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1. Introduction

Semirings and semimodules, and their applications, arise in various branches
of Mathematics, Computer Science, Physics, as well as in many other areas of
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modern science (see, for instance, [16]). In recent years, there has been a substan-
tial amount of interest in additively idempotent semirings — among which the
Boolean semifield, tropical semifields, and coordinate semirings of tropical vari-
eties represent a set of well-known examples — originated in several extremely
interesting contexts as Tropical Geometry [41] and [15], Tropical Algebra [24],
F1-Geometry [9], [8] and [34], the Geometry of Blueprints [36], Cryptography
[39], Cluster algebras [31], Dequantization [35], and in particular MV-algebras
[2], [10] and [11], for example.

Let us briefly mention MV-algebras and connections between them and addi-
tively idempotent semirings. MV-algebras arose in the literature as the algebraic
semantics of  Lukasiewicz propositional logic, one of the longest-known many-
valued logics. In the last decades the knowledge about MV-algebras benefited
from the literature on lattice-ordered groups via the well-known and celebrated
categorical equivalence between MV-algebras and lattice-ordered Abelian groups
with a distinguished strong order unit [40].

A connection between MV-algebras and a special category of additively idem-
potent semirings (called MV-semirings or  Lukasiewicz semirings) was first ob-
served in [10] and eventually implemented in [2]. On the one hand, every MV-
algebra has two semiring reducts isomorphic to each other by the involutive unary
operation ⇤ of MV-algebras (see, e.g., [12, Proposition 4.8]); on the other hand,
the category of MV-semirings defined in [4] is isomorphic to the one of MV-
algebras. Such results led to interesting applications of MV-semirings and their
semimodules to the theory of fuzzy weighted automata [42], and to an algebraic
approach to fuzzy compression algorithms and reconstruction of digital images
[11]. Another link between MV-algebras and semiring theory relies on the afore-
mentioned categorical equivalence due to Mundici. It is also well-known that the
category of lattice-ordered Abelian groups with a distinguished strong order unit
is isomorphic to the one of additively idempotent semifields with a distinguished
strong order unit. Consequently, the category of semimodules over a given MV-
algebra A is a full subcategory of the one of semimodules over the positive cone
of the additively idempotent semifield corresponding to A [13, Corollary 2.12].

It is well known that an e↵ective way to understand the behavior of a ring R

is to study the various ways in which R acts on its left and right modules. Thus,
the theory of modules may be expected to be an essential chapter in the theory of
rings. Two of the most important objects in the theory of modules are projective
and injective modules. As algebraic objects, semirings are certainly the most
natural generalization of such (at first glance di↵erent) algebraic systems as rings
and bounded distributive lattices, and therefore, they form an extremely interest-
ing, natural, and important, non-abelian/non-additive setting for furthering the
structure theory of projective and injective semimodules. We shall mention that
the structure theory of projective and injective semimodules has been considered
by some authors (see, for example, [44], [45], [29], [20], [30], [12], [22], [1], [21],
[26], [38], [23], and [25]).
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Although, in general, describing the structure of projective and injective semi-
modules seems to be a quite di�cult task, recently people have obtained a number
of interesting results regarding the structures of projective and injective semi-
modules over special classes of semirings among which we mention, for example,
the following ones. Il’in, Katsov and the third author [23] initiated a homolog-
ical structure theory of semirings and investigated semirings all of whose cyclic
semimodules are projective; Izhakian, Johnson and Kambites [26] characterized
finitely generated projective semimodules over a tropical semifield in terms of
rank functions of semimodules; and Macpherson [38] classified projective semi-
modules over additively idempotent semirings that are free on a monoid. Further,
motivated by understanding direct sum decompositions of subsemimodules of free
semimodules over the tropical semifield and related structures in tropical algebra,
Izhakian, Knebusch and Rowen [25] developed a theory of the decomposition of
socle for zerosumfree semimodules, and established the uniqueness of direct sum
decompositions for some special finitely generated projective semimodules.

Horn and Kimura in [19], and independently Bruns and Lakser in [3], gave
a characterization of injective semimodules, and the explicit description of in-
jective hulls of injective semimodules, over the Boolean semifield B := {0, 1}.
Fofanova [14] provided a characterization of injective semimodules over Boolean
algebras. Takahashi-Wang [44] proved a characterization of injective semimod-
ules over chain division semirings. It should be mentioned that Fafonova and
Takahashi-Wang did not give the description of injective hulls of semimodules
over Boolean algebras and over chain division semirings in their papers cited
above, respectively. Wang [45] showed that every semimodule over an additively
idempotent semiring has an injective hull. Abuhlail, Il’in, Katsov and the third
author [1] contributed to the theme of understanding a semiring through the
category of its semimodules by considering semirings all whose simple and cyclic
semimodules are injective; Il’in [21] gave a class of semimodules, and described
the semirings for which every semimodule of this class has an injective envelope.

On the other hand, to our knowledge, in the literature, there is no charac-
terization of an injective semimodule over an arbitrary additively idempotent
semiring. In this article we give a criterion for injectivity of semimodules over
additively idempotent semirings and an explicit description of injective hulls of
semimodules over chain division semirings, and describe the structure of injective
semimodules over MV-semirings with an atomic Boolean center. Our method is
to characterize injective semimodules over additively idempotent semirings S in
terms of the B-dual of the additive reduct (S,+, 0), i.e., the opposite to the lat-
tice of ideals of the join-semilattice S for the natural order, which is di↵erent
from Takahashi-Wang’s method [44] which consists in investigating injectivity of
a semimodule M over an additively idempotent semiring S via the S-semimodule
HomB(S, P (M)), where P (M) is the monoid of all subsets of M together with
the intersection operation.
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The article is organized as follows. In Section 2, for the reader’s convenience, we
provide all necessary notions and facts on semirings and semimodules. In Section
3, we give a characterization for injective semimodules over additively idempo-
tent semirings (Theorem 3.3). Consequently, we recover Takahashi-Wang’s result
cited above about a characterization of injective semimodules over chain division
semirings (Corollary 3.8), and recover Il’in’s result [20] that all left S-semimodules
over a semiring S are injective if and only if S is a semisimple ring (Corollary 3.6).
Also, based on Horn-Kimura’s construction [19, Theorem 3.8], we give an explicit
construction for the injective hulls of semimodules over chain division semirings
(Theorem 3.11). Finally, we give a complete desription of injective semimodules
over the semifield of tropical integers (Theorem 3.12).

In Section 4, based on Theorem 3.3, we characterize self-injective MV-semirings
with an atomic Boolean center (Theorem 4.7), and give a description of (finitely
generated) injective semimodules over finite MV-semirings (Theorems 4.10 and
4.11). An interesting consequence of Theorem 4.7 is to show that every complete
MV-semiring with an atomic Boolean center is an exact semiring (Corollary 4.9).
It should be mentioned that the concept of exact semirings was introduced by
Wilding-Johnson-Kambites [46], and defined by a Hahn-Banach-type separation
property on semimodules arising in the tropical case from the phenomenon of
tropical matrix duality (see, e.g., [5], [6], [7] and [18]). Finally, we show that
complete Boolean algebras are precisely the MV-semirings in which every princi-
pal ideal is injective (Proposition 4.13).

All notions and facts of categorical algebra, used here without any comments,
can be found in [37]; for notions and facts from semiring theory we refer to [16].

2. Preliminaries

Recall [16] that a semiring is an algebra (S,+, ·, 0, 1) such that the following
conditions are satisfied:

(1) (S,+, 0) is a commutative monoid with identity element 0;
(2) (S, ·, 1) is a monoid with identity element 1;
(3) multiplication distributes over addition from either side;
(4) 0s = 0 = s0 for all s 2 S.

Given two semirings S and S
0, a map ' : S �! S

0 is a homomorphism if it
satisfies '(0) = 0, '(1) = 1, '(x + y) = '(x) + '(y) and '(xy) = '(x)'(y) for
all x, y 2 S. As usual, the direct product of a family (Si)i2I of semirings, denoted
by

Q
i2I Si, is the semiring obtained by endowing the set-theoretical cartesian

product of the family with the semiring-operations defined pointwise.
A semiring S is commutative if (S, ·, 1) is a commutative monoid; and S is

additively idempotent if the monoid (S,+, 0) is idempotent, i.e., s+ s = s for all
s 2 S. The semiring S is a division semiring if (S \{0}, ·, 1) is a group; and S is a
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semifield if it is a commutative division semiring. Two well-known important ex-
amples of additively idempotent semifields are the so-called the Boolean semifield
B := ({0, 1},+, ·), and the tropical semifield T := (R [ {�1},max,+,�1, 0).

As usual, a left S-semimodule over a given semiring S is a commutative monoid
(M,+, 0M ) together with a scalar multiplication (s,m) 7! ms from S ⇥M to M

which satisfies the identities (s0sm) = s
0(sm), s(m+m

0) = sm+sm
0, (s+s

0)m =
sm+ s

0
m, 1m = m, s0M = 0M = 0m for all s, s0 2 S and m,m

0 2 M .
Right semimodules over S and homomorphisms between semimodules are de-

fined in the standard manner. From now on, let MS and SM denote the cate-
gories of right and left S-semimodules, respectively, over a semiring S.

An element 1 2 M of an S-semimodule M is called infinite if 1 + m =
1 for all m 2 M . A left S-semimodule M is called additively idempotent if
m+m = m for all m 2 M . Notice that a semiring S is additively idempotent if

SS 2 |SM| is an additively idempotent semimodule, and every left semimodule
over an additvely idempotent semiring is also additively idempotent. Moreover,
we have the following simple fact:

Fact 2.1. Let S be a semiring and M an additively idempotent left S-semimodule.
Then, the monoid (M,+, 0) is always a join-semilattice with the partial order
relation  (called the natural order) on M defined for any two elements m,m

0 2
M by m  m

0 if m+m
0 = m

0; and m _m
0 = m+m

0 for all m,m
0 2 M .

Notice that an infinite element in an additively idempotent semimodule is
exactly a maximum for the natural order. An additively idempotent semiring S

is called chain if the partial ordering  on S is total.
Let S be a semiring and I a nonempty set. The direct product of a family

(Mi)i2I of left S-semimodules, denoted by
Q

i2I Mi, is the left S-semimodule
obtained by endowing the set-theoretical cartesian product of the family with
the semimodule-operations defined pointwise. In other words,

Q
i2I Mi is the set

of all functions f : I �!
S

i2I Mi such that f(i) 2 Ai for all i 2 I, with the
addition and scalar operations defined by:

(f + g)(i) = f(i) + g(i) and (sf)(i) = sf(i)

for all i 2 I and s 2 S. In particular, for each left S-semimoduleM and nonempty
set X, the left S-semimodule M

X is the direct product of the family (Mx)x2X ,
where Mx = M for all x 2 X.

As usual (see, for example, [16, Ch. 17]), if S is a semiring, then in the category

SM, a free (left) semimodule
L

i2I Si, Si
⇠= SS, i 2 I, with a basis set I is an I-

indexed direct sum of copies of copies of SS. A semimodule SM 2 |SM| is finitely
generated (resp. cyclic) if it is a homomorphic image of a free semimodule with
a finite basis set (resp. a homomorphic image of SS).

A left S-semimodule P is projective if the following condition holds: if ' :
M �! N is a surjective S-homomorphism of left S-semimodules and if ↵ : P �!
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N is an S-homomorphism then there exists an S-homomorphism � : P �! M

satisfying '� = ↵.
A left S-semimodule N is a retract of a left S-semimodule M if there exist

an S-homomorphism ✓ : M �! N and an S-homomorphism  : N �! M such
that ✓ = idN . Recall (see, e.g., [16, Proposition 17.16]) that a projective left
semimodule in SM is exactly a retract of a free left semimodule.

A left S-semimodule E is injective if, given a left S-semimodule M and a
subsemimodule N , any S-homomorphism from N to E can be extended to an
S-homomorphism from M to E. A semiring S is called left (right) self-injective
if the regular left (right) S-semimodule S is injective.

An injective S-homomorphism ↵ : M �! N of left S-semimodules is essen-
tial if, for any S-homomorphism � : N �! N

0, the map �↵ is an injective
S-homomorphism only when � is an injective S-homomorphism.

Let M be a left S-semimodule. If there exists an injective left S-semimodule
E and an essential injective S-homomorphism ↵ : M �! E then E is an injective
hull of M .

3. Injectivity of semimodules over additively idempotent semirings

In this section, we give a necessary and su�cient condition for the injectivity of
semimodules over additively idempotent semirings. Consequently, we give a com-
plete description of injective semimodule over the semifield of tropical integers,
as well as we give an explicit construction of the injective hulls of semimodules
over chain division semirings. The semirings considered in this section are not
necessarily commutative.

We begin by considering some simple facts on injectivity of semimodules.

Lemma 3.1. For any semiring S, any retract of an injective left S-semimodule
is injective.

Proof. Assume that M is an injective left S-semimodule and N is a retract of
M ; that means, there exists a surjective S-homomorphism ✓ : M �! N and an
injective S-homomorphism  : N �! M such that ✓ = idN .

Let K be a left S-semimodule, L a subsemimodule of K, and ↵ : L �! N an
S-homomorphism. Then, since M is injective, there exists an S-homomorphism
� : K �! M such that �|L =  ↵. It implies that ✓� : K �! N is an S-
homomorphism such that ✓�|L = ↵, and hence, N is injective, finishing the
proof. ⇤

Let ⇡ : T �! S be a semiring homomorphism. S is canonically a left T -
semimodule where the scalar multiplication is defined by t · s = ⇡(t)s for all
t 2 T and s 2 S. Let M be a left T -semimodule. Then HomT (S,M) is a left
S-semimodule with respect to componentwise addition and scalar multiplication
given by: (s0↵)(s) = ↵(ss0) for all ↵ 2 HomT (S,M) and s, s

0 2 S.
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Lemma 3.2. For any additively idempotent semiring S, the left S-semimodule
HomB(S,B) is injective.

Proof. Let S be an additively idempotent semiring. We then have that B may
be considered as a subsemiring of S; hence, every left S-semimodule is also a
B-semimodule. Let N be a subsemimodule of a left S-semimodule M and let
↵ : N �! HomB(S,B) be an S-homomorphism. Notice that N is also a B-
subsemimodule of M . Define a map ✓ : N �! B by setting ✓(n) = (↵(n))(1) for
all n 2 N . Then ✓ is a B-homomorphism. Indeed, if n, n0 2 N then ✓(n+ n

0) =
(↵(n+ n

0))(1) = (↵(n) + ↵(n0))(1) = (↵(n))(1) + (↵(n0))(1) = ✓(n) + ✓(n0).
By [45, Lemma 1] (see, also, [14, Corollary 2]), B is an injective B-semimodule,

and so there exists a B-homomorphism ' : M �! B such that '✓ = idN .
Define a map � : M �! HomB(S,B) by setting (�(m))(s) = '(sm) for all
m 2 M and s 2 S. We show that � is an S-homomorphism. Indeed, for
all m1,m2 2 M and s1, s2 2 S we have (�(s1m1 + s2m2))(s) = '(s(s1m1 +
s2m2)) = '(s(s1m1) + s(s2m2)) = '(s(s1m1)) + '(s(s2m2)) = '((ss1)m1)) +
'((ss2)m2)) = (�(m1))(ss1) + (�(m2))(ss2) = (s1�(m1)(s) + (s2�(m2)(s) =
(s1�(m1)+s2�(m2))(s) for all s 2 S. This implies that � is an S-homomorphism.
Furthermore, � extends ↵ since for each n 2 N and s 2 S we have (�(n))(s) =
'(sn) = ✓(sn) = (↵(sn))(1) = (s↵(n))(1) = (↵(n))(s). Thus, HomB(S,B) is an
injective left S-semimodule, finishing the proof. ⇤

We are now able to give a necessary and su�cient condition for the injectivity of
semimodules over additively idempotent semirings, which will play an important
role in the paper. The argument of the following theorem is based on the proof
of [28, Theorem 4.2].

Theorem 3.3. Let S be an additively idempotent semiring and M a left S-
semimodule. Then, M is injective if and only if there exists a set X such that
M is a retract of the left S-semimodule HomB(S,B)X , where B is the Boolean
semifield.

Proof. (=)). Let M be an injective left S-semimodule. We then have that
HomB(HomB(M,B),B) is a left S-semimodule, where the scalar multiplication
defined by: (s · �)(↵) = �(↵ · s) for all � 2 HomB(HomB(M,B),B), ↵ 2
HomB(M,B) and s 2 S. Note that HomB(M,B) is a right S-semimodule, where
the scalar multiplication defined by (↵ · s)(m) = ↵(sm) for all ↵ 2 HomB(M,B),
s 2 S and m 2 M . We claim that the map ' : M �! HomB(HomB(M,B),B),
defined by '(m)(f) = f(m) for all m 2 M and f 2 HomB(M,B), is an S-
homomorphism. Indeed, for all s, s

0 2 S and m,m
0 2 M we have ('(sm +

s
0
m

0))(f) = f(sm+s
0
m

0) = f(sm)+f(s0m0) = (f ·s)(m)+(f ·s0)(m0) = ('(m))(f ·
s) + ('(m0))(f · s0) = (s · '(m))(f) + (s0 · '(m0))(f) = (s · '(m) + s

0 · '(m0))(f)
for all f 2 HomB(M,B), thus the claim is proved.

We next prove that ' is injective. Indeed, we first note that since S is an
additively idempotent semiring, the semimodule M is additively idempotent. By
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Fact 2.1, the monoid (M,+, 0) is a join-semilattice with the partial ordering 
on M defined for any two elememts m,m

0 2 M by m  m
0 if m+m

0 = m
0.

Let m,m
0 2 M such that m 6= m

0. We then must have that m ⌦ m
0 or

m
0 ⌦ m. Without loss of generality we may assume that m ⌦ m

0. We consider
the B-homomorphism f : M �! B, defined by: for all x 2 M ,

f(x) =

⇢
0 if x  m

0
,

1 otherwise
.

We then have that

'(m)(f) = f(m) = 1 6= 0 = f(m0) = '(m0)(f),

that means, '(m) 6= '(m0). This implies that ' is injective.
For the right S-semimodule HomB(M,B), by [16, Proposition 17.11], there

exists a surjective S-homomorphism ✓ :
L

x2X Sx �! HomB(M,B) from a free
right S-semimodule

L
x2X Sx, Sx

⇠= S as right S-semimodules for all x 2 X,
where X is any set of generators for the right S-semimodule HomB(M,B). This
surjection induces an injective S-homomorphism

✓
⇤ : HomB(HomB(M,B),B) �! HomB(

M

x2X
Sx,B),

defined by ✓⇤(�) = �✓, for all � 2 HomB(HomB(M,B),B). Therefore, we obtain
an injective S-homomorphism ✓

⇤
' : M �! HomB(

L
x2X Sx,B).

Consider for x 2 X the natural injection ◆x : Sx �!
L

x2X Sx. We then have
an S-isomorphism

HomB(
M

x2X
Sx,B) �!

Y

x2X
HomB(Sx,B),

by the map f 7�! (f ◆x)x2X , and so we have an injective S-homomorphism µ :
M �! HomB(S,B)X . Since M is injective, there exists an S-homomorphism
⌘ : HomB(S,B)X �! M such that ⌘µ = idM ; that means, M is a retract of the
left S-semimodule HomB(S,B)X .

((=). By Lemma 3.2, the left S-semimodule HomB(S,B) is injective, and so
HomB(S,B)X is also an injective left S-semimodule, by [16, Proposition 17.23
(1)]. Then, by Lemma 3.1, we immediately get that M is injective, finishing our
proof. ⇤

The next goal of this section is to recover some results which have been estab-
lished previously. To do so, we require the following useful notions.

Definition 3.4 (cf. [19, Definitions 2.6 and 2.7] and [14, Definition 1]). An
additively idempotent left semimodule M over a semiring is called complete if
the join-semilattice M is a complete lattice. A complete semimodule M is called
infinitely distributive if for any family (mi)i2I of elements of M and any m 2 M ,
we have m+

V
i2I mi =

V
i2I(m+mi).

8



As an application of Theorem 3.3, we obtain a necessary condition for injec-
tivity of a semimodule over an additively idempotent semiring, and in particular
over an additively idempotent semiring which is a distributive lattice for the
natural order, which extends Takahashi-Wang’s result [44, Theorem 6 (5)].

Corollary 3.5. Let S be an additively idempotent semiring and M an injec-
tive left S-semimodule. Then M is a complete semimodule. If in addition the
join-semilattice S is a distributive lattice, then M is a complete and infinitely
distributive semimodule.

Proof. Since M is injective and by Theorem 3.3, there exists a set X such that
M is a retract of a left S-semimodule HomB(S,B)X ; that means, there exist an
injective S-homomorphism

↵ : M �! HomB(S,B)X

and a surjective S-homomorphism

� : HomB(S,B)X �! M

such that �↵ = idM .
Recall first that a submonoid A of the monoid (S,+, 0) is called subtractive if s,

s+ s
0 2 A imply s

0 2 A for all s, s0 2 S. In other words, a subtractive submonoid
of the monoid (S,+, 0) is a nonempty lower subset of the join-semilattice S (for
the natural order) which is closed under the supremum. Then, the intersection of
an arbitrary family of subtractive submonoids of the additive monoid S is clearly
subtractive. We denote by K the set of all subtractive submonoids of the additive
monoid S. We have that (K,\, S) is a complete B-semimodule with the natural
order is defined by for all A,A0 2 K, A  A

0 if A\A
0 = A

0 (i.e., A0 ✓ A); and for
each family (Ai)i2I ✓ K,

W
i2I Ai = \i2IAi and

V
i2I Ai is the intersection of all

subtractive submonoids of the additive monoid S containing all Ai.
We claim that if S is a distributive lattice for the natural order, then the

B-semimodule (K,\, S) is infinitely distributive. Indeed, we first show thatV
i2I Ai =

P
i2I Ai for any family (Ai)i2I ✓ K, where the symbol

P
denotes

sum of submonoids. To prove this fact we only need to check that
P

i2I Ai is a
subtractive submonoid of the additive monoid S. Let s 2 S and s

0
, a 2

P
i2I Ai

such that s+ s
0 = a, i.e., s  a. We write a in the form a = ai1 + ai2 + · · ·+ ain ,

where aik 2 Aik . Since the join-semilattice S is a distributive lattice, s = s^ a =
s ^ (

Pn
k=1 aik) =

Pn
k=1(s ^ aik). For each k = 1, .., n, since Aik is a lower subset

of the join-semilattice S and aik 2 Aik , s ^ aik 2 Aik , so s 2
P

i2I Ai, that is,P
i2I Ai is subtractive.
Similarly, we have that A \ (

P
i2I Ai) ✓

P
i2I(A \ Ai) for all A,Ai 2 K. The

inverse inclusion is obvious, so A \ (
P

i2I Ai) =
P

i2I(A \ Ai) for all A,Ai 2 K,
that is, B-semimodule (K,\, S) is infinitely distributive, proving the claim.

For each f 2 HomB(S,B), Ker(f) is clearly a subtractive submonoid of the
additive monoid S. Inversely, for each subtractive submonoid A of the additive
monoid S, define a B-homomorphism fA : S �! B by setting for all s 2 S,

9



fA(s) =

⇢
0 if s 2 A,

1 otherwise
.

We obviously have thatKer(fA) = A. We also note that for all f, g 2 HomB(S,B)
we haveKer(f+g) = Ker(f)\Ker(g). From these remarks, one obtains that the
assignment f 7�! Ker(f), for all f 2 HomB(S,B), determines an isomorphism
of B-semimodules

(HomB(S,B),+, 0) �! (K,\, S).

This implies that HomB(S,B) is a complete left S-semimodule, and it is a com-
plete and infinitely distributive left S-semimodule when S is a distributive lat-
tice for the natural order. Therefore, HomB(S,B)X is also a complete left S-
semimodule, and it is a complete and infinitely distributive left S-semimodule
when S is a distributive lattice for the natural order. We then get similar facts
for the semimodule M , by repeating verbatim the argument in the proof of [44,
Lemma 2]; and just for the reader’s convenience, we briefly sketch it here.

We first claim that M is a complete semimodule and

W
i2I mi = �(

W
i2I ↵(mi)), and

V
i2I mi = �(

V
i2I ↵(mi))

for all mi 2 M . Indeed, we firstly have that mi = �(↵(mi))  �(
W

i2I ↵(mi))
for all i 2 I. If m0 2 M and mi  m

0 for all i 2 I, then we have that ↵(mi) 
↵(m0) for all i 2 I, so

W
i2I ↵(mi)  ↵(m0). This implies that �(

W
i2I ↵(mi)) 

�(↵(m0)) = m
0. Therefore,

W
i2I mi exists inM and is equal to �(

W
i2I ↵(mi)). By

a dual argument, we get that
V

i2I mi exists in M and is equal to �(
V

i2I ↵(mi)).
Consequently, M is a complete semimodule.

If in addition S is a distributive lattice for the natural order, thenHomB(S,B)X
is an infinitely distributive semimodule, so we have

m+
V

i2I mi = �(↵(m)) + �(
V

i2I ↵(mi)) = �(↵(m) +
V

i2I ↵(mi))
= �(

V
i2I(↵(m) + ↵(mi))) = �(

V
i2I ↵(m+mi))

=
V

i2I(m+mi)

for all m,mi 2 M , so M is an infinitely distributive semimodule, finishing the
proof.

⇤

In [20] Il’in proved that all left S-semimodules over a semiring S are injective
if and only if S is a semisimple ring. The following corollary will recover Il’in’s
result, by using Corollary 3.5.

Corollary 3.6 ([20, Theorem 3.4]). For any semiring S, the following conditions
are equivalent:

(1) Every left S-semimodule is injective;
(2) S is a semisimple ring.

10



Proof. (1)=)(2). Define a relation ⇢ on S by setting for all s, s0 2 S, s ⇢ s0 if there
exist elements x, y 2 S and nonnegative integers n and m satisfying s+ x = ns

0

and s
0 + y = ms. It is straightforward to check that ⇢ is a congruence relation

on S such that s ⇢ (s + s) for all s 2 S. Moreover, if ⌧ is a congruence relation
on S such that s ⌧ (s + s) for all s 2 S, then ⇢ ✓ ⌧ . Indeed, let s, s

0 2 S with
s ⇢ s

0, that is, there exist elements x, y 2 S and nonnegative integers n and m

satisfying s + x = ns
0 and s

0 + y = ms. We denote by [a]⌧ the equivalent class
of an element a 2 S under ⌧ . Since [a]⌧ = [a + a]⌧ = [a]⌧ + [a]⌧ for all a 2 S,
[s+ x]⌧ = [ns0]⌧ = [s0]⌧ and [s0 + y]⌧ = [ms]⌧ = [s]⌧ , so

[s+ s
0 + x+ y]⌧ = [s0 + s

0 + y]⌧ = [s0 + s
0]⌧ + [y]⌧ = [s0 + y]⌧ = [s]⌧

and

[s+ s
0 + x+ y]⌧ = [s+ s+ x]⌧ = [s+ s]⌧ + [x]⌧ = [s+ x]⌧ = [s0]⌧ ,

showing that [s]⌧ = [s0]⌧ , that is, s ⌧ s0. Thus ⇢ ✓ ⌧ .
From these observations, we have that T := S/⇢ is the maximal additively

idempotent quotient of S. Assume that T 6= 0. Consider the free left T -
semimodule F :=

L
i2Z+ Ti, where Ti = T for all i 2 Z+. We claim that F

is not an injective left T -semimodule. Indeed, suppose it is injective. By Corol-
lary 3.5, F is a complete left T -semimodule. Let z be the maximum of F for the
natural order. Write z in the form z = (zi)i2Z+ , where zi 2 Ti such that zi = 0
for all but finitely many i; that means, there exists a positive integer n such that
zi = 0 for all i � n. Let x := (xi)i2Z+ 2 F , where xn = 1 and xi = 0 for all
i 6= n. We then have that z = x+ z 6= z, a contradiction. Therefore, F is not an
injective left T -semimodule.

Let ⇡ : S �! T be the natural surjection. Then, F may be considered as a
left S-semimodule by pullback along ⇡, that is, by definition s · a = s⇡(a) for all
s 2 S and a 2 F . By [30, Lemma 5.2], F is not an injective left S-semimodule,
which contradicts with hypothesis (1). Therefore, T = 0, that is, 1 ⇢ 0. It implies
that 1 + x = 0 for some x 2 S, so S is a ring. Then, by [32, Theorem 1.2.9], we
immediately get that S is a semisimple ring.

(2)=)(1). It follows from [32, Theorem 1.2.9]. ⇤

In [44, Theorem 6 (6)] Takahashi and Wang proved that a left semimodule over
a chain division semiring is injective if and only if it is complete and infinitely
distributive. We will recover this results in terms of another approach. Before
doing so, we need the following simple lemma.

Lemma 3.7. Let S be an additively idempotent division semiring and M a left
S-semimodule. Then, for each X ✓ M and s 2 S \ {0}, if

V
x2X x exists, thenV

x2X sx = s
V

x2X x.

Proof. Since
V

x2X x  x for all x 2 X, we have that s
V

x2X x  sx for all x 2 X.
Let m 2 M such that m  sx for all x 2 X. We then have that s

�1
m  x for

11



all x 2 X, and hence, s�1
m 

V
x2X x, that means, m  s

V
x2X x. This implies

that
V

x2X sx = s
V

x2X x, finishing the proof. ⇤

Corollary 3.8 ([44, Theorem 6 (6)]). Let S be a chain division semiring and
M a left S-semimodule. Then, M is injective if and only if it is a complete and
infinitely distributive semimodule.

Proof. (=)). Since S is a chain division semiring, it is a distributive lattice for
the natural order, so the statement immediately follows from Corollary 3.5.

((=). Since S is an additively idempotent semiring and by [28, Theorem 4.1]
(see also the proof of Theorem 3.3), the semimodule M may be considered as
a subsemimodule of some injective left S-semimodule I. For each x 2 I, let
Ix := {m 2 M | x  m}. Consider the map f : I �! M defined by for any
x 2 I, f(x) =

V
m2Ix m. We always assume that

V
m2Ix m =

W
m2M m if Ix is the

empty set.
We claim that f is an S-homomorphism such that f |M = idM . Indeed, we

first prove that f(x + x
0) = f(x) + f(x0) for all x, x0 2 I. Indeed, we have that

Ix+x0 ✓ Ix and Ix+x0 ✓ Ix0 , so f(x)+ f(x0)  f(x+x
0). On the other hand, since

M is an infinitely distributive semimodule, we have

f(x) + f(x0) =
^

m2Ix

m+
^

m02Ix0

m
0 =

^
{m+m

0 | m 2 Ix,m
0 2 Ix0}.

Furthermore, we always have
^

{m+m
0 | m 2 Ix,m

0 2 Ix0} �
^

m2Ix+x0

m = f(x+ x
0),

so f(x) + f(x0) � f(x+ x
0); that means, f(x) + f(x0) = f(x+ x

0).
Let x 2 I and s 2 S \ {0}. We show that f(sx) = sf(x). Indeed, by Lemma

3.7, we have sf(x) = s
V

m2Ix m =
V

m2Ix sm �
V

m02Isx m
0 = f(sx). On the

other hand, we have

f(sx) =
V
{m0 2 M | sx  m

0} =
V
{s(s�1

m
0) 2 M | x  s

�1
m

0}
= s

V
{s�1

m
0 2 M | x  s

�1
m

0} (by Lemma 3.7)
� s

V
{m 2 M | x  m} = sf(x),

that means, sf(x) = f(sx). Therefore, f is an S-homomorphism. Furthermore,
since m 2 Im for all m 2 M , f(m) =

V
m02Im m

0 = m for all m 2 M , so
f |M = idM , proving the claim. Since I is injective and by Lemma 3.1, we obtain
that M is also injective, finishing the proof. ⇤

Horn and Kimura in [19], and independently Bruns and Lakser in [3], gave
an explicit construction for the injective hull of any semilattice with zero (i.e.,
B-semimodules). Based essentially on this construction, we will give an explicit
construction for the injective hull of semimodules over chain division semirings.
We firstly recall some important notions and notations.

12



Definition 3.9. (1) ([19, Definition 3.3]) A family {mi | i 2 I} of elements of
a join-semilattice M is called distributive if (1)

V
i2I mi exists, and (2) for any

m 2 M ,
V

i2I(m _mi) exists and is equal to m _
V

i2I mi.
(2) ([19, Definition 3.6] and [14, Definition 2]) A subset J of a join-semilattice

M is called a d-ideal if the following conditions are satisfied: (i) x 2 J and x  y

imply y 2 J ; and (ii) If {ai | i 2 I} ✓ M is distributive and ai 2 J for all i 2 I

then
V

i2I ai 2 J .

The following lemma plays an important role in the construction of the injective
hulls of semimodules over chain division semirings. (We note that parts (1) and
(2) of Lemma 3.10 has appeared in [19, Lemma 3.7] for semilattices with zero.)

Lemma 3.10. Let S be an additively idempotent division semiring, M a left
S-semimodule, and let D(M) be the set of all d-ideals of the join-semilattice M

with the natural partial order. Then the following statements hold:

(1) D(M) is closed under arbitrary intersections;
(2) If < X > denotes the smallest d-ideal containing X, then for any nonempty

set X of M satisfying condition (i) of Definition 3.9 (2), we have

< X >= {m 2 M | m =
V

i2I mi for some distributive family
{mi | i 2 I} contained in X};

(3) sJ := {sx | x 2 J} 2 D(M) for all J 2 D(M) and 0 6= s 2 S;
(4) For all J 2 D(M) and 0 6= s, s

0 2 S, we have (s+ s
0)J ✓ sJ \ s

0
J . If in

addition S is chain, then (s+ s
0)J = sJ \ s

0
J ;

(5) If S is a chain division semiring, the monoid (D(M),\,M) is an injective
left S-semimodule with the scalar multiplication (s, J) 7�! s · J from S ⇥
D(M) to D(M) defined by

s · J =

⇢
sJ if s 6= 0,
M otherwise

;

(6) For each x 2 M let xM := {m 2 M | x  m}. We have that xM 2 D(M),
(x+ y)M = x

M \ y
M and sx

M = (sx)M for all x, y 2 M and 0 6= s 2 S;
(7) If S is a chain division semiring, then the map f : M �! D(M), defined

by f(x) = x
M for all x 2 M , is an injective S-homomorphism.

Proof. (1) Let (Jk)k2K be a family of elements of D(M). If x 2 \k2KJk and
x  y, then x 2 Jk for all k 2 K, so y 2 Jk for all k 2 K, that is, y 2 \k2KJk.
If {mi | i 2 I} ✓ M is distributive and mi 2 \k2KJk for all i 2 I, then for
each k 2 K we have mi 2 Jk for all i 2 K, so

V
i2I mi 2 Jk. This implies thatV

i2I mi 2 \k2KJk. These observations show that \k2KJk 2 D(M).
(2) It is done similarly to [19, Lemma 3.7].
(3) Let J 2 D(M) and 0 6= s 2 S. We claim that sJ 2 D(M). Indeed, let

x 2 D(M) and y 2 M such that sx  y. We then have that x  s
�1

y, and hence,
s
�1

y 2 J , since J is a d-ideal of M . This implies that y = sx
0 for some x

0 2 J ,
that means, y 2 sJ . Let {sxi | i 2 I} ✓ M be distributive, where xi 2 J for all

13



i 2 I. By Lemma 3.7, we have that s�1V
i2I sxi =

V
i2I s

�1(sxi) =
V

i2I xi, i.e.,V
i2I sxi = s

V
i2I . For each m 2 M , since {sxi | i 2 I} is distributive, we get

that

s

^

i2I
(m+ xi) =

^

i2I
(sm+ sxi) = sm+

^

i2I
sxi = s(m+

^

i2I
xi),

that means,
V

i2I(m + xi) = m +
V

i2I xi. This implies that {xi | i 2 I} ✓ J is
distributive, so

V
i2I xi 2 J and

V
i2I sxi = s

V
i2I xi 2 sJ . Thus, sJ is a d-ideal

of the join-semilattice M , proving the claim.
(4) Let J 2 D(M) and 0 6= s, s

0 2 S. We prove that (s + s
0)J ✓ sJ \ s

0
J .

Indeed, for each x 2 J , we always have that sx  (s + s
0)x and s

0
x  (s + s

0)x.
Since sJ and s

0
J are d-ideals of the join-semilattice M , (s+ s

0)x 2 sJ \ s
0
J , that

means, (s+ s
0)J ✓ sJ \ s

0
J .

If in addition S is chain, then without loss of generality we may assume that
s
0  s. We then have that s + s

0 = s and (s + s
0)J = sJ . On the other hand,

for each x 2 J , we always have s
0
x  sx, so sx 2 s

0
J , since s

0
J is a d-ideal. This

implies that sJ ✓ s
0
J , that is, sJ \ s

0
J = sJ = (s+ s

0)J .
(5) We have that (D(M),\,M) is a commutative monoid, by item (1). We

next claim that s · (J \ J
0) = s · J \ s · J 0 for all J, J 0 2 D(M) and s 2 S.

Indeed, the claim is obvious if either s = 0 or one of these two sets J and J
0

is empty. Otherwise, for each m 2 s · J \ s · J 0, there exist x 2 J and x
0 2 J

0

such that sx = m = sx
0. Since s 6= 0, x = s

�1(sx) = s
�1(sx0) = x

0 2 J \ J
0,

so m 2 s · (J \ J
0), which shows that s · J \ s · J 0 ✓ s · (J \ J

0). The inverse
inclusion is obvious, thus the claim is proved. Using this observation, and items
(3) and (4), we get that (D(M),\,M) is a left S-semimodule with the above
scalar multiplication.

We have that the natural order  on the S-semimodule D(M) is defined by
for all J, J 0 2 D(M), J  J

0 if and only if J \ J
0 = J

0. Equivalently, J  J
0 if

and only if J 0 ✓ J .
We prove that D(M) is injective. Indeed, by items (1) and (2), D(M) is a

complete left S-semimodule, and

W
i2I Ji = \i2IJi and

V
i2I Ji =< [i2IJi >

for any family {Ji | i 2 I} of d-ideals of the join-semillatice M . Suppose J 2
D(M) and Ji 2 D(M) for all i 2 I. If x 2 J \

V
i2I Ji, then x 2 J and

x 2< [i2IJi >. By item (2), x =
V

k2K xk for some distributive family {xk |
k 2 K} contained in [i2IJi. Hence, xk 2 J \ ([i2IJi) = [i2I(J \ Ji), so x 2<
[i2I(J \ Ji) >=

V
i2I(J \ Ji). This implies that

V
i2I(J \ Ji)  J \

V
i2I Ji. The

converse inclusion J \
V

i2I Ji 
V

i2I(J \ Ji) is obvious, so D(M) is a complete
and infinitely distributive left S-semimodule. Thus, the left S-semimodule D(M)
is injective, by Corollary 3.8.

(6) We obviously have that x
M 2 D(M) for all x 2 M . Let x, y 2 M . For

each m 2 x
M \ y

M we have that x  m and y  m, so x+ y  m+m = m, that
14



is, m 2 (x+ y)M , which shows that xM \ y
M ✓ (x+ y)M . The inverse inclusion

is obvious, so x
M \ y

M = (x+ y)M .
Let x 2 M and 0 6= s 2 S. For each m 2 sx

M we have m = sm
0 for some

m
0 2 M with x  m

0, so sx  sm
0 = m, that is, m 2 (sx)M , which implies that

sx
M ✓ (sx)M . Conversely, for each m 2 (sx)M we have sx  m, so x  s

�1
m

and m = s(s�1
m) 2 sx

M . It shows that (sx)M ✓ sx
M , so sx

M = (sx)M .
(7) We have that f : M �! D(M), defined by f(x) = x

M for all x 2 M , is an
S-homomorphism, by item (6). Suppose x, y 2 M such that f(x) = f(y), that
means, xM = y

M . We then have x 2 y
M and y 2 x

M , so y  x and x  y. It
implies that x = y, thus f is injective. ⇤

The following theorem gives an explicit construction for the injective hull of a
semimodule over a chain division semiring. Its proof is based on the proof of [19,
Theorem 3.8].

Theorem 3.11. Let S be a chain division semiring and let M be a left S-
semimodule. Then, the S-homomorphism f : M �! D(M), defined by f(x) =
x
M for all x 2 M , is essential and D(M) is the injective hull of M .

Proof. We show that f is essential. We first have that f is an injective S-
homomorphism, by Lemma 3.10 (7). Assume that g : D(M) �! N is an S-
homomorphism such that gf is injective. We prove the following useful claims.

Claim 1. If m 2 M , J 2 D(M) and gf(m) = g(J), then m =
V

x2J x.

Proof of the claim. We always have the formula

gf(m+ x) = gf(m) + gf(x) = g(J \ f(x))

for all x 2 M . If x 2 J , then f(x) = x
M ✓ J , so gf(m + x) = gf(x), by the

above formula. Therefore, m + x = x, i.e, m  x for all x 2 J . Assume that
x  y for all y 2 J . We then have that f(x) = x

M  y
M = f(x) for all y 2 J ,

i.e., yM ✓ x
M for all y 2 J . This implies that J = [y2Jy

M ✓ x
M = f(x) and

gf(x+m) = g(J) = gf(m). Hence, x+m = m, i.e., x  m. Thus m =
V

y2J y.

Claim 2. If m 2 M , J 2 D(M) and gf(m) = g(J), then J = f(m).

Proof of the claim. For all x 2 M , we always have gf(m + x) = g(J \ f(x)).
Therefore, by Claim 1, m+ x =

V
(J \ f(x)), and in particular m =

V
y2J y.

We prove that J \f(x) = {x+y | y 2 J}. Indeed, for any z 2 J \f(x) we have
z 2 J and x  z, so z = x+z 2 {x+y | y 2 J}, that is, J\f(x) ✓ {x+y | y 2 J}.
Conversely, for any y 2 J we have x  x + y, so x + y 2 J \ f(x), since J is a
d-ideal. It implies that {x+ y | y 2 J} ✓ J \ f(x).

From these observations we have x + m =
V

y2J(x + y), so J is distributive.
Then, m =

V
y2J y 2 J , since J is a d-ideal of the join-semilattice M . This
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shows that f(m) �
V

y2y f(y). The inverse inclusion f(m) 
V

y2J f(y) is obvi-

ous. Therefore, f(m) =
V

y2J f(y). We then have J = [y2Jy
M = [y2Jf(y) =V

y2J f(y) = f(m), hence proving the claim.

We are now ready to show that g is injective. Assume that g(J1) = g(J2),
where J1, J2 2 D(M). If x 2 J1, then f(x) = x

M ✓ J1 and

gf(x) = g(f(x) \ J1) = gf(x) + g(J1) = gf(x) + g(J2) = g(f(x) \ J2).

By Claim 2, we have that f(x) = f(x) \ J2, so x
M = f(x) ✓ J2 for all x 2 J1.

This implies that J1 = [x2J1x
M ✓ J2. Similarly, J2 ✓ J1. Hence, J1 = J2,

showing that g is injective. Thus, we get that f is essential.
By Lemma 3.10 (5), D(M) is an injective left S-semimodule, so D(M) is the

injective hull of M , finishing the proof. ⇤
We end this section by giving a complete description of injective semimodules

over the semifield of tropical integers. Let Zmax := (Z[{�1},max,+,�1, 0) ✓
T be the semifield of tropical integers. (Notice that Zmax plays an important
role in the Arithmetic Site which is introduced by Connes and Consani [8]. The
reason for this is that the arithmetic site acquires its algebraic structure from
its structure sheaf, and the structure sheaf of the arithmetic site is the semiring
Zmax on which the multiplicative monoid N⇥ of non-zero positive integers acts
by Frobenius endomorphisms.) We extend the semiring structure on Zmax to a
semiring structure on Z̄max := Zmax [ {1}, where the extra element 1 satisfies
s _ 1 = 1 _ s = 1 for all s 2 Zmax, (�1) + 1 = �1 and s + 1 = 1 for
all �1 6= s 2 Zmax. Clearly, Z̄max is a Zmax-semimodule. The following result
provides us with a complete description of injective Zmax-semimodules.

Theorem 3.12. For any Zmax-semimodule M , the following statements are
equivalent:

(1) M is injective;
(2) M is a retract of a Zmax-semimodule (Z̄max)X for some set X;
(3) M is a complete and infinitely distributive semimodule.

Proof. (1)()(3). It follows from Corollary 3.8.
(1)()(2). By Theorem 3.3, the statement immediately follows from the claim

that Z̄max
⇠= HomB(Zmax,B) as Zmax-semimodules.

We now prove the claim. Indeed, for each x 2 Zmax, we define a map fx :
Zmax �! B by setting

fx(t) =

⇢
0 if t  x,

1 otherwise

for all t 2 Zmax. Then fx is clearly an B-homomorphism.
For each f 2 HomB(Zmax,B), we have that Ker(f) is a lower subset of the

lattice Zmax, so Ker(f) = Zmax or Ker(f) = {y 2 Zmax | y  x} for some
x 2 Zmax, which shows that f = 0 or f = fx. For the convenience, we denote
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by f1 the zero Zmax-homomorphism. We then have that HomB(Zmax,B) =
{fx | x 2 Z̄max}. To avoid the confusion we denote the additive operation in the
Zmax-semimodule HomB(Zmax,B) by the notation �.

Define a map ✓ : Z̄max �! HomB(Zmax,B) by setting ✓(x) = f�x for all
x 2 Z̄max. We claim that ✓ is a Zmax-homomorphism. Indeed, let x, y 2 Z̄max,
and assume that x  y. We then have that f�x  f�y (since �y  �x) and

✓(x _ y) = ✓(y) = f�y = f�x � f�y = ✓(x)� ✓(y).

Let x 2 Z̄max and y 2 Zmax. We have that ✓(y + x) = f�(x+y) and

(y✓(x))(t) = (yf�x)(t) = f�x(y + t) =

⇢
0 if t  �(x+ y),
1 otherwise

for all t 2 Zmax, so y✓(x) = f�(x+y) = ✓(y + x). Therefore, ✓ is a Zmax-
homomorphism. Moreover, ✓ is clearly a surjective Zmax-homomorphism.

Assume that x, y 2 Z̄max such that ✓(x) = ✓(y). We then have f�x = f�y, so
f�x(�y) = 0 = f�y(�x), that is, �y  �x and �x  �y, hence x = y, proving
that ✓ is injective, so it is an isomorphism, finishing the proof. ⇤

4. Injectivity of semimodules over chain MV-semirings

In this section, based on Section 3, we give a criterion for self-injectivity of
an MV-semiring with an atomic Boolean center, and give a complete description
of (finitely generated) injective semimodules over a finite MV-semiring. Conse-
quently, we get that every complete MV-semiring with an atomic Boolean center
is an exact semiring. Also, we show that complete Boolean algebras are precisely
the MV-semirings in which every principal ideal is injective.

We begin by considering an important example of additively idempotent semir-
ings, the so-called the MV-semiring, associated to an MV-algebra. MV-algebras
arose in the literature as the algebraic semantics of  Lukasiewicz propositional
logic, one of the longest-known many-valued logics.

Recall [4] that an MV-algebra is an algebra (A,�,
⇤
, 0) with a binary operation

�, a unary operation ⇤ and a constant 0 such that (A,�, 0) is a commutative
monoid with identity element 0, and, for all x, y 2 A:

(1) (x⇤)⇤ = x;
(2) x� 0⇤ = 0⇤;
(3) (x⇤ � y)⇤ � y = (y⇤ � x)⇤ � x.

As usual, let A and B be MV-algebras. A map h : A �! B is a homomorphism
i↵ it satisfies the following conditions, for all x, y 2 A:

(1) h(0) = 0,
(2) h(x� y) = h(x)� h(y),
(3) h(x⇤) = h(x)⇤.

On each MV-algebra A we define the constant 1 and the operation � as follows:

1 := 0⇤ and x� y := (x⇤ � y
⇤)⇤.
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For any MV-algebra A and x, y 2 A, we write x  y if there exists an element
z 2 A such that x� z = y. It is well-known that  is a partial order on A, called
the natural order of A. Moreover, the natural order determines a structure of
bounded distributive lattice on A [4, Propositions 1.1.5 and 1.5.1], with 0 and 1
respectively bottom and top element, and _ and ^ defined by

x _ y = (x� y
⇤)� y,

x ^ y = (x⇤ _ y
⇤)⇤ = x� (x⇤ � y).

An MV-algebra A is called an MV -chain if the natural order of A is total; and
the MV-algebra A is called complete if the natural order of A is complete.

A strong order unit in a lattice-ordered Abelian group G is an element 0  u 2
G such that for any x 2 G, there exists a positive integer n such that x  nu.

In [40] Mundici constructed a categorical equivalence between the categoryMV
of MV-algebras with MV-algebra homomorphisms and the category Lu of lattice-
ordered Abelian groups with a distinguished strong order unit whose morphisms
are lattice-ordered group homomorphisms which preserve the distinguished strong
unit. The two functors of the equivalence are usually denoted by � : Lu �! MV
and ⌅ : MV �! Lu; while the former is very easy to present and shall be recalled
hereafter, the latter requires more work and the details of its construction are
not really relevant to our discussion.

Let G = (G,+,�,,_,^, 0) be a lattice-ordered Abelian group with a distin-
guished strong order unit u. Then the MV-algebra �(G, u) is

([0, u] := {x 2 G | 0  x  u}, �,
⇤
, 0)

with x � y = (x + y) ^ u and x
⇤ = u � x for all x, y 2 [0, u]. In this case, the

operation � in �(G, u) is defined by x�y = u�(2u�x�y)^u for all x, y 2 [0, u].
The following examples provide us with some fundamental examples of MV-

algebras.

Example 4.1. (1) Let R be the additive groups of reals with the natural order.
Then �(R, 1) = [0, 1] yields an MV-chain, often called the standard MV-algebra.
In the standard MV-algebra the order relation (and therefore the lattice struc-
ture) is the usual one of real numbers; the operations �, ⇤ and � are defined
respectively by x� y = min{x+ y, 1}, x⇤ = 1� x and x� y = max{x+ y� 1, 0}
for all x, y 2 [0, 1].

(2) Let Z be the additive groups of integers and n � 2 an integer. Consider
the subgroup Z 1

n�1 = { z
n�1 | z 2 Z} of the additive group of rationals with the

natural order. Then

Ln := �(Z 1

n� 1
, 1) = {0, 1/(n� 1), · · · , (n� 2)/(n� 1)}

yields an MV-chain with the operations defined as the restriction of the standard
MV-algebra of these operations.

(3) For any Boolean algebra (B,_,^,0 , 0, 1), the structure (B,_,0 , 0) is an
MV-algebra.
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In [10, Proposition 3.6] the first author and Gerla proved that for any MV-
algebra A, A_� := (A,_,�, 0, 1) and A

^� := (A,^,�, 1, 0) are additively idem-
potent commutative semirings isomorphic to each other by the involutive unary
operation ⇤ of A. This remark allows us to limit our attention to one of these two
semiring reducts of A; therefore, whenever not otherwise specified, we will refer
only to A

_�, all the results holding also for A^� up to the application of ⇤.

Definition 4.2. Let A be an MV-algebra. The semiring A
_� := (A,_,�, 0, 1) is

called theMV-semiring associated with A (for short, MV-semiring). The semiring
A

_� is called a chain MV-semiring if A is an MV-chain; and the semiring A
_�

is called a complete chain MV-semiring if A is a complete MV-chain.

Fact 4.3. Let A and B be MV-algebras. Then, a map h : A �! B is an
MV-algebra homomorphism if and only if h : A_� �! B

_� is a semiring homo-
morphism satisfying h(x⇤) = h(x)⇤ for all x 2 A.

Proof. (=)). Assume that h is an MV-algebra homomorphism. Clearly, h(1) =
h(0⇤) = h(0)⇤ = 0⇤ = 1. Take any x, y 2 A. We then have that x�y = (x⇤�y

⇤)⇤

and

x _ y = (x� y
⇤)� y = (x⇤ � y)⇤ � y,

so

h(x� y) = h(x⇤ � y
⇤)⇤ = (h(x)⇤ � h(y)⇤)⇤ = h(x)� h(y)

and

h(x _ y) = h((x⇤ � y)⇤ � y) = (h(x)� h(y)⇤)� h(y) = h(x) _ h(y).

This implies that h is a semiring homomorphism.
((=). Assume that h is a semiring homomorphism with h(x⇤) = h(x)⇤ for all

x 2 A. Take any x, y 2 A. We then have that x� y = (x⇤ � y
⇤)⇤, so

h(x� y) = h(x⇤ � y
⇤)⇤ = (h(x)⇤ � h(y)⇤)⇤ = h(x)� h(y).

This implies that h is an MV-algebra homomorphism, finishing the proof. ⇤

As an application of Corollary 3.5, we obtain a necessary condition for injec-
tivity of semimodules over MV-semirings.

Proposition 4.4. Let A be an MV-algebra and M an injective A
_�-semimodule.

Then M is a complete and infinitely distributive A
_�-semimodule.

Proof. By [4, Propositions 1.1.5 and 1.5.1], the natural order determines a struc-
ture of distributive lattice on the semiring A

_�. Then, by Corollary 3.5, we im-
mediately get that M is a complete and infinitely distributive A

_�-semimodule,
finishing the proof. ⇤

In [14, Theorem 4] Fofanova showed that a semimodule over a Boolean algebra
is injective if and only if it is complete and infinitely distributive. It is also well-
known (see, e.g., [40, Corollary 1.5.5]) that Boolean algebras are precisely the
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MV-algebras satisfying the additional equation x � x = x. In the light of these
results and Proposition 4.4, it is natural to pose the following question.

Problem 1. Is every complete and infinitely distributive semimodule over an
MV-semiring injective?

Recall ([40, Section 1.5]) that an element a of an MV-algebra A is called
idempotent if a � a = a. The set B(A) of all idempotent elements of an MV-
algebra A is a Boolean algebra, usually called the Boolean center of the MV-
algebra A. Following [40, Definition 6.7.1], an atom of an MV-algebra A is an
atom of the lattice A for the natural order. We say that A is atomic if for each
nonzero element x 2 A there exists an atom a 2 A with a  x.

In the following theorem we provide criteria for an MV-semiring with an atomic
Boolean center is self-injective, which solves a part of Problem 1. To do this, we
need the following useful lemmas.

Lemma 4.5. (1) For each integer n � 2, L_�
n

⇠= HomB(L
_�
n ,B) as L_�

n -
semimodules. Consequently, L_�

n is a self-injective semiring.
(2) [0, 1]_� is a self-injective semiring.

Proof. Let G = (G,+,�,,_,^, 0) be a lattice-ordered Abelian group with a
distinguished strong order unit u. To avoid the confusion we denote the additive
operation in the �(G, u)_�-semimodule HomB(�(G, u)_�,B) by the notation �.

For each x 2 �(G, u)_�, we define fx 2 HomB(�(G, u)_�,B) as follows:

fx(t) =

⇢
0 if 0  t  x,

1 otherwise.

We claim that the map ' : �(G, u)_� �! HomB(�(G, u)_�,B), defined by
'(x) = f(u�x) for all x 2 �(G, u)_�, is an injective �(G, u)_�-homomorphism.
Indeed, let x, y 2 �(G, u)_�. We have that for all t 2 �(G, u)_�,

t  u� x & t  u� y () x  u� t & y  u� t

() x _ y  u� t () t  u� (x _ y),

so f(u�(x_y)) = f(u�x) � f(u�y), that means, '(x _ y) = '(x)� '(y).
Let x, y 2 �(G, u)_�. We then have that x � y = u � (2u � x � y) ^ u and

'(y � x) = f(2u�x�y)^u. On the other hand, for any t 2 �(G, u)_�, we have that

(y'(x))(t) = (yf(u�x))(t) = f(u�x)(y � t) = f(u�x)(u� (2u� y � t) ^ u)

and

u� (2u� y � t) ^ u  u� x () x  (2u� y � t) ^ u

() x  2u� y � t (since x  u)
() t  2u� x� y

() t  (2u� x� y) ^ u (since t  u),

so (y'(x))(t) = 0 if and only if f(2u�x�y)^u(t) = 0. This implies that y'(x) =
f(2u�x�y)^u = '(y � x). Therefore, ' is a �(G, u)_�-homomorphism. Similar to
the proof of Theorem 3.12, we get that ' is injective, proving the claim.
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(1) Consider the case that G = Z 1
n�1 and Ln := �(Z 1

n�1 , 1). Take any f 2
HomB(L

_�
n ,B). Since Ker(f) is a lower subset of the lattice L_�

n for the natural
order, Ker(f) = {x 2 L_�

n | 0  x  i/(n � 1)} for some 0  i  n � 1, so
f = fi/(n�1). We then have that '((n � i � 1)/(n � 1)) = fi/(n�1) = f , and
so ' is surjective. Therefore, ' is an isomorphism L_�

n -semimodules, giving the
statement (1).

(2) Consider the case that G = R and �(R, 1) = [0, 1]. We claim that the map

✓ : HomB([0, 1]
_�

,B) �! [0, 1]_�

defined by ✓(f) = 1 �
W

t2Ker(f) t for all f 2 HomB([0, 1]_�,B), is a [0, 1]_�-

homomorphism. Indeed, let f and g 2 HomB([0, 1]_�,B). Then, for any t 2
[0, 1]_�, (f � g)(t) = 0 () f(t) _ g(t) = 0 () f(t) = 0 = g(t), and so
Ker(f � g) = Ker(f) \Ker(g).

Let x :=
W

t2Ker(f) t and y :=
W

t2Ker(g) t. Since [0, 1]_� is an MV-chain,
one of the two lower subsets Ker(f) and Ker(g) is included in the other, soW
{t 2 �(G)_� | t 2 Ker(f) \ Ker(g)} = x ^ y. Also, since �(G)_� is an

MV-chain, 1� (x ^ y) = (1� x) _ (1� y). This implies that

✓(f � g) = 1� (x ^ y) = (1� x) _ (1� y) = ✓(f) _ ✓(y).
Let y 2 [0, 1]_� and f 2 HomB([0, 1]_�,B). Then, for each t 2 [0, 1]_�, we

have that

(yf)(t) = f(y � t) = f(1� (2� y � t) ^ 1) = f((t+ y � 1) _ 0).

We show that _

t2Ker(yf)

t = (1 + x� y) ^ 1,

where x :=
W

t2Ker(f) t. Indeed, for any t 2 [0, 1]_� with (yf)(t) = 0, we have
that f((t+y�1)_0) = 0, so (t+y�1)_0  x. We also note that (t+y�1)_0 
x =) t + y � 1  x =) t  1 + x � y =) t  (1 + x � y) ^ 1 (since t  1).
Therefore,

W
t2Ker(yf) t  (1 + x� y) ^ 1.

Take any a 2 [0, 1]_� with a < (1 + x � y) ^ 1. We have that a < 1 +
x � y, that is, a + y � 1 < x. If x 2 Ker(f) then (a + y � 1) _ 0  x, so
(yf)(a) = f((a + y � 1) _ 0) = 0, since Ker(f) is a lower subset of the lattice
[0, 1]_�. Otherwise, we have that 0 < x, and so (a+ y � 1) _ 0 < x. Then, since
x =

W
t2Ker(f) t, there exists t 2 Ker(f) such that (a+y�1)_0 < t, which shows

that (yf)(a) = f((a+ y � 1) _ 0) = 0, since Ker(f) is a lower subset of [0, 1]_�.
In any case we have that a 2 Ker(yf), and so

W
t2Ker(yf) t = (1 + x � y) ^ 1,

giving the fact.
From this observation, we get that

✓(yf) = 1� (1 + x� y) ^ 1 = y � (1� x) = y � ✓(f).

Therefore, ✓ is a [0, 1]_�-homomorphism, proving the claim. Furthermore, for
any x 2 [0, 1]_�, we have that ✓'(x) = ✓(f1�x) = 1� (1� x) = x = id[0, 1]_�(x),
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that is, ✓' = id[0, 1]_� , and so [0, 1]_� is a retract of the [0, 1]_�-semimodule
HomB([0, 1]_�,B). Then, by Theorem 3.3, we get that [0, 1]_� is a self-injective
semiring, giving the statement (2), thus the proof is complete. ⇤

The following lemma is an analog of [33, Corollary 3.11B] for our semiring
setting.

Lemma 4.6 (cf. [33, Corollary 3.11B]). Let S =
Q

i2I Si be a direct product of
semirings Si. Then S is left self-injective if and only if each Si is left self-injective.

Proof. We first note that every left Si-semimodule may be viewed as a left S-
semimodule via the natural projection S �! Si. This provides that for each
i 2 I the left Si-semimodule Si is viewed as a left S-semimodule We then have
that S ⇠=

Q
i2I Si as left S-semimodules. By the dual of [16, Proposition 17.19],

S is left self-injective if and only if each Si is injective left S-semimodule.
We next claim that Si is injective left S-semimodule if and only if Si is left

self-injective. Indeed, suppose Si is injective left S-semimodule. Let f : A �! B

be an injective Si-homomorphism and g : A �! Si an Si-homomorphism. Then,
by the above note, f and g may be viewed as S-homomorphisms. Since Si is
injective left S-semimodule, there exists an S-homomorphism h : B �! Si such
that hf = g, giving that Si is left self-injective.

Conversely, suppose Si is left self-injective. Let f : A �! B be an injective S-
homomorphism and g : A �! Si an S-homomorphism. Write S = Si⇥S

c
i , where

S
c
i =

Q
j2I,j 6=i Sj . We then have that A = SiA� S

c
iA and A = SiB � S

c
iB. By f

and g are S-homomorphisms, we have that f(SiA) = Sif(A) ✓ SiB, f(Sc
iA) =

S
c
i f(A) ✓ S

c
iB and g(Sc

iA) = S
c
i g(A) ✓ S

c
iSi = 0. Since Si is left self-injective,

there exists an Si-homomorphism h : Sc
iB �! Si such that h � g|SiB = f |SiA.

We extend h to h
0 : B �! Si by taking h

0|Sc
iB

. We then get that h0f = g. This
implies that Si is an injective left S-semimodule, proving the claim.

From these observations we immediately get that S is left self-injective if and
only if each Si is left self-injective. ⇤
Theorem 4.7. For any MV-algebra A with an atomic Boolean center, the fol-
lowing conditions are equivalent:

(1) The semiring A
_� is self-injective;

(2) All finitely generated projective A
_�-semimodules are injective;

(3) All cyclic projective A
_�-semimodules are injective;

(4) A is a complete MV-algebra.

Proof. (1)=)(2). Suppose A
_� is a self-injective semiring and M is a finitely

generated projective A
_�-semimodule. Then, by [16, Proposition 17.16], M is a

retract of a free A
_�-semimodule (A_�)X with a finite set X. Since A

_� is a
self-injective semiring and by [16, Proposition 17.23 (1)], (A_�)X is an injective
A

_�-semimodule, so M is also an injective A
_�-semimodule, by Lemma 3.1.

(2)=)(3). Since every cyclic semimodule is finitely generated, the statement
is obvious.
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(3)=)(4). Since A
_� is a cyclic projective semimodule over itself, and by

hypothesis (3), A_� is a self-injective semiring. From this and Proposition 4.4,
we get that A is a complete lattice for the natural order, so A is a complete
MV-algebra.

(4)=)(1). Since A is a complete MV-algebra with its Boolean center B(A)
is atomic, A is a direct product of complete MV-chains, by [4, Theorem 6.8.1].
Also, by [4, Theorem 6.8.5], every complete MV-chain is either a finite MV-chain
or isomorphic to the standard MV-algebra. Furthermore, by [40, Theorem 3.8],
every nonzero finite MV-algebra is isomorphic to Ln for some integer n � 2.
From these observations, Fact 4.3, and Lemmas 4.5 and 4.6, we immediately get
the statement, finishing the proof. ⇤

In [46] Wilding, Johnson and Kambites introduced exact semirings, defined in
terms of a Hahn-Banach-type separation property on semimodules arising in the
tropical case from the phenomenon of tropical matrix duality (see, e.g., [5], [6],
[7] and [18]).

We write Mm⇥n(S) for the additive monoid of m row, n column matrices with
entries in a semiring S, where m,n 2 N. Matrix multiplication behaves in the
usual ways: where defined it is associative and distributes over matrix addition.

For each A 2 Mm⇥n(S) has an associated row space Row(A) = {x 2 M1⇥n(S) |
x = uA for some u 2 M1⇥m(S)} and an associated column space Col(A) = {y 2
Mm⇥1(S) | y = Av for some u 2 Mn⇥1(S)}.

Definition 4.8 ([46, Definition 3.1]). A semiring S is exact if for every matrix
A 2 Mm⇥n(S), (i) for any matrix x 2 M1⇥n(S) \ Row(A) there exist t and
u 2 Mn⇥1(S) satisfying At = Au, but xt 6= xu; and (ii) for any matrix y 2
Mm⇥1(S) \ Col(A) there exist v and w 2 M1⇥m(S) satisfying vA = wA, but
vy 6= wy.

Recall (see, e.g., [27, p. 1895]) that a left S-semimodule M is FP-injective
if every S-homomorphism f : X �! M from a finitely generated left subsemi-
module X of a free S-semimodule F can be extended to F . A semiring S is
left (resp. right) FP-injective if the regular left (resp. right) S-semimodule S

is FP-injective. The semiring S is called FP-injective if S is both left and right
FP-injective. In [27, Lemma 3.1], Johnson and the third author noted that a
semiring S is exact if and only if it is FP-injective. In [43] Shitov proved the
interesting result that a semifield S is exact if and only if S is either a field or an
additively idempotent semifield. As immediate corollary of Theorem 4.7, we get
the following result, which provides us with many examples of exact semirings.

Corollary 4.9. Every complete MV-semiring with an atomic Boolean center is
an exact semiring.

Proof. Let S be a complete MV-semiring with an atomic Boolean center. By
Theorem 4.7, S is a self-injective semiring, and so it is FP-injective. Then, by
[27, Lemma 3.1], we get that S is an exact semiring, finishing the proof. ⇤
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The following theorem gives the structure of injective semimodules over finite
MV-semirings.

Theorem 4.10. Let A be a finite MV-algebra and M a A
_�-semimodule. Then

M is injective if and only if there exists a set X such that M is a retract of the
A

_�-semimodule (A_�)X .

Proof. By Theorem 3.3, an A
_�-semimodule M is injective if and only if there

exists a set X such that M is a retract of the A_�-semimodule HomB(A_�
,B)X .

By [4, Proposition 3.6.5], A ⇠= Ln1 ⇥ · · ·⇥Lnd (as MV-algebras) for some integers

2  n1  · · ·  nd, and so the semiring A
_� is isomorphic to

Qd
i=1 L

_�
ni

, by
Fact 4.3. For each 1  i  d, L_�

ni
may be viewed as an A

_�
ni

-semimodule via

the natural projection A
_�
ni

�! L_�
ni

. We then have that A
_� ⇠=

Qd
i=1 L

_�
ni

as
A

_�-semimodules, and

HomB(A_�
,B) ⇠= HomB(

Qd
i=1 L

_�
ni

,B) ⇠=
Qd

i=1HomB(L
_�
ni

,B)

as A
_�-semimodules. By Lemma 4.5 (1), we get that HomB(L

_�
ni

,B) ⇠= L_�
ni

as
A

_�-semimodules, and so

HomB(A_�
,B) ⇠=

Qd
i=1HomB(L

_�
ni

,B) ⇠=
Qd

i=1 L
_�
ni

⇠= A
_�

as A
_�-semimodules. This implies that HomB(A_�

,B)X ⇠= (A_�)X as A
_�-

semimodules, so the statement is proved, finishing the proof. ⇤

The following theorem provides us with the structure of finitely generated
injective semimodules over finite MV-semirings.

Theorem 4.11. Let A be a finite MV-algebra and M a finitely generated A
_�-

semimodule. Then the following statements are equivalent:

(1) M is injective;
(2) M is FP-injective;
(3) M is a retract of a A

_�-semimodule (A_�)X for some finite set X;
(4) M is projective.

Proof. (1)=)(2). It is obvious.
(2)=)(3). As in the proof of Theorem 3.3, there always exists an injective A_�-

homomorphism µ : M �! HomB(A_�
,B)X , where X is any set of generators for

the A
_�-semimodule HomB(A_�

,B). Since A
_� is finite, the A

_�-semimodule
HomB(A_�

,B) is finitely generated, so we can pickX which is a finite set. Similar
to the proof of Theorem 4.10 we have that HomB(A_�

,B)X ⇠= (A_�)X as A_�-
semimodules. Therefore, we get an injective A

_�-homomorphism µ : M �!
(A_�)X . Since M is both finitely generated and FP-injective, there exists a
surjective A

_�-homomorphism ✓ : (A_�)X �! M such that ✓µ = idM ; that
means, M is a retract of the A

_�-semimodule (A_�)X .
(3)=)(4). Since X is finite, A_�-semimodule (A_�)X is free, so the statement

follows from [16, Proposition 17.16].
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(4)=)(1). Since M is both finitely generated and projective, M is a retract
of a free A

_�-semimodule F with a finite basis set X, by [16, Proposition 17.16].
Now applying Theorem 4.10, we get the statement, finishing the proof. ⇤

As shown in [23, Corollary 3.2], every semimodule can be represented, in a
canonical way, as a colimit of its cyclic subsemimodules. This observation mo-
tivates the study of semirings over which any semimodule is a colimit of cyclic
semimodules possessing some special properties (see, e.g. [1] and [23]). Thus, it
is quite natural to present complete characterizations of MV-semirings in terms
of the injectivity of cyclic semimodules. Notice that as a corollary of [1, Theorem
4.6], we obtain that all cyclic S-semimodules over an MV-semiring S are injective
if and only if S is a finite Boolean algebra. The following result shows that com-
plete Boolean algebras are precisely the MV-algebras in which every principal
ideal is injective. Before doing so, we need the following notion and simple fact.
A semiring S is called von Neumann regular if for any x 2 S there exists y 2 S

such that x = xyx.

Lemma 4.12. If S is a semiring in which every principal left ideal is injective
then S is left self-injective and von Neumann regular.

Proof. Let S be a semiring in which every principal left ideal is injective. Since
S is a principal left ideal of S generated by 1, S is left self-injective, by the
hypothesis. Take any x 2 S. Then, by the hypothesis, Sx is an injective left
S-semimodule, and so there exists an A-homomorphism f : S �! Sx such that
f |Sx = idSx. It implies that x = f(x) = f(x.1) = xf(1). Since f(1) 2 Sx, there
exists y 2 S such that f(1) = yx, and so x = xyx. Thus, S is von Neumann
regular, finishing the proof. ⇤

Proposition 4.13. For every MV-algebra A, the following statements are equiv-
alent:

(1) Every principal ideal of A_� is injective;
(2) A

_� is a self-injective and von Neumann regular semiring;
(3) A is a complete Boolean algebra.

Proof. (1)=)(2). It follows from Lemma 4.12.
(2)=)(3). Since A

_� is a self-injective semiring and by Proposition 4.4, the
lattice A is complete. Take any a 2 A. Since A

_� is a von Neumann regular
semiring, a = a� b� a for some b 2 A. We then get

a _ a� a = a� b� a _ a� a = a� (b _ 1)� a = a� a.

On the other hand,

a _ a� a = a� (1 _ a) = a� 1 = a.

Therefore, a = a� a for all a 2 A. Then, by [4, Theorem 1.5.3], a = a� a for all
a 2 A. This implies that A is a Boolean algebra, by [4, Corollary 1.5.5]. Thus A
is a complete Boolean algebra.
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(3)=)(1). Suppose A is a complete Boolean algebra. Then, by [4, Theorem
1.5.3], the semiring A

_� is also a complete Boolean algebra. By [14, Corollary
2], A_� is a self-injective semiring. Take any a 2 A. We have that a � a = a.
Define two A

_�-homomorphisms ↵ : A_�
a �! A

_� and � : A_� �! A
_�

a

by setting ↵(b � a) = b � a and �(b) = b � a for all b 2 A. It is obvious that
�↵ = idA_�a; that means, A_�

a is a retract of the A
_�-semimodule A

_�. Since
A

_� is self-injective and by Lemma 3.1, A_�
a is an injective A

_�-semimodule,
and so statement (1) is proved, finishing the proof. ⇤

As was mentioned above, Boolean algebras are precisely the MV-algebras sat-
isfying the additional equation x � x = x; that means, Boolean algebras form a
subvariety of the variety of MV-algebras which is generated by L2. In the light
of this remark and Proposition 4.12, we end this article by posing the following
problem.

Problem 2. Could one describe the subvarieties of the variety of MV-algebras
generated by Ln in terms of the injectivity and projectivity of semimodules?
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liminaries.
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fact: for any additively idempotent semiring S which is a distributive lattice
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i2I Ai =
P
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submonoids of the monoid (S,+, 0).
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m2M m otherwise”
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(12) We remove the word “nonempty” in Definition 3.9 (2)–It is Definition 3.10

(2) of the old version.

(13) We move the construction of the homomorphism f which is part of the

data of an injective hull into Lemma 3.10–It is Lemma 3.11 of the old version.

(14) We re-write Theorem 3.11 (It is Theorem 3.12 of the old version) and its

proof via the review.

(15) Before Example 4.1, we add the concept of strong order unit and the
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4.12 of the old version working for any semiring (please see Lemma 4.12).
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