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Abstract—A new 2D convolution-based filter is presented 

specifically designed to improve Visual Search applications. It 
exploits a new radix-3 partitioning method of integer numbers, 
derived from the weight partition theory, which allows 
substituting multipliers with simplified floating-point adders, 
working on 32 bits floating point filter coefficients. The memory 
organization allows elaborating the incoming data in raster scan 
order, as those directly provided by an acquisition source, 
without frame buffers and additional aligning circuitry. 
Compared to the existent literature, build around conventional 
arithmetic circuitry, the proposed design achieves state-of-the-art 
performances in the reduction of the mapped physical resources 
and elaboration velocity, achieving a critical path delay of about 
4.5 ns both with a Xilinx Virtex 7 FPGA and CMOS 90nm 
std_cells. 
 

Index Terms—Visual Search, Interest Point Detection, Field 
programmable gate arrays, Gaussian filter, Multiplier. 

I. INTRODUCTION 
WO dimensional (2D) convolution-based filtering is  
widely used in Visual Search (VS) applications. The 

increment of VS functionalities and the growing demand for 
very high quality multimedia applications have lead to the 
exponential growth of the computational complexity of the 
dedicated Hardware/Software (HW/SW) systems. On the other 
hand, the growing usage of such applications in hand-held and 
portable devices gives rise to incompatible constrains in terms 
of elaboration speed and number of instantiated physical 
resources [1]. Although this is an actual problem of all the 
algorithms that locally work on portions of a frame [2], [3], 
the huge number of calculations required to extract features 
from an image for recognizing and classifying its content [4], 
makes VS applications by far the most demanding ones. In 
such cases, 2D convolution-based Gaussian filters are largely 
employed, in order to remove high frenquency noise, as well 
as to construct a Difference-of-Gaussian (DoG) scale-space 
pyramid from a number of downsampled, blurred specimens 
of an input image [5]. A number of HW solutions have been 
proposed to compensate for the inadequate performances of 
SW implementations [5], [7], mainly hindered by the large 
number of floating points (FP) Multiply-ACcumulation 
(MAC) operations and the large quantity of memory for frame 
buffering [8]. However, for the fullfillment of severe 
constrains, also HW implementations need of a number of 

simplifications that gave rise to less complex alternatives to 
Gaussian filtering [9], [10]. With reference to the recent 
literature, we observed that the optimized HW solutions have 
been essentially addressed to the improvement of memory 
architectures and the search for the optimal strategy for 
exchanging data with the datapath circuitries. The bufferless 
solution in [11] preserves a high degree of accuracy by using a 
custom coding and a partial serialization of the filtering, in 
order to reduce the number of mapped physical resources. The 
design, however, is very tailored for DoG, since it exploits the 
separability of Gaussian kernels, and it can be hardly 
generalized to generic VS methods. In [12], the design does 
not exploit the separability of Gaussian kernels but proposes a 
complex arrangement of SRAMs to implement sliding 
window and row-shuffling operation by means of a switching 
network whose complexity increases with the filter 
dimensions. On the other hand, very few optimizations have 
been addressed to the arithmetic units, which are usually 
simplified by recurring to fixed-point (FI) codes in place of 32 
bits floating-point (FP32), with impact on the accuracy of the 
overall VS systems. Additionally, almost all published HW 
solutions use surrogates of the SW conterparts, as in the case 
of DoG calculations that work on a reduced number of scales 
and octaves [13] with respect to the optimal one [5] or with 
Gaussian kernels having reduced standard deviations [14].  

With the purpose to provide a 2D convolution-based filter 
that can improve VS applications in terms of area, power 
constrains and elaboration velocity, in this work a new design 
is proposed, which is capable to outperform existent FP32 
implementation of 2D filters, by exploiting a new partitioning 
method of the operands [15], in the case that one of that 
assumes multiple constant values. The design works on a 
continuous stream of data, directly provided by the input 
source, and avoids the use of frame buffers by means of a 
careful organization of small intermediate buffers. The 
accuracy of the elaborated results is ensured by the use of 
FP32 coding, while its compactness is given by the complete 
absence of multiplier circuits. Although the proposed design 
can work with a large number of filter kernels, in this work it 
has been addressed to Gaussian filtering, in order to 
demonstrate its advantages in one of the most diffused and 
computational demanding application. Implementation of the 
2D filter on a high-end FPGA returns a total delay path of 4.7 
ns to produce an IEEE-754 FP32 result, starting from a 
window of 3x3 pixels, while std_cell implementation with 
TSMC CMOS 90 nm technology, returns 4.4 ns, both in 
slow/slow corner.  
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II. THE UNDERLYING METHOD 
The proposed partitioning method is based on the 

ancient mathematical problem dealing with the least 
number of pound weights that can be used on a scale pan 
to weigh any integer number of pounds from 1 to 40 
inclusive [16]. Recently, this problem has been resumed 
and generalized when 40 has been susbtituted with a 
generic integer m [17]-[19]. In [17] an important 
proposition has been demonstrated: 

Every integer weight l with 0 ≤ l ≤ m can be measured on 
a two scale balance using weights from the multiset 

. 

In particular, if m=0.5(3n+1-1) then Wm is the only and 
the smallest multiset of weights that satisfies the above 
Bachet problem. Considering a partition of a positive 
integer m,  defined as an ordered sequence of positive 
integers that sum to m:  with 

, this is called a Bachet partitions if: 
1. every integer  0 ≤ l ≤ 2m (eq. 0 ≤ l ≤ m) can be written 

as  where  (eq. ); 
2. there not exists another partition of m satisfying 1. with 

fewer parts than n+1. 
Such partitions are also called minimal 2-complete 

partitions [18]. The existance and the minimum number of 
parts composing a Bachet partition are demonstrated by 
the following results [18], [19]: 
• Lemma: If  is a 2-complete 

partition then l0=1 and  for 
every i. 

• Corollary: If  is a 2-complete 
partition then . 

• Theorem 1: a Bachet partition of a positive integer m has 
precisely  parts. 

• Theorem 2: the partition is a 

Bachet partition if and only if , l0=1 and 

 for every i.  
The uniqueness of the Bachet partition has been finally 

demonstrated in [20]. The principal conclusions of the 
above mathematical derivations that turn useful in our 
design, can be summarized as follows: 
• Given a range of integers [0;r], it is possible to define a set 

of integer values, called parts,  

of cardinality , such that all the 

values in the range could be obtained by a combination of 
li.  

• The parts are given by the first  powers of 3 plus
, namely,

 . 

• The partition is unique and does not exist another partition 
of [0;r] satisfying the aforementioned conditions composed 
by fewer parts than n+1. 

From the above results it follows that, defined the 
coefficients set , every term  can be 
rewritten as the superposition of the minimum number of 
parts: 

  (1) 

 
Table I shows the application of the proposed partitioning 

method. For example: for an 8 bits input, the parts are 
; the input 23 can be rewritten as 23=(-

1)1+(-1)3+(0)9+(+1)27+(0)81+(0)134, namely the set of 
values from Table I will be . 

Eq. (1) can be employed to partition a generic 2D-
convolution between a kernel F, having  dimensions, 
and an input matrix I(x,y). The filtered output, O, at the point 
(x0,y0), can be calculated as: 

 

(2) 

 
Considering that typical VS applications work on integer 

inputs coded with a small number of bits (e.g. 8 bits for Luma 
and Chroma) and that the coefficients of the filters are a priori 
known once that the filter dimensions have been defined, the 
values of the n inner products between  and  can be 
precalculated for each input value. Therefore, (2) can be 
simplified in a summation of precalculated coefficients, P: 
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TABLE I 
APPLICATION OF THE PROPOSED PARTITION METHOD 

Input 
Partition 

30 31 32 33 34 ... ln 

0 0 0 0 0 0 ... 0 

1 +1 0 0 0 0 ... 0 

2 -1 +1 0 0 0 ... 0 

3 0 +1 0 0 0 ... 0 

4 +1 +1 0 0 0 ... 0 

5 -1 -1 +1 0 0 ... 0 
... ... ... ... ... ... ... ... 

q C0 C1 C2 C3 C4 ... Cn 
... ... ... ... ... ... ... ... 
r +1 +1 +1 +1 +1 ... +1 
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    (3) 

It is worth to note that the proposed partitioning 
method is similar but substantially different from the 
Distributed Arithmetic (DA) method. DA, indeed, 
simplifies the calculations by recurring to a power of two 
partitioning, which substitutes multiplications with shifts 
and additions; on the contrary, the computational 
complexity of (3) is simplified by the smaller number of 
coefficients ensured by the lower number of parts of the 
proposed method. A radix-2 DA partitioning, for example, 

requires that I in (2) is decomposed as , where 

 represents the sign digit. Namely, (2) can be DA 
partitioned as: 

    (4)                   

Although the use of bi in place of Ci contributes to 
reduce some “glue” logic to implement (4), the value of s in 
(4) linearly increases with the codelength of the input. 
Therefore, the number of operators to implement the inner 
products in (4) rapidly overcomes that of (2), where n 
increases with a log3 slope. For example, in the case of 8 bit 
inputs, s=8 and n=5. Anyway, considering that the DA-
related literature offers several optimized 
implementations, the proposed filter has been 
implemented with Modified Booth (MB) multipliers, 
selected as one of the best exponent of the DA-related 
arithmetic. Results are reported in Table III. 

III. ARCHITECTURE DESIGN 
The block diagram of the proposed architecture is shown in 

Fig. 1. It has been divided in two sequential modules, 
following the data flow: the memory module that codes the 
input data according to the proposed partitioning method and 

manages the elaboration flow, and the filtering module that 
calculates (3). Input pixels, coded as m bits unsigned integers 
(Uint-m), can be acquired in raster scan order directly from an 
image source (e.g. image sensor), without any additional 
caching apparatus other than that provided by the source itself. 
The output is an IEEE-754 compliant, FP32 filtered value, 
sequentially provided with a throughput coherent with the 
input acquisition rate. Depending on the VS algorithm used in 
conjunction with the proposed design, optional serdes circuitry 
can be added with the purpose to align the filtered pixels in a 
parallel fashion. 

A. Memory Module 
The operation principle of the memory block is schematized 

in Fig. 1. Input pixels are acquired by the Coeff_Gen 
component, essentially composed by a ROM implementing 
Table I, by which data are coded in a sequence of ternary sign 
coefficients, . Considering that each Uint-m 

input must be partitioned in  parts, and 

that 2 bits are needed to code each sign, the length of the 
resulting code is ; namely, if m=8 bits, 

lC=12 bits. In turn, the original value of the pixel is no more 
necessary for the subsequent calculus. 

Coded data are fed in a SIPO (Serial-Input Parallel-Output) 
buffer, which serially stores the 1D filtered rows and outputs a 
K×K matrix of data to be convolved with a kernel having the 
same dimensions. Since input pixels are received in raster scan 
order, the SIPO is, in principle, folded like a stripe buffer of 
dimensions K×W, in order to store the first K rows of the 
image to be processed, having width W. When K-1 rows and 
the first K values of the Kth row are serially pushed into the 
buffer, the rightmost K columns of the buffer can be filtered in 
parallel.  

It is important to note that, the above organization allows 
that, each time a new value is pushed into the buffer, all data 
shifts so that those to be filtered are “naturally” aligned in the 
rightmost columns, without auxiliary circuitry to realize row-
shuffling operations [12]. Although a straightforward 
implementation of the stripe buffer, by using registers, is 
technically possible, it is strongly deterred for the large 
amount of physical resources required. For example, with 
reference to an 8 bits VGA image (W = 640), the stripe of a 
kernel with K=25 would store 640×25=16’000 values, each 
coded with 12 bits, corresponding to 188 kbits. A much more 
suitable solution consists in using SRAM to “emulate” the 
SIPO behavior of the buffer. Given the availability of 
embedded SRAM modules, both in standard cell technology 
and FPLs, this solution enables the implementation of the 
processor in both kind of target platforms. In order to enable 
the writing and reading of data during the same clock cycle, 
each row of the stripe buffer has been implemented by a dual-
port SRAM of dimensions lC×(W-K) to store almost a 
complete frame row. The parallel reading of the rightmost 
K×K data has been implemented by completing each SRAM 
row with K registers, connected like in Fig. 1, in order to 
preserve the shift operations needed by the stream of data. It is 
worth to note that, due to the casual access of SRAMs, it 
makes no more sense to speak of the shifting operation of 
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Fig.  1: Block diagram of proposed design. The Memory Module, 
enclosed in the dashed square, is detailed in its components. 
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data, but a correct generation of addresses emulates the shift of 
the stored values and their alignment. It is worth to underline 
that the proposed solution is always advantageous, in terms of 
total memory requirement, with respect to a frame buffer-
based implementation, since it requires a fraction of the 
memory of a complete frame.  

B. Filtering Module 
Fig. 2 shows the block diagram of the Filtering Module, 

representing the organization and interconnections of the 
equivalent K×K multipliers. The K small LUTs store the (n+1) 
parts pre-multiplied by the K coefficients of the filter,  in 
(2), coded with length lS, calculated in the following. In order 
to simplify the adder structure, the K LUTs are used to store 
also the 2’s complement of the pre-multiplied coefficients, 
which are selected when Ci=-1, without additional overhead. 
Therefore, each LUT has dimensions . The 
structure of a single equivalent multiplier is shown in Fig. 3. It 
has been substituted by n adders distributed along a 

depth tree, which calculates (3) by using the pre-
multiplied coefficients, selected by a multiplexer bank, and the 
Ci coefficients provided by the stripe buffer.  

Even if the adders should have, in principle, a FP32 
architecture, a custom coding has been adopted for partial 
results, achieving a reduction of the adders’ complexity, 
without altering the accuracy of the multiplication. Starting 
from the standard IEEE-754 coding [21], all the exponents of 
the pre-multiplied coefficients have been increased to that of 
the greatest one, the significands have been shifted 
accordingly and their length has been increased to include the 
shifted codes without truncations. In particular, if Fmin and 
Fmax are the minimum and maximum kernel coefficients, 
respectively, the codelength of the significands is increased to 
a number of bits:  

                         (4) 

where 23 bits is the length of the standard FP32 significand. 
Therefore, the normalization of the mantissa after every 
intermediate addition is avoided and the exponent, as well as 
the devoted circuitry, can be omitted. A normalization stage 
has been introduced at the end of the overall computation to 
normalize the output in a standard FP32 format. 

IV. SYNTHESIS AND RESULTS  
In order to contextualize the proposed design in a typical 

VS scenario and make the derived results comparable with the 
existent literature related to VS applications, the processor has 
been implemented with a 2D symmetric Gaussian kernel,

 working with Uint-8 inputs. A 
“building block” kernel with K=3 has been implemented, since 
it is the minimum usable dimension for VS applications. The 
range of input values that can be represented is r=256, 
therefore, the number of parts is , 
given by , and lc=12 bits.  

Considering that: 
,

,  
and , from (4) the length of the significands must be 

. An example of the above 

recoding is shown in Table II. Derived results can be easily 
generalized to greater dimensions by using curves in Fig. 4, by 
which only the dimensions of Coeff_Gen have been omitted 
since they depends only on the input coding.  

The design has been targeted to a Xilinx Virtex 7 
XC7V2000tflg1925-1, as part of the proFPGA DUO ASIC 
prototyping board [22] and to TSMC CMOS 90nm std_cells. 
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Fig. 3: Block diagram of multiplier, implemented with the proposed 
partitioning method.  

 
Fig. 2: Block diagram of Filtering Module, representing the way the 
“equivalent” multipliers are interconnected.  

TABLE II 
CUSTOM CODING APPLIED TO THE SMALLEST PRE-MULTIPLIED COEFFICIENT 

WITH UINT-8 INPUTS AND s=4 
Smallest  
Coeff.  r ln FP32 coding of  1.228x10-6 

 
1.1x10-3 

 

 

 134 

00110101101001001100001101010100 

256 Modified coding of  1.228x10-6 

 00000000000000000000101001001100001101010100 
*from (3) the significand must be enlarged of 21bits. 
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Synthesis results have been reported in Table III and 
compared with implementations of the filter using 
conventional FP32 and MB multipliers, all targeted to the 
same FPGA and std_cells. In order to present a fair 
comparison and as much reproducible and comparable 
results as possible, IPs provided by Xilinx for the adders 
and the multipliers, both configured with a 3-stage 
pipeline, have been used as building components of the 
proposed design. For the same reason, we did not impose 
aggressive constrains: the most relevant, in the case of 
FPGA, concerns the exclusion of embedded DSPs and in 
the forced use of Block RAMs. In addition, the flatten 
hierarchy option has been disabled and a general synthesis 
strategy toward speed has been selected. No particular 
constrains have been set for std_cell implementation. Table 
III shows that the FPGA is the most advantageous platform to 
implement the proposed multiplier, thanks to the availability 
of hard macros to implement LUTs. Indeed, considering that 
at regime, one pixel is filter per clock cycle, the FPGA 
implementation exhibits a speed-up of 371% with respect to a 
conventional multiplier, whereas the worst path delay reduces 
from 17.432 ns to 4.700 ns in the slow/slow corner, and a 
speed-up of 215% with respect to an MB multiplier, where 
the delay increases to 8.875 ns. The mapped physical 
resources are approximately lower of 38.6% than in the 
conventional case and 44.8% than in the MB-based filter, 
while the normalized dissipated power is approximately 
25% and 45% lower than the conventional and the MB 
one, respectively. In std_cells, it is possible to observe a 
reduction of about 24% in area and a speed-up of 94.75% with 
respect to a conventional multiplier, while the speed is quite 
the same than the MB-based design and power dissipation 
is 28% lower. The power dissipation is 2.84% higher than 

that of the conventional case, mainly due to the consumption 
of the memories. In obtaining the data in Table III, it has been 
considered that all the LUTs must be read from all the 
multipliers on the same clock edge. Although this can be 
easily implemented in FPGA, ASICs require a custom 
implementation of very small ROMs, developed in a way 
similar to the one presented in [23]. However, the amount of 
required memory does not represent an actual problem in real 
multimedia applications, whereas the memory requirement is 
in the order of Mbits because of frame buffering [24] or partial 
data storage [25],[26], which makes negligible the additional 
area required.  

A direct comparison of the results in Table III with the 
existent literature is very hard, because the search for the 
reduction of HW complexity has lead almost all authors to 
implement HW designs with fixed-point arithmetic or 
floating-point with reduced accuracy. Therefore, a fair 
comparison with the existent literature has been possible 
only by scaling-down the proposed design with respect to 
the results in Table III. Comparison with the 2D Gaussian 
filter for SIFT in [12] has been obtained by scaling-down 
the proposed processor to FP24 and synthesizing it with 
180nm std_cell libraries, based on the TSMC technology. 
In turn, comparison with the design in [27] has been 
carried out by using the same Xilinx Spartan 6 FPGA [28] 
used in the Nexys 3 board and scaling-down the accuracy 
to FP16. Results considering the available data are 
reported in Table IV. The greater quantity of memory 
with respect to [12] is justified by the use of a floating 
point coding and is by far compensated by the lower 
number of arithmetic circuits and the possibility to achieve 
more accurate coding with a limited amount of additional 
physical resources. For example, the adoption of a FP32 
coding would require only 21 kbits of additional memory. 
In all the comparisons, the proposed design exhibits a 
much higher elaboration speed, although the path delay is 
significantly limited by the memory access delay.  

As a final observation, it is important to underline that 
the use of a Gaussian filter is the most demanding in term 

TABLE III 
SYNTHESIS RESULTS OF THE PROPOSED FILTER COMPARED WITH  

THOSE BASED ON CONVENTIONAL AND MODIFIED BOOTH MULTIPLIERS 
 FPGA Std_cells 

 Prop. Conv. 
FP32 MB Prop. Conv. 

FP32 MB 

Technology XC7V* XC7V XC7V 90nm 90nm 90nm 
LUTs/ 

Area[mm2] 4750 7732 8606 0.294 0.387 0.51 

Mem. [byte] 582  -- 528 582 -- -- 
Delay**[ns] 4.700 17.432 8.785 4.426 8.717 4.483 

Power*** [W] 0.684 0.907 1.226 0.014 0.0136 0.019 

*Virtex 7 **1 pixel filtered per clock cycle    ***Normalized at 100MHz  

 
Fig. 4: Required resources of the 2D convolution-based filter as a 
function of its dimensions, when m=8 bits and W=640 pixels. 

TABLE IV 
COMPARISON OF THE PROPOSED DESIGN WITH THE RELATED LITERATURE 

 Std_cells FPGA 
 Prop* Huang [12] Prop***. Cabello [27] 

Technology CMOS 
180nm 

CMOS 
180nm Spartan 6 Spartan 6 

Output 
Resolution FP24 Fixed 24 

bits FP16 FP16 

LUTs -- N.A. 2395 5052 
Mem. [kbits] 255 224 4 1 BRAM 

Max freq.*[MHz] 126 100** 145 100 
     

*scaled to 3 octaves, 6 scales. 3 stage pipeline.  **extracted by the overall 
system velocity ***3x3 kernel  

TABLE V 
COMPARISON OF THE PROPOSED DESIGN WITH  

A GAUSSIAN AND A WEIGHTED AVERAGE KERNEL 
 FPGA Std_cells 
 Gaussian W. Aver Gaussian W. Aver 

Technology XC7V* XC7V 90nm 90nm 
LUTs/ 

Area[mm2] 4750 4744 0.294 0.293 

Mem. [byte] 582  483 582 483 
Delay**[ns] 4.700 4.877 4.426 4.669 

Power*** [W] 0.684 0.678 0.014 0.010 

*Virtex 7 **1 pixel filtered per clock cycle   ***Normalized at 100MHz  
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of resources instantiated by the proposed design. Indeed, 
the dimensions of the tables for pre-multiplied coefficients 
are strictly related to the kernel dimensions that, in turn, 
must be significantly larger than the standard deviation of 
the kernel. Therefore, the use of a different kernel 
generally causes a significant memory reduction. In turn, 
the arithmetic complexity of the filtering remains 
unchanged, since there are no multiplications and the 
number of additions only depends on the ranges of input 
values and of kernel coefficients. What said is confirmed 
from the results in Table V where the proposed Gaussian-
based implementation of Table III has been compared 
with a 2D weighted average filter, having FP32 coded real 
weights, taken as representative of large number of VS 
filters [10]. The only notable difference is in the reduction 
of about 17% of the memory required for coefficients. 
Naturally, this percentage increases with the kernel 
dimensions. 

V. CONCLUSION 
In this paper, a new HW architecture has been presented for 

2D convolution-based filtering of images and video-frames. It 
is particularly useful for VS applications, where performances 
strongly contrast with the number of arithmetic operators and 
required memory. Both the memory and the arithmetic 
apparatus have been design in order to improve the throughput 
and the amount of mapped resources. The memory 
compartment has been designed to elaborate images in raster 
scan order, without internal or external frame buffers. In turn, 
a new partitioning method has been used to improve the 
arithmetic compartment that substitutes multipliers with 
simplified adders and ROMs for storing pre-multiplied 
coefficients. The proposed solution obtains state-of-the-art 
performances in both std_cells and FPGA target platforms. In 
addition, power dissipation keeps to values that justify the 
employment of the processor for handheld, portable devices. 
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