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ABSTRACT 1 

Decreasing road transport's harmful effects on environment and health and reducing road 2 

accidents are major policy priorities. A variety of technologies could drastically improve air 3 

quality, reduce energy consumption and CO2 emissions of road vehicles: in this respect, a 4 

prominent trend leverages Electric Vehicles (EVs), supported by improved performance and 5 

energy efficiency through connectivity and automation. A noteworthy research question in the 6 

transition from Internal Combustion Engine Vehicles (ICEVs) to the alternative technologies, is 7 

to understand how Intelligent Transport Systems and other traffic –related measures can 8 

contribute to the reduction of fuel consumption and greenhouse gas emissions. In fact, a widely 9 

acknowledged tenet assumes that congestion removal or mitigation in presence of ICEVs implies 10 

also a reduction of transport-related externalities. This paper explores whether this effect still 11 

holds for EVs, by performing an analysis of energy consumption over different vehicle 12 

trajectories, under both congested and free-flow conditions. Calculations are carried out using 13 

two vehicle simulators: the VT-CPEM (Virginia Tech Comprehensive Power-based Energy 14 

consumption model) model for EVs and the CO2MPAS (CO2 model for Passenger and 15 

commercial vehicle Simulation) vehicle simulator for the ICEVs, for both electric and 16 

conventional cases passengers and freight/commercial powertrains have been analysed. Results 17 

are presented on real and simulated data related to four powertrain-vehicle combinations, in 18 

terms of general trends of energy/fuel consumption versus speed. Interestingly, results show that, 19 

differently from ICEVs, the relationship between congestion and energy consumption underlying 20 

EVs can change with higher energy consumption connected to an increased average traffic 21 

speed. 22 

 23 
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GLOSSARY 3 

• CAVs: Connected and Automated Vehicles 4 

• CONG: Congested 5 

• CO2MPAS: CO2 model for Passenger and commercial vehicle Simulation 6 

• EVs: Electric Vehicles 7 

• EFVs: Electric Freight Vehicles 8 

• FF: Free Flow 9 

• GHG: Greenhouse Gas 10 

• ICEVs: Internal Combustion Engine Vehicles  11 

• LC ICEVs: Light Commercial Internal Combustion Engine Vehicles 12 

• NGSIM: Next Generation SIMulation 13 

• PEVs: Plug-in Electric Vehicles 14 

• PHEVs: Plug-in Hybrid Electric Vehicles 15 

• SL: Speed Limit 16 

• VT-CPEM: Virginia Tech Comprehensive Power-based Energy consumption model 17 

• WLTC: World-wide harmonized Light duty Test Cycle 18 

 19 

  20 
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1. INTRODUCTION 21 

Connected and Automated Vehicles (CAVs) represent one of possible technologies to improve 22 

energy efficiency of transport systems: indeed, CAVs aim firstly at increasing users’ comfort and 23 

safety and secondly at reducing energy consumption and vehicle emissions by driving more 24 

efficiently than a human driver. In this respect, automation without connectivity could decrease 25 

road capacity because of more risk-averse automated driving setups, yielding larger headways 26 

(Makridis et al., 2018); however, the envisaged reduction of road accidents improves overall 27 

network performance, as accidents are major causes for bottlenecks. With the support of 28 

connectivity, CAVs might in theory allow for smaller headways thanks to shorter reaction times, 29 

with a consequent ceteris paribus2 positive effect in reducing traffic congestion. For ICEVs 30 

(Internal Combustion Engine Vehicles), lower congestion implies lower energy consumption and 31 

lower emissions, see e.g. (Litman, 2017), (Wadud et al., 2016), (Barth and Boriboonsomsin, 32 

2008) and (Treiber et al., 2008), thus leading reasonably to argue that connected and automated 33 

ICEVs are effectively able to reduce traffic externalities. The reason why low congestion levels 34 

also imply low energy consumption in ICEVs (Internal Combustion Engine Vehicles) is that the 35 

efficiency of internal combustion engines deteriorates in the presence of recurrent, highly 36 

transient, acceleration/deceleration phases (stop and go conditions). The vehicle powertrain 37 

efficiency increases with the speed, because of higher load, hence consumption decreases when 38 

travelling at constant speed, up to a certain speed limit, above which the vehicle powertrain 39 

 
2 The ceteris paribus concept should be intended by considering that improvement of traffic conditions is only a 

potential effect, due to the complexity of transport system phenomena. By way of example, the rebound effect – also 

referred to as the Braess’ paradox in the transport community – shows that seeking congestion reduction by 

increasing system capacity usually attracts further transport demand, with a possible deterioration of the system 

level-of-services in the long run. 



Fiori et al., 2018  6 

 

reaches its peak efficiency and any further increases in speed increases also fuel consumption. In 40 

addition, modern vehicles, especially in the attempt to meet CO2 emission targets set in several 41 

countries, adopt a variety of technologies (such as variable valve timing, regenerative breaking 42 

energy, coasting technologies, start-stop system, and so on) to improve their fuel consumption 43 

performances. 44 

Plug-in Electric Vehicles (PEVs)3 represent another prominent technology towards 45 

improved sustainability and lower emissions. Indeed, alternative powertrains such as PEVs 46 

represent a promising technology for the propulsion of vehicles thanks to higher efficiency and 47 

potentially effective contribution to the decarbonisation of transport, as well as air quality 48 

improvements in urban areas. However, whether this holds for any specific conditions in which 49 

the vehicle operates it is still a vastly unexplored field. Obviously, PEVs can be easily coupled 50 

with vehicle connection/automation and, in general, they can be applied in the context of policies 51 

aimed at reducing traffic congestion. In this respect, the efficiency of hybrid and electrified 52 

powertrains has a very different pattern with respect to ICEVs, being approximately constant 53 

over large intervals in the vehicle operational range. This makes the relationship between traffic 54 

congestion and PEVs consumption much less straightforward than for ICEVs: thus, any claims 55 

on the environmental effectiveness of traffic-related measures in presence of PEVs should be 56 

supported by an investigation of the underlying relationship between traffic conditions and 57 

fuel/energy consumption. 58 

 
3 The U.S. DOE (Department Of Energy of the United States) defines as Plug-in Electric Vehicles (PEVs) both the 

(i) Plug-in Hybrid Electric Vehicles (PHEVs) parallel/blended (e.g. Toyota Prius Plug-in) and series, also named 

Extended Range Electric Vehicles (EREVs) (e.g. Chevy Volt); and (ii) Electric Vehicles (EVs) (e.g. Nissan Leaf). In 

this paper exclusively Electric Vehicles (EVs) for passengers applications have been analysed. Addionally, Electric 

Freight Vehicles (EFVs) have been studied. 
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In this light, main objective of this paper is to perform a preliminary investigation of this 59 

research question. For this aim, the energy/fuel consumption of four different types of vehicles 60 

and concerned powertrains (including passengers and freight/commercial powertrains) has been 61 

simulated in various traffic scenarios, including both free-flow and congested traffic conditions, 62 

to explore the general trend of energy/fuel consumption vs. speed in such case studies. 63 

Specifically, for EVs and Electric Freight Vehicles (EFVs), the tank-to-wheel calculation of on-64 

board energy consumption/recovery has been performed with the Virginia Tech Comprehensive 65 

Power-based Energy consumption model (VT-CPEM) (Fiori et al., 2016), whilst for ICEVs and 66 

Light Commercial (LC) ICEVs the CO2 model for Passenger and commercial vehicle Simulation 67 

(CO2MPAS) (“CO2MPAS: Vehicle simulator predicting NEDC CO2 emissions from WLTP — 68 

CO2MPAS 1.6.1.post0 documentation,” 2018, Fontaras et al., 2018) has been applied. 69 

Preliminary results show that, in contrast with a rather wide common belief, the relationship 70 

between energy consumption and traffic conditions for EVs is appreciably different from the 71 

relationship between fuel consumption and traffic conditions underlying ICEVs. In this light, 72 

results presented in this paper aim at stimulating a broader discussion on the impact of vehicle 73 

electrification on the overall energy consumption of the transport sector. 74 

The remaining of the paper is organized as follows: Section 2 reports on a short literature 75 

review, Section 3 illustrates the methodology and all concerned details on the approach and on 76 

used vehicle simulators, Section 4 describes analysed case studies, Section 5 shows experimental 77 

results and, finally, Section 6 draws conclusions and research prospects. 78 

2. LITERATURE REVIEW 79 

Energy consumption of a vehicle can generally achieve high variability (Pavlovic et al., 2018), 80 

depending on several external factors, such as vehicle and road characteristics, environmental 81 
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conditions, traffic conditions, and so on (Fontaras et al., 2017). In particular, the relationship 82 

between traffic conditions and environmental externalities has been the subject of several 83 

research efforts, from both policy and technical viewpoints.  84 

By way of example, from a policy perspective, (Gerboni et al., 2017) presented a 85 

conceptual link between two families of models - energy and transport - showing the importance 86 

of accurate ICT-based data exchange between the models and the relevance of a comparison 87 

between present and future policy implementations. Indeed, both energy strategy makers and 88 

transport planners need supporting tools for a better assessment of the impact of alternative 89 

policies and to set realistic targets for the transport sector. From a technical perspective, (Li et 90 

al., 2017; Qi et al., 2017) developed a mesoscopic energy consumption estimation for EVs to 91 

evaluate its integration with eco-routing applications. Barth and Boriboonsomsin (Barth and 92 

Boriboonsomsin, 2008) underlined that fuel consumption and CO2 emissions for ICEVs can be 93 

lowered by improving traffic conditions, specifically by reducing traffic congestion. The authors 94 

analysed traffic congestion and its impact on CO2 emissions using detailed energy and emission 95 

models and linking them to real-world driving patterns and traffic conditions. Results show for a 96 

typical traffic scenario in Southern California that CO2 emissions can be reduced by up to almost 97 

20% by applying different traffic management strategies. Similar conclusions are reported, 98 

amongst others, by (Mascia et al., 2017), (Beevers et al., 2016), (Stevanovic et al., 2009), (Demir 99 

et al., 2014), and (Boriboonsomsin et al., 2012).  100 

For the purposes of the paper, few studies have introduced already the concept that a 101 

migration from conventional ICEVs to electrified powertrains may change the relationship 102 

between traffic conditions and vehicle energy consumption. In this respect, amongst others, 103 

(Fontaras et al., 2008) and (Gardner et al., 2013) highlighted that, for both hybrid and plug-in 104 
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hybrid vehicles, the tank-to-wheel energy consumption on a per-kilometre basis is lower in 105 

within-city driving cycles and higher in highway driving cycles, that is the opposite of a 106 

conventional internal combustion engine vehicle. However, a more thorough investigation of this 107 

research question is still missing in the literature. 108 

This paper aims at filling this gap, leveraging and extending a previous work by (Fiori et 109 

al., 2017), whose aim was the evaluation of the impact of route selection on energy consumption 110 

of electric vehicles, based on empirical second-by-second Global Positioning System (GPS) 111 

commute data and traffic micro-simulation data. The study found that EVs and conventional 112 

ICEVs exhibit different fuel/energy-optimized traffic performances, thus leading to 113 

recommendation of different routing paths. More specifically, simulation results indicated that a 114 

faster route can increase EVs energy consumption, whilst significant energy savings can be 115 

observed when EVs utilize a longer travel time route due to energy regeneration. Interestingly, 116 

regenerated energy was greatly affected by facility types and congestion levels and, in turn, it 117 

can influence significantly EVs energy efficiency. As a side note, this opens room for an in-118 

depth exploration of eco-routing strategies for alternative powertrains.  119 

3. METHODOLOGY 120 

The paper aims at analysing the relationship between energy/fuel consumption and traffic 121 

conditions based on an empirical approach, primarily because of the inherent difficulties 122 

underlying a theoretical approach able to cover satisfactorily the wide range of concerned 123 

technology configurations and traffic conditions. The proposed empirical approach takes 124 

advantage of different available sources of real-world vehicle activity data and calibrated vehicle 125 

simulation models for different vehicle technologies, thus covering a broad range of vehicle 126 

operating conditions, case studies and types of vehicles. Overall, empirical results allow 127 
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exploring – at least qualitatively – the general relationship between energy consumption and 128 

traffic conditions for both ICEVs/LC ICEVs and EVs/EFVs and to explore concerned policy 129 

implications. 130 

The methodology adopted in the paper leverages two main aspects, respectively the vehicle 131 

activity data and the calculation of vehicle energy/fuel consumption, illustrated in the next sub-132 

sections. 133 

3.1. Vehicle activity data  134 

The soundness of the proposed empirical approach highly depends upon availability of a rather 135 

broad set of data, sufficiently representative of different contexts and traffic conditions. For this 136 

aim, the paper considers the following four data sources:  137 

- two sets of real “reconstructed” vehicle trajectory data: 138 

o the NGSIM dataset collected in US (in the remainder of the text labelled as 139 

NGSIM) (“U.S. Department of Transportation. Federal Highway 140 

Administration. Next Generation Simulation (NGSIM) program, 141 

https://www.its-rde.net/index.php/rdedataenvironment/10023; [accessed 08 142 

November 2017],” 2017), eventually reconstructed by (Montanino and Punzo, 143 

2015) 144 

o the MULTITUDE dataset collected in Naples (Italy), and described in (Punzo 145 

et al., 2005)  146 

- simulated trajectory data using the Aimsun traffic simulation model (Barceló and 147 

Casas, 2005) calibrated for a freeway scenario in Antwerp (Belgium). 148 

- average speed profiles resulting from the analysis of 1 million kilometres of real-149 

world trajectory data in the WLTC dataset (“Development of the World-wide 150 
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harmonized Light duty Test Cycle (WLTC) and a possible pathway for its 151 

introduction in the European legislation - EU Science Hub - European Commission,” 152 

2015). 153 

Each of these datasets consists of one or more vehicle trajectories on the same origin-154 

destination pair. For the purposes of the paper, all traffic conditions should be covered, from 155 

congestion (i.e. traffic speed affected by traffic flow) to saturation (unstable flow, i.e. stop-and-156 

go conditions). In this respect, the first two datasets were built to perform analysis of 157 

longitudinal interactions among vehicles, the third represents a simulation scenario with heavy 158 

traffic conditions and the fourth is an artificial4 vehicle trajectory used in laboratory for the 159 

certification of vehicles’ energy consumption and pollutant emissions. As a result, the first 160 

dataset is the only embedding an almost free-flow trajectory. Thus, a free-flow trajectory has 161 

been generated and added to each dataset to cover the set of all traffic conditions: such free-flow 162 

trajectory assumes a vehicle reaching and keeping constant either its maximum speed of the 163 

trajectory itself or the road speed limit where available/applicable. Additional information on the 164 

different datasets is reported in Section 4. 165 

3.2. Calculation of energy/fuel consumption  166 

For the purposes of the paper, each trajectory in the vehicle activity datasets illustrated in the 167 

previous section should be associated with a energy/fuel consumption related to different vehicle 168 

types/configurations, that is: 169 

 
4 An average speed profile is an artificial vehicle trajectory constructed to be representative of average driving 

conditions from a series of real-world observations. It is usually used to derive various types of information related 

to vehicles performance (e.g. fuel consumption, pollutant emissions, electric range, etc.) under standardized 

conditions (e.g. by using it to test a vehicle on a chassis-dynamometer in a lab or to perform a vehicle simulation).   
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• a C-segment electric vehicle (e.g. Nissan Leaf, Chevrolet Bolt),  170 

• a C-segment gasoline ICE vehicle (e.g. Ford Focus, Toyota Auris),  171 

• a light commercial electric freight vehicle (e.g. Renault Kangoo Z.E., Nissan e-172 

NV 200),  173 

• a light commercial diesel ICE vehicle (e.g. Renault Kangoo, Nissan NV 200).  174 

The main characteristics of the vehicles simulated are reported in Table 1. 175 

Table 1: Vehicles main characteristics. 176 

  EV EFV ICE LC ICE 

Weight [kg] 1595 1628 1220 1270 

Air drag coefficient  0.28 0.35 0.28 0.35 

Battery capacity [kWh] 24 22  -  - 

Engine capacity [cm3] - - 1600 1600 

Fuel used Electricity Gasoline Diesel 

 177 

The two light commercial vehicles have been simulated with two different payloads, to 178 

understand the potential impact of different weight conditions. At a glance, a summary of all 179 

case studies simulated in the present study is presented in Table 2, resulting from intersection of 180 

vehicle activity data and types of vehicles. Further information on simulated trips, case studies, 181 

and vehicles characteristics/performances is provided in the remaining of the paper, where 182 

needed. Importantly, already calibrated vehicle simulation models have been applied to calculate 183 

energy/fuel consumption of concerned vehicles in each trajectory, as illustrated in the next sub-184 

section. 185 

 186 
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3.2.1. Vehicle simulators 187 

The vehicle simulators applied in this work are the CO2MPAS vehicle simulator, developed by 188 

the Joint Research Centre of the European Commission, for estimating the fuel consumption of 189 

the ICEVs/LC ICEVs (Ciuffo and Fontaras, 2017; Tsiakmakis et al., 2017) and the VT-CPEM 190 

vehicle energy consumption model, developed by (Fiori et al., 2016), for estimating the energy 191 

consumption of the EVs/EFVs.  192 

The interested reader might refer to the above literature references for in-depth technical 193 

details of each simulator. At a glance, CO2MPAS is a backward-looking longitudinal-dynamics 194 

CO2 and fuel-consumption simulator for light-duty M1 & N1 vehicles (cars and vans), especially 195 

created to estimate and type-approve CO2 emissions of vehicles by simulating NEDC conditions 196 

based on the emissions measured during WLTP tests, according to the EU legislation 197 

(“Regulation (EU) No 1014/2010,” 2018). CO2MPAS is an open-source project developed in 198 

Python-3.5 (Van Rossum and Drake Jr, 1995) and licensed through the European Public License 199 

scheme, and currently adopted by dozens of technical services and type-approval authorities in 200 

charge of the emission type-approval of vehicles in Europe. Evidence collected from the official 201 

use of CO2MPAS during the type-approval of vehicles shows that the model is able to estimate 202 

fuel consumption of internal combustion engine vehicles equipped with any kinds of specific 203 

technology, with an unbiased error of  4% in 75% of the cases (Ciuffo and Fontaras, 2017; 204 

Fontaras et al., 2018). 205 

The VT-Comprehensive Power-based EV Energy consumption Model (VT-CPEM) is a 206 

backward highly-resolved power-based model. Specifically, the model requires as inputs the 207 

instantaneous speed and the vehicle characteristics, and produces as output the energy 208 

consumption (EC) [kWh/km] by the vehicle for a specific drive cycle, the instantaneous power 209 



Fiori et al., 2018  14 

 

consumed [kW], and the state of charge (SOC) of the electric battery [%] at the end of the 210 

simulation. This model accurately estimates the energy consumption, producing an average error 211 

of about 6% relative to empirical data (Fiori et al., 2016).  212 

Table 2: Overview of case/scenario characteristics. 213 

Case 

Traffic Characteristics 

Vehicle powertrain Payload 

Condition Average speed (km/h) 

NGSIM 

Congested 15.4 (std. dev. 0.32) 

EV - 

ICEV - 

EFV 0 and 300kg 

LC ICEV 0 and 300kg 

Free-flow 87.5 

EV - 

ICEV - 

EFV 0 and 300kg 

LC ICEV 0 and 300kg 

Naples 

Congested 22.2 

EV - 

ICEV - 

EFV 0 and 300kg 

LC ICEV 0 and 300kg 

Speed-Limit 50 

EV - 

ICEV - 

EFV 0 and 300kg 

LC ICEV 0 and 300kg 
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Antwerp  

Congested 41.5 (std. dev. 1.81) 

EV - 

ICEV - 

EFV 0 and 300kg 

LC ICEV 0 and 300kg 

Free-flow 90 

EV - 

ICEV - 

EFV 0 and 300kg 

LC ICEV 0 and 300kg 

WLTC 

Congested 46.5 

EV - 

ICEV - 

EFV 0 and 300kg 

LC ICEV 0 and 300kg 

Free-flow 77.9 

EV - 

ICEV - 

EFV 0 and 300kg 

LC ICEV 0 and 300kg 

 214 

4. DETAILED DESCRIPTION OF CASE STUDIES 215 

4.1. NGSIM real trajectory data (NGSIM) 216 

The Next Generation Simulation (NGSIM) program was initiated by the United States 217 

Department of Transportation (US DOT) Federal Highway Administration (FHWA) in the early 218 

2000's (“U.S. Department of Transportation. Federal Highway Administration. Next Generation 219 
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Simulation (NGSIM) program, https://www.its-rde.net/index.php/rdedataenvironment/10023; 220 

[accessed 08 November 2017],” 2017). The Next Generation SIMulation project is the only data 221 

source that provide public access to complete sets of all vehicle trajectories observed in a time-222 

space domain. NGSIM vehicle trajectory data were collected in four sites (two highway 223 

segments and two arterials) through synchronized video cameras, mounted on top of high 224 

buildings adjacent to the roadway, recording all vehicles passing through the study area (see 225 

Figure 1 (left)). Post-processing of images finally gives vehicle positions on the road section 226 

every 0.1 seconds.  227 

Overall, NGSIM data is well-acknowledged as one of the most valuable source of microscopic 228 

traffic data and have been widely used by scientists worldwide to advance research in traffic 229 

flow theory. However, in recent years, some researchers collected substantial proofs 230 

demonstrating that such data are largely affected by measurement errors, potentially jeopardizing 231 

credibility of many studies based on them (Punzo et al., 2011). (Montanino and Punzo, 2015, 232 

2013) deeply investigated these issues and proposed a multi-step procedure to reconstruct vehicle 233 

trajectory data, and applied it to the NGSIM I80-1 dataset. The “reconstructed” NGSIM I80-1 234 

dataset, publicly available on the US FHWA ITS Public Data Hub, has been used in this study. 235 

For the simulations carried out in this paper, 19 out of more than 2000 overall NGSIM 236 

trajectories have been selected as representative of 19 different congested case studies, with an 237 

average speed of 15.4 km/h and a standard deviation of 0.32 km/h. Each of the 19 trips has a 238 

duration higher than 90 seconds. A further trajectory, showing approximately constant speed 239 

(average 87.5 km/h) throughout the road stretch, has been also selected as representative of a 240 

free-flow situation. The length of all trajectories is approximately 400 meters (see Figure 1 241 

(right)). 242 
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 243 

 

 

 

 

Figure 1: (left) digital video camera mounted on top of a building that overlooks I-80 is recording vehicle 244 

trajectory data (“U.S. Department of Transportation. Federal Highway Administration. Next Generation 245 

Simulation (NGSIM) program, https://www.its-rde.net/index.php/rdedataenvironment/10023; [accessed 08 246 

November 2017],” 2017) and (right) schematic representation of the NGSIM I80 scenario (simulation starts in 247 

x = 50 m and ends at x = 440 m). Virtual detector D1 is located at x = 100 m, D2 at x = 250 m, and D3 at x = 248 

400 m (Montanino and Punzo, 2015). 249 

 250 

Figure 2 presents at a glance the 20 reconstructed trajectories selected from the NGSIM 251 

database.  252 
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 253 

Figure 2: Speed profiles in the case n. 1: NGSIM “reconstructed” trajectory data. Different colours are used 254 

to help the reader distinguishing the different trajectories in the NGSIM CONG set.  255 

 256 

4.2. MULTITUDE real trajectory data (Naples) 257 

The EU project MULTITUDE (“MULTITUDE Project,” 2018) made available to the scientific 258 

community a series of vehicle trajectories collected to carry-out vehicle longitudinal interaction 259 

analyses, namely car-following experiments. Specifically, the trajectory applied in the present 260 

study was collected in the context of a data acquisition campaign in the city of Napoli (Italy) 261 

(Punzo et al., 2005). Such trajectory is representative of a congested scenario, with an average 262 

speed of 22.2 km/h, and the corresponding free-flow trajectory has been generated by 263 

considering that the concerned road speed limit was 50 km/h. The main interest in analysing this 264 



Fiori et al., 2018  19 

 

trajectory lies in its higher length with respect to the NGSIM dataset, that is 1850 meters versus 265 

400 meters. Figure 3 illustrates both the congested and the corresponding free-flow trajectories. 266 

 267 

Figure 3: Speed profiles in the case n. 2: Naples (Italy) trajectories. 268 

4.3. Aimsun simulated trajectory data (Antwerp) 269 

To increase the number of trajectories included in the present study, a further set of 270 

vehicle trajectories was derived using a traffic simulation model of the ring road of Antwerp 271 

(Belgium), characterized by highly congested traffic conditions. The concerned network is 272 

implemented in the Aimsun commercial micro-simulation software (“AIMSUN: 273 

https://www.aimsun.com/;  [accessed 08 November 2017],” 2017) (see Figure 4). For the needs 274 

of the present paper, a single origin-destination pair has been selected in the ring road, with a 275 

distance from origin to destination of approximately 4225 meters. The driving behaviour 276 
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implemented in the model is a modified version of the Gipps car-following model (Gipps, 1981). 277 

The trajectory selection procedure used in this work is heuristic and threshold-based on vehicles’ 278 

delay time when traveling from the origin to the destination point. The free flow profile was 279 

chosen randomly from the set of trajectories having a delay time lower than 3 seconds, while the 280 

23 congested trajectories were chosen randomly from the set of trajectories having a delay time 281 

of more than 200 seconds. Notably, the average speed, of the free flow profile, is 90 km/h and in 282 

the remaining 23 trajectories that the average speed is 41.51.81 km/h.  Albeit simplistic, such 283 

trajectory selection procedure can be considered reasonable enough to support the research 284 

objectives of the present paper. Overall, Figure 5 illustrates the 24 trajectories (23 congested plus 285 

a free-flow) for the Antwerp case study.  286 

 287 

 288 

Figure 4: (left) network of the ring road of Antwerp (screenshot from Google Maps) and (right) network 289 

exported from the simulation software. Simulated trajectories were selected on the highlighted path . 290 
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 291 

Figure 5: Speed profiles in the case n. 3: Antwerp (Belgium) simulated trajectory data. Different colours are 292 

used to help the reader distinguishing the different trajectories in the Antwerp CONG set 293 

 294 

4.4. Average speed profile data (test-cycle or driving-cycle) (WLTC) 295 

The World-wide harmonized Light duty Test Cycle (WLTC) (Tutuianu et al., 2015) is the most 296 

recent artificial driving-cycle trajectory developed for legislative purposes. The process leading 297 

to its development has been motivated by the willingness to achieve a single cycle representative 298 

of driving conditions in different contexts and therefore suitable for introduction in the vehicle 299 

certification process all around the world. An average speed profile is an artificial vehicle 300 

trajectory constructed to be representative of average driving conditions from a series of real-301 

world observations. It is usually used to derive various types of information related to vehicles 302 
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performance (e.g. fuel consumption, pollutant emissions, electric range, etc.) under standardized 303 

conditions (e.g. by using it to test a vehicle on a chassis-dynamometer in a lab or to perform a 304 

vehicle simulation). Several test-cycles are available in the literature for different purposes 305 

(research, vehicle benchmark, official type-approval, etc.). For an overview of different driving 306 

cycles, the interested reader can refer to the following on-line source: (“Emission Test Cycles,” 307 

2018). The WLTC has been developed under the UNECE framework and resulted from the 308 

analysis of almost 1 million kilometres of real-world activity data collected in several countries 309 

(Tutuianu et al., 2015). 310 

The WLTC trajectory is divided in four different phases: low, medium, high and extra-311 

high speed, for a total duration of 1800 seconds. For the purposes of the paper, the corresponding 312 

free-flow trajectory has been constructed by using the maximum speed of each phase as an 313 

hypothetical road speed limit, and by setting at each stop a speed equal to 0 km/h. Overall, the 314 

WLTC congested scenario has an average speed of 46.5 km/h, against an average speed for the 315 

free-flow condition of 77.9 km/h. The corresponding trajectories are depicted in Figure 6. 316 
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 317 

Figure 6: Speed profiles in the case n. 4: WLTC. 318 

4.5. Summary statistics of vehicle trajectory datasets  319 

For the sake of completeness, Table 3 summarizes relevant kinematic statistics for each 320 

trajectory dataset. 321 

 322 

 323 

 324 

 325 

 326 

 327 

  328 
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Table 3: Summary of kinematic statistics per trajectory dataset is reported 329 

    NGSIM Naples Antwerp WLTC 

    CONG FF CONG SL CONG FF CONG FF 

Duration (s) 
mean 93.75 

16.5 300.1 133 
367.69 

166.7 1801 1075 
std dvn 2.05 16.19 

Distance (km) 
mean 0.40 

0.40 1.85 1.85 
4.23 

4.17 23.26 23.26 
std dvn 0 0 

Average speed (km/h) 
mean 15.35 

87.5 22.17 50 
41.54 

90 46.50 77.88 
std dvn 0.32 1.81 

Maximum speed (km/h) 
mean 37.27 

96.7 52.71 50 
102.44 

91.5 131.30 130.83 
std dvn 4.96 5.99 

Standard deviation of speed 

(km/h) 

mean 9.93 
4.7 16.32 0 

36.59 
3.6 36.04 35.45 

std dvn 1.61 2.60 

Min acceleration (m/s2) 
mean -3.66 

-0.46 -3.59 0 
-3.95 

-0.36 -1.50 -0.94 
std dvn 0.70 0.58 

Maximum acceleration (m/s2) 
mean 2.47 

0.25 2.75 0 
1.20 

0.16 1.75 1.75 
std dvn 0.25 0.20 

Standard deviation of 

acceleration(m/s2) 

mean 0.88 
0.14 0.83 0 

0.66 
0.04 0.53 0.44 

std dvn 0.12 0.08 

 330 

5. EXPERIMENTAL RESULTS 331 

5.1. Detailed results for each trajectory dataset 332 

The four different powertrains described in Section 3.2 have been tested on the four case 333 

scenarios illustrated in Section 4. As already mentioned, the VT-CPEM and CO2MPAS vehicle 334 

simulators have been respectively applied for the electric (EV) and internal combustion engine 335 

(ICE) powertrains to calculate their energy/fuel consumption and related emissions. 336 

Experimental results are presented separately for free-flow (FF) and congested (CONG) 337 

trajectories for each dataset, separately for EVs and ICEs and by type of vehicle (passenger, light 338 

commercial/freight). In the case of freight vehicle, also a case study with a payload of 300 kg has 339 
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been simulated. Overall, Figure 7 and Figure 8 report respectively results of the experiments for 340 

the EVs and the ICEVs. Notably, the standard deviation of energy/fuel consumptions is reported 341 

only for the NGSIM and the Antwerp congested cases, being the only with adequate number of 342 

trajectories.343 

 344 

Figure 7: Energy consumptions of the EV and EFV on the 4 scenarios analysed in congested (CONG) and 345 

free flow (FF) conditions. Also, for the EFV the case with a payload of 300 kg has been analysed. 346 

 347 

 348 
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Figure 8: Fuel consumptions of the ICEV and LC ICEV on the 4 scenarios analysed in congested (CONG) 349 

and free flow (FF) conditions. Also, for the LC ICEV the case with a payload of 300 kg has been analysed. 350 

 351 

In particular, for the NGSIM case these values are 0.008, 0.009 and 0.009 kWh/km respectively 352 

for EV, EFV and EFV with additional load, and 0.677, 0.707 and 0.888 l/100km for ICEV, LC 353 

ICEV and LC ICEV with additional load, respectively. Similarly, the standard deviation of 354 

energy/fuel consumptions for the Antwerp dataset leads to 0.009, 0.013 and 0.013 kWh/km for 355 

EV, EFV and EFV with additional load, respectively, and 0.907, 0.960 and 1.116 l/100km for 356 

ICEV, LC ICEV and LC ICEV with additional load, respectively. 357 

Table 4 illustrates the relative difference of energy/fuel consumption between the congested case 358 

and the corresponding free-flow case, for all datasets. 359 

 360 

Table 4: Overview of the results achieved 361 

Case 

Vehicle characteristics Energy consumption 

impact congestion vs. 

free-flow (in %)5 Vehicle Payload 

NGSIM, congested 

EV - -18 

ICEV - 18 

EFV - -35 

LC ICEV - 16 

 
5 The percentage values reported in this table represent the decrease (-) or the increase (+) of the energy/fuel 

consumption in the congested case compared with the free flow scenario. For example, for the NGSIM data the EV 

energy consumption decreases of the 18% in the congested case compared with the free flow one, while the ICEV 

fuel consumption increases of the 18% in the congested scenario compared with the free flow one. 
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EFV 300kg -33 

LC ICEV 300kg 16 

Naples, congested 

EV - 0 

ICEV - 65 

EFV - -6 

LC ICEV - 66 

EFV 300kg -5 

LC ICEV 300kg 80 

Antwerp, congested 

EV - -8 

ICEV - 23 

EFV - -11 

LC ICEV - 27 

EFV 300kg -11 

LC ICEV 300kg 35 

WLTC, congested 

EV - -8 

ICEV - 0 

EFV - -11 

LC ICEV - 3 

EFV 300kg -9 

LC ICEV 300kg 4 

 362 

Interestingly, in the NGSIM reconstructed dataset, the energy consumption for EVs and 363 

EFVs is lower in congested conditions with respect to free-flow conditions, with a percentage 364 
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different equal to -18% for EVs and -35% for EFVs. The impact of additional payload on the 365 

EFVs just reduces a little bit this difference, yielding a -33% between congested and free-flow 366 

conditions. On the contrary, ICEV, LC ICEV and LC ICEV with load provide an increase of fuel 367 

consumption of respectively 18%, 16% and 16% in congested conditions with respect to free-368 

flow conditions. In the second case (Naples), the energy consumption for passenger EVs is the 369 

same in the two cases (0%), whilst EFV and EFV with the additional payload in the congested 370 

conditions are respectively -6% and -5% with respect to the free-flow case. On the contrary, a 371 

very significant difference can be observed between congested and free-flow conditions for 372 

traditional ICEVs, ranging from +65% for passenger ICEVs to 80% for ICEV with load. Similar 373 

trends can be observed also for the Antwerp and WLTC scenarios, whose percentage reduction 374 

in energy consumption between congested and free-flow conditions is very similar also in 375 

magnitude, whilst the corresponding percentage increase in fuel consumption is remarkably 376 

higher for the Antwerp scenario with respect to the WLTC. 377 

As a summary, results show that a trend seems to exist for electric vehicles, that is 378 

congested conditions are characterized by lower energy consumption if compared with free flow 379 

conditions on the same case scenario; this difference slightly decreases as the onboard load in 380 

light commercial vehicles analysed increases. This phenomenon can be explained rather 381 

straightforwardly because of the combined effect of (a) higher and more constant efficiency of 382 

electric motor/generator and electric devices (inverters, batteries etc) with respect to ICEVs, and 383 

(b) the energy recovered during braking, that allows reducing energy consumption especially 384 

when congested situations occur.  385 

The analysis of the ICE and LC ICE vehicles indicates an opposite trend: congested 386 

conditions are characterized by higher fuel consumption if compared with free flow conditions 387 
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on the same case scenario, with also an higher range of variation with respect to EVs (up to 80% 388 

and up to -35% for ICEVs and EVs, respectively). Similar, yet slightly higher gaps can be 389 

observed for ICEVs in Naples and Antwerp cases with respect to the NGSIM and WLTC cases. 390 

Interestingly, the same trend does not hold for the WLTC, where the observed difference 391 

between free-flow and congested conditions is marginal. This can be explained by the fact that 392 

the range of dynamics in the WLTC is much broader than in the other cases and therefore only 393 

marginal gains in efficiency can be achieved. 394 

5.2. Detection of general trends 395 

This section aims at identifying possible general trends in the relationship between 396 

average speed over a road segment and concerned energy/fuel consumption respectively for both 397 

electric and conventional vehicles. For this aim, all trajectories applied in this paper have been 398 

split randomly into 300 metres-long “elemental segments”, whose number for each trajectory 399 

depends upon the length of the trajectory itself. Specifically, each trajectories longer than 300 400 

metres generated a number of elemental segments equal to 10 times the rounded ratio between 401 

the length of the trajectory and 300 metres, and the starting point of each elemental segment has 402 

been identified by randomly selecting a starting point in the original trajectory in between the 403 

beginning and the length of the trajectory minus 300 metres. Notably, the selection of the 404 

random starting point was carried out by means of the low-discrepancy Sobol sequence of quasi-405 

random numbers (Sobol, 1976), to ensure maximization of the coverage of each trajectory 406 

through elemental segments. The above procedure allowed generating a total of 3000 elemental 407 

segments from the entire database of trajectories. Each elemental segment has been associated 408 

with an average speed, a specific fuel consumption (in l/100km) for each of the three internal 409 

combustion engine vehicles (ICEV, LC ICEV, LC ICEV with load) and a specific electric energy 410 
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consumption (in kWh/km) for each of the three electric vehicles (EV, EFV, EFV with load). 411 

Importantly, the length of 300 metres has been set after a few tests as the one allowing for 412 

enough stability of the fuel/energy consumption calculation.  413 

The resulting empirical relationships between speed and fuel/energy consumption are 414 

plotted in Figure 9. Within each chart, light-grey points represent fuel/energy consumption 415 

values for each of the 3000 segments. The bold-red points represent the average fuel/energy 416 

consumption of the segments with similar average speed. Overall, 100 red points are considered, 417 

each representative of one percentile of the average speed distribution, that is each red point in 418 

Figure 9 represents 30 segments in each percentile of the speed distribution. As a result, a 419 

general trend can be defined based on a quadratic regression line calibrated using a least-square 420 

regression method on these representative red points; concerned coefficients of these regressions 421 

are reported in Table 5.  422 

A visual inspection of the resulting trends in Figure 9 highlights the inherent differences 423 

in energy/fuel consumption patterns between electric and internal combustion engine vehicles. In 424 

particular, the energy consumption of electric vehicles is fairly constant for an average speed in 425 

between 0 km/h and 50 km/h, and tends to increase gradually as the speed increases over this 426 

range. This leads to a clear indication that, independently of traffic conditions, higher energy 427 

consumption is expected as the average speed increases. Conversely, internal combustion 428 

engines exhibit the expected U-shaped relationship (Fontaras et al., 2014, 2008), confirming the 429 

general assumption that fuel consumption achieves its minimum for speeds around 100km/h (the 430 

specific real value depends upon the specific configuration of the vehicle technology) and then 431 

increases in both lower speed ranges (due the inefficiency of the thermal engine in the stop-and-432 



Fiori et al., 2018  31 

 

go regimes) and higher speed ranges (due to the significant increase in the resistances to the 433 

vehicle motion). 434 

 

(a) – Electric Vehicles (EVs)  

 

(b) – Internal Combustion Engine Vehicles (ICEVs) 
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(c) – Electric Freight Vehicles (EFVs) 

 

(d) – Light Commercial Internal Combustion Engine Vehicles (LC ICEVs) 
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(e) – Electric Freight Vehicles (EFVs) with load 

 

(f) – Light Commercial Internal Combustion Engine Vehicles (LC ICEVs) with load 

Figure 9: Energy consumption Vs. Speed evaluated for EVs (a), EFVs (c), EFVs with load(e), ICEVS (a), LC 435 

ICEVs (d) and LC ICEVs with load (f). Corresponding coefficients for the different powertrains are reported 436 

in Table 5. 437 

 438 
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Table 5: Fitting of the powertrains analysed. 439 

Fitting curve:  

f(x) = p1*x2 + p2*x + 

p3 

     Coefficients (with 95% confidence bounds) 

Fitting - Adjusted 

R-square 

EV 

       p1 =  2.287e-005  (2.043e-005, 2.532e-005) 

       p2 =   -0.001913  (-0.002184, -0.001642) 

       p3 =      0.1436  (0.1385, 0.1488) 

0.8965 

EFV 

       p1 =  2.623e-005  (2.364e-005, 2.881e-005) 

       p2 =   -0.001729  (-0.002015, -0.001443) 

       p3 =      0.1444  (0.139, 0.1499) 

0.9562 

EFV with load 

       p1 =  2.569e-005  (2.3e-005, 2.838e-005) 

       p2 =    -0.00167  (-0.001969, -0.001372) 

       p3 =      0.1533  (0.1477, 0.159) 

0.9523 

ICEV 

       p1 =   7.043e-004 (5.861e-004, 8.225e-004) 

       p2 =     -0.1452  (-0.1604, -0.1301) 

       p3 =        13.6  (13.22, 13.99) 

0.8977 

LC ICEV 

       p1 =   6.342e-004 (5.087e-004, 7.597e-004) 

       p2 =     -0.1415  (-0.1576, -0.1254) 

       p3 =       13.76  (13.35, 14.17) 

0.8966 

 

LC ICEV with load 

       p1 =   5.347e-004 (3.588e-004, 7.106e-004) 

       p2 =     -0.1378  (-0.1604, -0.1153) 

       p3 =        14.8  (14.22, 15.37) 

0.8435 

 440 
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6. CONCLUSIONS 441 

The main objective of the present work was to investigate the relation between energy/fuel 442 

consumption and traffic conditions, based on an empirical analysis leveraging real-world, 443 

simulated and artificial trajectory datasets. Two specific trends have been detected: 444 

• results show that EVs and EFVs (including a case where 300 kg payload is added to 445 

the EFVs) use less energy in the congested scenarios than in free-flow scenarios; the 446 

difference in the effects between the two traffic conditions decreases as the payload 447 

increases. In particular, a quadratic general trend was estimated for EVs, yielding an 448 

almost constant energy consumption up to 50 km/h and then an increase with respect 449 

to speed for higher speeds; 450 

• the analysis of the ICE and LC ICE vehicles indicates that an opposite trend occurs: 451 

congested conditions are characterized by higher energy consumption if compared 452 

with free-flow conditions on the same case scenario but the range of variation it is 453 

higher than for EVs. In particular, ICEVs exhibited a different trend, with minimum 454 

fuel consumption achieved at around 90 km/h and with a significantly higher fuel 455 

consumption both at low and at high average speeds. 456 

The main consequence of these results is that, in presence of a non-negligible share of 457 

electric vehicles, the improvement of traffic conditions (e.g. higher speeds and more regular 458 

trajectories due to lower congestion levels) might lead to an increase of energy consumption, 459 

with likely negative environmental effects depending upon the energy production mix. A case-460 

by-case assessment is thus necessary, based also on the market penetration of each type of 461 

vehicle in the current and in the future scenarios under analysis. This implies also need for 462 
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improving currently available traffic models, especially in the light of a better characterization of 463 

vehicles’ dynamic especially for EVs. 464 

Overall, the introduction of electrified powertrains in vehicles will alter the well-known 465 

relationship between average speed and energy consumption and, in turns, the relationship of this 466 

latter with traffic conditions. As a consequence, in a future with a majority of electric vehicles, 467 

policy-makers will need to handle an additional layer of complexity in transport planning. 468 

Indeed, at that point local pollution will not depend any longer from vehicles, thus policy-makers 469 

will need to choose between efficiency of the transport sector (directly connected to the average 470 

speed of vehicles) and overall electric energy consumption (with the electricity production 471 

system now being responsible for pollution and green-house-gas emissions due to traffic). 472 

Notably, this circumstance will be magnified by the spreading of vehicle connectivity and 473 

automation, that will be able to achieve an increase in the capacity of the transport system. In this 474 

case indeed, higher capacity and a better management of the overall transport system could lead 475 

to a substantial increase in the demand for personal mobility which could counterbalance the 476 

increased energy efficiency of electric vehicles thus leading to higher levels of energy 477 

consumption. In this scenario, without a significant improvement in the electric power 478 

production, issues such as electric power availability and pollution due to power generation may 479 

become very relevant especially in the future expanded urban contexts. Before arriving at that 480 

point it is important to raise awareness on the fact that electric vehicles will change the widely 481 

accepted relationship between traffic conditions and energy consumption so that our policies can 482 

be prepared to deal with this additional complexity. 483 

It is worth mentioning finally that the simulations carried out in the present paper did not 484 

consider comfort heating and cooling and these may increase the energy consumption of the 485 
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vehicles, especially the EVs, in the congested cases (due to a higher trip duration). A follow-up 486 

study will involve these elements as well as will include more vehicle segments for both electric 487 

and conventional vehicles to have a complete picture of the new trends occurring with EVs. 488 
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