
 1

Abstract—A new 2D convolution-based filter is presented

specifically designed to improve Visual Search applications. It
exploits a new radix-3 partitioning method of integer numbers,
derived from the weight partition theory, which allows
substituting multipliers with simplified floating-point adders,
working on 32 bits floating point filter coefficients. The memory
organization allows elaborating the incoming data in raster scan
order, as those directly provided by an acquisition source,
without frame buffers and additional aligning circuitry.
Compared to the existent literature, build around conventional
arithmetic circuitry, the proposed design achieves state-of-the-art
performances in the reduction of the mapped physical resources
and elaboration velocity, achieving a critical path delay of about
4.5 ns both with a Xilinx Virtex 7 FPGA and CMOS 90nm
std_cells.

Index Terms—Visual Search, Interest Point Detection, Field
programmable gate arrays, Gaussian filter, Multiplier.

I. INTRODUCTION
WO dimensional (2D) convolution-based filtering is
widely used in Visual Search (VS) applications. The

increment of VS functionalities and the growing demand for
very high quality multimedia applications have lead to the
exponential growth of the computational complexity of the
dedicated Hardware/Software (HW/SW) systems. On the other
hand, the growing usage of such applications in hand-held and
portable devices gives rise to incompatible constrains in terms
of elaboration speed and number of instantiated physical
resources [1]. Although this is an actual problem of all the
algorithms that locally work on portions of a frame [2], [3],
the huge number of calculations required to extract features
from an image for recognizing and classifying its content [4],
makes VS applications by far the most demanding ones. In
such cases, 2D convolution-based Gaussian filters are largely
employed, in order to remove high frenquency noise, as well
as to construct a Difference-of-Gaussian (DoG) scale-space
pyramid from a number of downsampled, blurred specimens
of an input image [5]. A number of HW solutions have been
proposed to compensate for the inadequate performances of
SW implementations [5], [7], mainly hindered by the large
number of floating points (FP) Multiply-ACcumulation
(MAC) operations and the large quantity of memory for frame
buffering [8]. However, for the fullfillment of severe
constrains, also HW implementations need of a number of

simplifications that gave rise to less complex alternatives to
Gaussian filtering [9], [10]. With reference to the recent
literature, we observed that the optimized HW solutions have
been essentially addressed to the improvement of memory
architectures and the search for the optimal strategy for
exchanging data with the datapath circuitries. The bufferless
solution in [11] preserves a high degree of accuracy by using a
custom coding and a partial serialization of the filtering, in
order to reduce the number of mapped physical resources. The
design, however, is very tailored for DoG, since it exploits the
separability of Gaussian kernels, and it can be hardly
generalized to generic VS methods. In [12], the design does
not exploit the separability of Gaussian kernels but proposes a
complex arrangement of SRAMs to implement sliding
window and row-shuffling operation by means of a switching
network whose complexity increases with the filter
dimensions. On the other hand, very few optimizations have
been addressed to the arithmetic units, which are usually
simplified by recurring to fixed-point (FI) codes in place of 32
bits floating-point (FP32), with impact on the accuracy of the
overall VS systems. Additionally, almost all published HW
solutions use surrogates of the SW conterparts, as in the case
of DoG calculations that work on a reduced number of scales
and octaves [13] with respect to the optimal one [5] or with
Gaussian kernels having reduced standard deviations [14].

With the purpose to provide a 2D convolution-based filter
that can improve VS applications in terms of area, power
constrains and elaboration velocity, in this work a new design
is proposed, which is capable to outperform existent FP32
implementation of 2D filters, by exploiting a new partitioning
method of the operands [15], in the case that one of that
assumes multiple constant values. The design works on a
continuous stream of data, directly provided by the input
source, and avoids the use of frame buffers by means of a
careful organization of small intermediate buffers. The
accuracy of the elaborated results is ensured by the use of
FP32 coding, while its compactness is given by the complete
absence of multiplier circuits. Although the proposed design
can work with a large number of filter kernels, in this work it
has been addressed to Gaussian filtering, in order to
demonstrate its advantages in one of the most diffused and
computational demanding application. Implementation of the
2D filter on a high-end FPGA returns a total delay path of 4.7
ns to produce an IEEE-754 FP32 result, starting from a
window of 3x3 pixels, while std_cell implementation with
TSMC CMOS 90 nm technology, returns 4.4 ns, both in
slow/slow corner.

Gian Domenico Licciardo, Member, IEEE, Carmine Cappetta, Student Member, IEEE, Luigi Di
Benedetto, Member, IEEE, Alfredo Rubino, Rosalba Liguori

Multiplier-less Stream Processor for 2D
Filtering in Visual Search Applications

T

 All the authors are with the Department of Industrial Engineering (D.I.In.),
University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno, Italy.
(e−mails: gdlicciardo@unisa.it, ccappetta@unisa.it, ldibenedetto@unisa.it,
arubino@unisa.it, rliguori@unisa.it).

 2

II. THE UNDERLYING METHOD
The proposed partitioning method is based on the

ancient mathematical problem dealing with the least
number of pound weights that can be used on a scale pan
to weigh any integer number of pounds from 1 to 40
inclusive [16]. Recently, this problem has been resumed
and generalized when 40 has been susbtituted with a
generic integer m [17]-[19]. In [17] an important
proposition has been demonstrated:

Every integer weight l with 0 ≤ l ≤ m can be measured on
a two scale balance using weights from the multiset

.

In particular, if m=0.5(3n+1-1) then Wm is the only and
the smallest multiset of weights that satisfies the above
Bachet problem. Considering a partition of a positive
integer m, defined as an ordered sequence of positive
integers that sum to m: with

, this is called a Bachet partitions if:
1. every integer 0 ≤ l ≤ 2m (eq. 0 ≤ l ≤ m) can be written

as where (eq.);
2. there not exists another partition of m satisfying 1. with

fewer parts than n+1.
Such partitions are also called minimal 2-complete

partitions [18]. The existance and the minimum number of
parts composing a Bachet partition are demonstrated by
the following results [18], [19]:
• Lemma: If is a 2-complete

partition then l0=1 and for
every i.

• Corollary: If is a 2-complete
partition then .

• Theorem 1: a Bachet partition of a positive integer m has
precisely parts.

• Theorem 2: the partition is a

Bachet partition if and only if , l0=1 and

 for every i.
The uniqueness of the Bachet partition has been finally

demonstrated in [20]. The principal conclusions of the
above mathematical derivations that turn useful in our
design, can be summarized as follows:
• Given a range of integers [0;r], it is possible to define a set

of integer values, called parts,

of cardinality , such that all the

values in the range could be obtained by a combination of
li.

• The parts are given by the first powers of 3 plus
, namely,

 .

• The partition is unique and does not exist another partition
of [0;r] satisfying the aforementioned conditions composed
by fewer parts than n+1.

From the above results it follows that, defined the
coefficients set , every term can be
rewritten as the superposition of the minimum number of
parts:

 (1)

Table I shows the application of the proposed partitioning

method. For example: for an 8 bits input, the parts are
; the input 23 can be rewritten as 23=(-

1)1+(-1)3+(0)9+(+1)27+(0)81+(0)134, namely the set of
values from Table I will be .

Eq. (1) can be employed to partition a generic 2D-
convolution between a kernel F, having dimensions,
and an input matrix I(x,y). The filtered output, O, at the point
(x0,y0), can be calculated as:

(2)

Considering that typical VS applications work on integer

inputs coded with a small number of bits (e.g. 8 bits for Luma
and Chroma) and that the coefficients of the filters are a priori
known once that the filter dimensions have been defined, the
values of the n inner products between and can be
precalculated for each input value. Therefore, (2) can be
simplified in a summation of precalculated coefficients, P:

(){ }2 1 2 1: 1,3,3 , ,3 , 1 3 3 3n n
mW m- -= - + + + +! !

0 1 nm l l l= + + +!

0 1 nl l l£ £ £!

0

n
i ii

l C l
=

=å { }0,1,2iC Î { }1,0,1iC Î -

0 1 2 nm l l l l= + + + +!

()0 1 11 2i il l l l -£ + + + +!

0 1 2 nm l l l l= + + + +!
3iil £

()3log 2 1m +ê úë û

0 1 2 nm l l l l= + + + +!

()3log 2n m= ê úë û
()0 1 11 2i il l l l -£ + + + +!

0 1 2 1{ , , ,..., , }r n nS l l l l l-=

31 log (2) 1n r+ = +ê úë û

n
0 1 2 1(3 3 3 ... 3)nR r -= - + + + +

0 1 2 1
0 1 2 1{ , , ,..., , }: {3 ,3 ,3 ,...,3 , }n

r n nS Rl l l l l -
-= =

: { 1,0,1}C = - []0;q rÎ

0

n

i i
i

q C l
=

=å

{ }0,1,3,9,27,81,134

{ }1, 1,0, 1,0,0- - +

K K´

() ()

()

1 1

0 0 0 0
0 0

1 1

, 0 0
0 0 0

1 1

, 0 0
0 0 0

1 1, , ,
2 2
1 1,

2 2
1 1,

2 2

K K

h j

K K n

h j i i
h j i

K K n

h j i i
h j i

K KO x y F h j I x h y j

K KF C x h y j

K KF C x h y j

l

l

- -

= =

- -

= = =

- -

= = =

- -æ ö= + - + - =ç ÷
è ø

- -æ ö= + - + - =ç ÷
è ø

- -æ ö= + - + -ç ÷
è ø

åå

åå å

ååå

F il

TABLE I
APPLICATION OF THE PROPOSED PARTITION METHOD

Input
Partition

30 31 32 33 34 ... ln

0 0 0 0 0 0 ... 0

1 +1 0 0 0 0 ... 0

2 -1 +1 0 0 0 ... 0

3 0 +1 0 0 0 ... 0

4 +1 +1 0 0 0 ... 0

5 -1 -1 +1 0 0 ... 0
...

q C0 C1 C2 C3 C4 ... Cn
...
r +1 +1 +1 +1 +1 ... +1

 3

 (3)

It is worth to note that the proposed partitioning
method is similar but substantially different from the
Distributed Arithmetic (DA) method. DA, indeed,
simplifies the calculations by recurring to a power of two
partitioning, which substitutes multiplications with shifts
and additions; on the contrary, the computational
complexity of (3) is simplified by the smaller number of
coefficients ensured by the lower number of parts of the
proposed method. A radix-2 DA partitioning, for example,

requires that I in (2) is decomposed as , where

 represents the sign digit. Namely, (2) can be DA
partitioned as:

 (4)

Although the use of bi in place of Ci contributes to
reduce some “glue” logic to implement (4), the value of s in
(4) linearly increases with the codelength of the input.
Therefore, the number of operators to implement the inner
products in (4) rapidly overcomes that of (2), where n
increases with a log3 slope. For example, in the case of 8 bit
inputs, s=8 and n=5. Anyway, considering that the DA-
related literature offers several optimized
implementations, the proposed filter has been
implemented with Modified Booth (MB) multipliers,
selected as one of the best exponent of the DA-related
arithmetic. Results are reported in Table III.

III. ARCHITECTURE DESIGN
The block diagram of the proposed architecture is shown in

Fig. 1. It has been divided in two sequential modules,
following the data flow: the memory module that codes the
input data according to the proposed partitioning method and

manages the elaboration flow, and the filtering module that
calculates (3). Input pixels, coded as m bits unsigned integers
(Uint-m), can be acquired in raster scan order directly from an
image source (e.g. image sensor), without any additional
caching apparatus other than that provided by the source itself.
The output is an IEEE-754 compliant, FP32 filtered value,
sequentially provided with a throughput coherent with the
input acquisition rate. Depending on the VS algorithm used in
conjunction with the proposed design, optional serdes circuitry
can be added with the purpose to align the filtered pixels in a
parallel fashion.

A. Memory Module
The operation principle of the memory block is schematized

in Fig. 1. Input pixels are acquired by the Coeff_Gen
component, essentially composed by a ROM implementing
Table I, by which data are coded in a sequence of ternary sign
coefficients, . Considering that each Uint-m

input must be partitioned in parts, and

that 2 bits are needed to code each sign, the length of the
resulting code is ; namely, if m=8 bits,

lC=12 bits. In turn, the original value of the pixel is no more
necessary for the subsequent calculus.

Coded data are fed in a SIPO (Serial-Input Parallel-Output)
buffer, which serially stores the 1D filtered rows and outputs a
K×K matrix of data to be convolved with a kernel having the
same dimensions. Since input pixels are received in raster scan
order, the SIPO is, in principle, folded like a stripe buffer of
dimensions K×W, in order to store the first K rows of the
image to be processed, having width W. When K-1 rows and
the first K values of the Kth row are serially pushed into the
buffer, the rightmost K columns of the buffer can be filtered in
parallel.

It is important to note that, the above organization allows
that, each time a new value is pushed into the buffer, all data
shifts so that those to be filtered are “naturally” aligned in the
rightmost columns, without auxiliary circuitry to realize row-
shuffling operations [12]. Although a straightforward
implementation of the stripe buffer, by using registers, is
technically possible, it is strongly deterred for the large
amount of physical resources required. For example, with
reference to an 8 bits VGA image (W = 640), the stripe of a
kernel with K=25 would store 640×25=16’000 values, each
coded with 12 bits, corresponding to 188 kbits. A much more
suitable solution consists in using SRAM to “emulate” the
SIPO behavior of the buffer. Given the availability of
embedded SRAM modules, both in standard cell technology
and FPLs, this solution enables the implementation of the
processor in both kind of target platforms. In order to enable
the writing and reading of data during the same clock cycle,
each row of the stripe buffer has been implemented by a dual-
port SRAM of dimensions lC×(W-K) to store almost a
complete frame row. The parallel reading of the rightmost
K×K data has been implemented by completing each SRAM
row with K registers, connected like in Fig. 1, in order to
preserve the shift operations needed by the stream of data. It is
worth to note that, due to the casual access of SRAMs, it
makes no more sense to speak of the shifting operation of

()
1 1

0 0 0 0
0 0

1 1, ,
2 2

K K

h j

K KO x y P x h y j
- -

= =

- -æ ö= + - + -ç ÷
è ø

åå

1

0

2
s

i
i

i

I b
-

=

=å
{0,1}ib Î

()

()
0 0

1 1 1

, 0 0
0 0 0

,

1 1 2 ,
2 2

K K s
i

h j i
h j i

O x y

K KF b x h y j
- - -

= = =

=

- -æ ö= + - + -ç ÷
è øååå

{ 1,0,1}iC Î -
1

31 log (2) 1mn +ê ú+ = +ë û

1
32 log (2) 2m

Cl
+ê ú= +ë û

Fig. 1: Block diagram of proposed design. The Memory Module,
enclosed in the dashed square, is detailed in its components.

 4

data, but a correct generation of addresses emulates the shift of
the stored values and their alignment. It is worth to underline
that the proposed solution is always advantageous, in terms of
total memory requirement, with respect to a frame buffer-
based implementation, since it requires a fraction of the
memory of a complete frame.

B. Filtering Module
Fig. 2 shows the block diagram of the Filtering Module,

representing the organization and interconnections of the
equivalent K×K multipliers. The K small LUTs store the (n+1)
parts pre-multiplied by the K coefficients of the filter, in
(2), coded with length lS, calculated in the following. In order
to simplify the adder structure, the K LUTs are used to store
also the 2’s complement of the pre-multiplied coefficients,
which are selected when Ci=-1, without additional overhead.
Therefore, each LUT has dimensions . The
structure of a single equivalent multiplier is shown in Fig. 3. It
has been substituted by n adders distributed along a

depth tree, which calculates (3) by using the pre-
multiplied coefficients, selected by a multiplexer bank, and the
Ci coefficients provided by the stripe buffer.

Even if the adders should have, in principle, a FP32
architecture, a custom coding has been adopted for partial
results, achieving a reduction of the adders’ complexity,
without altering the accuracy of the multiplication. Starting
from the standard IEEE-754 coding [21], all the exponents of
the pre-multiplied coefficients have been increased to that of
the greatest one, the significands have been shifted
accordingly and their length has been increased to include the
shifted codes without truncations. In particular, if Fmin and
Fmax are the minimum and maximum kernel coefficients,
respectively, the codelength of the significands is increased to
a number of bits:

 (4)

where 23 bits is the length of the standard FP32 significand.
Therefore, the normalization of the mantissa after every
intermediate addition is avoided and the exponent, as well as
the devoted circuitry, can be omitted. A normalization stage
has been introduced at the end of the overall computation to
normalize the output in a standard FP32 format.

IV. SYNTHESIS AND RESULTS
In order to contextualize the proposed design in a typical

VS scenario and make the derived results comparable with the
existent literature related to VS applications, the processor has
been implemented with a 2D symmetric Gaussian kernel,

 working with Uint-8 inputs. A
“building block” kernel with K=3 has been implemented, since
it is the minimum usable dimension for VS applications. The
range of input values that can be represented is r=256,
therefore, the number of parts is ,
given by , and lc=12 bits.

Considering that:
,

,
and , from (4) the length of the significands must be

. An example of the above

recoding is shown in Table II. Derived results can be easily
generalized to greater dimensions by using curves in Fig. 4, by
which only the dimensions of Coeff_Gen have been omitted
since they depends only on the input coding.

The design has been targeted to a Xilinx Virtex 7
XC7V2000tflg1925-1, as part of the proFPGA DUO ASIC
prototyping board [22] and to TSMC CMOS 90nm std_cells.

,h j iF l

()2 1 Sn l+ ´

2log (1)n+é ùê ú

max

2 min
0

23 log n
S

F
l

F
l
l

é ùæ ö
= +ê úç ÷
ê úè øê ú

() ()
2 2

21 2 4, , 2
x y

G x y e ss p s
+

-- -=

31 log (2) 1 6n r+ = + =ê úë û
{1,3,9,27,81,134}rS =

() () 1min 20,0, 2G G s p s- -= =

() () ()
2

2
18

1 1max 2 2 923,3, 2 2G G e e
s
ss p s p s

-- -- - -= = = 134nl =

0 1l =

()9223 log 44S nl e bitslé ù= + =ê ú

Fig. 3: Block diagram of multiplier, implemented with the proposed
partitioning method.

Fig. 2: Block diagram of Filtering Module, representing the way the
“equivalent” multipliers are interconnected.

TABLE II
CUSTOM CODING APPLIED TO THE SMALLEST PRE-MULTIPLIED COEFFICIENT

WITH UINT-8 INPUTS AND s=4
Smallest
Coeff. r ln FP32 coding of 1.228x10-6

1.1x10-3

 134

00110101101001001100001101010100

256 Modified coding of 1.228x10-6

 00000000000000000000101001001100001101010100
*from (3) the significand must be enlarged of 21bits.

 5

Synthesis results have been reported in Table III and
compared with implementations of the filter using
conventional FP32 and MB multipliers, all targeted to the
same FPGA and std_cells. In order to present a fair
comparison and as much reproducible and comparable
results as possible, IPs provided by Xilinx for the adders
and the multipliers, both configured with a 3-stage
pipeline, have been used as building components of the
proposed design. For the same reason, we did not impose
aggressive constrains: the most relevant, in the case of
FPGA, concerns the exclusion of embedded DSPs and in
the forced use of Block RAMs. In addition, the flatten
hierarchy option has been disabled and a general synthesis
strategy toward speed has been selected. No particular
constrains have been set for std_cell implementation. Table
III shows that the FPGA is the most advantageous platform to
implement the proposed multiplier, thanks to the availability
of hard macros to implement LUTs. Indeed, considering that
at regime, one pixel is filter per clock cycle, the FPGA
implementation exhibits a speed-up of 371% with respect to a
conventional multiplier, whereas the worst path delay reduces
from 17.432 ns to 4.700 ns in the slow/slow corner, and a
speed-up of 215% with respect to an MB multiplier, where
the delay increases to 8.875 ns. The mapped physical
resources are approximately lower of 38.6% than in the
conventional case and 44.8% than in the MB-based filter,
while the normalized dissipated power is approximately
25% and 45% lower than the conventional and the MB
one, respectively. In std_cells, it is possible to observe a
reduction of about 24% in area and a speed-up of 94.75% with
respect to a conventional multiplier, while the speed is quite
the same than the MB-based design and power dissipation
is 28% lower. The power dissipation is 2.84% higher than

that of the conventional case, mainly due to the consumption
of the memories. In obtaining the data in Table III, it has been
considered that all the LUTs must be read from all the
multipliers on the same clock edge. Although this can be
easily implemented in FPGA, ASICs require a custom
implementation of very small ROMs, developed in a way
similar to the one presented in [23]. However, the amount of
required memory does not represent an actual problem in real
multimedia applications, whereas the memory requirement is
in the order of Mbits because of frame buffering [24] or partial
data storage [25],[26], which makes negligible the additional
area required.

A direct comparison of the results in Table III with the
existent literature is very hard, because the search for the
reduction of HW complexity has lead almost all authors to
implement HW designs with fixed-point arithmetic or
floating-point with reduced accuracy. Therefore, a fair
comparison with the existent literature has been possible
only by scaling-down the proposed design with respect to
the results in Table III. Comparison with the 2D Gaussian
filter for SIFT in [12] has been obtained by scaling-down
the proposed processor to FP24 and synthesizing it with
180nm std_cell libraries, based on the TSMC technology.
In turn, comparison with the design in [27] has been
carried out by using the same Xilinx Spartan 6 FPGA [28]
used in the Nexys 3 board and scaling-down the accuracy
to FP16. Results considering the available data are
reported in Table IV. The greater quantity of memory
with respect to [12] is justified by the use of a floating
point coding and is by far compensated by the lower
number of arithmetic circuits and the possibility to achieve
more accurate coding with a limited amount of additional
physical resources. For example, the adoption of a FP32
coding would require only 21 kbits of additional memory.
In all the comparisons, the proposed design exhibits a
much higher elaboration speed, although the path delay is
significantly limited by the memory access delay.

As a final observation, it is important to underline that
the use of a Gaussian filter is the most demanding in term

TABLE III
SYNTHESIS RESULTS OF THE PROPOSED FILTER COMPARED WITH

THOSE BASED ON CONVENTIONAL AND MODIFIED BOOTH MULTIPLIERS
 FPGA Std_cells

 Prop. Conv.
FP32 MB Prop. Conv.

FP32 MB

Technology XC7V* XC7V XC7V 90nm 90nm 90nm
LUTs/

Area[mm2] 4750 7732 8606 0.294 0.387 0.51

Mem. [byte] 582 -- 528 582 -- --
Delay**[ns] 4.700 17.432 8.785 4.426 8.717 4.483

Power*** [W] 0.684 0.907 1.226 0.014 0.0136 0.019

*Virtex 7 **1 pixel filtered per clock cycle ***Normalized at 100MHz

Fig. 4: Required resources of the 2D convolution-based filter as a
function of its dimensions, when m=8 bits and W=640 pixels.

TABLE IV
COMPARISON OF THE PROPOSED DESIGN WITH THE RELATED LITERATURE

 Std_cells FPGA
 Prop* Huang [12] Prop***. Cabello [27]

Technology CMOS
180nm

CMOS
180nm Spartan 6 Spartan 6

Output
Resolution FP24 Fixed 24

bits FP16 FP16

LUTs -- N.A. 2395 5052
Mem. [kbits] 255 224 4 1 BRAM

Max freq.*[MHz] 126 100** 145 100

*scaled to 3 octaves, 6 scales. 3 stage pipeline. **extracted by the overall
system velocity ***3x3 kernel

TABLE V
COMPARISON OF THE PROPOSED DESIGN WITH

A GAUSSIAN AND A WEIGHTED AVERAGE KERNEL
 FPGA Std_cells
 Gaussian W. Aver Gaussian W. Aver

Technology XC7V* XC7V 90nm 90nm
LUTs/

Area[mm2] 4750 4744 0.294 0.293

Mem. [byte] 582 483 582 483
Delay**[ns] 4.700 4.877 4.426 4.669

Power*** [W] 0.684 0.678 0.014 0.010

*Virtex 7 **1 pixel filtered per clock cycle ***Normalized at 100MHz

 6

of resources instantiated by the proposed design. Indeed,
the dimensions of the tables for pre-multiplied coefficients
are strictly related to the kernel dimensions that, in turn,
must be significantly larger than the standard deviation of
the kernel. Therefore, the use of a different kernel
generally causes a significant memory reduction. In turn,
the arithmetic complexity of the filtering remains
unchanged, since there are no multiplications and the
number of additions only depends on the ranges of input
values and of kernel coefficients. What said is confirmed
from the results in Table V where the proposed Gaussian-
based implementation of Table III has been compared
with a 2D weighted average filter, having FP32 coded real
weights, taken as representative of large number of VS
filters [10]. The only notable difference is in the reduction
of about 17% of the memory required for coefficients.
Naturally, this percentage increases with the kernel
dimensions.

V. CONCLUSION
In this paper, a new HW architecture has been presented for

2D convolution-based filtering of images and video-frames. It
is particularly useful for VS applications, where performances
strongly contrast with the number of arithmetic operators and
required memory. Both the memory and the arithmetic
apparatus have been design in order to improve the throughput
and the amount of mapped resources. The memory
compartment has been designed to elaborate images in raster
scan order, without internal or external frame buffers. In turn,
a new partitioning method has been used to improve the
arithmetic compartment that substitutes multipliers with
simplified adders and ROMs for storing pre-multiplied
coefficients. The proposed solution obtains state-of-the-art
performances in both std_cells and FPGA target platforms. In
addition, power dissipation keeps to values that justify the
employment of the processor for handheld, portable devices.

REFERENCES
[1] J. Luo and G. Oubong, “A comparison of SIFT, PCA-SIFT and SURF”,

International Journal of Image Processing, Vol. 3, No. 4, pp. 143–152,
Aug. 2009.

[2] S. L. Chen, “VLSI implementation of an adaptive edge - enhanced
image scalar for real - time multimedia applications”, in IEEE Trans.
on Circuits and Systems for Video Technology, Vol. 23, No. 9,
pp.1510–1522, Sep. 2013.

[3] M. Basu, “Gaussian-Based Edge-Detection Methods—A Survey”, in
IEEE Trans. on Systems, Man and Cybernetics - Part C: Applications
and Reviews, Vol. 32, No. 3, pp.234–240, Aug. 2002.

[4] D. G. Lowe, “Object Recognition from Local Scale-Invariant
Features”, in Computer Vision, 1999. The Proc. of the Seventh IEEE
International Conf. on, Kerkyra, Vol. 2, pp.1150–1157, Sep. 1999.

[5] D. G. Lowe, “Distinctive image features from scale-invariant key
points”, in International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, Jan. 2004.

[6] K. Mizuno et al., “A low power real-time SIFT descriptor generation
engine for full hdtv video recognition”, in IEICE Trans. Electron, Vol.
E94-C, No. 4 Apr. 2011.

[7] M. Grabner, H. Grabner, and H. Bischof, “Fast approximated SIFT”, in
Asian Conf. on Computer Vision, Hyderabad, India, 2006.

[8] J. Jiang, X. Li, and G. Zhang, “SIFT Hardware Implementation for
Real-Time Image Feature Extraction”, in IEEE Trans. on Circuit and

Systems for Video Technology, Vol. 24, No. 7, pp. 1209–1220, Jul.
2014.

[9] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, R. Grzeszczuk and B.
Girod, “CHoG: Compressed Histogram of Gradients a Low Bit-Rate
Feature Descriptor”, in Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, Miami, FL, pp. 2504–2511,
Jun. 2009.

[10] H. Bay, T. Tuytelaars and L. Van Gool, “SURF: Speeded Up Robust
Features”, in Proc. 9th Eur. Conf. Comput. Vis., 2006, pp. 404–417.

[11] G.D. Licciardo, T. Boesch, D. Pau and L. Di Benedetto, “Frame
Buffer-less Stream Processor for Accurate Real-Time Interest Point
Detection”, in Integration, the VLSI Journal, Vol.54, pp. 10–23, Jun.
2016.

[12] F. C. Huang, S.Y. Huang, J. W. Ker and Y. C. Chen, “High
performance SIFT hardware accelerator for real - time image feature
extraction”, in IEEE Trans. on Circuit and Systems for Video
Technology, Vol. 22, No. 3, pp. 340–351, Mar. 2012.

[13] N. P. Borg, C. J. Debono, D. Zammit-Mangion, “A Single Octave SIFT
Algorithm for Image Feature Extraction in Resource Limited Hardware
Systems”, in Visual Communications and Image Processing Conf.,2014
IEEE, Valletta, pp. 213–216, Dec. 2014.

[14] E. S. Kim and H. J. Lee, “A novel hardware design for SIFT generation
with reduced memory requirement,” J. Semicond. Technol. Sci., Vol.
13, No. 2, pp. 157–169, Apr. 2013.

[15] G. D. Licciardo, C. Cappetta, L. Di Benedetto, M. Vigliar, “Weighted
Partitioning for Fast Multilpier-less Multiple Constant Convolution
Circuit”, IEEE Trans. on Circuits and Systems II: Express Briefs, in-
press, doi: 10.1109/TCSII.2016.2546899.

[16] E. O'Shea, “Bachet's problem: as few weights to weigh them all”,
arXiv: 1010.5486, pp. 1 - 15, Oct. 2008.

[17] G. H. Hardy and E. M. Wright, An introduction to the theory of
numbers (sixth edition), Oxford University Press, 2008.

[18] S. K. Park, “The r-complete partitions”, Discrete Mathematics, No.
183, pp. 293–297, 1998.

[19] Ø. J. Rødseth, “Enumeration of M-partitions”, Discrete Mathematics,
No. 306, pp. 694–698, 2006.

[20] P.A. MacMahon, “Combinatory Analysis”. (vols. 1 & 2)(III Ed.),
AMS Chelsea Publishing, 1984.

[21] “IEEE Standard for binary floating - point arithmetic”, ANSI/IEEE754
- 1985, 1985.

[22] Virtex - 7 Family, DS183 (v1.23), Xilinx, San Jose, CA, USA, Jun. 23,
2015.

[23] B. C. Paul, S. Fujita and M. Okajima, “ROM - Based Logic (RBL)
design: a low - power 16 bit multiplier”, in IEEE Journal of Solid -
State Circuits, Vol. 44, No. 11, pp.2935–2942, Nov. 2009.

[24] W. M.
Chaohttp://ieeexplore.ieee.org/search/searchresult.jsp?sear
chWithin=%22Authors%22:.QT.Potkonjak,%20M..QT.
&newsearch=true and L. G. Chen, “Pyramid architecture for
3840x2160 Quad Full High Definition 30 frames/s video acquisition”,
IEEE Trans. on Circuits and Systems for Video Technology, Vol. 20,
No. 11, pp. 1499–1508, Nov. 2010.

[25] M. Vigliar and G. D. Licciardo, “Hardware Coprocessor for Stripe-
based Interest Point Detection,” U.S. Patent 20 130 301 930, Nov. 14,
2013.

[26] G. D. Licciardo, A. D'Arienzo and A. Rubino, “Stream processor fo
real - time inverse Tone Mapping of Full - HD images”, in IEEE Trans.
on VLSI Systems, Vol.23, No. 11, pp. 2531–2539, Nov. 2015.

[27] F. Cabello, J. Leon, Y. Iano and R. Arthur, “Implementation of a
Fixed-Point 2D Gaussian Filter for Image Processing Based on FPGA”,
in Signal Processing: Algorithms, Architectures, Arrangements and
Applications (SPA), pp. 28–33, Sep. 2015, Poznan.

[28] Spartan - 6 Family, DS160 (v2.0), Xilinx, San Jose, CA, USA, Oct. 25,
2011.

