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Abstract. We prove the following two new criteria for the solvability of finite groups. The-

orem 1. Let G be a finite group of order n containing a subgroup A of prime power index ps.

Suppose that A contains a normal cyclic subgroup B satisfying the following condition: A/B
is a cyclic group of order 2r for some non-negative integer r. Then G is a solvable group.

Theorem 3. Let G be a finite group of order n and suppose that ψ(G) ≥ 1
6.68

ψ(Cn), where

ψ(G) denotes the sum of the orders of all elements of G and Cn denotes the cyclic group of

order n. Then G is a solvable group.

I. Introduction

The aim of this paper is to prove the following two criteria for solvability of finite groups.
The first criterion is the subject of the following theorem.

Theorem 1. Let G be a finite group of order n containing a subgroup A of prime power
index ps. Suppose that A contains a normal cyclic subgroup B satisfying the following
condition: A/B is a cyclic group of order 2r for some non-negative integer r. Then G is
a solvable group.

Before stating the second criterion, we need some definitions and some remarks. If G is a
finite group, then ψ(G) denotes the sum of the orders of all elements of G. More generally, if
X is a subset of G, then ψ(X) denotes the sum of the orders of all elements of X. Moreover,
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the cyclic group of order n is denoted by Cn. For example, ψ(C4) = 1 + 2 + 4 + 4 = 11
and ψ(C2 × C2) = 1 + 2 + 2 + 2 = 7. In the paper [1] H. Amiri, S.M. Jafarian Amiri
and I.M. Isaacs proved that, if G is a finite group and |G| = n, then ψ(G) ≤ ψ(Cn), and
ψ(G) = ψ(Cn) if and only if G ' Cn. Thus the sum of element orders of Cn is bigger than
that of any other group of order n. In a previous paper we proved the following result (see
[5], Theorem 1 and Corollary 4).

Theorem 2. Let G be a finite non-cyclic group of order n. Then

ψ(G) ≤ 7

11
ψ(Cn).

Moreover, if n is odd, then

ψ(G) <
1

2
ψ(Cn).

Thus the sum of element orders of Cn is by far bigger than that of any other group of
order n. A result in the even case is contained in the paper [6].

Our second solvability criterion for a group G of order n refers to the ratio ψ(G)/ψ(Cn).
We proved:

Theorem 3. Let G be a finite group of order n and suppose that

ψ(G) ≥ 1

6.68
ψ(Cn).

Then G is a solvable group.

In particular, this theorem implies the following result.

Theorem 4. If G is a non-solvable group of order n, then

ψ(G) <
1

6.68
ψ(Cn).

In particular, this holds for all non-abelian simple groups.

We continue now with a series of remarks related to the above mentioned results. In
these remarks G denotes a finite group.

Remark 1 For the proof of Theorem 1, we used the folowing two results.
The first result is the following theorem of H. Wielandt and O.H. Kegel (see [9] and

[13]).

[WK]-theorem. If G = AB, where A and B are nilpotent subgroups of G, then G is
solvable.

The second result is the Szep’s conjecture, which was proved by Elsa Fisman and Zvi
Arad (see [11], [12] and [2]).
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[FA]-theorem. If G = AB, where A and B are subgroups of G with non-trivial centers,
then G is not a non-abelian simple group.

The proof of the [WK]-theorem does not rely upon the classification of finite simple
groups, but the proof of the [FA]-theorem does rely on it. Therefore our proof of Theorem
1 relies upon the classification of finite simple groups.

The assumptions of the [FA] theorem do not imply the solvability of G. For example,
the non-solvable group G = SL(2, 5)× C2 is a product of two subgroups with non-trivial
centers.

Remark 2 For the proof of Theorem 3 we used the following six results.

The first result is the following Corollary B in the paper [1] of H. Amiri, S.M. Jafarian
Amiri and I.M. Isaacs.

[AAI]-theorem. If R is a normal cyclic Sylow subgroup of G, then

ψ(G) ≤ ψ(R)ψ(G/R),

with equality if and only if R is central in G.

The second result is the following theorem of I.N. Herstein (see [4]).

[IH]-theorem. If G contains an abelian maximal subgroup, then G is solvable.

The third result is the following Proposition 2.5 in our previous paper [5].

[HLM]-theorem. Let p be the maximal prime divisor of |G| and suppose that [G : 〈x〉] <
2p for some x ∈ G. Then either the Sylow p-subgroup of G is cyclic and normal in G or
G is a solvable group.

The fourth result is the following theorem of Marshall Hall, Jr (see Theorem 3.1 in [3]).

[MH]-theorem. Let p be a prime and let n = 1 + rp, with r being an integer satisfying
1 < r < (p+ 3)/2. Then no group has n Sylow p-subgroups, unless either n = qt for some
prime q, or r = (p− 3)/2 and p > 3 is a Fermat prime.

The fifth result is the following theorem of Andrea Lucchini (see Theorem 2.20 in [8]).

[AL]-theorem. Let A be a cyclic proper subgroup of G and let K = coreG(A). Then
[A : K] < [G : A], and in particular, if |A| ≥ [G : A], then K > 1.

The sixth result is the following theorem of B. Huppert and N. Ito (see [7] and Theorem
13.10.1 in [10]).

[HI]-theorem. If G = PB, where P is a nilpotent subgroup of G and B is a subgroup of
G containing a cyclic subgroup H of index [B : H] ≤ 2. then G is solvable.

In our proof of Theorem 3 we used the following corollary of the [HI]-theorem:
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[HI1]-theorem. Suppose that G contains a subgroup B of prime power index and B
contains a cyclic subgroup H of index [B : H] ≤ 2. Then G is a solvable group.

Our Theorem 1 is clearly a generalization of the [HI1]-theorem. In our proof of Theorem
3 we prefered to refer to [HI1]-theorem, rather than to our Theorem 1, since our proof of
Theorem 1 uses the [FA]-theorem, which relies on the classification of simple groups, while
the proof of the [HI]-theorem does not rely on the classification of simple groups.

Remark 3 In this remark we shall discuss the question how close are our results men-
tioned above to the best possible ones.

The upper bound 7
11 in Theorem 2 is best possible. For example, as shown above,

ψ(C2 × C2) = 7 and ψ(C4) = 11. Therefore

ψ(C2 × C2) =
7

11
ψ(C4).

Moreover, it is easy to see that if n = 4k for some odd integer k, then the group G =
C2k × C2 satisfies the above equality (see [5], Proposition 2).

The criterion for solvability in the [HI1]-theorem is quite delicate. The smallest non-
abelian simple group A5 contains a dihedral subgroup A of order 10, but [A5 : A] = 6, not
a prime power. On the other hand, the simple group PSL(2,7) contains a subgroup A of
index 8 and A contains a normal cyclic subgroup B of order 7, but [A : B] = 3, not 2.

Remark 4 Here we shall discuss the solvability criterion in Theorem 3 and we shall
state some related conjectures.

Notice that ψ(A5) = 211 and ψ(C60) = 1617. Therefore

ψ(A5) =
211

1617
ψ(C60) >

1

7.67
ψ(C60).

So our lower bound 1
6.68 in Theorem 3 is not very far from the best possible one.

As a matter of fact, we believe that the following conjecture holds:

Conjecture 5. If G is a group of order n and

ψ(G) >
211

1617
ψ(Cn),

then G is solvable.

If true, this lower bound is certainly best possible.
We also state a stronger version of Conjecture 5.

Conjecture 6. If G is a non-solvable group of order n, then

ψ(G) ≤ 211

1617
ψ(Cn),

with equality if and only if G = A5. In particular, this inequality holds for all non-abelian
simple groups.

As mentioned above, the simple group A5 satisfies the equality:

ψ(G)/ψ(Cn) =
211

1617
∼ 1

7.66
,

but for the other five smallest finite non-abelian simple groups this ratio is lower than 1
18 .

Finally we mention our Proposition 2.6, which was used in the proof of Theorem 3.
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Proposition 2.6. If H is a normal subgroup of G, then

ψ(G) ≤ ψ(G/H)|H|2.

We conjecture that the following ”companion” inequality is also true:

Conjecture 7. If H is a subgroup of G, then

ψ(G) ≤ ψ(H)(|G|/|H|)2.

This was our last remark, which concludes the Introduction section. Our other sections
are: Preliminary results related to ψ(G), Proof of Theorem 1 and Proof of Theorem 3.

II. Preliminary results related to ψ(G)

Notation 2.1. Let {q1, q2, q3, . . . } be the set of all primes in an increasing order: 2 =
q1 < q2 < q3 < . . . Let also q0 = 1.

If r is a positive integer, we define the function f(r) as follows:

f(r) =
r∏
i=1

qi
qi + 1

.

We also define f(0) = 1. Clearly f(r + 1) = f(r) · qr+1

qr+1+1 . Since q1 = 2, q2 = 3, q3 = 5,

q4 = 7 and q5 = 11, we have:

(A) f(0) = 1, f(1) =
2

3
, f(2) =

1

2
, f(3) =

5

12
, f(4) =

35

96
, f(5) =

385

1152
.

Notation 2.2. If r is a positive integer, we define the function h(r) as follows: h(1) =
f(0)q1 = 2 and for r > 1

h(r) =

( r−1∏
i=1

qi
qi + 1

)
qr = f(r − 1)qr.

Thus:

(B) h(1) = 2, h(2) = 2, h(3) =
5

2
, h(4) =

35

12
, and h(5) =

385

96
.

When convenient, we shall use the notation ψ(n) for ψ(Cn).
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Lemma 2.3. Let n be a positive integer and suppose that n = pα1
1 pα2

2 · · · pαrr , where pi
are primes, p1 < p2 < · · · < pr = p and αi are positive integers. Then the following
inequalities hold:

(1) pi
pi+1 ≥

qi
qi+1 for all i,

(2)
∏r
i=1

pi
pi+1 ≥ f(r),

(3) ψ(n) > (
∏r
i=1

pi
pi+1 )n2 ≥ f(r)n2,

(4) ψ(n) > f(r − 1) p
p+1n

2,

(5) ψ(n) > h(r) n2

p+1 , and

(6) if 1 ≤ s < r, then

ψ(n) > h(s)
pr

qr−1 + 1
· n2

pr + 1
≥ h(s) · n2

pr + 1
.

Proof. As shown in [5],

ψ(Cpαii
) =

p2αi+1
i + 1

pi + 1
and ψ(Cn) =

r∏
i=1

ψ(Cpαii
).

(1) Since pi ≥ qi for all i, it follows that pi
pi+1 ≥

qi
qi+1 for all i.

(2) Follows from (1).
(3)

ψ(n) =
r∏
i=1

p2αi+1
i + 1

pi + 1
>

r∏
i=1

p2αi+1
i

pi + 1
=

( r∏
i=1

pi
pi + 1

)
n2 ≥ f(r)n2.

(4) ψ(n) > (
∏r
i=1

pi
pi+1 )n2 ≥ f(r − 1) p

p+1n
2.

(5) Follows from (4), since h(r) = f(r − 1)qr ≤ f(r − 1)p.
(6) By (4)

ψ(n) >

( r−1∏
i=1

qi
qi + 1

)
pr

pr + 1
· n2 =

( s−1∏
i=1

qi
qi + 1

)
qs

( r−2∏
i=s

qi+1

qi + 1

)
pr

qr−1 + 1
· n2

pr + 1

where
∏r−2
i=s

qi+1

qi+1 = 1 if s = r − 1. Thus

ψ(n) > h(s)
pr

qr−1 + 1
· n2

pr + 1
≥ h(s)

n2

pr + 1
.

�

If n is as in Lemma 2.3, we denote n by n(r) and ψ(n) by ψ(n(r)). Then Lemma 2.3(4)
implies that ψ(n(r)) > f(r − 1) p

p+1n
2 and denoting p

p+1n
2 = L, we have:

ψ(n(1)) > L, ψ(n(2)) >
2

3
L, ψ(n(3)) >

1

2
L, ψ(n(4)) >

5

12
L, and ψ(n(5)) >

35

96
L.

We continue with two useful lemmas.
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Lemma 2.4. If 1 ≤ r ≤ 4, n = n(r) and pr = p > 7, then

ψ(n(r)) ≥ 385

96
· n2

p+ 1
.

Proof. Notice that p ≥ 11 and by Lemma 2.3(4) ψ(n(r)) > f(r− 1)p n2

p+1 . Hence it suffices

to show that f(r − 1)p ≥ 385
96 for 1 ≤ r ≤ 4. Since f(r) is a decreasing function, it suffices

to show it for r = 4. If r = 4, then f(r − 1)p = 5
12p ≥

55
12 >

385
96 , as required. �

Lemma 2.5. If n = n(r) and r ≥ 5, then ψ(n(r)) ≥ 385
96 ·

n2

p+1 .

Proof. By Lemma 2.3(5),(6) and (B) we have ψ(n(r)) ≥ h(5) n2

p+1 = 385
96 ·

n2

p+1 . �

The last result in this section is the following important proposition.

Proposition 2.6. Let H be a normal subgroup of the finite group G. Then

ψ(G) ≤ ψ(G/H)|H|2.

Proof. Write |G/H| = s, G/H = {x1H,x2H, . . . , xsH} and for every i ∈ {1, . . . , s} denote
the order of xiH in G/H by ti. Then

ψ(G/H) = t1 + t2 + · · ·+ ts.

Since G = x1H∪̇x2H∪̇ · · · ∪̇xsH, it follows that

ψ(G) = ψ(x1H) + ψ(x2H) + · · ·+ ψ(xsH).

Now we claim that

ψ(xiH) ≤ ti|H|2 for every i ∈ {1, . . . , s}.

Indeed, if h ∈ H, then (xih)ti ∈ (xiH)ti = H. Thus (xih)ti ∈ H and therefore (xih)ti|H| =
1. Hence o(xih) ≤ ti|H|, implying that ψ(xiH) ≤ ti|H|2, as claimed. Therefore

ψ(G) = ψ(x1H) + ψ(x2H) + · · ·+ ψ(xsH) ≤ (t1 + t2 + · · ·+ ts)|H|2 = ψ(G/H)|H|2,

as required. �
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III. Proof of Theorem 1

Proof of Theorem 1. We assume that B E A < G, with B a cyclic subgroup of A, A/B
a cyclic group of order 2r for some non-negative integer r and [G : A] = pr. It is easy to
see that if C ≤ A and D E A, then both C and A/D contain a normal cyclic subgroup of
index 2t, for some t being an integer satisfying 0 ≤ t ≤ r.

Let P be a Sylow p-subgroup of G. Then G = PA. Our proof is by induction on the
order of G. We may assume that pr > 1 and |B| > 1, since otherwise either G = A and
hence it is solvable or A is cyclic and G is solvable by the [WK]-theorem.

First we claim that G is non-simple. If |A/B| = 1, then G = PB, and G is solvable by
the [WK]-theorem. So we may assume in the proof of our claim that [A : B] = 2r for some
positive integer r.

If B is of even order, then the involution in B is central in A. Thus both P and A have
non-trivial centers, which implies by the [FA]-theorem that G is non-simple, as claimed.
So we may also assume in the proof of our claim that B is of odd order.

Suppose that p = 2. Then G = PB and G is solvable by the [WK]-theorem. On the
other hand, since B is of odd order, p > 2 implies that a Sylow 2-subgroup of G is cyclic
and hence G is solvable. Thus in all cases G is non-simple, as claimed.

So let N be a minimal normal subgroup of G. Then G/N = (PN/N)(AN/N) and
AN/N ∼= A/A ∩N . Thus AN/N satisfies our assumptions concerning A and hence G/N
satisfies the assumptions of our theorem. By the inductive hypothesis G/N is solvable.

Since NA is a subgroup of G containing A and G = PA, it follows that NA = (NA ∩
P )A. Thus NA satisfies the assumptions of our theorem. If NA < G, then by the inductive
hypothesis NA is solvable. Thus N is solvable, which implies the solvability of G, as
required. Finally, if NA = G, then G = PA implies that |N ||A|/|N ∩A| = |P ||A|/|P ∩A|.
Thus |N |/|A ∩ N | = |P |/|A ∩ P | and N = (A ∩ N)S, where S is a Sylow p-subgroup of
N . Hence N satisfies the assumptions of our theorem and by the inductive hypothesis N
is solvable. So G is solvable, as required. The proof of the theorem is complete. �

IV. Proof of Theorem 3

Proof of Theorem 3. Suppose that G be a group of order n and

ψ(G) ≥ 1

6.68
ψ(Cn).

Our aim is to prove that G is solvable.
Let n = pα1

1 pα2
2 · · · pαrr , where pi are primes, p1 < p2 < · · · < pr = p and αi are positive

integers. Our proof is by induction on r. If r ≤ 2 then G is solvable, as required. So
suppose that r ≥ 3 and the theorem holds for groups of order which is a product of less
than r distinct prime powers.

Suppose that G contains a normal cyclic Sylow subgroup R. Then by the [AAI]-theorem
and our assumptions we have

ψ(R)ψ(G/R) ≥ ψ(G) ≥ 1

6.68
ψ(|R|)ψ(|G/R|).
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Since ψ(R) = ψ(|R|), it follows that ψ(G/R) ≥ 1
6.68ψ(|G/R|) and by our inductive hypoth-

esis G/R is a solvable group. But then also G is solvable, as required. So we may assume
that G has no normal cyclic Sylow subgroups. This assumption will be called ”assumption
A”.

Suppose, next, that H is an abelian subgroup of G with a prime index [G : H]. Then
H is an abelian maximal subgroup of G and hence by the [IH]-theorem G is solvable, as
required. So we may also assume that if H is an abelian subgroup of G, then the index
[G : H] is not a prime number. This assumption will be called ”assumption B”.

If either p > 7 or r ≥ 5, then by Lemmas 2.4 and 2.5 we have ψ(n) ≥ 385
96 ·

n2

p+1 . Hence

ψ(G) ≥ 1

6.68
ψ(n) ≥ 1

6.68
· 385

96
· n2

p+ 1
=

385

641.28
· n2

p+ 1
,

which implies that there exists x ∈ G such that |x| > 385
641.28 ·

n
p+1 . Hence [G : 〈x〉] <

641.28
385 (p + 1). Since r ≥ 3, it follows that p ≥ 5 and p + 1 ≤ 6

5p. Hence [G : 〈x〉] <
3847.68
1925 p < 2p, and in view of ”assumption A”, the [HLM]-theorem implies that G is

solvable, as required.
Therefore we may assume that 3 ≤ r ≤ 4 and p ≤ 7. This implies that we need to deal

only with the following three cases: (i) r = 4 and p = 7, (ii) r = 3 and p = 7, and (iii)
r = 3 and p = 5.

Suppose, first, that case (i) holds: r = 4 and p = 7. Then p4 = 7 and by Lemma 2.3(3)
we have

ψ(G) ≥ 1

6.68
ψ(n) >

1

6.68
f(4)n2 =

1

6.68
· 35

96
n2 =

35

641.28
n2,

which implies that there exists x ∈ G such that |x| > 35
641.28n. Hence [G : 〈x〉] < 641.28

35 <
19.

If 7 | [G : 〈x〉], then by ”assumption B” we have [G : 〈x〉] = 14. Let Q ≤ 〈x〉 be a cyclic
Sylow 5-subgroup of G and let N = NG(Q). Then N ≥ 〈x〉 and

14 = [G : N ][N : 〈x〉] = (1 + 5k)[N : 〈x〉].

Since k > 0 by ”assumption A”, we have reached a contradiction.
If 7 - [G : 〈x〉], let P ≤ 〈x〉 be a cyclic Sylow 7-subgroup of G and let N = NG(P ).

Then N ≥ 〈x〉 and

19 > [G : 〈x〉] = [G : N ][N : 〈x〉] = (1 + 7k)[N : 〈x〉].

By ”assumption A” k = 0 is impossible and by the [MH]-theorem also k = 2 is impossible.
Hence k = 1, which implies that [G : 〈x〉] = 8[N : 〈x〉] and [N : 〈x〉] ≤ 2. Since [G : N ] = 8,
it follows by the [HI1]-theorem that G is solvable, as required. The proof in case (i) is
complete.

Suppose, next, that case (ii) holds: r = 3 and p = 7. By Lemma 2.3(3) we have

ψ(G) ≥ 1

6.68
ψ(n) >

1

6.68
f(3)n2 =

1

6.68
· 5

12
n2 =

5

80.16
n2,

9



which implies that there exists x ∈ G such that |x| > 5
80.16n. Hence [G : 〈x〉] < 80.16

5 < 17.
If 7 | [G : 〈x〉], then it follows from [G : 〈x〉] < 17 by ”assumption B” that [G : 〈x〉] = 14.

If 5 | n, let Q ≤ 〈x〉 be a cyclic Sylow 5-subgroup of G and let N = NG(Q). Then N ≥ 〈x〉
and

14 = [G : N ][N : 〈x〉] = (1 + 5k)[N : 〈x〉],

with k > 0 by ”assumption A”, a contradiction. If 5 - n, then 3 | n and let R ≤ 〈x〉 be a
cyclic Sylow 3-subgroup of G. Then M = NG(R) ≥ 〈x〉 and

14 = [G : M ][M : 〈x〉] = (1 + 3k)[M : 〈x〉].

It follows by ”assumption A” that k = 2, [G : M ] = 7 and [M : 〈x〉] = 2, which implies by
the [HI1]-theorem that G is solvable, as required.

If 7 - [G : 〈x〉], let P ≤ 〈x〉 be a cyclic Sylow 7-subgroup of G. Then N = NG(P ) ≥ 〈x〉
and

17 > [G : 〈x〉] = [G : N ][N : 〈x〉] = (1 + 7k)[N : 〈x〉].

By ”assumption A” k > 0 and by the [MH]-theorem k = 2 is impossible. So we must have
k = 1. Thus [G : N ] = 8 and [N : 〈x〉] ≤ 2, which implies by the [HI1]-theorem that G is
solvable, as required. The proof in case (ii) is complete.

Suppose, finally, that case (iii) holds: r = 3 and p = 5. By Lemma 2.3(3) we have

ψ(G) ≥ 1

6.68
ψ(n) >

1

6.68
f(3)n2 =

1

6.68
· 5

12
n2 =

5

80.16
n2,

which implies that there exists x ∈ G such that |x| > 5
80.16n. Hence [G : 〈x〉] < 80.16

5 < 17.
If 5 | [G : 〈x〉], then it follows from [G : 〈x〉] < 17 by ”assumption B” that either

[G : 〈x〉] = 10 or [G : 〈x〉] = 15. If [G : 〈x〉] = 10, let U ≤ 〈x〉 be a cyclic Sylow 3-subgroup
of G and let N = NG(U). Then N ≥ 〈x〉 and

10 = [G : N ][N : 〈x〉] = (1 + 3k)[N : 〈x〉].

By ”assumption A” it follows that k = 3 and N = 〈x〉. Hence N is an abelian maximal
subgroup of G and G is solvable by the [IH]-theorem, as required. If [G : 〈x〉] = 15, then
a Sylow 2-subgroup of G is cyclic and hence G is solvable, as required.

If 5 - [G : 〈x〉], let P ≤ 〈x〉 be a cyclic Sylow 5-subgroup of G. Then M = NG(P ) ≥ 〈x〉
and by ”assumption A” we have

17 > [G : 〈x〉] = [G : M ][M : 〈x〉] = (1 + 5k)[M : 〈x〉],

with either k = 1 or k = 2 or k = 3.
If either k = 2 or k = 3, then M = 〈x〉 and either [G : M ] = 11 or [G : M ] = 16,

respectively. Hence G is solvable by the [HI1]-theorem, as required.
If k = 1, then [G : M ] = 6, [M : 〈x〉] ≤ 2 andM is a maximal subgroup ofG. IfM = 〈x〉,

then M is an abelian maximal subgroup of G and G is solvable by the [IH]-theorem, a
contradiction, since [G : M ] is not a prime power.
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So suppose that [G : M ] = 6, [M : 〈x〉] = 2 and G is a non-solvable (2, 3, 5)-group
satisfying ψ(G) > 5

80.16n
2. Our aim is to reach a contradiction.

Denote 〈x〉 = A. Since [M : A] = 2 and [G : A] = 12, it follows by the [AL]-theorem
that if H = coreG(A), then [A : H] < [G : A] = 12. If 5 - [A : H], then H contains a
cyclic Sylow 5-subgroup Q of G, and since H is cyclic, Q is normal in G, contradicting
”assumption A”. Hence [A : H] = 5v < 12, which implies that either [A : H] = 5 or
[A : H] = 10. Thus either |G/H| = 60 or |G : H| = 120.

If |G/H| = 60, then G/H is a non-solvable group of order 60 and hence G/H ' A5.
Since ψ(A5) = 211, Proposition 2.6 implies that

ψ(G) ≤ ψ(G/H)|H|2 = 211(n/60)2 =
211

3600
n2.

But ψ(G) > 5
80.16n

2 and 5
80.16 >

211
3600 , so we have reached a contradiction.

If |G/H| = 120 and G/H is non-solvable, then using a list of such groups and their
ψ-values, we have ψ(G/H) ≤ 663. Thus Proposition 2.6 implies that

ψ(G) ≤ ψ(G/H)|H|2 ≤ 663(n/120)2 =
663

4× 3600
n2 <

211

3600
n2,

and arguing as before we reach a contradiction. This final contradiction completes the
proof of the theorem. �
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