
Influence of electron and phonon temperature on the efficiency of thermoelectric
conversion

A. Sellitto∗† and V. A. Cimmelli‡

Department of Mathematics, Computer Science and Economics,
University of Basilicata, Campus Macchia Romana, 85100, Potenza, Italy

D. Jou§
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In the framework of Extended Irreversible Thermodynamics it is developed a two-temperature
model (for electrons and phonons, respectively) of thermoelectric effects. The expression of the
maximum efficiency in terms of these two temperatures is derived as well. It is proved that, for
the electron temperature higher than the phonon temperature, the two-temperature model yields
an efficiency which is higher with respect to that of the single-temperature model. Two possible
experiments to estimate the electron temperature are suggested.
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Nomenclature

cv specific heat at constant volume

c
(e)
v specific heat at constant volume of electrons

c
(p)
v specific heat at constant volume of phonons

E electric-field vector

i electric-current density vector

J(s) specific-entropy flux vector

q overall local heat-flux vector

q(e) local heat-flux vector due to electrons

q(p) local heat-flux vector due to phonons

s specific entropy

T average temperature

Te electrons temperature

Tp phonons temperature

u specific internal energy

ue specific internal energy of electrons

∗ Corresponding author
†Electronic address: ant.sellitto@gmail.com
‡Electronic address: vito.cimmelli@unibas.it
§Electronic address: david.jou@uab.cat



2

up specific internal energy of phonons

Z figure-of-merit

Greek symbols

ε Seebeck coefficient

η thermoelectric efficiency

λ total thermal conductivity

λe electrons thermal conductivity

λp phonons thermal conductivity

µe electron chemical potential

Π Peltier coefficient

ρ mass density

%(e) specific electric charge

Σ thermodynamic state space

σe electrical conductivity

σ(s) rate of entropy-density production

τe relaxation time of electrons

τi relaxation time of electric charges

τp relaxation time of phonons

Subscripts

e electrons

eff effective

i electric-current density

max maximum

p phonons

Superscripts

(e) electrons

(p) phonons

(s) entropy
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I. INTRODUCTION

Thermoelectricity is actually viewed as a very interesting source of electric power because of its ability to convert
heat flow directly into electricity. In particular, thermoelectric devices as energy converters are easily scalable and do
not have moving parts, or liquid fuels. These excellent features make them applicable in almost any situation where
large quantities of heat tend to go to waste, from clothing to large industrial facilities.

Whilst the thermoelectric materials have been known and understood for quite some time, so far they have not been
efficient enough to be used commercially. Currently, many research groups are investing their efforts in finding new
materials with appropriate properties to better use thermoelectric effects, creating so efficient thermoelectric devices.
A good thermoelectric material will have very poor thermal conductivity λ, but a very high electrical conductivity σe,
so that the so-called figure-of-merit Z = ε2σe/λ, with ε being the Seebeck coefficient, which is the main responsible
of the thermoelectric efficiency, is as high as possible.

Indeed, the advent of nanotechnology is widening the range of applicability of thermoelectric materials. In fact,
the nanostructures used in materials maintain good electrical conductivity, while reducing the thermal conductivity.
The performances of thermoelectric devices can thus be enhanced with the use of nanotechnology-based materials
that have improved thermoelectric properties and good solar energy absorption abilities. Thermoelectric materials
based on Bi2 Te3, for example, stand out as perfect examples highlighting the role of nanomaterials for thermoelectric
devices. Carbon nanotubes and graphene sheets as thermoelectric materials also exhibit improved thermoelectric
properties. In general, the usage of nanostructures smaller than the wavelength of light enhances the scattering of
photons decreasing so the thermal conductivity. This decreasing in the thermal conductivity seems to be the most
vital benefit of nanostructuring for thermoelectric materials.

Although it is very clear the importance of using nanotechnology in thermoelectricity, the design of good thermo-
electric nanodevices is still far from its optimal solution. This principally because the physics at nanoscale presents
some dark points, as for instance the role played by memory, nonlocal and nonlinear effects, as well as the appropriate
definition of temperature in nonequilibrium situations [1–5].

In Ref. [6] we have investigated the influence of nonlocal effects on the figure-of-merit in cylindrical nanowires,
and predicted how it depends on the features of the transversal section. In the present paper, instead, we focus our
attention especially on the role of the temperature and on the possibility of accounting for different values for electron
and phonon temperature. Our investigation starts by the observation that, as the electron mean-free path `e is usually
shorter than the phonon mean-free path `p, when heat propagates in a system whose characteristic size L is such that
`e < L < `p, it is expected a very high number of electron collisions, and only scant phonon collisions. This yields that
the electron temperature Te may reach its local-equilibrium value, whereas the phonon temperature Tp is still far from
its own local-equilibrium value. Conversely, when the electron mean-free path (corresponding to the electron-phonon
collisions) is large, one may have the so-called phenomenon of ”hot electrons”, namely, a population of electrons whose
average kinetic energy (i.e., the kinetic temperature) is considerably higher than that of the phonons [7, 8]. Another
situation in which it is possible to have different temperatures for phonons and electrons is when a high-frequency
electromagnetic radiation is used to supply energy to the system, since in such a case the electrons receive energy at
a rate higher than that at which they give energy to the phonons. Therefore, it would be interesting to find possible
ways to measure both temperatures [9, 10].

Besides being appealing from the theoretical point of view, accounting for two different temperatures is also impor-
tant in practical applications, since it leads to a more realistic computation of the thermodynamic efficiency of the
thermoelectric devices.

Here we develop a mesoscopic model of enhanced thermoelectric equations which account for different phonon and
electron temperatures. Following the way drawn in Refs. [6, 11], we also assume that the overall heat flux q has two
different contributions: the phonon heat flux q(p) and the electron heat flux q(e), in such a way that q = q(p) + q(e).

The layout of the paper is the following. In Sec. II, we develop a theoretical model describing thermoelectric
effects when the electrons and the phonons do not have the same temperature. As a consequence of the second
Kelvin relation, we suggest a possible way to measure those temperatures. In Sec. III, as a practical application
of that model, we determine the efficiency of a thermoelectric generator. We point out that the difference between
electron and phonon temperature can contribute to improve the thermoelectric efficiency. In Sec. IV we draw the
main conclusions and we underline that our model may also cope with the phonon-drag phenomenon, suggesting so
a further experiment to check both the electron and the phonon temperature.

II. THE PHENOMENOLOGICAL LAWS

The analysis of coupled transport processes is one of the outstanding aspects of the classical theory of nonequi-
librium thermodynamics [3, 12]. In the present section we aim to derive the phenomenological laws describing the
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thermoelectric effects whenever the different heat carriers (i.e., the phonons and the electrons in our case) no longer
have the same temperature.

Since we assume that the heat carriers behave as a mixture of gases flowing through the crystal lattice [13, 14], it
seems logical to suppose that the internal energy of phonons per unit mass up, the internal energy of electrons per

unit mass ue and the electrical charge per unit mass of electrons %(e) belong to the state space. In particular, we
assume that those state-space variables are ruled by the following evolution equations:

ρ∂tup = −∇ · q(p) (1a)

ρ∂tue = −∇ · q(e) + E · i (1b)

ρ∂t%
(e) = −∇ · i (1c)

with ρ as the mass density, E as the electric field, and i as the electric-current density [6]. We note that the summation
of Eqs. (1a) and (1b) turns out the well-known energy-balance equation

ρ∂tu+∇ · q = E · i

obtained in Ref. [15] in the absence of a magnetic field, once the total internal energy per unit mass of the system u
is supposed to be given by the constitutive relation

u = up + ue (2)

According with the basic principles of Extended Irreversible Thermodynamics (EIT) [3, 5], we may assume that the
fluxes of previous unknown variables (namely, q(p), q(e) and i) are the other state-space variables. Elevating the fluxes
to the status of independent variables amounts to introduce memory and nonlocal effects into the formalism [16, 17].

In the Appendix at the end of the paper it is shown that, whenever the relaxation times of those fluxes are negligible,
the choice above of the state-space variables implies that the specific entropy s is such that s = s

(
up;ue; %

(e)
)
.

Therefore, in that case, from the Gibbs relation between s and the state variables, we have

ds =
∂s

∂up
dup +

∂s

∂ue
due +

∂s

∂%(e)
d%(e) ⇒ ∂ts =

1

Tp
∂tup +

1

Te
∂tue −

µe
%(e)Te

∂t%
(e) (3)

wherein Tp = (∂s/∂up)
−1

, Te = (∂s/∂ue)
−1

, and µe/
(
%(e)Te

)
= −∂s/∂%(e), µe being the chemical potential of the

electrons.
Although Eq. (3) does not present any problem from the theoretical point of view, from the practical point of view,

instead, it may lead to some perplexities due to the presence of Tp and Te therein. In fact, one may naturally wonder
whether they are measurable quantities, or not [9, 10]. Referring the readers to the end of the present section for a
first possible answer to that question, now let us only observe that we are allowed to postulate the following further
constitutive equations which relate the partial internal energies appearing in Eqs. (1) to those temperatures:

up = c(p)v Tp (4a)

ue = c(e)v Te (4b)

wherein c
(p)
v and c

(e)
v are the phonon and the electron specific heats at constant volume [18], respectively. As a

consequence of Eqs. (4), since the total internal energy u can be expressed through the average temperature T as

u = cvT , being cv = c
(p)
v + c

(e)
v the specific heat at constant volume of the whole system [19], from the coupling of

Eqs. (2) and (4) we obtain

T =
c
(p)
v Tp + c

(e)
v Te

cv
(5)

which states a very strict link between Tp, Te and T , the latter being a measurable quantity in practical applications.

Note that in the very general case c
(p)
v and c

(e)
v should be temperature-dependent functions, but here we deal only

with the simplest situation in which those material functions are constant, in order to emphasize the essential physical
ideas and their consequences.

In few words, we regard the phonons and electrons as a mixture of gases flowing through the crystal lattice [13, 14],
each of which is endowed with its own temperature. In this way, according with the theory of fluid mixtures with
different temperatures [20–22], we are allowed to assume that each constituent obeys the same balance laws as a
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single fluid, and it has its own temperature. The average temperature of the mixture has been introduced by the
consideration that the internal energy of the mixture is the same as in the case of a single-temperature mixture [21].

The substitution of Eqs. (1) into Eq. (3) leads to

ρ∂ts =− ∇ · q
(p)

Tp
− ∇ · q

(e)

Te
+

µe
%(e)Te

∇ · i +
E · i
Te

=

−∇ ·
(

q(p)

Tp
+

q(e)

Te
− µe
%(e)Te

i

)
− q(p) · ∇Tp

T 2
p

− q(e) · ∇Te
T 2
e

− i

Te
∇
(
µe
%(e)

)
+

(
µe

%(e)T 2
e

)
i · ∇Te +

E · i
Te

(6)

Recalling that the time rate of the specific entropy has to obey the balance law

ρ∂ts = −∇ · J(s) + σ(s) (7)

with J(s) being the entropy flux, and σ(s) the entropy source, the comparison between Eqs. (6) and (7) leads to the
following identifications:

J(s) =
q(p)

Tp
+

q(e)

Te
− µe
%(e)Te

i (8a)

σ(s) = − 1

Tp

{
q(p) · ∇Tp

Tp

}
− 1

Te

{[
q(e) − µe

%(e)
i

]
· ∇Te
Te

}
+

1

Te

{
i ·
[
E−∇

(
µe
%(e)

)]}
=
∑

α
J(α) ·X(α) (8b)

wherein J(α) is the thermodynamic flux, and X(α) is its conjugated thermodynamic force [3, 12].
Experience indicates that J(α) and X(α) are not independent, but that there exists a relationship between them.

Moreover, it has been observed that, for a large class of irreversible processes, the thermodynamic fluxes are linear
functions of the forces, to a good approximation [5, 12, 23]. This observation, which is also the simplest way to
ensure that σ(s) is a non-negative quantity whatever the thermodynamic process is, allows us to write the following
phenomenological relations for the fluxes appearing in our theoretical model:

−q(p) = L11
∇Tp
Tp

+ L12
∇Te
Te

+ L13

[
E−∇

(
µe
%(e)

)]
(9a)

µe
%(e)

i− q(e) = L21
∇Tp
Tp

+ L22
∇Te
Te

+ L23

[
E−∇

(
µe
%(e)

)]
(9b)

i = L31
∇Tp
Tp

+ L32
∇Te
Te

+ L33

[
E−∇

(
µe
%(e)

)]
(9c)

In Eqs. (9) the quantities Lαβ mean the phenomenological coefficients, which are related to experimental quantities.
The transport coefficients Lαβ are related to the thermo-physical properties of the material at hand. In general, the
Lαβ depend on the elements of the state space as well as on the thermodynamic forces. In such a case, we are
dealing with a nonlinear nonequilibrium theory (NLNET) [24]. If, instead, these coefficients depend only on the
elements of the state space, then we face with a semi-linear nonequilibrium theory (SLNET) [24]. Finally, if the
Lαβ are constant, then we deal with a linear nonequilibrium theory (LNET) [24]. The coefficients Lαα relate the
thermodynamic current to its own conjugated thermodynamic force. The cross-coefficients Lαβ with α 6= β, instead,
are representative of the coupling between different physical effects [12, 25]. Any phenomenon in which two or more
transport effects are coupled, such as thermal and electrical conductivity, or thermal conductivity and diffusion, is
called cross-effect [12, 25].

As the thermoelectric effects arise from the physical interrelation between heat flow and electric current, in the
classical thermoelectric models the cross-coefficients Lαβ with α 6= β, are only related to the coupled transport of heat
and electricity. In the present model, instead, the thermoelectric effect is driven by three generalized thermodynamic
forces, namely, the phonon and electron temperature gradient and the force due to the electric field and to the chemical
potential of the electric charge. As a consequence, the cross-coefficients L12 and L21 account for the cross effects due
to the different temperatures of the heat carriers (which are lacking in the classical case), the coefficients L13 and
L31 represent the coupling between the phonon temperature gradient ad the electric current, and the coefficients L23

and L32 account for the coupling between the electron temperature gradient ad the electric current. In the standard
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thermoelectric models, with Tp = Te, we have only two cross-coefficients and a 2× 2 transport matrix. Here, instead,
we have six cross-coefficients and a 3× 3 transport matrix. To be compatible with the second law of thermodynamics
(expressed as the positive-definite character of the entropy production) the matrix of phenomenological coefficients
Lαβ must be positive definite [12]. On the other hand, the Onsager reciprocal relations [26, 27] ensure that the
transport matrix is symmetric, so that the Sylvester criterion concerning the positive definiteness of real-symmetric
n × n matrices is applicable. Such a criterion states that the positiveness of all the leading principal minors of the
matrix is necessary and sufficient to ensure that it is positive definite [28].

Recalling that in our theory q = q(p) + q(e), in a somewhat different form the phenomenological equations (9) may
be also written as

q = − (λp + λep)∇Tp − (λe + λpe)∇Te +

(
µe
%(e)

+ Π

)
i (10a)

i = −σeε∇Te + σe

[
E−∇

(
µe
%(e)

)]
(10b)

once the following identifications are made: L11 = λpTp; L12 = λpeTe; L13 = 0
L21 = λepTp; L22 = λeTe + σeεTeΠ; L23 = −σeΠ
L31 = 0; L32 = −σeεTe; L33 = σe

(11)

with Π as the Peltier coefficient, and λp and λe as the thermal conductivities of the material whenever the sole phonons
or electrons [6, 29], respectively, are the heat carriers. It is worth observing that, as the phonon and electron internal
energies (or, due to Eqs. (4), the phonon and electron temperatures) enter the state space, our model is developed
within the frame of a semi-linear nonequilibrium theory.

Indeed, since we are regarding the phonons and the electrons as constituents of a same mixture of flowing heat
carriers, then, in principle, one must take into account the possible interactions between them, which yield further
thermal contributions. Therefore, in Eq. (10a) the material functions λpe and λep express those contributions to
the total thermal conductivity of the material. Referring the readers to the Appendix for more comments, here
we only note that the use of these thermal conductivities, arising from the phenomenological coefficients L12 and
L21 in Eqs. (9a) and (9b), respectively, are representative of the cross effects in the constitutive equations for the
diffusive fluxes q(p) and q(e). However, as it will be seen in Sec. III, these cross effects do not play any relevant role
on the efficiency in the thermoelectric energy conversion, being the difference in the two temperatures the principal
responsible for possible enhancements of it.

In Eqs. (11) we assumed L13 = L31 = 0 since it seems logical because the phonons are not expected to be directly
sensitive to the external electric field, at least in a first approximation. For polar lattices, this possibility would be
open, and L13 could be different from zero. However, here we take the simplest expression.

Owing to the Onsager reciprocal relations [26, 27], from Eqs. (11) we obtain

λpe = λep

(
Tp
Te

)
(12a)

Π = εTe (12b)

According to the Sylvester’s criterion, the additional constraints

λp > 0 (13a)

λp (λe + σeΠ) > λpeλep (13b)

λpλe > λpeλep (13c)

are necessary and sufficient to ensure that the entropy production is non-negative along arbitrary thermodynamic
processes. In fact, due the positive definiteness of the matrix of the transport coefficients, the entropy production is
positive whenever at least one thermodynamic force is different from zero, and vanishes when all the thermodynamic
forces are zero. Such a situation characterizes the quasi-static (i.e., reversible) processes [30], which correspond to
zero entropy production.

The relation (12b) is well known in thermoelectricity when Te is replaced by T . In that case it is referred to as
the second Kelvin relation, and it has been used since the early days in the study of thermoelectric phenomena. The
different result predicted by Eq. (12b) with respect to the usual statement of the second Kelvin relation (i.e., Π = εT )
should not be considered as a surprising and unexpected result. In fact, the classical statement is correct in the case
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that phonons and electrons have the same temperature. In the case they have a different temperatures, instead, the
relation (12b) seems more appropriate with respect to the classical form. That result is also not against Onsager
reciprocity relations [26, 27] but, on the contrary, it is an illustration of them, more accurate and precise than the
classical expression with a single temperature, as it is obtained from the symmetry of coefficients Lαβ appearing in
Eqs. (11).

Equation (12b) may be also very useful in practical applications if one is wondering to measure Tp and Te. In
fact, by means of a usual thermometer, one is only able to check the average temperature T , defined by Eq. (5).
Equation (12b) turns out that Te should be given as the ratio between Π and ε. Therefore, if one is able to measure
Π and ε then, by the coupling of Eqs. (5) and (12b), in principle, it will be possible to determine Tp, too. In fact,
setting
α =

c
(e)
v

cv
; 1− α =

c
(p)
v

cv

β1 =
Te
T

; β2 =
Tp
T

(14)

from Eq. (5) we have

αβ1 + (1− α)β2 = 1⇔ β2 =
1

1− α
−
(

α

1− α

)
β1 (15)

Finally, observing that α ∈ ]0; 1[, the physical constraint β2 > 0 implies that β1 ∈
]
0;α−1

[
. From Eq. (15) it is easy

to see that the condition β1 = 1 ⇒ β2 = 1, namely, in this case Te ≡ Tp ≡ T : the two-temperature model described
by Eqs. (10) reduces to the usual single-temperature model [3, 11], i.e.,

q = −λ∇T +

(
µe
%(e)

+ Π

)
i

i = −σeε∇T + σe

[
E−∇

(
µe
%(e)

)]
once the thermal conductivity λ of the material is supposed to be given as λ = λp+λe+2λpe. Previous considerations
allow us to claim that our model also shows a strong enough physical insight.

III. EFFICIENCY OF THERMOELECTRIC GENERATORS

Research in recent years has been focused on developing both thermoelectric structures, and materials that have
high efficiency. In the present section we point out the influence of accounting for two different temperatures in the
calculation of the efficiency η of a thermoelectric generator, defined as the ratio between the electric-power output Pel

and the total heat supplied per unit time Q̇, namely,

η =
Pel

Q̇
(16)

To this end, for the sake of simplicity, we consider a single one-dimensional (y is the sole cartesian coordinate)
thermoelectric element of length L under steady conditions. The hot side is held at a temperature Th (assumed to
be the upper side, at y = L), and the cold side at the temperature T c (the lower side, at y = 0). We also assume that

i and Q̇ enter uniformly into the hot side of the element. In such a situation, the electric-power output is

Pel = i ·
∫ L

0

Edy = iε
(
The − T ce

)
− i2L

σe
(17)

once the electric field is given by Eq. (10b) with vanishing values of ∇
(
µe/%

(e)
)
, for the sake of simplicity, and ε and

σe do not depend on the temperature.
From Eq. (10b), instead, we obtain that the total heat supplied per unit time is

Q̇ =

∫ L

0

q dy = Λp

(
Thp − T cp

)
L

+ Λe

(
The − T ce

)
L

+ Πi (18)
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wherein Λp = λp + λep, and Λe = λe + λpe.
Inserting Eqs. (17) and (18) into Eq. (16) we obtain

η =
iε
(
The − T ce

)
− i2Lσ−1

e

Λp
(
Thp − T cp

)
L−1 + Λe (The − T ce )L−1 + Πi

(19)

If we introduce in Eq. (19) the coefficients β1 and β2 defined in Eqs. (14), and take into account Eq. (12b), by
straightforward calculations we have

η =

(
1− T c

Th

) εx− λx2

σeβ1

γ + 1

Th
+ εx

⇔ η = ηcηr (20)

wherein we set λ = Λp + Λe, γ = (Λp/λ) (β2/β1 − 1), and x is the following ratio between the electric current and the
heat flux:

x =
iL

λ (Th − T c)
(21)

Moreover, in Eq. (20) ηc = 1 − T c/Th is the usual Carnot efficiency, and ηr is a reduced efficiency. Since ηc
represents the ideal limit of the thermodynamic efficiency, in practical applications one should find the right way to
enhance ηr in order to have a good thermoelectric efficiency. Indeed, it is easy to see that whenever the ratio x defined
above gets the value

xopt =

(
γ + 1

εT

)√1 +
Z̄Tβ1

γ + 1
− 1

 (22)

with Z̄ = ε2σe/λ, then the reduced efficiency gets its maximum value, and the thermoelectric efficiency reads

ηmax = ηc


Z̄Tβ1 + 2 (γ + 1)

1−

√
1 +

Z̄Tβ1

γ + 1


Z̄Tβ1

 (23)

which reduces to the classical form for the maximum thermoelectric efficiency [3, 31] whenever Tp and Te coincide,
i.e., when β1 = β2 = 1 and γ = 0.

From Eq. (23) it easy to recover the usual result that the larger the figure-of-merit, the higher the efficiency of a
thermoelectric device.

However, Eq. (23) clearly points out that also the differences between Tp and Te influence ηmax, whereas the cross
effects related to the phenomenological coefficients L12 and L21 in Eqs. (9a) and (9b) substantially remain unaltered
the predictions of our two-temperature model with respect those of the usual single-temperature model. This may be
interesting in practical applications, since the most part of the research groups is focusing the attention only on the
search of new materials with high values of the figure-of-merit.

In Fig. 1 we plot the behavior of the ratio ηmax/ηc as a function of β1 for two different values of the nondimensional
parameter α, i.e., α = 0.05 and α = 0.5. For the sake of illustration in our computation we assumed Λp = Λe, as the
materials commonly used in thermoelectric applications show a phonon thermal conductivity which is approximately
equal to the electron thermal conductivity. Moreover, we supposed that Z̄T = 1.

As it can be seen, the maximum efficiency increases for increasing values of β1. This means that the bigger Te with
respect to Tp, the better the performances of thermoelectric devices. Indeed, Fig. 1 also allows to analyze the role

played by c
(e)
v and c

(p)
v , the latter being usually higher than the former. In fact, it points out that the (positive) slope

of the curve ηmax = ηmax (β1) gradually decreases whenever α assumes very small values, whereas it basically takes
a constant value when α reaches high enough values, in such a way that whenever Te > Tp, the higher α, the higher
ηmax.

At the very end, we observe that in Fig. 1 the value ηmax/ηc = 0.17, attained whenever β1 = 1 [44] corresponds
to the case of a single-temperature model. Thus we may conclude that whenever the electron temperature is higher
than the phonon temperature, our two-temperature model yields an efficiency which is higher than that of the usual
single-temperature model.
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FIG. 1: Behavior of ηmax/ηc versus β1 for two different values of the nondimensional parameter α = c
(e)
v /cv: theoretical results

arising from Eq. (23). In figure, β1 < 1 ⇒ Tp > Te, β1 = 1 ⇒ Tp = Te, and β1 > 1 ⇒ Tp < Te.

IV. CONCLUSIONS

Thermoelectric devices have gained importance in recent years as viable solutions for appealing applications such
as spot cooling of electronic components, remote power generation in space stations and satellites, etc. These solid-
state devices have long been known for their reliability, rather than their efficiency. They do not contain moving
parts, and their performances primarily rely on the material selection which, indeed, has not yet achieved sufficiently
satisfactory candidates for widespread practical applications. Therefore, the research in recent years has been focused
on developing both thermoelectric structures, and materials that have higher efficiencies than that of the currently
available materials. The advent of nanotechnologies, which allow to improve the actual performances of thermoelectric
devices, has shifted the focus towards a deeper understanding of the carrier-transport behavior in nanostructures. In
fact, the quantum confinement in nanostructures increases the local-carrier density of states per unit volume near
the Fermi energy, yielding an enhancement in the Seebeck coefficient [32], while the thermal conductivity can be
decreased due to phonon confinement and phonon scattering [33, 34]. This way, the combined benefits of reduced
thermal conductivity and improved Seebeck coefficient imply theoretically higher values of ZT compared to the bulk
structures. However, experimental observations have not been able to achieve the presumed benefits of nanostructured
thermoelectric devices, despite theoretically predicted improvements.

Owing to the need for a better understanding of the effect of all the significant factors contributing to the ther-
moelectric figure-of-merit of nanoscale devices, in a previous paper [6] we have investigated the influence of nonlocal
effects on it in cylindrical nanowires, and we predicted how Z depends on the features of the transversal section.

Here, instead, we have analyzed the possible consequences of accounting for different temperatures for the different
heat carriers which may be interesting in practical applications, as we pointed out in Sec. I and Sec. III. In particular,
in the framework of EIT [3, 5], in the present paper we have developed a model of enhanced thermoelectric equations
assuming that the population of heat carriers behaves as a mixture of flowing gas particles [6, 13, 14] with different
temperatures, according with the theory proposed by Ruggeri and coworkers [20–22]. It seems worth noticing that
accounting for different temperatures is also a well-known mechanism of heat conduction in complex materials, where
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one of the components can be thermally excited independently of the other [7, 8, 35, 36]. In the case of thermoelectric
effects, instead, we feel that the consideration of two temperatures is, at least, a theoretical valuable approach because
it allows to identify with better conceptual clarity which part of the several effects is directly related to electrons (or
holes), which one to phonons, and which one to their mutual interactions. Thus, it is worth to explore it for its own
conceptual sake, as a model wider than the usual one, working directly with a single temperature. On the other
side, this may open the possibility of new practical strategies, although the effects are expected to be small in usual
circumstances. In fact, the results in Eq. (23), arising from the two-temperature model in Eqs. (10), point out that
the bigger the electron temperature than the phonon temperature, the higher the performances of a thermoelectric
device. This can be clearly seen in Fig. 1 wherein ηmax increases for enhancing values of the nondimensional ratio
β1 = Te/T . Figure 1 also allows us to make a comparison between the theoretical predictions of a single-temperature
model (β1 = 1) and those of our two-temperature model (β1 6= 1). In particular, whenever Te is higher than Tp, it
points out that the latter model yields a larger efficiency in the thermoelectric energy conversion with respect to that
predicted by the former model.

Since from the theoretical point of view it seems very clear the importance of accounting for Te and Tp, it would
be very useful in practical applications to find a possible way to estimate those temperatures [9, 10]. To this end,
by observing that our theoretical model predicts that the classical second Kelvin relation breaks down, as stated by
Eq. (12b), we also proposed a possible way of checking both temperatures. In more details, we observed that if one
is able to measure at nanoscale the Peltier and the Seebeck coefficients separately, then their ratio would turn out, in
principle, the electron temperature and then, as a consequence of Eq. (5), the phonon temperature, too. It is worth
to note that at nanoscale the different material functions may deviate from their corresponding bulk values, in such
a way that several methods of measuring them may be found in literature [37, 38].

From the practical point of view, the way of having a truly different temperature for electrons (and holes) and
lattice (phonons) is by means of a pulse-laser excitation yielding its energy to the charged particles (electrons), which
later share their energy excess with the lattice. Despite the lattice may be also charged, the much higher mass of the
ions makes that the electrons may absorb more energy from the pulse. However, this strategy is not of interest for
practical thermoelectric devices, because it would require spending energy on the laser, from which only a part would
be taken by the system. A different strategy would be by using a system composed of two (or several) thin layers (as
for instance a superlattice) which are shorter than the phonon mean-free path, but larger than the electron mean-free
path. If the electron and phonon contributions to the heat flux within the layers are, respectively, q(e) = −λe∇Te
and q(p) = −λp∇Tp, and the temperature discontinuities at an interface are ∆Te = Reqe and ∆Tp = Rpqp, Re and
Rp being the respective thermal resistance of the interface, one may obtain the profile for Te and Tp along the system.
Both temperatures must be equal to the heat baths at the two ends of the whole system, but they may be different
from each other along the system. By using suitable materials to have Re, Rp, λe and λp (or a suitably reduced
effective phonon thermal conductivity), one could have regions with Te higher than Tp, and regions with Te lower
than Tp. A detailed analysis of both profiles should be carried out to study the global effects of these differences on
the efficiency of the thermoelectric conversion in the whole device. Of course, electrons exchange energy with phonons
everywhere. Thus, it would be convenient that the electron heat flux is relatively large, in order that this energy
exchange does not bring to zero the temperature differences. These effects should be studied in detail. Though the
final practical outcome may turn to be small, the new detailed physical understanding of the system would be worth
of the effort.

Indeed, in our two-temperature model the problem of measuring Te and Tp may be also related to the phonon-
drag phenomenon [39, 40]. The classical theory of thermoelectricity, in fact, is based on the assumption that the
flow of charge carriers and phonons can be treated independently. Under this assumption, the Seebeck coefficient
depends solely by the spontaneous electron diffusion. However, when the two flows are linked, the effect of electron-
phonon scattering should be taken into account. Hence, in general, the Seebeck coefficient shows two independent
contributions: the conventional electron-diffusion contribution and the phonon-drag contribution [40]. The diffusion
part is caused by the spatial variation of the electronic occupation in the presence of a thermal gradient, whereas
the drag part arises by the interaction between anisotropic lattice vibrations and mobile charge carriers. The overall
phonon-drag effect leads to an increase in the Seebeck coefficient. If we look at Eq. (10b), we may observe that it
allows to introduce the following effective Seebeck coefficient

εeff = εβ1 ⇔ β1 =
εeff

ε
(24)

which also allows to claim that the deviation of the effective Seebeck coefficient from its bulk value represents a
further possible measurement of the electron temperature. Moreover, along with previous observations about the
phonon-drag phenomenon, from Eq. (24) we further claim that in general β1 should be greater than unit, namely,
Te > Tp.
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Appendix: compatibility with second law of thermodynamics

The results we derived in the present paper are based upon the system of equations (10). In Sec. II we already
pointed out a sufficient set of thermodynamic conditions ensuring the compatibility of those equations with the second
law. Indeed, Eqs. (10) follow from the assumption that the specific entropy only depends on the basic variables up,

ue and %(e), whereas, according with the general principles of EIT [3, 5, 16, 17], we have assumed that both those
variables, and the independent fluxes q(p), q(e) and i belong to the state space. Here we spend more comments about
that assumption. In doing this, we take advantage of the second law of thermodynamics.

The second law, accounting for the natural evolution of a system in any possible thermodynamic process, in fact,
is a very valuable tool to study the physical consistency of any thermodynamic model. In terms of the entropy
density s, its local form reads as in Eq. (7), wherein the entropy source has to be non-negative in any admissible
thermodynamic process. Since in Eq. (7) neither s, nor J(s) belong to the state space, then they have to be expressed
through constitutive equations. If we assume for them the very general forms

s = s
(
up;ue; %

(e); q(p); q(e); i
)

J(s) = J(s)
(
up;ue; %

(e); q(p); q(e); i
) (25)

then, by the chain rule, from Eq. (7) we get

σ(s) = ρ

(
∂s

∂up
∂tup +

∂s

∂ue
∂tue +

∂s

∂%(e)
∂t%

(e) +
∂s

∂q(p)
· ∂tq(p) +

∂s

∂q(e)
· ∂tq(e) +

∂s

∂i
· ∂ti

)
+
∂J(s)

∂up
· ∇up +

∂J(s)

∂ue
· ∇ue +

∂J(s)

∂%(e)
· ∇%(e) +

∂J(s)

∂q(p)
: ∇q(p) +

∂J(s)

∂q(e)
: ∇q(e) +

∂J(s)

∂i
: ∇i (26)

wherein the colon stands for the double inner product of two matrices. Second law of thermodynamics dictates that
the right-hand side of Eq (26) must be nonnegative for arbitrary thermodynamic processes. It contains the higher
derivatives ∂tup, ∂tue, ∂t%

(e), ∂tq
(p), ∂tq

(e), ∂ti, ∇up, ∇ue, ∇%(e), ∇q(p), ∇q(e) and ∇i, which can assume completely
arbitrary values [41], as they account for the natural and independent evolution in the space-time of the basic variables
up, ue and %(e), as well as for the evolution of the independent fluxes q(p), q(e) and i.

The evolution equations of up, ue and %(e) are given by Eqs. (1), whereas the time rates of q(p), q(e) and i in our
model read, respectively,

τp∂tq
(p) + q(p) = −λp∇Tp − λpe∇Te (27a)

τe∂tq
(e) + q(e) = −λep∇Tp − (λe + σeεΠ)∇Te + σeΠ

[
E−∇

(
µe
%(e)

)]
+

(
µe
%(e)

)
i (27b)

τi∂ti + i = −σeε∇Te + σe

[
E−∇

(
µe
%(e)

)]
(27c)

wherein τp, τe and τi are the relaxation times of phonons, electrons and electric current, respectively [6, 42]. In steady-
state situations, or whenever those relaxation times are vanishing, from Eqs. (27) it is easy to recover Eqs. (10).

Before to go further in the thermodynamic analysis, we feel that Eqs. (27) deserve some comments. They introduce
a theoretical model for thermoelectric effects which allows to point out clearly which part of the several effects is
directly related to the different heat/electric carriers, and which one to their mutual interactions. Mutual interactions,
in particular, in Eqs. (27a) and (27b) are introduced by cross effects of the form λpe∇Te and λep∇Tp, arising from
the phenomenological coefficients L12 and L21 in Eqs. (9) which are peculiar of our two-temperatures model. We
already observed that these effects do not play any direct relevant role on the thermoelectric efficiency. They are
very important, instead, if one is wondering to determine both the Tp profile and the Te profile in our system. In

fact, since they couple the differential equations for q(p) and q(e), then also small perturbations in one temperature
have repercussions on the other temperature. However, we note that the analysis of the possible influence of cross
effects in the constitutive equations for thermoelectricity is a very interesting research playground, since it may allow
to discover new ways to enhance the performances of thermoelectric devices, as it has been pointed out in Ref. [11],
for example.

Equations (27) follow from the observation that each thermodynamic flux J(α) is described by a generalized transport
equation of the form [5]

τα∂tJ
(α) + J(α) = Lαβ ·X(β)
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wherein Lαβ is the matrix of the phenomenological coefficients. It is worth observing that whenever the relaxation
times τp, τe and τi are negligible, the summation of Eqs. (27a) and (27b) turns out Eq. (10a), whereas Eq. (27c)
reduces to Eq. (10b).

To derive the thermodynamic restrictions imposed by the inequality σ(s) ≥ 0, it is possible to follow the procedure
proposed by Liu [43] which introduces the constraints in Eqs. (1) and Eqs. (27) by means of suitable Lagrange
multipliers, in such a way that the following inequality has to be fulfilled:

σ(s) − γp
(
ρ∂tup +∇ · q(p)

)
− γe

(
ρ∂tue +∇ · q(e) −E · i

)
− γi

(
ρ∂t%

(e) +∇ · i
)

− Γp

(
τp∂tq

(p) + q(p) + λp∇Tp + λpe∇Te
)

− Γe

{
τe∂tq

(e) + q(e) + λep∇Tp + (λe + σeεΠ)∇Te − σeΠ
[
E−∇

(
µe
%(e)

)]
−
(
µe
%(e)

)
i

}
− Γi

{
τi∂ti + i + σeε∇Te − σe

[
E−∇

(
µe
%(e)

)]}
≥ 0 (28)

Since the Lagrange multipliers γp, γe, γi, Γp, Γe and Γi are well-defined on the state space [41], as consequence
of the coupling of Eq. (26) and inequality (28), thermodynamic restrictions ensue by nullifying the coefficients of the
higher derivatives [41].

In particular, setting equal to zero each coefficient of the time-derivatives of the state-space variables, one has:

∂s

∂up
= γp ⇔

1

Tp
= γp (29a)

∂s

∂ue
= γe ⇔

1

Te
= γe (29b)

∂s

∂%(e)
= γi ⇔ −

µe
%(e)Te

= γi (29c)

∂s

∂q(p)
=

Γpτp
ρ

(29d)

∂s

∂q(e)
=

Γeτe
ρ

(29e)

∂s

∂i
=

Γiτi
ρ

(29f)

These relations turn out useful information about the dependence of the specific entropy on the state-space variables.
A possible form of s compatible both with the principle of maximum entropy at the equilibrium, and with Eqs. (29)
is

s = s0

(
up;ue; %

(e)
)
− τp

2ΛpT 2
p

q(p) · q(p) − τe
2 (Λe + εΠσe)T 2

e

q(e) · q(e) − τi
2εσeT 2

e

i · i (30)

provided the following identifications are made:

Γp =
ρ

2ΛpT 2
p

q(p) (31a)

Γe =
ρ

2 (Λe + εΠσe)T 2
e

q(e) (31b)

Γi =
ρ

2εσeT 2
e

i (31c)

From Eq. (30) it follows that whenever the relaxation times τp, τe and τi are negligible, then the dependence of s

on the fluxes q(p), q(e) and i may be neglected as well, and one may assume s ≈ s0

(
up;ue; %

(e)
)
. The result above

proves that the Gibbs equation (3), postulated in Sec. II, is in accordance with second law of thermodynamics.
Moreover, if one sets equal to zero the coefficients of the the first-order spatial derivatives of the state-space variables,
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the following further set of thermodynamic restrictions ensues:

∂J(s)

∂up
c(p)v = Γpλp + Γe

[
λep + σeΠ

∂

∂up

(
µe
%(e)

)]
+ Γiσe

∂

∂up

(
µe
%(e)

)
(32a)

∂J(s)

∂ue
c(e)v = Γpλpe + Γe

{
λe + σeΠ

[
ε+

∂

∂ue

(
µe
%(e)

)]}
+ Γiσe

[
ε+

∂

∂ue

(
µe
%(e)

)]
(32b)

∂J(s)

∂%(e)
= σe (ΠΓe + Γi)

∂

∂%(e)

(
µe
%(e)

)
(32c)

∂J(s)

∂q(p)
= γpU (32d)

∂J(s)

∂q(e)
= γeU (32e)

∂J(s)

∂i
= γiU (32f)

with U being the unitary matrix.
It is easy to verify by direct substitution that the system of thermodynamic restrictions (32) admits as solution the

constitutive equation (8a).
These thermodynamic considerations allow to claim that the model equations (10), which are a particular case of

the more general equations (27), are in accordance with the basic principles of continuum physics.

Acknowledgements

A. S. acknowledges the University of Basilicata for funding the research project Modeling heat and electric transport
in nanosystems in the presence of memory, nonlocal and nonlinear effects, and the Italian Gruppo Nazionale per la
Fisica Matematica - GNFM for financial support under grant Progetto Giovani 2012.

V. A. C. acknowledges financial support of the Italian Gruppo Nazionale per la Fisica Matematica - GNFM. Thanks
are given to the University of Basilicata for financial support and for funding the research subject in Mathematical
Physics Equazioni costitutive per la conduzione del calore nei nanosistemi.

D. J. acknowledges the financial support from the Dirección General de Investigación of the Spanish Ministry of
Science and Innovation under grant FIS No. 2009-13370-C02-01, the Consolider Project NanoTherm (grant CSD-
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