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a b s t r a c t 

With the wide diffusion of cloud technologies, an ever increasing amount of sensitive data

is moved on centralized network-based repository services, providing elastic outsourced

storage capacity, available through remote access. This introduces new challenges associ- 

ated to the security and privacy of outsourced data that has to be dynamically created,

shared, updated and removed by a large number of users, characterized by different ac- 

cess rights and views structured according to hierarchical roles.

To address such challenges, and implement secure access control policies in those appli- 

cation domains, several cryptographic solutions have been proposed. In particular, hierar- 

chical key assignment schemes represent an effective solution to deal with cryptographic

access control. Starting from the first proposal due to Akl and Taylor in 1983, many hierar- 

chical key assignment schemes have been proposed. However, the highly dynamic nature

of cloud-based storage solutions may significantly stress the applicability of such schemes

on a wide scale.

In order to overcome such limitations, in this work we provide new results on the Akl–

Taylor scheme, by carefully analyzing the problem of supporting dynamic updates, as well

as key replacement operations. In doing this, we also perform a rigorous analysis of the

Akl–Taylor scheme in the dynamic setting characterizing storage clouds, by considering

different key assignment strategies and proving that the corresponding schemes are secure

with respect to the notion of key recovery.

 

 

 

1. Introduction

Cloud-based data repositories are emerging network facilities in which a potentially unlimited storage capacity is pro-

vided as an on-demand outsourced service over the Internet, by totally hiding platform and implementation details. Nowa-

days, a huge number of users transparently rely on such outsourced storage solutions, e.g., by using the Apple Cloud , Dropbox

and Google Drive , etc. In this way, such users can access their files from anywhere at any time. 
∗ Corresponding author. Fax: +39089969821.

E-mail addresses: arcastiglione@unisa.it (Ar. Castiglione), ads@unisa.it (A. De Santis), bmasucci@unisa.it (B. Masucci), fpalmieri@unisa.it (F. Palmieri),

xyhuang81@gmail.com (X. Huang), castiglione@ieee.org,  castiglione@acm.org (An. 
Castiglione).

http://dx.doi.org/10.1016/j.ins.2016.08.093

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2016.08.093&domain=pdf
mailto:arcastiglione@unisa.it
mailto:ads@unisa.it
mailto:bmasucci@unisa.it
mailto:fpalmieri@unisa.it
mailto:xyhuang81@gmail.com
mailto:castiglione@ieee.org
mailto:castiglione@acm.org
http://dx.doi.org/10.1016/j.ins.2016.08.093


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, in the presence of sensitive information to be stored, often shared in a controlled manner among several users

typically organized into groups whose composition may frequently change according to dynamic access control policies, such

data may naturally become an attack target. This scenario is further complicated by the presence of honest-but-curious cloud

service providers [17,52,53] or, worse, of malicious providers that aim at disclosing the involved data to make illegal profits.

Therefore, cryptographic access control is an effective way for protecting data privacy, by considering at the same time

that such data has to be dynamically created, shared, updated and removed by a number of users not known a priori,

which are characterized by different access rights and level of views, often structured according to hierarchical schemes. To

address the aforementioned challenges and implement secure access control policies in such complex application domains,

several hierarchical key assignment schemes are available, allowing only authorized users to access the data at each specific

security level. In particular, the use of cryptographic techniques to enforce access control in hierarchical structures has been

first proposed by Akl and Taylor in 1983 [2] . Due to its simplicity and versatility, this scheme has been widely used, for

more than thirty years, to implement access control in many scenarios. However, the highly dynamic nature of cloud-based

storage solutions may significantly stress the applicability of such a scheme in large-scale infrastructures. 

In this work we provide new results on the Akl–Taylor scheme, by carefully analyzing the problem of supporting dynamic

updates, such as insertion and deletion of classes and relations between classes in the hierarchy, as well as key replacement

operations. In doing this, we also perform a rigorous analysis of the Akl–Taylor scheme in the dynamic setting setting char-

acterizing storage clouds, by considering different key assignment strategies and proving that the corresponding schemes

are secure with respect to the notion of key recovery. Those experiences showed us the sustainability of flexible and fine-

grained data access control in storage cloud scenarios through hierarchical key assignment schemes. The paper is organized

as follows: in Section 2 we review the main works related to our proposal. In Section 3 we describe the architecture and the

operating scenario of our solution for supporting dynamic updates in storage clouds. In Section 4 we recall the notions and

definitions concerning hierarchical key assignment schemes for dynamic structures. In Section 5 we analyze the hierarchical

key assignment scheme proposed by Akl and Taylor. In Section 6 we describe how to support dynamic updates in storage

clouds by using the Akl–Taylor scheme, whereas, in Section 7 we analyze the security of the proposed solution. Finally, in

Section 8 we conclude the paper. 

2. Related work

In 1983 Akl and Taylor [2] proposed the use of cryptographic techniques to enforce access control in hierarchical struc-

tures. In particular, they designed a hierarchical key assignment scheme where each class is assigned an encryption key that

can be used, along with some public parameters, to compute the key assigned to all classes lower down in the hierarchy.

The security of this scheme is related to the infeasibility of extracting r -th roots modulo n , where r > 1 is an integer and n

is the product of two large unknown primes. However, the analysis made by Akl and Taylor gives only an intuition for the

security of their scheme. 

Subsequently, many researchers have proposed schemes offering different trade-offs in terms of the amount of pub-

lic and private information and the complexity of key derivation (e.g., [4,6,18,26,32,37,38,40,41,45,46,56] ). Many other pro-

posals either support more general access control policies [23,25,39,57] or satisfy additional time-dependent constraints

[7,20,27,35,50,51,55,57] . Despite the large number of proposed schemes, many of them lack of a formal security proof and

have been shown to be insecure against collusive attacks [7,24,48,58,59] , whereby two or more classes collude to compute a

key to which they are not entitled. 

Atallah et al. [3] first proposed two different notions of security for hierarchical key assignment schemes, namely, security

against key recovery and with respect to key indistinguishability . In the former case, an adversary cannot compute a key

which cannot be derived by the users he has corrupted, whereas, in the latter case, the adversary is not even able to

distinguish the key from a random string of the same length. Different constructions satisfying the above defined notions

of security have been proposed in [29,30] . D’Arco et al. [21,22] analyzed the Akl–Taylor scheme according to the definitions

proposed in [3] and showed how to choose the public parameters in order to get instances of the scheme which are secure

against key recovery under the RSA assumption. Moreover, they showed how to turn the Akl–Taylor scheme in a construction

offering security with respect to key indistinguishability. Ateniese et al. [8] extended the model proposed in [3] to schemes

satisfying additional time-dependent constraints and proposed two different constructions offering security with respect to

key indistinguishability. Other constructions for time-dependent schemes, offering different trade-offs in terms of amount

of public and private information and complexity of key derivation, were shown in [5,9,28] . 

Recently, Freire et al. [31] proposed new security definitions for hierarchical key assignment schemes, called security

against strong key recovery and security with respect to strong key indistinguishability . Such definitions provide the adversary

with additional compromise capability. The equivalence between security with respect to strong key indistinguishability and

security with respect to key indistinguishability has been recently proven in [13] . A similar result was previously shown for

the unconditionally secure setting [11] . 

In [12,16] , a more general scenario has been considered for hierarchical key assignment schemes. In such a scenario, the

access control is not only hierarchical, but also shared between different classes. In particular, the authors of [16] proposed

two constructions for hierarchical and shared key assignment schemes which are secure with respect to key indistinguisha-

bility, where the former relies on both symmetric encryption and perfect secret sharing , whereas, the latter is based on thresh-

old broadcast encryption. Finally, in [15] a model for hierarchical key assignment schemes supporting dynamic updates has



Fig. 1. The operating scenario.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

been recently proposed. In particular, the notions of security against key recovery and with respect to key indistinguisha-

bility, provided by Atallah et al., have been extended to address the further challenges introduced by the updates to the

hierarchy. 

Moreover, for what concerns hierarchical access control in clouds, Wang et al. [54] proposed one of the first hierarchical

access control solutions for cloud storage, relying on Ciphertext-Policy Attribute Based Encryption (CP-ABE) [10] and Hierarchi-

cal Identity Based Encryption (HIBE) [34] schemes. Subsequently, a distributed model for data storage and access control in

clouds was presented in [44] . A new hierarchical key assignment scheme for cloud infrastructures, known as the CloudHKA

scheme, which follows the Bell-LaPadula security model and efficiently deals with user revocation, was proposed in [19] .

The solution described in [33] consists of an efficient hierarchical key assignment scheme supporting time-dependent con-

straints, which is based on a bilinear pairing function and provides access control in cloud environments. Finally, a very

recent contribution [49] presents a hierarchical key assignment scheme based on linear-geometry as the solution for flexible

and fine-grained hierarchical access control in cloud computing. 

3. System architecture and operating scenario

The most common way for protecting sensitive data outsourced to third party entities is storing such data in an en-

crypted form, by keeping the right decryption keys available only to authorized users [47,60,61] . Therefore, such a solution

requires the usage of an efficient key management scheme for distributing the keys to legitimate users, often structured

in classes according to their privileges and views on the stored data. Clearly, such keys have to reflect the current access

rights of a large number of involved users, whose roles, privileges and data views can continuously and dynamically change,

by minimizing the need of re-encrypting the related data and performing key re-distribution. Accordingly, the reference

architecture describing the operating scenario of our proposal is characterized by three fundamental entities (see Fig. 1 ): 

• The Cloud Storage Repository , which is the entity providing outsourced storage facilities. It is in charge of granting the

access from outside users to the data, stored by using specific keys (that are not under its control), so that only the

users holding the right keys are able to access them. In this work we assume that the cloud storage repository is always

online and has unlimited storage capacity.

• The users of the storage services, whose data are structured into files. For each file, we consider two types of users.

The former is the owner, who decided to outsource his data into the cloud for storing and making them accessible in

a controlled way. The latter is the generic file user, interested in the involved data, which, according to the permissions

granted by the owner and his position on the access control hierarchy (its security class), needs to access some of the

outsourced files. Clearly, data owners encrypt their data files and store them in the cloud for the sharing with other

users, who download encrypted data files of their interest from the cloud and then decrypt them, by relying on specific

symmetric encryption schemes and keys.

• A Trusted Authority (TA), which is responsible for providing the data encryption schemes and managing and distributing

the associated keys. Data owners, generic users and the TA are structured in a hierarchy, where the TA acts as the root

of trust and several hierarchical relations are implemented between users, so that the user belonging to higher classes

can also access the data in the lower ones, but not vice versa.

Based on the above operating scenario, we consider some threat assumptions:

• The channels connecting users to cloud storage repository can be public, hence, the data transferred by using these

channels might be eavesdropped by outside attackers.

• The cloud storage repository can be “honest-but-curious”, that is, it supports the aforementioned hierarchical scheme,

but tries to extract as much secret information as possible. We can also transform this one in a worst-case assumption,

in which it is completely untrusted and may collude with malicious/compromised users in harvesting files contents for

its own benefit.

• The TA cannot be compromised, even if it can be considered as a single point of failure .

The security goal considered in this work is to provide effective hierarchical access control with respect to the most

known threats/attacks, also in the presence of frequent access rights revocations, as well as creation/deletion of classes

and relations. In the following section we present the theoretical model that describes our contribution in the presented

cloud-based scenario. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Hierarchical key assignment schemes for dynamic structures

Hierarchical key assignment schemes are widely used to implement secure access control policies in environments where

users and resources can be modeled through partially ordered hierarchies. Since hierarchies are a natural way of organizing

users according to their positions as parts of an organization, they are widely employed in many different application areas

(e.g., database management systems, computer networks, operating systems, military, government communications) and play

a fundamental role within any scenario which can be modeled by using Role-Based Access Control (RBAC) . 

Consider a set of users divided into a number of disjoint classes, called security classes . A security class can represent

a person, a department or a user group in an organization. A binary relation � that partially orders the set of classes V

is defined in accordance with authority, position or power of each class in V . The poset ( V , �) is called a partially ordered

hierarchy . For any two classes u and v , the notation u � v is used to indicate that the users in v can access u ’s data. Clearly,

since v can access its own data, it holds that v � v , for any v ∈ V . The partially ordered hierarchy ( V , �) can be represented

by the directed graph G 

∗ = (V, E ∗) , where each class corresponds to a vertex in the graph and there is an edge from class

v to class u if and only if u � v . We denote by G = (V, E) the minimal representation of the graph G 

∗, namely, the directed

acyclic graph corresponding to the transitive and reflexive reduction of the graph G 

∗ = (V, E ∗) . The graph G has the same

transitive and reflexive closure of G 

∗, i.e., there exists a path (of length greater than or equal to zero) from v to u in G

if and only if there is the edge (v , u ) in E ∗. Aho et al. [1] showed that every directed graph has a transitive reduction,

which can be computed in polynomial time and is unique for directed acyclic graphs. In the following, we denote by �

a family of graphs corresponding to partially ordered hierarchies. For example, � could be the family of the rooted trees

[45] , the family of the d -dimensional hierarchies [4] , etc.. Let � be a family of graphs corresponding to partially ordered

hierarchies and let G = (V, E) be a graph in �. For any class v ∈ V, let A 

G 
v be the accessible set of v in G , i.e., the set { u ∈ V :

there is a path from v to u in G } of classes which can be accessed by v in G . Similarly, let F G v be the forbidden set of v in G ,

i.e., the set { u ∈ V : there is no path from u to v in G } of classes which cannot access v in G .

A hierarchical key assignment scheme for a family � of partially ordered hierarchies, supporting dynamic updates, has

been first introduced in [15] and is defined as follows.

Definition 1. A hierarchical key assignment scheme for �, supporting dynamic updates , is a triple ( Gen , Der , Upd ) of algorithms

satisfying the following conditions: 

1. The information generation algorithm Gen , executed by the Trusted Authority (TA), is probabilistic polynomial-time. It

takes as inputs the security parameter 1 τ and a graph G = (V, E) in �, and produces as outputs

(a) a private information s u , for any class u ∈ V ;

(b) a key k u ∈ {0, 1} τ , for any class u ∈ V ;

(c) a public information pub .

We denote by ( s , k , pub ) the output of the algorithm Gen on inputs 1 τ and G , where s and k denote the sequences of

private information and of keys, respectively.

2. The key derivation algorithm Der , executed by some authorized user, is deterministic polynomial-time. It takes as inputs

the security parameter 1 τ , a graph G = (V, E) in �, two classes u ∈ V and v ∈ A 

G 
u , the private information s u assigned to

class u and the public information pub , and produces as output the key k v ∈ { 0 , 1 } τ assigned to class v .
We require that for each class u ∈ V , each class v ∈ A 

G 
u , each private information s u , each key k v ∈ { 0 , 1 } τ , each public

information pub which can be computed by Gen on inputs 1 τ and G , it holds that

Der(1 

τ , G, u, v , s u , pub) = k v .

3. The update algorithm Upd , executed by the TA, is probabilistic polynomial-time. It takes as inputs the security parameter

1 τ , a graph G = (V, E) in �, the tuple ( s , k , pub ) (generated either by Gen or by Upd itself), an update type up , a sequence

of additional parameters params , and produces as outputs

(a) a updated graph G 

′ = (V ′ , E ′ ) in �; 

(b) a private information s ′u , for any class u ∈ V 

′ ; 
(c) a key k ′ u ∈ { 0 , 1 } τ , for any class u ∈ V 

′ ; 
(d) a public information pub ′ . 
The sequence params , if not empty, is used to generate new keys and secret information as a consequence of the update

type up . We denote by ( s ′ , k ′ , pub ′ ) the sequences of private information, keys, and public information output by Upd (1 τ ,

G , s , k , pub , up , params ). 

The update types we consider are the following: insertion of an edge , insertion of a class , deletion of an edge , deletion of

a class , key replacement , and revocation of a user from a class . Notice that some types of updates can be seen as a sequence

of other types of updates. For example, the deletion of a class u can be performed by executing a sequence of edge dele-

tions, one for each edge ingoing u and outgoing from u . On the other hand, the deletion of the edge (u, v ) requires a key

replacement operation for the class v . Finally, the revocation of a user from a class u requires a sequence of key replacement

operations. In the above definition, it is required that the updated graph G 

′ still belongs to the family � of partially ordered

hierarchies, i.e., only updates which preserve the partial order relation between the classes in the hierarchy are allowed. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Security 

The notions of security against key recovery and with respect to key indistinguishability, first proposed by Atallah et al.

[3] for hierarchical key assignment schemes not supporting dynamic updates, have been extended in [15] to address the

further security challenges introduced by the algorithm Upd used for handling dynamic updates to the hierarchy. More

precisely, in order to evaluate the security of a hierarchical key assignment scheme supporting dynamic updates, an adaptive

adversary ADAPT attacking the scheme has been considered. Such an adversary can make three different types of operations:

performing a dynamic update , corrupting a class , and attacking a class .

The first type of operation includes all kinds of updates described before. More precisely, consider an updating oracle

U , modeling the behavior of the TA , which performs the required updates on the hierarchy. At the beginning, the state of

the updating oracle is represented by the tuple ( G 

0 , s 0 , k 0 , pub 0 ), where ( s 0 , k 0 , pub 0 ) is the output of algorithm Gen on

inputs 1 τ and the initial graph G 

0 . For any i ≥ 0, the (i + 1) -th adversary’s query to the updating oracle consists of a pair

(up i +1 , params i +1 ) , where up i +1 is an update operation on the graph G 

i and params i +1 is the sequence of parameters as-

sociated to the update, which the oracle answers with the updated graph G 

i +1 , the public information pub i +1 associated

to G 

i +1 , and with a sequence of keys, denoted by old _ k i , which have been modified as a consequence of the update, ac-

cording to the specification of the algorithm Upd . More precisely, the updating oracle U (1 τ ,G i ,s i ,k i ,pub i ) (·, ·) , given the query

(up i +1 , params i +1 ) , runs algorithm U pd(1 τ , G 

i , s i , k i , pub i , up i +1 , params i +1 ) and returns G 

i +1 , pub i +1 , and old _ k i to the ad-

versary. In the following, we denote by U i (·, ·) the oracle U (1 τ ,G i ,s i ,k i ,pub i ) (·, ·) . Due to its adaptive nature, the adversary may

require a polynomial number m = poly (| V | , 1 τ ) of dynamic updates, where each update is decided on the basis of the an-

swers obtained from the updating oracle at the previous steps. 

The second type of operation is the class corruption , which can be performed in an adaptive order and for a polynomial

number of classes. For any i ≥ 0, consider a corrupting oracle C i , which provides the adversary with the private information

held by the corrupted classes in the graph G 

i . In particular, an adversary’s query to the corrupting oracle C i consists of a

class v in the graph G 

i , which the oracle answers with the private information held by class v in all graphs G 

0 , G 

1 , . . . , G 

i (if

v belongs to them). 

Finally, the third type of operation is the class attack , where the adversary chooses an update index t and a class u in

the hierarchy G 

t and is challenged either in computing the key k t u or in distinguishing k t u from a random string in {0, 1} τ ,

depending on the security requirement. 

More precisely, the adaptive adversary ADAPT considered in [15] runs in two stages, i.e., ADAPT = ( ADAPT 1 , ADAPT 2 ) . In ad-

vance of the adversary’s execution, the algorithm Gen is run on inputs 1 τ and G and outputs the tuple ( s , k , pub ), which

is kept hidden from the adversary’s view, with the exception of the public information pub . During the first stage, the ad-

versary ADAPT 1 is given access to both updating and corrupting oracles for a polynomial number m of times. The responses

obtained by the oracles are saved in some state information denoted as history . In particular, history contains the follow-

ing information: 1) the sequence of graphs � G = (G 

0 , . . . , G 

m ) ; 2) the sequence � up = (up 1 , . . . , up m ) of updating operations

queried to the oracle U; 3) the corresponding sequence of public information 

�
 pub ; 4) the corresponding sequence �

 old _ k of

keys which have been modified according to each update; 5) the private information held by all corrupted classes. 

After interacting with the updating and corrupting oracles, the adversary chooses an update index t and a class u in G 

t ,

among all the classes in G 

t which cannot be accessed by the corrupted classes and such that the key k t u cannot be computed

by the old keys which have been updated as a consequence of each update. In particular, the chosen class u is such that, for

any class v already queried to the corrupting oracle C i (·) and any i = 0 , . . . , m, v cannot access u in the hierarchy G 

i . In the

second stage, the adversary ADAPT 2 is given again access to the corrupting oracle and is then challenged either in computing

the key k t u or in distinguishing k t u from a random string in {0, 1} τ , depending on the security requirement. In order for the

scheme to be secure with respect to key recovery , it is required that the adversary will guess the key k t u with probability

only negligibly different from 1/2 τ . Clearly, it is required that the key k t u on which the adversary will be challenged is not

included in the sequence old _ k t−1 of keys which have been updated in the graph G 

t . The next definition was proposed in

[14] .

Definition 2. [REC-DYN-AD] Let � be a family of graphs corresponding to partially ordered hierarchies, let G = (V, E) ∈ �

be a graph and let ( Gen , Der , Upd ) be a hierarchical key assignment scheme for � supporting dynamic updates. Let m =
poly (| V | , 1 τ ) and let ADAPT = ( ADAPT 1 , ADAPT 2 ) be an adaptive adversary that during the first stage of the attack is given

access both to the updating oracle U i (·, ·) and the corrupting oracle C i (·) , for i = 1 , . . . , m, and during the second stage of

the attack is given access only to the corrupting oracle. Consider the following experiment: 

Experiment Exp REC −DYN ADAPT (1 τ , G ) 

(s, k, pub) ← Gen (1 τ , G ) 

(t, u, history ) ← ADAPT 
U i (·, ·) , C i (·) 

1 
(1 τ , G, pub)

k t, ∗u ← ADAPT 
C i (·) 
2 

(1 τ , t, u, history )

return k t, ∗u 

It is required that the class u output by ADAPT 1 is such that v cannot access u in the graph G 

i , for any class v already

queried to the corrupting oracle C i (·) . Moreover, it is required that ADAPT never queries the corrupting oracle C i (·) on a
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class v such that v can access u in the graph G 

t . Finally, it is also required that the key k t u cannot be computed by any old

key in the history sequence. The advantage of ADAPT is defined as 

Adv 
REC −DYN 
ADAPT (1 

τ , G ) = P r[ k t, ∗u = k t u ] .

The scheme is said to be secure in the sense of REC-DYN-AD if, for each graph G = (V, E) in �, the function Adv 
REC −DYN 
ADAPT (1 τ , G )

is negligible, for each adaptive adversary ADAPT whose time complexity is polynomial in τ . 

Notice that if the adversary ADAPT 1 never queries the updating oracle during the first stage of the attack, the above defini-

tion reduces to that of security against key recovery in the presence of adaptive adversaries for hierarchical key assignment

schemes with fixed hierarchies, referred to as REC-AD in [8] . For such kind of schemes, it has been proven that adaptive

adversaries are polynomially equivalent to static adversaries, i.e., such that the class to be attacked is chosen in advance to

the execution of the scheme. The security definition corresponding to such kind of adversaries and schemes is referred to as

REC-ST in [8] . Thus, since REC-AD and REC-ST have been shown to be equivalent, in the following we will only consider

the latter definition, when analyzing the security of hierarchical key assignment schemes with fixed hierarchies. Again, the

notion of security with respect to key indistinguishability for hierarchical key assignment schemes supporting dynamic updates ,

referred to as [IND-DYN-AD] , has been proposed in [15] . Finally, we stress that the relations among all security notions

for hierarchical key assignment schemes supporting dynamic updates have been explored and clarified in [14] . 

5. The Akl–Taylor scheme

In this section we analyze one of the most used hierarchical key assignment schemes, due to Akl and Taylor [2] . In such

a scheme each class u ∈ V holds a single secret value s u , which coincides with its secret key k u . An interesting feature of

the Akl–Taylor scheme is that it requires a small amount of public information and allows the key derivation to be direct,

i.e., each users can derive a key in a single step.

The Akl–Taylor scheme is described in the following. Let � be a family of graphs corresponding to partially ordered

hierarchies, and let G = (V, E) ∈ �.

Algorithm Gen (1 τ , G ): 

1. Randomly choose two distinct large primes p and q having bitlength τ and compute n = p · q ;

2. For each class v ∈ V, compute an integer λv , such that λu divides λv if and only if v ∈ A 

G
u (more details are provided

immediately after the description of the algorithms);

3. Let pub be the sequence of public information computed in the previous step, along with the value n ;

4. Randomly choose a global starting value k 0 , where 1 < k 0 < n ;

5. For each class v ∈ V, compute the private information s v and the encryption key k v as follows:

s v = k v = k λv 
0 

mod n ;
6. Let s and k be the sequences of private information and keys, respectively, computed in the previous step;

7. Output ( s , k , pub ).

Algorithm Der(1 τ , G, u, v , s u , pub) 

Extract the values λv and λu from pub and compute 

s λv /λu 
u mod n = (k λu 

0 
) λv /λu mod n = k v . 

A crucial issue is how to perform step 2. of Algorithm Gen (1 τ , G ). Akl and Taylor [2] and MacKinnon et al. [40] proposed

two different public values assignments such that for each pair of public values λu and λv , the value λu divides λv if and

only if v ∈ A 

G 
u . 

The Akl–Taylor assignment. For each v ∈ V, choose a distinct prime number p v and compute the public value λv as follows: 

λv = 

{
1 if A 

G 
v = V ; ∏ 

u �∈ A Gv
p u otherwise. 

The MacKinnon et al. assignment. Decompose the partially ordered hierarchy G = (V, E) into disjoint chains (a chain is a

totally ordered set) and assign each chain a distinct prime number. 1 Then, for each v ∈ V, compute the prime power n v = p i ,

where v is the i -th class in the chain whose assigned prime is p . Finally, for each class v ∈ V, compute the public value λv
as follows: 

λv = 

{
1 if A 

G 
v = V ; 

lcm u �∈ A G v 
n u otherwise. 



Fig. 2. A partially ordered hierarchy and one of its chain decomposition.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The left hand side of Fig. 2 shows a partially ordered hierarchy, whereas, one of its chain decomposition is shown on the

right hand side. 

Example of the Akl–Taylor assignment. Consider the hierarchy on the left hand side of Fig. 2 , when the primes assigned

to the classes are p a = 3 , p b = 5 , p c = 7 , p d = 11 , p e = 13 . The public values are λa = 5 , λb = 3 · 7 , λc = 3 · 5 · 11 , λd = 3 · 5 ·
7 , λe = 3 · 5 · 7 · 11 . 

Example of the MacKinnon assignment. Consider the chain decomposition shown in Fig. 2 , when the prime powers

assigned to the classes are n a = 3 , n b = 5 , n c = 3 2 , n d = 5 2 , n e = 5 3 . The public values are λa = 5 , λb = 3 2 , λc = 3 · 5 2 , λd =
3 2 · 5 , λe = 3 2 · 5 2 . 

Akl and Taylor noticed that in order to construct an Akl–Taylor scheme which is resistant to collusive attacks it is needed

that for each v ∈ V and each X ⊆ F G v , the gcd { λu : u ∈ X} does not divide λv . More precisely, they showed the following

result: 

Lemma 1. [2] . Let λ and λ1 , . . . , λm 

be integers, and let k ∈ Z n , where n = p · q is the product of two large primes. The power

k λ mod n can be feasibly computed from the set of powers { k λ1 mod n, . . . , k λm mod n } if and only if gcd { λ1 , . . . , λm 

} divides λ.

The proof of Lemma 1 relies on the infeasibility of extracting r -th roots modulo n , where r > 1 is an integer and n is the

product of two large unknown primes. 2 Lemma 1 gives only an intuition for the security of the scheme. A rigorous proof

of security for the Akl–Taylor scheme was first shown in [22] . In particular, it was proven that the existence of an efficient

adversary breaking the security of the scheme against key recovery implies the existence of an adversary which efficiently

solves a computational hard problem. 

5.1. Complexity assumptions 

An RSA generator with associated security parameter τ is a randomized algorithm that returns a pair (( n , e ), ( n , p , q , d )),

where n is the RSA modulus , e is the encryption exponent and d is the decryption exponent , satisfying the following conditions:

• p and q are two distinct large odd primes of τ bits;

• n = p · q ;

• e ∈ Z ∗
φ(n ) 

, where φ(n ) = (p − 1) · (q − 1) ; 

• d = e −1 mod φ(n ) .

Two strategies to compute the pair (( n , e ), ( n , p , q , d )) are used. The former, first chooses the primes p and q , computes

n , picks e at random in Z ∗
φ(n )

, and computes d accordingly. Such a strategy yields a random exponent RSA generator , denoted

K ran 
RSA 

(1 τ ) . The latter, fixes the encryption exponent e to be a small odd number, like 3, 17, or 2 16 + 1 , and then generates the

other parameters, accordingly. 3 Given a fixed odd number e , such a strategy yields an RSA generator for exponent e , denoted

K 
f ix 
RSA 

(1 τ , e ) . The RSA generators K ran 
RSA 

(1 τ ) and K 
f ix 
RSA 

(1 τ , e ) are described as follows: 

Algorithm K ran 
RSA 

(1 τ ) Algorithm K 
f ix 
RSA 

(1 τ , e )

pick at random two distinct primes repeat

p and q of τ bits pick at random two distinct primes

n ← p · q p and q of τ bits

φ(n ) ← (p − 1) · (q − 1) until gcd (p − 1 , e ) = 1 and gcd (q − 1 , e ) = 1 

e ← Z ∗
φ(n ) 

n ← p · q 

d ← e −1 mod φ(n ) φ(n ) ← (p − 1) · (q − 1) 

return ((n, e ) , (n, p, q, d)) d ← e −1 mod φ(n ) 

return ((n, e ) , (n, p, q, d))

Let B and G RSA be algorithms where the algorithm G RSA corresponds either to K ran 
RSA 

(1 τ ) or to K 
f ix 
RSA 

(1 τ , e ) . Consider the

following experiment: 
1 The problem of finding a decomposition into a minimal number of chains is solvable in time polynomial in | V | (for example by using Khachiyan’s

algorithm [36] ).
2 In particular, when gcd (r, φ(n )) = 1 , where φ( n ) is the Euler’s totient function, this is the assumption behind the RSA cryptosystem [43] ; whereas, if 

r = 2 , this assumption is used in the Rabin cryptosystem [42] . 
3 There have been some questions raised about the security of this strategy, since it might be possible that roots of small degree are easier to take than

roots of a random degree.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment Exp G RSA 

B 

((n, e ) , (n, p, q, d)) ← G RSA 

x ← Z ∗n 
y ← x e mod n 

x ′ ← B (n, e, y ) 

if x ′ = x then return 1 

else return 0

The advantage of B is defined as Adv 
G RSA 
B 

= P r[ Exp 

G RSA 
B 

= 1] . 

The RSA generators described above yield the following two assumptions. 4 

Random Exponent RSA Assumption. The function Adv 
K ran

RSA 
B 

(1 τ ) is negligible, for each probabilistic algorithm B whose

time complexity is polynomial in τ . 

RSA Assumption for Exponent in a set of odd numbers. Let X be a set of odd numbers. For each e ∈ X , the function

Adv 
K 

f ix
RSA 

B 
(1 τ , e ) is negligible, for each probabilistic algorithm B with time complexity polynomial in τ . 

The authors of [22] showed that the Akl–Taylor scheme, according to both Akl–Taylor and MacKinnon et al. assignments,

is secure against key recovery, provided that the primes associated to the classes are properly chosen . In particular, two

different primes choices were considered. The first choice, denoted fixed primes choice , yields instances of the Akl-Taylor

scheme secure under the RSA assumption for exponent in a set of odd numbers. The second one, denoted R -random primes

choice , yields instances secure under the random exponent RSA assumption. 

• Fixed primes choice. Let P RIMES � = { p 1 , . . . , p � } be the set of the first � prime numbers greater than 2. 

– Let u 1 , . . . , u | V | be a sorting of V . In the Akl–Taylor assignment, associate a prime p j ∈ PRIMES | V | to the class u j , for

each j = 1 , . . . , | V | .
– Let m be the number of disjoint chains in the minimal decomposition of G and let u j be the first node of the j -th

chain. In the MacKinnon et al. assignment, associate a prime p j ∈ PRIMES m 

to the class u j , for each j = 1 , . . . , m .

• R -Random primes choice. Let R = { R n } n be a family of sets of integers, where n is an RSA modulus. In the Akl–Taylor

assignment (in the MacKinnon et al. assignment, resp.), choose uniformly at random , for each class (for each chain in the

minimal chain decomposition of the partially ordered hierarchy, resp.), a distinct prime number in R n , for an appropri-

ately chosen family R .

In particular, consider the family R obtained by setting R n to be equal to the set of integers belonging to the interval

[3 , w ] , where w = 2 2 τ−2 − 2 τ is a lower bound for the Euler totient function φ( n ) (see Lemma 4.3 in [22] ). The corre-

sponding primes choice will be denoted in the following as the random primes choice .

The next results were proven in [22] .

Theorem 1. Let G = (V, E) be a partially ordered hierarchy. The Akl–Taylor assignment with the fixed primes choice yields a

scheme which is secure in the sense of REC-ST under the RSA assumption for exponents in PRIMES | V | . 

Theorem 2. Let G = (V, E) be a partially ordered hierarchy. The Akl–Taylor assignment with the random primes choice yields a

scheme secure in the sense of REC-ST under the random exponent RSA assumption. 

Similar results were also proven for the MacKinnon et al. assignment. 

6. Supporting dynamic updates with the Akl–Taylor assignment

In this section we show how to manage changes to the hierarchy with the Akl–Taylor assignment. The idea behind our

construction is the following: at the beginning, each class in the graph G = (V, E) is assigned a key with the Akl–Taylor

assignment using a global starting value k 0 . Whenever an update up has to be performed, yielding to the updated graph

G 

′ = (V ′ , E ′ ) , some keys need to be either created for the first time, in the case of the addition of a new class, or replaced. Let

AssignNewKeys ⊆ V ′ be the set of classes whose keys need to be either created or replaced and assume the existence of an

algorithm CreateSet which on input the graph G = (V, E) and the update type up , resulting in the updated graph G 

′ = (V ′ , E ′ ) ,
outputs the set AssignNewKeys (we will describe later the details of such an algorithm). Given the set AssignNewKeys , we

construct the historical graph G 

hist = (V hist , E hist ) , defined as follows: 

• V hist = V ∪ NewClasses , where NewClasses = { u new : u ∈ AssignNewKeys } ;
• E hist = E ∪ E NewClasses , where E NewClasses is defined as follows:

– for each class u new ∈ NewClasses , if there exists a class v ∈ V ′ such that (u, v ) ∈ E ′ and v new �∈ NewClasses , then

(u new , v ) ∈ E NewClasses ;

– for each class u new ∈ NewClasses , if there exists a class v new ∈ NewClasses such that (u, v ) ∈ E ′ , then (u new , v new ) ∈
E NewClasses .

For example, let G and G 

′ be the two graphs depicted on the left-hand side and on the right-hand side of Fig. 3 , respec-

tively, and let AssignNewKeys = { c, d} . The corresponding historical graph G 

hist is depicted in Fig. 4 . 
4 To the best of our knowledge, in the literature there is no analysis of the relationships between the security of these two different strategies.



Fig. 3. Two partially ordered hierarchies.

Fig. 4. The historical graph corresponding to the hierarchies in Fig. 3 .

 

 

 

 

 

 

 

 

It is easy to see that the historical graph G 

hist = (V hist , E hist ) has the following features: 

• G 

hist is a partially ordered hierarchy, since the new set E NewClasses of edges added to E to construct E hist preserves the

partial order relation exhibited by E ′ ;
• G is a subgraph of G 

hist ;

• The set E hist does not contain edges of the form (v , u new ) , with v ∈ V and u new ∈ NewClasses .

As we will show in the following, the historical graph G 

hist is used to obtain an Akl–Taylor assignment for the updated

graph G 

′ , starting from an Akl-Taylor assignment for the graph G . In particular, starting from an Akl–Taylor assignment for

G , we first set up an Akl-Taylor assignment for G 

hist , and then use part of such an assignment to obtain an Akl–Taylor

assignment for G 

′ . Such an operation is done in such a way to preserve keys which do not need to be changed. This can be

accomplished by using a proper choice for the global starting value used in the assignment for G 

hist , which will be denoted

by k hist 
0 

. 

We are ready to describe the Upd algorithm for the Akl–Taylor assignment. Recall that Upd takes as inputs the security

parameter 1 τ , the initial graph G , the tuple ( s , k , pub ) generated by Gen (1 τ , G ) of the Akl–Taylor scheme with the Akl–Taylor

assignment, an update type up , and a sequence params of additional parameters needed for the generation of new keys, as

a consequence of the update up . In particular, we set params to be equal to the global starting value k 0 generated at step 4.

of the algorithm Gen (1 τ , G ) in the Akl–Taylor scheme. 

Algorithm Upd (1 τ , G , s , k , pub , up , params ) 

The TA performs the following steps: 

1. Parse pub to get the sequence of primes assigned by Gen (1 τ , G ) with the Akl–Taylor assignment;

2. Extract the global starting value k 0 from params ;

3. AssignNewKeys ← CreateSet (G, up) ;

4. Given the set AssignNewKeys , construct the historical graph G 

hist = (V hist , E hist ) ;

5. For each class v ∈ AssignNewKeys , choose a new prime p new 

v not included in the list of primes obtained at step 2.;

6. Let P new 

be the product of all new primes , i.e.,

P new 

= 

∏ 

v ∈ AssignNewKeys 

p new 

v ;

7. Set k hist 
0 

= k 1 /P new 
0 

; 

8. For each class v ∈ V hist , compute the public value λhist 
v by using the Akl–Taylor assignment for the historical graph

G 

hist ;

9. For each class v ∈ V hist , let k hist 
v be the key obtained by using the Akl–Taylor scheme for the historical graph G 

hist with

the global starting value k hist 
0 

;



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. For each class v ∈ V ′ , if v ∈ AssignNewKeys , then λ′ 
v ← λhist 

v new , else λ′ 
v ← λhist 

v ;
11. For each class v ∈ V ′ , if v ∈ AssignNewKeys , then k ′ v ← k hist 

v new , else k ′ v ← k hist 
v . 

The next lemma shows that with the above algorithm all classes in the set V ′ \ AssignNewKeys maintain the same keys

as in the previous assignment. Such a feature follows from the particular form of the value k hist 
0 

, which is set to be equal to

k 1 /P new 
0 

, where P new 

is the product of all new primes assigned to classes in AssignNewKeys . 

Lemma 2. Let G = (V, E) be a partially ordered hierarchy, let up be an update yielding to the updated hierarchy G 

′ = (V ′ , E ′ ) ,
let AssignNewKeys ← C reat eSet(G, up) , and let G 

hist = (V hist , E hist ) be the corresponding historical graph. For any class v ∈ V ′ \
AssignNewKeys , it holds that k ′ v = k v . 

Proof. Let v be a class in V ′ \ AssignNewKeys . From the Upd algorithm we have that

k ′v = k hist 
v = (k hist 

0 ) λ
hist 
v = (k 1 /P new 

0 
) λ

hist 
v . 

In the following we prove that, for any v ∈ V ′ \ AssignNewKeys , the public value λhist 
v is equal to λv · P new 

. First, notice that

λv divides λhist 
v , since by construction G = (V, E) is a subgraph of G 

hist = (V hist , E hist ) . Moreover, the product P new 

divides

λhist 
v , since each factor in P new 

divides λhist 
v . This is due to the fact that, by construction of G 

hist , class v does not access any

class in the set NewClasses = { u new : u ∈ AssignNewKeys } (there are no edges from V to NewClasses in G 

hist ). Therefore, for

any v ∈ V ′ \ AssignNewKeys , it holds that λhist 
v = λv · P new 

and the lemma follows. �

Consider a class in u ∈ AssignNewKeys and the corresponding class u new ∈ NewClasses . Let k hist 
u and k hist 

u new be the keys

assigned to classes u and u new at step 9. of the algorithm Upd , respectively. Notice that, since u ∈ AssignNewKeys , then at

step 11. of the algorithm Upd , class u is assigned the key k ′ u = k hist 
u new , whereas k hist 

u can be considered as the old key for class

u . Which are the relationships between k hist 
u and k hist 

u new ? Since the set E hist does not contain edges of the form (v , u new ) ,

with v ∈ V, it follows the key assigned to each class in V cannot be used to compute the key assigned to u new in G 

hist . In

particular, the key k hist 
u cannot be used to compute k hist 

u new . Thus, the use of the historical graph G 

hist in the algorithm Upd

allows to realize the so called forward secrecy , meaning that a class cannot use its old key to compute keys which will be

subsequently assigned to it.

6.1. Construction of the set AssignNewKeys 

In order to conclude the description of the algorithm Upd for the Akl–Taylor assignment supporting dynamic updates,

we need to discuss how to construct the set AssignNewKeys for each update type. We consider the following update types:

insertion of an edge , insertion of a class , deletion of an edge , deletion of a class , key replacement , and revocation of a user from

a class . Notice that some types of updates can be seen as a sequence of other types of updates. For example, the insertion

of a class u can be performed by executing a sequence of edge insertions, one for each edge ingoing u and outgoing from u .

Similarly, the deletion of a class u can be performed by executing a sequence of edge deletions, one for each edge ingoing

u and outgoing from u . On the other hand, a key replacement for a class u can be performed by first executing the deletion

of u followed by the insertion of a new class u ′ . Finally, the revocation of a user from a class u can be performed by

executing a sequence of key replacement operations. In the following we show how to construct the set AssignNewKeys for

each type of updates. For each class v ∈ V, we denote by I G v (resp. I G 
′ 

v ) the set of classes which can access v in G (resp. G 

′ ),
i.e., I G v = { z ∈ V : v ∈ A 

G 
z } (resp. I G 

′ 
v = { z ∈ V ′ : v ∈ A 

G ′ 
z } ). 

• Insertion of an edge. Let u and v be two classes in V such that (u, v ) �∈ E. Which are the consequences of the insertion

of the edge (u, v ) in the graph G 

′ = (V ′ , E ′ ) ? It is easy to see that such an update modifies the accessible set A 

G 
z of any

class z ∈ I G u , since all classes in A 

G 
v needs to be included, if they were not already present in A 

G 
z , due to the existence

of a different path from z to v in G . Consequently, the public values λz assigned to such classes in G 

′ could contain

a smaller number of primes than in G , resulting in the need of a key replacement for such classes. Therefore, the set

AssignNewKeys can be constructed by considering the above discussion. Notice that a different, but equivalent, description

of AssignNewKeys consists of the set of classes which in G 

′ have access to at least a class in the set I G 
′ 

v \ I G v . 

• Insertion of a class. Let u �∈ V be a class to be inserted in the graph G 

′ , along with new incoming and outgoing edges.

Such an update can be seen as a composition of edge insertions, considering each edge ingoing u and outgoing from u as

a separate update. Consequently, the set AssignNewKeys can be determined as explained for the case of edge insertions. 

• Deletion of an edge. Let u and v be two classes in V such that (u, v ) ∈ E. The deletion of the edge (u, v ) from the graph

G clearly requires a key replacement for class v in G 

′ . Consequently, the keys assigned to all classes in I G 
′ 

v needs to be

updated, resulting in AssignNewKeys = I G 
′ 

v . 

• Deletion of a class. Let u ∈ V be a class to be deleted in the graph G , along with its incoming and outgoing edges, thus

yielding to the graph G 

′ . This update requires to follow the above described procedure for edge deletion. Moreover, in or-

der to preserve the partial order relation between the classes, such an update also requires to insert a new edge between

each predecessor and each successor of the deleted class u . Consequently, the set AssignNewKeys can be determined as

explained for the case of edge deletions and edge insertions. 



Fig. 5. Two partially ordered hierarchies.

 

 

 

 

 

 

• Key replacement. Let u be a class in G whose key k u needs to be replaced, due either to a problem of loss of misuse.

Such an update can be seen as a sequence of two updates, that is, the deletion of the class u followed by the insertion of

a class u ′ . Consequently, the set AssignNewKeys can be determined as explained for the case of class deletions and class

insertions.

• User revocation. Let u be a class in G , containing a certain number of users which share the same access rights. When-

ever a user in u needs to be revoked, in order to avoid the so called ex-member problem , a key replacement update for

each class v ∈ A 

G ′ 
u is needed. Consequently, the set AssignNewKeys can be determined as explained for the case of key

replacements.

Example 1 (Insertion of an edge) . Consider the hierarchy on the left-hand side of Fig. 3 and let p a , p b , p c , and p d be the

primes associated to the classes a , b , c , and d , respectively. The public values associated to the classes are as follows: 

λa = 1 , λb = p a · p c · p d , λc = p a · p b , λd = p a · p b · p c ,

whereas, the private keys associated to the classes are as follows: 

k a = k 0 , k b = (k 0 ) 
p a ·p c ·p d , k c = (k 0 ) 

p a ·p b , k d = (k 0 ) 
p a ·p b ·p c .

Suppose the edge ( b , d ) has been added to the hierarchy, as shown on the right-hand side of Fig. 3 . Then,

AssignNewKeys = { a, b} . Let p new 

a and p new 

b 
be the new primes assigned to the classes in AssignNewKeys . In order to reflect

the addition of the edge ( b , d ), consider the historical graph depicted in Fig. 4 . The TA updates the public values as follows: 

λhist 
a = p a new · p b new , λhist 

b 
= p a · p c · p d · p a new · p b new λhist 

c = p a · p b · p a new · p b new , 

λhist 
d 

= p a · p b · p c · p a new · p b new , λhist 
a new = p a · p b , λhist 

b new = p a · p b · p c · p a new . 

The updated value of the global starting value is k hist 
0 

= k 
1

p a new ·p b new 

0
and the private keys associated to the classes of the

hierarchy in Fig. 4 are as follows: 

k hist 
a = (k hist 

0 
) p a new ·p b new = k 0 k hist 

b
= (k hist 

0 
) p a ·p c ·p d ·p a new ·p b new = (k 0 ) 

p a ·p c ·p d ,

k hist 
c = (k hist 

0 
) p a ·p b ·p a new ·p b new = (k 0 ) 

p a ·p b , k hist 
d

= (k hist 
0 

) p a ·p b ·p c ·p a new ·p b new = (k 0 ) 
p a ·p b ·p c ,

k hist 
a new = (k hist 

0 
) p a ·p b = (k 0 ) 

p a ·p b 
p a new ·p b new , k hist 

b new = (k hist 
0 

) p a ·p b ·p c ·p a new = (k 0 ) 
p a ·p b ·p c

p b new . 

From the above assignment, it is easy to see that classes c and d maintain their old keys. 

Example 2 (Insertion of a class) . Consider the hierarchy on the left-hand side of Fig. 5 and let p a , p b , p c , and p d be the

primes associated to the classes a , b , c , and d , respectively. The public values associated to the classes are as follows: 

λa = 1 , λb = p a · p c , λc = p a · p b , λd = p a · p b · p c ,

whereas, the private keys associated to the classes are as follows: 

k a = k 0 , k b = (k 0 ) 
p a ·p c , k c = (k 0 ) 

p a ·p b , k d = (k 0 ) 
p a ·p b ·p c .

Suppose the class e has been added to the hierarchy, as shown on the right-hand side of Fig. 5 . Then, AssignNewKeys =
{ a, c, e } . Let p a new , p c new , and p e new be the new prime numbers assigned to the classes in AssignNewKeys . In order to reflect

the addition of the class e , consider the historical graph depicted in Fig. 6 . 

The TA updates the public values as follows: 

λhist 
a = p a new · p c new · p e new , λhist 

b 
= p a · p c · p a new · p c new · p e new , λhist 

c = p a · p b · p a new · p c new · p e new , 

λhist 
d 

= p a · p b · p c · p a new · p c new · p e new , λhist 
a new = p a · p c , λhist 

c new = p a · p b · p c · p a new , 

λhist 
new = p a · p b · p c · p d · p a new · p c new . 
e 



Fig. 6. The historical graph corresponding to the hierarchies in Fig. 5 .

Fig. 7. Two partially ordered hierarchies.

 

 

 

 

The updated value of the global starting value is k hist 
0 

= k 
1

p a new ·p c new ·p e new 

0
and the private keys associated to the classes of

the hierarchy in Fig. 6 are as follows: 

k hist 
a = (k hist 

0 
) p a new ·p c new ·p e new = k 0 , k hist 

b
= (k hist 

0 
) p a ·p c ·p a new ·p c new ·p e new = k 

p a ·p c 
0 

,

k hist 
c = (k hist 

0 
) p a ·p b ·p a new ·p c new ·p e new = k 

p a ·p b 
0 

, k hist 
d

= (k hist 
0 

) p a ·p b ·p c ·p a new ·p c new ·p e new = k 
p a ·p b ·p c 
0 

,

k hist 
a new = (k hist 

0 
) p a ·p c = k 

p a ·p c
p a new ·p c new ·p e new 

0
, k hist 

c new = (k hist 
0 

) p a ·p b ·p c ·p a new = k 

p a ·p b ·p c
p c new ·p e new 

0
,

k hist 
e new = (k hist 

0 
) p a ·p b ·p c ·p d ·p a new ·p c new = (k 0 ) 

p a ·p b ·p c ·p d
p e new .

From the above assignment, it is easy to see that classes b and d maintain their old keys. 

Example 3 (Deletion of an edge) . Consider the hierarchy on the left-hand side of Fig. 7 and let p a , p b , p c , p d , and p e be the

primes associated to the classes a , b , c , d , and e , respectively. The public values associated to the classes are as follows: 

λa = 1 , λb = p a · p c · p e , λc = p a · p b , λd = p a · p b · p c · p e , λe = p a · p b · p c · p d

whereas, the private keys associated to the classes are as follows: 

k a = k 0 , k b = (k 0 ) 
p a ·p c ·p e , k c = (k 0 ) 

p a ·p b , k d = (k 0 ) 
p a ·p b ·p c ·p e , k e = (k 0 ) 

p a ·p b ·p c ·p d . 

Suppose the edge ( b , d ) has been deleted by the hierarchy as shown on the right-hand side of Fig. 7 . Then,

AssignNewKeys = { a, c, d} . Let p a new , p c new , and p d new be the new prime numbers assigned to the classes in AssignNewKeys .

In order to reflect the deletion of the edge ( b , d ), consider the historical graph depicted in Fig. 8 . 

The TA updates the public values as follows: 

λhist 
a = p a new · p c new · p d new , λhist 

b 
= p a · p c · p e · p a new · p c new · p d new , 

λhist 
c = p a · p b · p a new · p c new · p d new , λhist 

d 
= p a · p b · p c · p e · p a new · p c new · p d new , 

λhist 
e = p a · p b · p c · p d · p a new · p c new · p d new , λhist 

a new = p a · p c , 

λhist 
c new = p a · p b · p c · p d · p a new , λhist 

d new = p a · p b · p c · p d · p e · p a new · p c new . 

The updated value of the global starting value is k hist 
0 

= k 
1

p a new ·p c new ·p d new 

0
and the private keys associated to the classes of

the hierarchy in Fig. 8 are as follows: 



Fig. 8. The historical graph corresponding to the hierarchies in Fig. 7 .

Fig. 9. Two partially ordered hierarchies.

 

 

 

k hist 
a = (k hist 

0 
) p a new ·p c new ·p d new = k 0 , k hist 

b
= (k hist 

0 
) p a ·p c ·p e ·p a new ·p c new ·p d new = k 

p a ·p c ·p e 
0 

,

k hist 
c = (k hist 

0 
) p a ·p b ·p a new ·p c new ·p d new = k 

p a ·p b 
0 

, k hist 
d

= (k hist 
0 

) p a ·p b ·p c ·p e ·p a new ·p c new ·p d new = k 
p a ·p b ·p c ·p e 
0 

,

k hist 
e = (k hist 

0 
) p a ·p b ·p c ·p d ·p a new ·p c new ·p d new = k 

p a ·p b ·p c ·p d 
0 

, k hist 
a new = (k hist 

0 
) p a ·p c = k 

p a ·p c
p a new ·p c new ·p d new 

0 
, 

k hist 
c new = (k hist 

0 
) p a ·p b ·p c ·p d ·p a new = k 

p a ·p b ·p c ·p d
p c new ·p d new 

0
, k hist 

d new = (k hist 
0 

) p a ·p b ·p c ·p d ·p e ·p a new ·p c new = k 

p a ·p b ·p c ·p d ·p e
p d new

0

From the above assignment, it is easy to see that classes b and d maintain their old key. 

Example 4 (Deletion of a class) . Consider the hierarchy on the left-hand side of Fig. 9 and let p a , p b , p c , p d , and p e be the

primes associated to the classes a , b , c , d , and e , respectively. The public values associated to the classes are as follows: 

λa = 1 , λb = p a · p c · p d · p e , λc = p a · p b , λd = p a · p b · p c · p e , λe = p a · p b · p c · p d

whereas, the private keys associated to the classes are as follows: 

k a = k 0 , k b = (k 0 ) 
p a ·p c ·p d ·p e , k c = (k 0 ) 

p a ·p b , k d = (k 0 ) 
p a ·p b ·p c ·p e , k e = (k 0 ) 

p a ·p b ·p c ·p d . 

Suppose the class c has been deleted by the hierarchy, as shown on the right-hand side of Fig. 9 . Then, AssignNewKeys =
{ a, d, e } . Let p a new , p d new and p e new be the new primes assigned to classes in AssignNewKeys . In order to reflect the deletion

of the class c , consider the historical graph depicted in Fig. 10 . 

The TA updates the public values as follows: 

λhist 
a = p a new · p d new · p e new , λhist 

b 
= p a · p c · p d · p e · p a new · p d new · p e new , 

λhist 
c = p a · p b · p a new · p d new · p e new , λhist 

d 
= p a · p b · p c · p e · p a new · p d new · p e new , 

λhist 
e = p a · p b · p c · p d · p a new · p d new · p e new , λhist 

a new = p a · p c · p d · p e , 

λhist 
d new = p a · p b · p c · p d · p e · p a new · p e new , λhist 

e new = p a · p b · p c · p d · p e · p a new · p d new . 

The updated value of the global starting value is k hist 
0 

= k 
1

p a new ·p d new ·p e new 

0
and the private keys associated to the classes of

the hierarchy in Fig. 10 are as follows: 



Fig. 10. The historical graph corresponding to the hierarchies in Fig. 9 .

 

 

 

 

 

 

 

 

 

 

k hist 
a = (k hist 

0 
) p a new ·p d new ·p e new = k 0 , k hist 

b
= (k hist 

0 
) p a ·p c ·p d ·p e ·p a new ·p d new ·p e new = k 

p a ·p c ·p d ·p e 
0 

,

k hist 
c = (k hist 

0 
) p a ·p b ·p a new ·p d new ·p e new = k 

p a ·p b 
0 

, k hist 
d

= (k hist 
0 

) p a ·p b ·p c ·p e ·p a new ·p d new ·p e new = k 
p a ·p b ·p c ·p e 
0 

,

k hist 
e = (k hist 

0 
) p a ·p b ·p c ·p d ·p a new ·p d new ·p e new = k 

p a ·p b ·p c ·p d 
0 

, k hist 
a new = (k hist 

0 
) p a ·p c ·p d ·p e = k 

p a ·p c ·p d ·p e
p a new ·p d new ·p e new 

0 
, 

k hist 
d new = (k hist 

0 
) p a ·p b ·p c ·p d ·p e ·p a new ·p e new = k 

p a ·p b ·p c ·p d ·p e
p d new

0
, k hist 

e new = (k hist 
0 

) p a ·p b ·p c ·p d ·p e ·p a new ·p d new = (k 0 )
p a ·p b ·p c ·p d ·p e

p e new .

From the above assignment, it is easy to see that class b maintains its old key. 

7. Proving the security of the Akl–Taylor scheme supporting dynamic updates

In this section we show that the Akl–Taylor assignment supporting dynamic updates is secure against key recovery,

provided that also the new primes associated to the classes, as a consequence of each update, are properly chosen. 

Let (up 1 , . . . , up m ) be a sequence of m updates performed on the graph G = (V, E) by using the algorithm Upd . This yields

to the sequence of graphs (G 

0 , G 

1 , . . . , G 

m ) , where G 

0 = G and, for each j = 1 , . . . , m, G 

j = (V j , E j ) is the graph resulting from

the j -th update. Let AssignNewKeys 0 = V and, for each j = 1 , . . . , m, let 

AssignNewKeys j ← CreateSet(G 

j−1 , up j ) . 

Moreover, for each j = 0 , . . . , m, let 

α j = 

j ∑ 

i =0

| AssignNewKeys i | .

Let G 

hist 0 = G and for each j = 1 , . . . , m, consider the j-th historical graph G 

hist j = (V hist j , E hist j ) , defined as follows: 

• V hist j = V hist j−1 ∪ NewClasses j , where NewClasses j = { u new j : u ∈ AssignNewKeys j } ;
• E hist j = E hist j−1 ∪ E NewClasses j , where E NewClasses j is defined as follows:

– for each class u new j ∈ NewClasses j , if there exists a class v ∈ V j such that (u, v ) ∈ E j and v new j �∈ NewClasses j , then

(u new j , v ) ∈ E NewClasses j ;

– for each class u new j ∈ NewClasses j , if there exists a class v new j ∈ NewClasses j such that (u, v ) ∈ E j , then (u new j , v new j ) ∈
E NewClasses j .

It is easy to see that the j -th historical graph G 

hist j , which is defined in terms of both the ( j − 1) -th historical graph

G 

hist j−1 and the set AssignNewKeys j , carries information on the sequence (up 1 , . . . , up j ) of updates on G . Notice that if we

set j = 1 , we obtain the construction of the historical graph for the single update described in the previous section. For

example, let G be the initial graph on the left hand side of Fig. 11 , and assume the TA performs the sequence of updates

( insert edge ( b , d ), insert class e ), yielding to the other two graphs depicted in Fig. 11 . The corresponding graph G 

hist 2 is

depicted in Fig. 12 . 

Let G 

hist m be the m -th historical graph obtained by the sequence (up 1 , . . . , up m ) of m updates on the graph G by using

the algorithm Upd . It is easy to see that total number of primes required to perform the sequence of m updates is equal to 

αm 

= 

m ∑ 

j=0

| AssignNewKeys j | = O(| V | · m ) .

Indeed, each class in the m -th historical graph G 

hist m is assigned a distinct prime. Such primes are then used for the creation

of the new public values. 



Fig. 11. A sequence of graphs.

Fig. 12. The graph G hist 2 corresponding to the three hierarchies in Fig. 11 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the following we show that the use of the m -th historical graph G 

hist m allows to simplify the attacking scenario, since

the roles of old keys and that of private information of corrupted classes can be unified. Indeed, consider the experiment

Exp 

REC −DYN 
ADAPT (1 τ , G ) of Definition 2 . Let ADAPT be an adaptive adversary which chooses to attack the class u in the graph G 

t . Let

1 ≤ j ≤ t be an index such that class u belongs to the set AssignNewKeys j , i.e., the corresponding key k 
j 
u has been created as

a consequence of the j -th update. Consider the j -th historical graph G 

hist j , which is a subgraph of G 

hist m : there exists a class

u new j which has been inserted in G 

hist j , but was not present in G 

hist j−1 , such that no classes in G 

hist j−1 have edges ending

in u new j . Thus, all classes in G 

hist j−1 can be seen as corrupted classes for u new j . In particular, notice that also class u new j−1 , if

present in G 

hist j−1 , is considered to be corrupted for u new j . On the other hand, the key assigned to class u in G 

j−1 belongs

to the sequence of old keys which have been modified as a consequence of an update. Clearly, when considering the m -th

historical graph G 

hist m , the set of corrupted classes for u new j previously considered has to be augmented in order to contain

all other classes which have been inserted as a consequence of subsequent updates and which are not allowed to compute

the key held by class u in the graph G 

t . To summarize, the use of the m -th historical graph G 

hist m allows to simplify the

attacking scenario, since the roles of old keys and that of private information of corrupted classes can be unified. 

For example, consider the sequence of graphs depicted in Fig. 11 , and assume the adaptive adversary ADAPT chooses to

attack the class b in the last graph. Notice that the key for such a class has been modified after the first update, i.e., the

insertion of the edge ( b , d ) in the initial graph G , and has not been changed after the second update, i.e., the insertion of

class e in G 1 , yielding to the last graph G 2 . In terms of the graph G 

hist 2 depicted in Fig. 12 , this corresponds to considering

the class b new 1 , for which all classes in the initial graph G can be seen as corrupted . In particular, notice that also class b in

G 

hist 2 is considered to be corrupted for b new 1 . Moreover, also the classes c new 2 and e new 2 , inserted during the construction of

G 

hist 2 from G 

hist 1 , have to be considered corrupted for b new 1 . 

When performing a sequence of updates on the graph G by using the algorithm Upd , the global starting value used in

each assignment depends on the global starting value k 0 used by the Akl–Taylor scheme, as well as on all the new primes

introduced by each update. For each j = 1 , . . . , m, let 

P new j 
= 

∏ 

v ∈ AssignNewKeys j 

p v new j . 

Moreover, for each j = 1 , . . . , m, let β j = 

∏ j 
i =1

P new i 
and let k 

hist j 
0 

be the global starting value used by the algorithm Upd for

the assignment on the graph G 

j . The following lemma holds. 

Lemma 3. Let G = (V, E) be a partially ordered hierarchy and let m be the number of updates performed by the TA by using the

Akl–Taylor scheme with the algorithm Upd. For each j = 1 , . . . , m, it holds that 

hist j 1 / β j 
k 
0 

= k 
0 

.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.1. Assigning primes with the fixed primes choice 

In the following we consider the fixed primes choice for the Akl–Taylor assignment supporting dynamic updates. Given

a sequence of m updates (up 1 , . . . , up m ) on a graph G , for any j = 1 , . . . , m, the assignment of primes to the classes in the

set AssignNewKeys j is done as follows: 

• Let v 1 , . . . , v | AssignNewKeys j | be a topological sorting of the classes in AssignNewKeys j ;

• For each i = 1 , . . . , | AssignNewKeys j | , associate prime p α j−1+ i ∈ P RIMES α j
\ P RIMES α j−1 

to class v i . 

Now we are ready to prove our main result.

Theorem 3. The Akl–Taylor assignment with the fixed primes choice yields to an Akl–Taylor scheme supporting m updates which

is secure in the sense of REC-DYN-AD under the RSA assumption for exponents in P RIMES αm . 

Proof. Assume by contradiction that the Akl–Taylor assignment supporting m dynamic updates, when all the primes are

chosen according to the fixed primes choice, is not secure in the sense of REC-DYN-AD . Thus, there exist a graph G ∈ � and

a polynomial-time adaptive adversary ADAPT = ( ADAPT 1 , ADAPT 2 ) whose advantage Adv 
REC −DYN 
ADAPT (1 τ , G ) is non-negligible. We

show how to turn ADAPT into a polynomial-time adversary B which breaks the RSA assumption for exponents in P RIMES αm . 

For each j = 1 , . . . , αm 

, denote by p j and k j the j -th prime in the set P RIMES αm and the j -th key which either has been

created or has been modified by the Akl–Taylor assignment supporting m dynamic updates, respectively. Moreover, for each

j = 1 , . . . , αm 

, let S j be an adversary which behaves as ADAPT 1 until it outputs the triple ( u , t , history ) (recall that this means

that the adversary ADAPT 1 has chosen to attack the class u in the graph G 

t ). If key k t u associated to the class u in G 

t is equal

to k j , then S j continues to follow ADAPT 2 , otherwise it outputs the string 0 τ . The advantage of ADAPT can be written as 

Adv 
REC −DYN 
ADAPT (1 

τ , G ) ≤
αm ∑ 

j=1

P r[ ADAPT 1 chooses k j as the key to be computed ] · Adv 
REC −DYN 
S j 

(1 

τ , G ) .

Since Adv 
REC −DYN 
ADAPT (1 τ , G ) is non-negligible, then there exists at least an index h , where 1 ≤ h ≤ αm 

such that Adv 
REC −DYN 
S h 

(1 τ , G )

is non-negligible. In particular, in the first stage of the attack, S h outputs the triple ( u , t , history ), whereas, in the second

stage, S h outputs the key k h associated to the class u in the graph G 

t . Let e ∈ P RIMES αm and assume, w.l.o.g., that e = p h . We

construct a polynomial-time adversary B that, on input a triple ( n , e , y ), where n is chosen according to the RSA generator

K 

f ix 
RSA 

(1 τ , e ) , uses the adversary S h to compute, with non-negligible advantage, a value x ∈ Z ∗n such that y = x e mod n . �

We distinguish the two following cases: 

• Case 1: h ≥ | V | + 1 . This case corresponds to the scenario where the key k h chosen by the adversary has been created as

a consequence of an update.

• Case 2: 1 ≤ h ≤ | V |. This case corresponds to the scenario where the key k h chosen by the adversary has been assigned

to some class in the initial graph G .

Analysis of case 1. Assume that the key k h chosen by the adversary either has been created or has been modified by the t -th

update operation, which has assigned such a key to a certain class u in the graph G 

t . Therefore, u ∈ AssignNewKeys t and e is

the new prime associated to class u in the t -th historical graph G 

hist t . Let u 1 , . . . , u | V | be a topological sorting of the classes

in V . The adversary B , on inputs ( n , e , y ) first computes the inputs for S h as follows: 

1. For each j = 1 , . . . , | V | , assign a prime p j ∈ PRIMES | V | to the class u j ;

2. For each j = 1 , . . . , | V | , compute the integer λu j =
∏ 

w �∈ A G u j 

p w 

( λu j = 1 if A 

G 
u j

= V ); 

3. Set pub to be the sequence of integers computed in the previous step, along with the value n .

Then, adversary B calls S h on inputs 1 τ , G , and pub . In the first stage of the attack, adversary S h can make a polynomial

number of updating and corrupting queries . The responses to such queries will be saved into the history variable. 

• Each updating query will be answered by adversary B through a simulation of the algorithm Upd and will produce the up-

dated public information along with the sequence of keys which need to be replaced. Let (up 1 , . . . up m ) be the sequence

of updates requested by S h . We will show how adversary B constructs pub j and old _ k j−1 , for any j = 1 , . . . , m .

Construction of the sequence pub j . In order to answer the j -th updating query, adversary B needs to assign some new

prime numbers to the set AssignNewKeys j . This is done by using the fixed primes choice. The public information pub j ,

containing the value λ j 
v for each class v in G 

j , can be easily computed by adversary B by using the algorithm Upd .

Construction of the sequence old _ k j−1 . The sequence old _ k j−1 will contain the keys which have been modified as a se-

quence of the update up j , i.e., the key k 
j−1 
v = (k 

hist j−1 

0 
) λ

j−1 
v , for each class v ∈ AssignNewKeys j . In the following we show

that, if adversary B knows the value βt = 

∏ t 
i =1 P new i 

, then it can easily compute the above keys. Indeed, setting the global

starting value k 0 to be equal to y βt /e , where ( n , e , y ) is the input for B and using Lemma 3 , for any j = 1 , . . . , t − 1 , it

follows that 

k 
hist j−1 = k 

1
β j−1 = y 

βt
e ·β j−1 . 
0 0



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that adversary B can efficiently perform the above computation, since the product e · β j−1 divides β t . This follows

from the fact that β j−1 is contained in β t and e is the prime associated to the class u ∈ AssignNewKeys t . The value k 
hist j−1

0 

is then used to compute the key k 
j−1 
v , for each class v ∈ AssignNewKeys j .

Thus, if adversary B knows the value β t , it can compute all keys in the sequence old _ k j−1 . Notice that, since the fixed

primes choice is used, then βt = 

∏ αt 
� =1 

p � , i.e., it is equal to the product of the first αt primes. Thus, the value β t can be

easily constructed if B knows the value αt . Since such a value is not known in advance, B makes its guess by choosing

uniformly at random a value between 1 and αm 

, but it might fail. Indeed, if the chosen value does not correspond to

αt , then B cannot continue its simulation and needs to restart itself. We conclude that B succeeds in constructing the

sequence old _ k j−1 with probability 1/ αm 

. 

• Let v be a corrupting query made by S h to the corrupting oracle C i , where 1 ≤ i ≤ t . As before, if adversary B knows the

value β t , then it can compute the answer to such a query, consisting of the key k 
j 
v held by class v in the graph G 

j , for

any j = 1 , . . . , i such that v cannot access u in G 

j . Indeed, setting setting the global starting value k 0 to be equal to y βt /e ,

and using Lemma 3 , it follows that k 
j 
v = ((k 

hist j 
0 

)) λ
j 
v = y 

βt
e ·β j . Notice that such a key can be computed since the product e ·

β j divides β t . Using the same arguments discussed above, we conclude that B succeeds in answering corrupting queries

with probability 1/ αm 

. 

• Upon finishing its updating and corrupting queries, in the first stage of the attack, adversary S h outputs the triple ( u , t ,

history ), where history contains all the responses obtained by the interaction with B .

In the second stage of the attack, adversary S h , on inputs the triple ( u , t , history ), outputs the key k h assigned to the class

u in the graph G 

t . Since the global starting value k 
hist t 
0 

is equal to y 1/ e , it follows that the key k h computed by adversary S h 
is equal to

k h = (k hist t 
0 

) λ
t 
u = y λ

t 
u /e . 

Notice that gcd(λt 
u , e ) = 1 . Indeed, since e and λt 

u are the prime number and the public value assigned to class u in the

graph G 

t , respectively, it follows that e does not divide λt 
u . Therefore, adversary B can use the Extended Euclidean Algorithm

to compute integers a and b such that 

e · a + λt 
u · b = 1 .

Then, B computes 

y a · k b h mod n = x e ·a mod n · x λ
t 
u ·b mod n = x e ·a + λ

t 
u ·b mod n = x. 

Notice that adversary S h ’s view in the above simulation is identically distributed as the one obtained in a real execution

of the scheme with the fixed primes choice, and all the computations needed to construct such a view can be performed

in polynomial time. Finally, it is easy to see that Adv 
K f ix

RSA 
B

(1 τ , e ) = 1 /αm 

· Adv 
REC −DYN 
S h 

(1 τ , G ) . Since Adv 
REC −DYN 
S h

(1 τ , G ) is non-

negligible, the theorem holds. 

Analysis of case 2. The proof is similar to the one of the previous case. 

Following the lines of Theorems 2 and 1 , we can also prove that the Akl–Taylor assignment with the random primes

choice yields to a dynamic Akl–Taylor scheme which is secure in the sense of REC-DYN-AD under the random exponent

RSA assumption. 

Theorem 4. The Akl–Taylor assignment with the random primes choice yields to a dynamic Akl–Taylor scheme which is secure in

the sense of REC-DYN-AD under the random exponent RSA assumption. 

Similar results can be also proven for the MacKinnon et al. assignment. 

8. Conclusions

Cloud storage repositories provide extremely convenient options for large scale outsourcing of shareable data, but, de-

spite the potential benefits introduced by the cloud paradigm, the security of the data stored in the cloud still constitutes a

serious obstacle to its wide deployment, mainly in scenarios where sensitive information is involved. Aiming at addressing

the security and privacy issues in outsourced data storage, we present an efficient solution, based on the Akl–Taylor scheme,

for flexible and fine-grained access control, supporting dynamic updates in cloud environments. Again, we specifically show

how to manage changes to the hierarchy, in order to effectively perform updates, which are very common in storage clouds.

We believe that the proposed scheme can serve as an efficient solution in such fully dynamic environments, since it re-

quires a small amount of public information and allows key derivation to be directly performed in a single step. Finally, we

demonstrate by means of a formal proof, that the proposed scheme is secure against key recovery, provided that also the

new primes associated to the classes, as a consequence of each update, are properly chosen. More precisely, our construction

is the first one proved secure with respect to the notion of REC-DYN-AD . 
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