and R2, which 544 

are respectively equal to 5.57%, 17.7 W/m2 and 0.994. These values guarantee correlation 545 

and good accuracy to forecast the DNI when astronomical and radiometric variables are 546 
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adopted. The main aim of this paper concerns the DNI predicting with neural network. The 547 

model allows the direct solar energy potential assessment for the selected location; hence, it 548 

could be useful for the evaluation of a concentrating solar system. The model forecasting 549 

capability for the hourly DNI estimation can be observed in Figure10. The ANN has been 550 

simulated with reference to a summer and winter day with different meteorological 551 

situations. In particular, it can be observed the model availability to predict the DNI, taking 552 

into account the cloudiness as reported by the input set variables. Finally, in Table 10 553 

cumulating data on monthly base, the fraction of direct radiation has been estimated. Table 554 

10 reports the cumulated on a monthly base values of global and direct radiation obtained 555 

by means of the neural network models. Anyway, considering a low value of the albedo 556 

component, the diffuse radiation can also be estimated. Hence, already considering a 557 

monthly basis of analysis, the diffuse radiation has also been indicated in Table 10. It can be 558 

observed in terms of monthly radiation that the percentage of direct radiation increases to 559 

90% in summer period, while it decreases to 80% in winter.  560 

5.2 Application of the ANN models to a residential building 561 

The solar radiation prediction, both in term of global radiation and direct normal irradiance, 562 

allows the energy production evaluation of different solar systems. In particular, it can 563 

represent a good tool for the assessment of a system for a cleaner energy production. The 564 

ANNs designed in this paper for a specific Italian location ensure an accurate solar potential 565 

prediction in order to compare different solar solutions for a residential building. In 566 

particular, while many accurate estimations of the solar global radiation are available thanks 567 

to different solar calculators and measurement stations, the data availability of the DNI for 568 

a specific place is more limited. Hence, the ANN model realized in this paper represents a 569 

good tool to estimate the actual solar potential of a specific location and to guarantee a good 570 

assessment for different solar systems. So, a case study represented by the feasibility analysis 571 
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of a trigenerative CPV/T system adopted in the Southern Italy, is shown. This case study, 572 

even if it is theoretical, represents an important aspect to open new scenarios, also 573 

considering experimental aspect, related to the use of the solar energy. 574 

The selected case study is related to a residential building of about 130 m2. The analysis is 575 

based on the comparison between a traditional photovoltaic system (PV) and an innovative 576 

concentrating photovoltaic and thermal system (CPV/T), principally in term of electric 577 

energy production. Both systems have been designed in order to meet the electric energy 578 

demand of the residential application. In particular, the CPV/T system allows also to meet 579 

part of the thermal and cooling energy demands of the building. The energy loads of the 580 

residential building considered are reported in Table 11.  581 

The traditional PV system has been sized taking into account a total peak power of 3 kW, 582 

typical for a domestic user; hence, twelve silicon modules of 0.250 kW have been used. The 583 

CPV/T system represents an evolution in the photovoltaic field. The main characteristic is 584 

to concentrate sunlight in order to increase the incident direct solar radiation and to decrease 585 

the photovoltaic area. For this purpose, it adopts optical devices able to modify the 586 

concentration factor defined as:  587 

C =  
Aopt

Ac
∙ η

opt
                   (12) 588 

where Aopt and Ac represent respectively the optics and cell area, and ηopt the optical 589 

efficiency which depends on the optic device adopted. These systems adopt triple junction 590 

cells able to operate at high temperature, and a tracking system since they can work only 591 

with the direct component of the solar radiation. 592 

The designed CPV/T system considers a point-focus configuration where each optics, 593 

represented by a small parabolic dish, presents a InGaP/InGaAs/Ge triple-junction solar cell 594 

placed in its focus. The cells are arranged on a pipe where a cooling fluid, usually a water–595 

glycol solution, flows in order to cool the cells and to obtain simultaneously thermal energy. 596 
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According to the total electric energy demand, the CPV/T system has been sized considering 597 

150 Emcore triple junction cells (Emcore, 2012) of 1 cm2 arranged in three modules of fifty. 598 

The comparison between the two different photovoltaic systems has been carried out 599 

adopting the monthly results of the ANN model for the global and direct radiation, as 600 

reported in Table 10. 601 

The  monthly electric energy of a traditional PV system can be expressed by: 602 

Eel,PV,m =  [(GRm · ηPV)] · nmod · ηinv                             (13) 603 

where GRm is the monthly global radiation presented in Table 6, ηPV represents a standard 604 

efficiency value for a silicon photovoltaic module equal to 13% (Mastrullo and Renno, 605 

2010), nmod is the number of modules used and the inverter efficiency (ηinv) is generally 606 

considered equal to 0.90 (Aprea and Renno, 2009). 607 

The CPV/T system monthly electric energy production can be estimated as: 608 

Eel,CPV/T,m = Ec,m ∙  nc  ∙ ηmod ∙ ηinv                (14)                          609 

where the module efficiency (ηmod) until 100 cells is equal to 0.9, nc represents the number 610 

of cells which constitute the module and ηinv is the inverter efficiency. The monthly electric 611 

energy of the cell Eel,c,m can be expressed as: 612 

Eel,c,m = DNIm  ∙ C ∙  Ac ∙  ηopt ∙  ηc                         (15) 613 

where DNIm represents the monthly direct radiation reported in Table 10; C is the 614 

concentration factor while ηopt  and  ηc are respectively the optic and cell efficiency. 615 

The CPV/T system presents a concentration factor of 800; the optic efficiency, taking into 616 

account small parabolic dishes, has been considered equal to 0.865 (Brogen, 2004), while 617 

the cell efficiency is fixed to 31% according to the cell manufacturer instructions (Emcore, 618 

2012) and the references values for this type of cell (Green et al., 2014).   619 

In Figure 11, the electric energy demand and the monthly electric energy production both 620 

for PV and CPV/T system are reported. The annual electric energy production of the PV 621 
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system is equal to 3030 kWh, while the production of the CPV/T system is equal to 2996 622 

kWh. Hence, both systems allow to meet the electric energy yearly demands of the 623 

residential building. On the other hand, a CPV/T system allows to obtain also thermal energy 624 

that can be expressed by: 625 

Eth,CPVT = {[1 − (ηc ∙ ηm ∙ ηopt)]  ∙ C ∙ DNI ∙ Ac ∙  nc}  −  Eth,loss              (16) 626 

where the annual thermal energy production considered takes into account an annual value 627 

of DNI and a thermal energy loss due to convective and radiative losses included between 628 

3-5% (Kribus et al., 2006). In Table 11 both the monthly electric and thermal energy 629 

production of the CPV/T system and the PV system electric production are reported together 630 

with the residential building energy demand. The CPV/T system allows an annual thermal 631 

energy production of 10655 kWhth that can be employed both for the sanitary hot water 632 

(SHW) production and the cooling demands. In particular, an absorber heat pump (AHP) 633 

with a peak power of about 7 kWcoo has been considered for the summer cooling (Aprea and 634 

Renno, 1999). Hence, both photovoltaic systems allow a cleaner energy production ensuring 635 

an important contribution in reducing environmental pollution.  The different systems have 636 

been  also evaluated from an economic point of view, considering the systems capital costs 637 

and the electric and thermal energy savings. The PV system presents a average cost of 5.4 638 

k€ (Balcombe et al. 2015), with a simple pay-back (SPB) of about 8 years. The CPV/T 639 

system shows an initial cost  of 6.2 k€, with a SPB of about 9 years considering only the 640 

electric energy savings and the cash flows opportunely evaluated (Renno and Petito, 2015). 641 

The CPV/T system thermal production meets the SHW needs and the cooling demands 642 

employing the AHP. Considering an AHP cost of about 350 €/kWcoo (Eicker and Pietruschka, 643 

2009), the CPV/T system total cost is equal to 8650 €. Analyzing the thermal and cooling 644 

energy savings in this new configuration and the respective cash flows, the SPB of the 645 

CPV/T system decreases to about 7 years. Hence, the CPV/T system results competitive with 646 
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the PV system and it can represent a trigenerative solution for a residential building 647 

application. 648 

5.3  Literature comparison  649 

In the last years several techniques have been developed for predicting the solar energy 650 

potential. The presented ANN models have been compared with different models present in 651 

literature in terms of statistical indicators. This analysis allows an external validation of the 652 

developed ANNs for predicting daily GR and hourly DNI. In particular, the compared values 653 

for the daily GR model takes into account the statistical results for the test set of Salerno. 654 

The statistical parameter values obtained in correspondence of each GR and DNI prediction 655 

model are summarized in Table 12. Azadeh et al. estimated the monthly GR  for six cities in 656 

Iran using climatic and meteorological data collected for six years  (Azadeh et al., 2009). 657 

The model presents different values both for each statistical indicator and each city. The best 658 

performances are shown with reference to the city of Bandar Abbas with MAPE, R2 and 659 

nRMSE respectively equal to 3.00%, 0.980 and 2.60%. The two ANN models for hourly 660 

GR, developed by Wang et al., present R2 and nRMSE values respectively equal to 0.991 661 

and 3.31% for the first configuration and 0.964 and 4.50% for the second (Wang et al., 2011). 662 

In the models investigated by Khatib et al., the best MAPE and nRMSE values for the 663 

predicted GR, between the different networks developed are 5.2% and 7.96%, while the best 664 

RMSE is 342.0 Wh/m2 (Khatib et al., 2012). The MLP model developed by Behrang et al. 665 

has shown MAPE and R2 equal respectively to 5.21% and 0.9957, while their RBF for the 666 

same chosen input configuration has reported a MAPE of 5.56% and a R2 of 0.9952 (Behrang 667 

et al., 2010). The RBF model by Zervas et al. is only compared in term of R2, reaching a 668 

value of 0.985 (Zervas et al. 2008).  The best results by Benghanem and Mellit, have been 669 

obtained using a RBF model with the day of the year, the sunshine duration and the air 670 

temperature as input parameters (Benghanem and Mellit, 2010). In this case, R2 is 0.976 and 671 
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nRMSE is 1.31%. The Bayesian Neural Network (BNN)  developed by Yacef et al. in order 672 

to estimate the daily GR shows better results than a classic ANN with R2 and nRMSE 673 

respectively equal to 0.9299 and 8.42% (Yacef et al., 2012). Bilgili and Ozgoren have 674 

modeled the daily GR with different models. The ANN method has presented better 675 

statistical results: MAE is 278 Wh/m2
, MAPE is 9.23% while R2 is 0.9508 (Bilgili and 676 

Ozgoren, 2011). Hence, the comparison between the proposed ANN model for daily GR and 677 

literature model has clearly proved the good accuracy of the developed tool and has validated 678 

the results with good agreement.  679 

In literature, the GR estimation in the energy applications is widely investigated by means 680 

of ANNs, while the DNI prediction is not present with the same diffusion. Hence, the ANN 681 

for predicting hourly DNI is only compared with the models presented by Mellit et al. (Mellit 682 

et al., 2013) and Kaushika et al. (Kaushika et al., 2014). In Table 12, the statistical indicators 683 

calculated for the hourly DNI modeling are also reported. The analysis has been developed 684 

comparing the R2 value with Mellit et al. model and the RMSE achieved with the Kaushika 685 

et al. network. The first has presented a R2 of 0.967, lower than the proposed model value. 686 

The second according to the R2 value has showed a feed-forward neural network less 687 

accurate than the proposed one. Hence, both the ANNs presented in this paper have shown 688 

high performances comparable with the outputs presented in literature.  689 

6. Conclusions 690 

In this paper a tool based on ANNs has been developed in order to estimate the solar energy 691 

potential of the University of Salerno. Two ANN models have been investigated to predict 692 

the daily GR and the hourly DNI. The proposed ANN development has been subdivided in 693 

different steps. First, the methodology has adopted a feed-forward network with a set of 694 

heterogeneous variables and LM algorithm as training function. Data have been collected 695 

for over two years considering both experimental data and databases. Successively, for both 696 
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solar components, nine topological network configurations have been validated. The 697 

validation results have been compared in term of RMSE, MAPE, MAE and R2. The selected 698 

ANN for the daily GR expects one hidden layer, ten hidden neurons, a sigmoid transfer 699 

function for the hidden layer and a linear function for the output layer. A neural network 700 

with sigmoid and linear transfer functions, one hidden layer and five hidden neurons, has 701 

been chosen for the hourly DNI forecasting. The MLP realized for the GR has been able to 702 

predict the radiation for different locations using radiometric, climatic, meteorological and 703 

astronomical parameters, while the model of the DNI has principally employed radiometric 704 

and astronomical values only for the target site. The GR model considers four locations for 705 

training and it is tested referring to different locations and years. As for the DNI model the 706 

test phase can be realized only for the place where the experimental data have been collected. 707 

The ANN model for the hourly direct irradiance, couldn’t be tested on other locations due 708 

to the lack of experimental or database data for the direct irradiance. However, the 709 

methodology for the development of two networks for the GR and DNI prediction is valid 710 

and can represent the basis for subsequent models.  711 

Finally, the best configurations selected for each model have been tested on new data and 712 

the results have been compared with the literature. The predictive ability comparison 713 

obtained by means of  statistical indicators, however, represents a tool independent of the 714 

conditions and that then has allowed to compare different situations. The evaluation of 715 

different statistical indicators has showed that the ANN models presented can estimate daily 716 

GR and hourly DNI with satisfactory accuracy. In particular, the ANN for the GR has 717 

presented a MAPE of 4.57%, a RMSE of 160.3 Wh/m2 and a R2 of 0.9918, which have 718 

guaranteed a good correlation between predicted and measured values. The ANN forecasting 719 

capabilities related to the hourly DNI have been confirmed obtaining the MAPE, RMSE and 720 

R2 values respectively equal to 5.57%, 17.7 W/m2 and 0.994. The network for predicting the 721 
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direct irradiance represents an important result, because in literature there are few papers 722 

that determine the DNI. In particular, the use of the heterogeneous inputs set adopted in this 723 

paper has never been presented in literature. 724 

The direct irradiance has been evaluated for various climatic conditions characterized by 725 

different levels of cloudiness. Moreover, the direct fraction has been predicted on monthly 726 

base reaching obviously the higher values in the summer period. Finally, the DNI predicting 727 

model has allowed to evaluate for a residential building the energy production of two 728 

different photovoltaic systems. In particular, the CPV/T system is resulted competitive with 729 

the PV system and it can represent an interesting trigenerative solution for a residential 730 

application. Therefore, the developed ANN models could represent a good tool for the 731 

assessment of cleaner energy system, ensuring a correct evaluation of the solar source 732 

potential for different location. 733 

Nomenclature  734 

a output layer bias   735 

A area 736 

AHP absorber heat pump 737 

ANN Artificial Neural Network 738 

AV average 739 

bj vector of hidden layer biases 740 

BP back propagation 741 

c cell 742 

C concentration factor 743 

CPV/T concentrating photovoltaic and thermal 744 

DNI Direct Normal Irradiance (W/m2) 745 

E electric energy (kWh) 746 
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f  output layer transfer function 747 

GR global radiation (Wh/m2)  748 

g hidden layer transfer function 749 

H daylight hours (h) 750 

Hu humidity 751 

HRA hour angle (°) 752 

k constant 753 

kb direct solar transmittance 754 

kt clearness index 755 

Lg longitude (°) 756 

LM Levenberg-Marquardt 757 

Lt latitude (°) 758 

MAE mean absolute error 759 

MAPE mean absolute percentage error 760 

MLP multilayer perceptron 761 

MLR multi linear regression 762 

MNLR multi non linear regression 763 

MSE mean squared error 764 

NREL national renewable energy laboratory 765 

pij array of hidden layer weights 766 

P precipitation (mm) 767 

PV photovoltaic 768 

Q percentile 769 

R2 goodness of fit 770 

RMSE root mean squared error 771 
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RH relative humidity 772 

RTD resistance temperature detector 773 

SD sunshine duration (h) 774 

SHW sanitary hot water 775 

T  temperature (°C) 776 

VP vapor pressure 777 

wj vector of output layer weights 778 

WS wind speed 779 

x variable of interest 780 

xi input array 781 

n cardinality of dataset 782 

y variable to estimate 783 

y ̅ mean value of the variable to estimate 784 

y ̂ estimated value of the variable to estimate 785 

z number of hidden neurons 786 

Greek symbol 787 

δ  solar declination angle (°) 788 

η efficiency 789 

Subscripts 790 

CPV/T concentrating photovoltaic and thermal 791 

coo cooling 792 

el electric 793 

inv inverter 794 

m monthly 795 

mod module 796 
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ni normal irradiance 797 

opt optic 798 

PV photovoltaic 799 

th thermal 800 
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Figure 1 Proposed methodology for ANN models development 
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Figure 2 Target location and its surrounding measurement stations for data collection 
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Figure 3 Scatterplots of four different configurations of the ANN for predicting daily GR 
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Figure 4 Scatterplots of four different configurations of the ANN for predicting hourly DNI 
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Figure 5 Structure of the proposed neural networks for: (a) daily global radiation, (b) hourly direct 

irradiance 
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Figure 6 Regression respect to the target in the training phase: (a) GR model GNT2, (b) DNI model DNT5 
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Figure 7 Comparison between measured and predicted daily GR values for University of Salerno 
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Figure 8 Comparison between measured and predicted daily GR values for different locations: (a) Sessa Aurunca, (b) Montemarano, (c) Greci, (d) 
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Figure 9 Comparison between measured and predicted hourly DNI values 
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Figure 10 Hourly DNI in different climatic conditions 
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Figure 11 Electric energy demand of the residential building and monthly electric energy production of the PV and CPV/T systems 
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Table 1  ANN characteristics summary of the literature analysis. 

Model Networks 

No. 

hidden 

layers 

No. hidden 

neurons 

Training 

algorithm 
Variables 

Time 

level  

Parameter 

of interest 
Pros Cons 

Azadeh et 

al. 2009 
MLP 1 4 

BP with 

momentum, 

pruning and 

weight decay 

AV max T, AV min 

T, mean RH, mean 

VP, P, mean WS and 

mean SD 

monthly GR 

1. Model tested for six different 

cities  

2. Comparisons with the 

Angstrom model 

1. Only monthly analysis 

conducted  

2. Less performance for some 

cities 

Wang et al. 

2011 
MLP 2 18 - 13 LM 

6:00 am to 8:00 pm 

solar irradiance 
hourly GR 

1. Data pretretament  

2. Error analysis in order to 

choose the best ANN 

configuration 

1. No application or 

comparisons  

2. Lack of testing for different 

locations 

Khatib et 

al. 2012 
MLP 1 - BP 

Lt, Lg, day number 

and sunshine ratio 
daily GR 

1. Low number of input required 

(4)  

2. Data from different location 

used for training and test 

1. Indirect estimation of GR 

using the clearness index  

2. It seems that the prediction is 

less accurate for very high 

values (high MSE) 

Behrang et 

al. 2010 

MLP and 

RBF 
2, 1 3 - 3, 18 LM 

Mean T, RH, SD, 

evaporation and WS 
daily GR 

1. The effect of each 

meteorological variable is 

considered using six different 

input combinations  

2. Comparison between different 

prediction models 

1. Model tested only for Dezful 

(Iran) 

Zervas et 

al. 2008 
RBF 1 16 

fuzzy proposed 

by Sarimveis [22] 

Weather conditions 

and the duration of 

daylight 

daily GR 

1. Less input information 

required  

2. Investigation of the correlation 

between input and output using a 

Gaussian function 

1. Subjective definition of 

weather condition  

2. Model tested only for 

(37°58'26''N, 23°47'16''E) 

Benghanem 

et al 2010 

MLP and 

RBF 
1,1 

from 2 to 5, 

from 4 to 7 

least squares 

approach 

Day of the year, T, 

SD and RH 
daily GR 

1. Lower nRMSE  

2. Development of an application 

for estimating the sizing of a 

stand-alone PV system 

1. Model tested only for Al-

Madinah (Saudi Arabia)  

2. The choice of the topological 

characteristics is not proved 

Yacef et al. 

2012 

MLP and 

BNN 
1,1 20, 2 LM 

T, RH, SD and 

extraterrestrial 

irradiation 

daily GR 

1. Development of a different 

ANN (BNN)  

2. Comparisons beetween BNN, 

MLP and empirical models 

1. Lesser model agreement 

 2. Model tested only for Al-

Madinah (Saudi Arabia) 

Amrouche 

et al.2014 
two MLP 2 20 - 12 BP 

temperature and 

global horizzontal 

irradiance 

daily GR 

1. The models are tested for two 

locations  

2. Trainig phase conducted using 

1. No application is provided 

Table



data from different locations (4) 

Bilgili et al. 

2011 
MLP 1 10 LM 

SD, T, WS and date 

of the year 
daily GR 

1. Development of different 

prediction model: MLP, multi 

linear regression and multi non-

linear regression  

2. Evaluation of the input 

importance using "Stepwise" 

method  

1. Less model agreement 

 2. Model tested only for Adana 

(Turkey) 

Mellit et al. 

2013 
MLP 1 15 LM 

Hourly T, RH, SD and 

irradiance 
hourly DNI 

1. Models for the prediction of 

global, direct and diffuse 

radiation 

2. Comparison between the feed-

forward model and an adaptive 

model 

1. Less value of R
2  

2. Model tested only for Jeddah 

(Saudi Arabia) 

Kaushika et 

al. 2014 

feed-

forward 
1 14 - 

Lt, Lg, altitude, month, 

local mean time, 

monthly mean hourly 

rainfall, monthly 

mean hourly HR, 

monthly mean SD 

monthly DNI 

1. Very accurate DNI estimation 

2. For the model development 

they have been employed data 

from different stations 

1. Indirect estimation of DNI 

using the clearness index 

2. High number of input 

parameter 

 

 



Table 2  Correlation analysis for GR model input 

 

Variables Correlation to GR  

Latitude (Lt) 0.241 

Longitude (Lg) 0.241 

Mean Temperature (T) 0.667 

Sunshine Duration (SD) 0.974 

Precipitation (P) -0.767 

Declination angle (δ) 0.788 

Daylight hours (H) 0.786 

Humidity (Hu) -0.611 

Wind speed (WS) -0.524 

 

Table



Table 3 Number of input and nRMSE for the GR model 

 

  No. Input Input nRMSE 

1 5 Lt, Lg, SD, T, P 0.090 

2 5 Lt, Lg, SD, T, δ 0.095 

3 5 Lt, Lg, SD, T, H 0.106 

4 5 Lt, Lg, SD, T, HR 0.143 

5 5 Lt, Lg, SD, T, W 0.154 

6 6 Lt, Lg, SD, T, P, δ 0.043 

7 6 Lt, Lg, SD, T, P, H 0.050 

8 6 Lt, Lg, SD, T, P, HR 0.063 

9 6 Lt, Lg, SD, T, P, W 0.069 

10 6 Lt, Lg, SD, T, δ, H 0.046 

11 6 Lt, Lg, SD, T, δ, HR 0.066 

12 6 Lt, Lg, SD, T, δ, W 0.092 

13 6 Lt, Lg, SD, T, H, HR 0.087 

14 6 Lt, Lg, SD, T, H, W 0.101 

15 6 Lt, Lg, SD, T, HR, W 0.134 

16 7 Lt, Lg, SD, T, P, δ, H 0.018 

17 7 Lt, Lg, SD, T, P, δ, HR 0.055 

18 7 Lt, Lg, SD, T, P, δ, W 0.089 

19 7 Lt, Lg, SD, T, δ, H, HR 0.072 

20 7 Lt, Lg, SD, T, δ, H, W 0.092 

21 7 Lt, Lg, SD, T, H, HR, W 0.105 

 

Table



Table 4  Different topology configurations of the ANN model for daily GR 

 

ANN models for daily global radiation 

Network topology Transfer functions 

Number of 

hidden 

layers 

Number of 

hidden 

neurons 

GNT 1 sigmoid - linear 1 8 

GNT 2  sigmoid - linear 1 10 

GNT 3 sigmoid - linear 1 12 

GNT 4 tanh - tanh 1 8 

GNT 5 tanh - tanh 1 10 

GNT 6 tanh - tanh 1 12 

GNT 7 tanh - tanh - linear 2 6 - 4 

GNT 8 tanh - tanh - linear 2 5 - 3 

GNT 9 tanh - tanh - linear 2 7 - 5 

 

Table



Table 5  Correlation analysis for DNI model input 

 

Variables Correlation to DNI 

 Hour angle (HRA) -0.505 

Glomal normal irradiance (Gni) 0.985 

Clearness index (Kt) 0.929 

Declination angle (δ) -0.657 

 

Table



Table 6 Number of input and nRMSE for the DNI model 

 

  No. Input Input nRMSE 

1 3 Ggi. HRA. Kt 0.0458 

2 3 Ggi. HRA. δ 0.0328 

3 3 Ggi. Kt. δ 0.0191 

4 4 Ggi. HRA. Kt. δ 0.00967 

 

 

 

Table



 

Table 7  Different topology configurations of the ANN model for hourly DNI. 

 

ANN models for hourly direct  irradiance 

Network topology Transfer functions 
Number of 

hidden layers 

Number of 

hidden 

neurons 

DNT 1 tanh - tanh 1 4 

DNT 2  tanh - tanh 1 5 

DNT 3 tanh - tanh 1 6 

DNT 4 sigmoid - linear 1 4 

DNT 5 sigmoid - linear 1 5 

DNT 6 sigmoid - linear 1 6 

DNT 7 tanh - tanh - linear 2 4 - 2 

DNT 8 tanh - tanh - linear 2 3 - 2 

DNT 9 tanh - tanh - linear 2 5 - 3 

 

 

Table



 

Table 8 Calculated statistical parameters for different network topology in ANN model for GR 

 

Evaluation of ANN models for global radiation  

Configuration RMSE [Wh/m
2
] MAPE [%] MAE [Wh/m

2
] R

2
 

GNT 1 568.0 24.8 501.7 0.9898 

GNT 2  153.5 4.46 125.7 0.9923 

GNT 3 473.2 21.6 371.2 0.9802 

GNT 4 584.8 21.1 471.8 0.9928 

GNT 5 341.8 7.59 278.2 0.9970 

GNT 6 1033 20.1 847.0 0.9841 

GNT 7 348.8 7.49 270.7 0.9926 

GNT 8 592.3 12.1 469.3 0.9913 

GNT 9 414.1 10.9 336.5 0.9882 

 

Table



 

Table 9 Calculated statistical parameters for different network topology in ANN model for DNI 

 

Evaluation of ANN models for direct irradiance 

Configuration RMSE [Wh/m
2
] MAPE [%] MAE [Wh/m

2
] R

2
 

DNT 1 18.4 8.08 15.6 0.9938 

DNT 2  18.9 7.30 16.6 0.9949 

DNT 3 45.1 14.1 36.5 0.9563 

DNT 4 20.3 8.27 16.8 0.9955 

DNT 5 17.1 5.38 13.4 0.9956 

DNT 6 34.8 15.0 30.5 0.9745 

DNT 7 30.7 10.5 26.2 0.9892 

DNT 8 26.0 8.06 20.1 0.9883 

DNT 9 49.2 17.3 42.5 0.9574 

 

 

 

 

Table



 

 

Table 10  Monthly direct fraction of global radiation. 

Month 
Monthly Direct Radiation 

[kWh/m2] 
Monthly Global Radiation 

[kWh/m2] 
Monthly Diffuse Radiation 

[kWh/m
2
] 

Direct fraction [%] 

January 35.87 45.22 8.67 79.3% 

February 43.73 54.36 9.81 80.5% 

March 87.72 104.7 15.5 83.7% 

April 110.6 129.9 17.3 85.2% 

May 134.2 154.4 17.9 86.9% 

June 161.4 178.6 14.6 90.3% 

July 169.6 188.2 15.8 90.1% 

August 157.4 177.5 17.4 88.7% 

September 102.9 121.0 16.2 85.1% 

October 74.13 88.85 13.9 83.4% 

November 35.39 44.57 8.51 79.4% 

December 34.03 43.06 8.39 79.0% 

 

Table



 

Table 11 User energy loads and different systems energy production. 

  Energy Loads PV System Energy CPV/T System Energy 

Month Electric [kWhe] Thermal SHW [kWhth] Cooling [kWhcoo] Electric [kWhel] Electric [kWhel] Thermal [kWhth] 

January 267.2 324.9 0.00 103.0 97.71 331.1 

February 219.4 296.3 0.00 123.8 119.1 406.2 

March 267.2 324.9 0.00 238.6 235.2 814.7 

April 211.6 306.1 0.00 295.8 295.5 1028 

May 218.6 304.6 0.00 351.7 351.6 1247 

June 211.6 283.4 512 406.9 414.6 1499 

July 218.6 284.3 1089 428.7 433.7 1576 

August 218.6 281.2 1089 404.2 402.5 1462 

September 258.6 275.1 512 275.6 264.5 956.0 

October 267.2 292.9 0.00 202.4 194.4 688.5 

November 258.6 294.8 0.00 101.5 94.67 328.7 

December 267.2 316.3 0.00 98.07 92.56 316.4 

Total 2884 3585 3202 3030 2996 10655 

 

 

 

 

Table



 

 

Table 12 Literature comparison for proposed ANN models  

 

Literature Comparison (ANN for daily GR) 

Models MSE [Wh
2
/m

4
] MAPE [%] MAE [Wh/m

2
] R

2
 RMSE [Wh/m

2
] nRMSE [%]  

Proposed 25696 4.57% 131.2 0.9918 160.3 3.54% 

Azadeh et al. [22] - 3.00% - 0.980 - 2.60% 

Wang et al. [23] -   - 0.991 ; 0.964 - 3.31% ; 4.50% 

Khatib et al. [24] 135719 5.20% - - 342.0 7.96% 

Behrang et al. [25] - 5.21% ; 5.56% - 0.9957 ; 0.9952 - - 

Zervas et al. [26] - - - 0.985 - - 

Benghanem et al. [27] - - - 0.976 - 1.31% 

Yacev et al. [28] - - - 0.9299 - 8.42% 

Bilgili et al. [30] - 9.23% 278.0 0.9508 - - 

ANN for hourly DNI       

Model MAPE [%] RMSE [W/m
2
] R

2
       

Proposed 5.57 17.7 0.994       

Mellit et al. [33] - - 0.967       

Kaushika et al. [34] - 14.5 -       
 

 

 

 

Table


