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Abstract 

Very recently, a new degradation process model, named the transformed gamma (TG) process, has 

been proposed to describe Markovian degradation processes whose increments over disjoint intervals 

are not independent, so that the degradation growth over a future time interval can depend both on the 

current age and the current state (degradation level) of the unit. This paper introduces a Bayesian 

estimation approach for such a process, based on prior information on physical characteristics of the 

observed degradation process. Several different prior distributions are then proposed, reflecting 

different degrees of knowledge of the analyst on the observed phenomenon. A Monte Carlo Markov 

Chain technique is adopted to estimate the TG parameters and some functions thereof, such as the 

residual reliability of a unit, as well as to predict future degradation growth and residual lifetime. 

Finally, the proposed approach is applied to a real dataset consisting of wear measures of the liners of 

the 8-cylinder engine which equips a cargo ship. 
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1. Introduction 

A large body of literature has addressed the problem of developing stochastic process models able to 

provide an effective description of real degradation phenomena. Very recently, some stochastic 

process models have been proposed to describe degradation phenomena where the degradation 

increment over a future time interval depends on the current state of the unit (and, possibly, on its 

current age), so that the degradation increments over disjoint time intervals are dependent random 

variables (Giorgio et al.1-3, Guida and Pulcini4). 

Within these (Markovian) state-dependent degradation process models, the transformed gamma 

(TG) process (Giorgio et al.3) seems to be very attractive due to its mathematical tractability. In 

particular, unlike the other Markovian state-dependent processes proposed in the literature, the 

conditional distribution of the degradation growth under the TG process is in closed form. In addition, 

since the TG process can be viewed as a non-linear transformation of the gamma process (Abdel-

Hameed5), it constitutes a natural choice for modelling degradation phenomena when degradation 

growth takes place gradually over time in a sequence of tiny increments. Thus, the TG process seems 

to be suitable to describe degradation phenomena caused by continuous use, such as wear, chemical 

corrosion, fatigue, and so on and has proved to be statistically tractable. 

Estimation procedures of the TG process parameters based on the maximum likelihood method 

have been discussed in Giorgio et al.3 and, more recently, in Giorgio et al.6. On the contrary, Bayesian 

inference under the TG process has not yet been considered, although engineers often possess prior 

knowledge on the observed degradation process that can be profitably used to improve the estimation 

procedures. In this paper, in order to fill in this gap, a Bayesian procedure is proposed that allows for 

technological information on the observed degradation phenomenon to be directly incorporated into 

the inferential procedure. In particular, the prior information is formulated in terms of: a) the 

(possible) correlation between the degradation growth in a future time interval and the current 

degradation level, and b) the behavior of the mean degradation curve. 

Posterior inference on the process parameters and on several functions thereof, such as the residual 

reliability and the mean residual life, was carried out by Monte Carlo Markov Chain (MCMC) 

techniques. Prediction of the degradation increment over a future time interval is also provided. The 

proposed procedure is then applied to a real dataset given in Giorgio et al.7, consisting of wear 

measures in the liners of the eight-cylinder engine, which equips a cargo ship of the Grimaldi Lines. 

Finally, it must be emphasized that the estimation and prediction procedures provided in this paper 

can be usefully exploited in defining the optimal condition-based maintenance policy of a degrading 



 

 

unit, by using, for example, the approach proposed in Giorgio et al.7 which is instead based on the 

maximum likelihood estimators. 

 

2. The transformed gamma process 

Let 𝜂(𝑡) be a non-negative, monotone increasing function of time 𝑡, hereinafter called “age function”, 

with 𝜂(0) = 0, and let 𝑔(𝑤) be a non-negative, monotone increasing and differentiable function of 

the degradation level 𝑤, hereinafter called “state function”, with 𝑔(0) = 0. An increasing degradation 

process {𝑊(𝑡); 𝑡 ≥ 0} is said to be a TG process with age function 𝜂(𝑡) and state function 𝑔(𝑤) if it 

possesses the following properties: 

1. the degradation increments over disjoint time intervals are (possibly) dependent random variables, 

2. the degradation increment Δ𝑊(𝑡, 𝑡 + Δ𝑡) ≡ 𝑊(𝑡 + ∆𝑡) −𝑊(𝑡) over the time interval (𝑡, 𝑡 +

Δ𝑡)	depends on the process history up to 𝑡 through the current time 𝑡 and the current state 

(degradation level) 𝑤! = 𝑊(𝑡), only, 

3. the (conditional) probability density function (pdf) of Δ𝑊(𝑡, 𝑡 + Δ𝑡), given 𝑊(𝑡) = 𝑤!, can be 

expressed as: 

𝑓∆#(!,!&∆!)(𝛿|𝑤!) = 𝑔′(𝑤! + 𝛿)
[𝑔(𝑤! , 𝑤! + 𝛿)]((!,!&)!)*+

Γ[𝜂(𝑡, 𝑡 + Δ𝑡)] exp[−𝑔(𝑤! , 𝑤! + 𝛿)]	,							𝛿 > 0 

(1) 

where 𝑔′(𝑤! + 𝛿) is the derivative of the state function 𝑔(𝑤) evaluated at 𝑤! + 𝛿, 𝑔(𝑤! , 𝑤! +

𝛿) = 𝑔(𝑤! + 𝛿) − 𝑔(𝑤!), 𝜂(𝑡, 𝑡 + Δ𝑡) = 𝜂(𝑡 + Δ𝑡) − 𝜂(𝑡), and Γ(∙) is the complete gamma 

function. 

On the one hand, if 𝜂(𝑡) is linear with 𝑡, the (conditional) pdf of Δ𝑊(𝑡, 𝑡 + Δ𝑡) depends on the 

interval width Δ𝑡 and not on the current age 𝑡, so that the TG process is said to be age-independent. 

On the other hand, if 𝑔(𝑤) is linear with 𝑤, the distribution of Δ𝑊(𝑡, 𝑡 + Δ𝑡) does not depend on the 

current degradation level 𝑤!, and then the TG process reduces to a (state-independent) gamma 

process. 

From (1), the pdf and the cumulative distribution function (Cdf) of the degradation level 𝑊(𝑡) at 

the time 𝑡 of a new (unused) unit are given, respectively, by 

𝑓#(!)(𝑤) = 𝑔′(𝑤)
[𝑔(𝑤)]((!)*+

Γ[𝜂(𝑡)] exp[−𝑔(𝑤)]		,																																				(2) 



 

 

𝐹#(!)(𝑤) =
IG[𝑔(𝑤); 𝜂(𝑡)]

Γ[𝜂(𝑡)] 		,																																																					(3) 

where IG[𝑦; 𝑠] = ∫ 𝑧,*+exp(−𝑧)d𝑧-
.  is the (lower) incomplete gamma function. 

Several functional forms for the age and state functions can be chosen. Following Giorgio et al.7, 

in this paper a power-law function is used both for 𝜂(𝑡) and for 𝑔(𝑤): 

𝜂(𝑡) = (𝑡/𝑎)/     and     𝑔(𝑤) = (𝑤/𝛼)0 ,																																																		(4) 

where 𝑎, 𝑏, 𝛼, and 𝛽 are positive parameters. Under such a formulation, the TG process becomes age-

independent when 𝑏 = 1, and is state-independent when 𝛽 = 1. When 𝑔(𝑤) = (𝑤/𝛼)0, the mean and 

variance of the degradation level 𝑊(𝑡) are in closed form, and given by: 

𝐸{𝑊(𝑡)} = 𝛼
Γ[𝜂(𝑡) + 1/𝛽]

Γ[𝜂(𝑡)] = 𝛼
Γ[(𝑡/𝑎)/ + 1/𝛽]

Γ[(𝑡/𝑎)/] 																																										(5) 

𝑉{𝑊(𝑡)} = 𝛼1
Γ[𝜂(𝑡) + 2/𝛽]

Γ[𝜂(𝑡)] − 𝐸1{𝑊(𝑡)} = 𝛼1 U
Γ[(𝑡/𝑎)/ + 2/𝛽]

Γ[(𝑡/𝑎)/] −
Γ1[(𝑡/𝑎)/ + 1/𝛽]

Γ1[(𝑡/𝑎)/] V			(6) 

Unfortunately, even when 𝑔(𝑤) = (𝑤/𝛼)0, the conditional moments of the degradation 

increment Δ𝑊(𝑡, 𝑡 + Δ𝑡), given the current level 𝑊(𝑡) = 𝑤!, are not in closed form, and involve 

numerical integration. In particular, the conditional mean is given by: 

𝐸{Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑤!} 

= X 𝛿
𝛽(𝑤! + 𝛿)0*+

𝛼0((!,!&)!)
[(𝑤! + 𝛿)0 −𝑤!

0]((!,!&)!)*+

Γ[𝜂(𝑡, 𝑡 + Δ𝑡)] exp Y− Z
𝑤! + 𝛿
𝛼 [

0

+ \
𝑤!
𝛼 ]

0
^ 	d𝛿

2

.

							(7) 

In the context of an increasing degradation processes, a unit is assumed to fail when its 

degradation level exceeds a threshold limit 𝑤345. Then, the lifetime 𝑇 of a unit can be defined as the 

operating time to the first, and sole, passage beyond the limit 𝑤345. The residual lifetime 𝑋 of a unit 

still functioning at time 𝑡, that is 𝑋 = 𝑇 − 𝑡, is defined as the further operating time it takes the unit to 

exceed the level 𝑤345, when starting from the current degradation level 𝑊(𝑡) = 𝑤!. 

Thus, by using (1), the (conditional) residual reliability 𝑅!(𝑥|𝑤!), that is the probability that, 

given the current degradation level 𝑊(𝑡) = 𝑤!, the level 𝑊(𝑡 + 𝑥) reached at the future time 𝑡 + 𝑥 

does not exceed 𝑤345, is given by: 

𝑅!(𝑥|𝑤!) = Pr{𝑊(𝑡 + 𝑥) ≤ 𝑤345|𝑤!} = Pr{∆𝑊(𝑡, 𝑡 + 𝑥) ≤ 𝑤345 −𝑤!|𝑤!} 

=
IG[(𝑤345/𝛼)0 − (𝑤!/𝛼)0; 	[(𝑡 + 𝑥)/𝑎]/ − (𝑡/𝑎)/]

Γ{[(𝑡 + 𝑥)/𝑎]/ − (𝑡/𝑎)/} 	.						(8) 



 

 

From (3) or from (8), the reliability function of a new (unused) unit is derived: 

𝑅(𝑡) = Pr{𝑊(𝑡) ≤ 𝑤345} =
IG i\𝑤345𝛼 ]

0
; 	\𝑡𝑎]

/
j

Γ i\𝑡𝑎]
/
j

	.																										(9) 

In addition, from (8), since Pr{∆𝑊(𝑡, 𝑡 + 𝑥) ≤ 𝑤345 −𝑤!|𝑤!} = 1 − Pr{𝑋 < 𝑥|𝑤!}, the 

conditional pdf of the residual lifetime 𝑋 given the current degradation level 𝑊(𝑡) = 𝑤!, is: 

𝑓6(𝑥|𝑤!) = −
d
d𝑡

IG i\𝑤345𝛼 ]
0
− \𝑤!𝛼 ]

0
; 	m𝑡 + 𝑥𝑎 n

/
− \𝑡𝑎]

/
j

Γ om𝑡 + 𝑥𝑎 n
/
− \𝑡𝑎]

/
p

		.																									(10) 

Likewise, from (9), the pdf of the lifetime	𝑇 is given by: 

𝑓7(𝑡) = −
d
d𝑡

IG i\𝑤345𝛼 ]
0
; \𝑡𝑎]

/
j

Γ i\𝑡𝑎]
/
j

		.																																																												(11) 

Both the above pdfs involve the numerical derivative of the (lower) incomplete gamma function. 

However, by using arguments in Giorgio et al.3, the pdfs in (10) and (11) can be given in a more 

mathematically convenient form that does not involve derivatives: 

𝑓6(𝑥|𝑤!) =
𝑏
𝑎 Z
𝑡 + 𝑥
𝑎 [

/*+ 1
Γ{[(𝑡 + 𝑥)/𝑎]/ − (𝑡/𝑎)/} 

× rIG s\
𝑤345
𝛼 ]

0
− \

𝑤!
𝛼 ]

0
; Z
𝑡 + 𝑥
𝑎 [

/
− Z

𝑡
𝑎[

/

t u𝜓 sZ
𝑡 + 𝑥
𝑎 [

/
− Z

𝑡
𝑎[

/

t − ln y\
𝑤345
𝛼 ]

0
− \

𝑤!
𝛼 ]

0
z{ 

+|
(−1)8[(𝑤345/𝛼)0 − (𝑤!/𝛼)0](!/:)

!&8

{[(𝑡 + 𝑥)/𝑎]/ − (𝑡/𝑎)/ + 𝑘}1	𝑘!

2

8;.

�									(12) 

𝑓7(𝑡) =
𝑏
𝑎 Z

𝑡
𝑎[

/*+ 1
Γ[(𝑡/𝑎)/] 

× rIG y\
𝑤<:=
𝛼 ]

0
; Z
𝑡
𝑎[

/
z U𝜓 yZ

𝑡
𝑎[

/
z − ln y\

𝑤345
𝛼 ]

0
zV 	+|

(−1)8(𝑤345/𝛼)0[(!/:)
!&8]

[(𝑡/𝑎)/ + 𝑘]1	𝑘!

2

8;.

�		 , (13) 

where 𝜓(𝑧) = d	ln[Γ(𝑧)]/d𝑧 denotes the digamma function. The mean lifetime 𝐸{𝑇} and the mean 

residual lifetime 𝐸{𝑋|𝑤!} can be obtained by integrating the reliability functions (9) and (8), 

respectively, over the interval (0, +∞). 

 



 

 

3. The likelihood function 

Let us suppose that 𝑚 units operate under identical conditions, and that each unit is inspected 𝑛@ 

times at possibly not equal ages 𝑡@,8 (𝑘 = 1,… , 𝑛@). Let 𝑤@,8 = 𝑊(𝑡@,8) denote the degradation level of 

the unit 𝑖 measured at the 𝑘-th inspection time 𝑡@,8. Then, under the assumption that the degradation 

process is TG with 𝜂(𝑡) = (𝑡/𝑎)/ and 𝑔(𝑤) = (𝑤/𝛼)0, the likelihood function relative to the 

observed data 𝒘 = (𝑤+,+, … , 𝑤+,A" , … , 𝑤<,+, … , 𝑤<,A#) is given by: 

𝐿(𝜽|𝒘) =��𝑓∆#B!$,&'",!$,&C(𝑤@,8 −𝑤@,8*+|
A$

8;+

<

@;+

𝑤@,8*+) 

= Z
𝛽
𝛼[

D

�	��\
𝑤@,8
𝛼 ]

0*+ [(𝑤@,8/𝛼)0 − (𝑤@,8*+/𝛼)0](!$,&/:)
!*(!$,&'"/:)!*+

	Γ[(𝑡@,8/𝑎)/ − (𝑡@,8*+/𝑎)/]

A$

8;+

� 	exp y− \
𝑤@,A$
𝛼 ]

0
z	 ,

<

@;+

 

(14) 

where 𝑁 = ∑ 𝑛@<
@;+  is the total number of observations, 𝑡@,. = 0 and 𝑤@,. = 0 for all 𝑖, and 𝜽 =

(𝑎, 𝑏, 𝛼, 𝛽) denotes the vector of the TG parameters. 

Maximum likelihood estimates of the TG parameters can be obtained by numerical maximization 

of the log-likelihood function (14), with respect to 𝜽. Approximate confidence intervals for the model 

parameters can be obtained by using asymptotic results, see Giorgio et al.3. 

 

4. The Bayesian inferential procedure 

A Bayesian inferential approach is here proposed that allows technological information on the 

observed degradation phenomenon to be incorporated in the inferential procedure. Both vague and 

informative priors are here considered. In particular, the proposed informative priors have been 

chosen to achieve a good trade-off between simplicity and flexibility. Indeed, although they are 

indexed by no more than two parameters, they are quite flexible. These distributions are used to model 

the prior technological information the analysist possesses or might conceivably possess on the shape 

parameters 𝛽 and 𝑏 of the state and age functions, respectively, which characterize the behavior of the 

TG process. 

To this aim, from (7) we note that the behavior of the state function 𝑔(𝑤) affects the conditional 

mean 𝐸{Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑤!}; in particular, if 𝑔(𝑤) = (𝑤/𝛼)0 is concave, as occurs when 𝛽 < 1, then 

𝐸{Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑤!} is a monotone increasing function of the current degradation level 𝑊(𝑡) = 𝑤!, 

whereas if 𝑔(𝑤) is convex, as occurs when 𝛽 > 1, then 𝐸{Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑤!} decreases 

monotonically with the current degradation level 𝑤!. This implies (see, e.g., Lehmann8) that the 



 

 

degradation increment Δ𝑊(𝑡, 𝑡 + Δ𝑡) during the future time interval (𝑡, 𝑡 + ∆𝑡) is positively 

(negatively) correlated to 𝑊(𝑡), given the current age 𝑡 and Δ𝑡, when the shape parameter 𝛽 is less 

than 1 (greater than 1). It means, for example, that when 𝛽 < 1, the larger the degradation 𝑊(𝑡) at 

age 𝑡, the more rapidly it will grow in the future. On the contrary, if 𝛽 > 1, the larger 𝑊(𝑡), the more 

slowly it will grow. 

For illustrative purpose, Figure 1 shows the coefficient of correlation 𝜌(𝑊(𝑡), Δ𝑊(𝑡, 𝑡 + Δ𝑡)) of 

𝑊(𝑡) and Δ𝑊(𝑡, 𝑡 + Δ𝑡) evaluated at selected values of 𝛽, in particular 𝛽 = 0.3, 0.5, 0.7, 0.9, 1.2, 1.5, 

2.0, 2.5, 3.0, and 4.0, for arbitrarily chosen values of 𝑎, 𝛼, 𝑡, and ∆𝑡 which do not affect the behavior 

of the coefficient of correlation. We have that, regardless of the value of the parameters 𝑎, 𝑏, and 𝛼, 

the coefficient of correlation is always positive for 𝛽 < 1, and always negative for 𝛽 > 1. In addition, 

given 𝑎, 𝑏, and 𝛼, the further 𝛽 from 1, the greater, in absolute value, the coefficient of correlation. As 

mentioned before, if 𝑔(𝑤) ∝ 𝑤, the process is state-independent and, consequently, Δ𝑊(𝑡, 𝑡 + Δ𝑡) 

and 𝑊(𝑡) are uncorrelated. 

Thus, prior information on the dependence of the degradation increment Δ𝑊(𝑡, 𝑡 + Δ𝑡) on the 

current level 𝑊(𝑡) can be easily converted into a prior information on the shape parameter 𝛽 of the 

state function 𝑔(𝑤) in (4). In particular, the analyst can make one of the following assumptions 

depending on the available prior information: 

1. No information is available on the dependence between Δ𝑊(𝑡, 𝑡 + Δ𝑡) and 𝑊(𝑡), and then the 

(improper) vague prior 𝑔(𝛽) ∝ 1/𝛽, 𝛽 > 0, is adopted. 

2. The correlation between Δ𝑊(𝑡, 𝑡 + Δ𝑡) and 𝑊(𝑡) is known to be positive: 

a. if this is the only prior information available on 𝜌(𝑊(𝑡), Δ𝑊(𝑡, 𝑡 + Δ𝑡)), then the (improper) 

vague prior 𝑔(𝛽) ∝ 1/𝛽, 0 < 𝛽 < 1 is used; 

b. if the analyst is also able to formulate a prior mean 𝐸{𝛽} and a prior variance 𝑉{𝛽} on 𝛽 (0 <

𝛽 < 1), then the following Beta prior is used: 

𝑔(𝛽) =
𝛽E*+(1 − 𝛽)F*+

𝐵(𝑝, 𝑞) 	,				0 ≤ 𝛽 ≤ 1; 		𝑝, 𝑞 > 0	,																																									(15) 

where parameters 𝑝 and 𝑞 can be obtained by 𝑝 = 𝐸1{𝛽}(1 − 𝐸{𝛽})/𝑉{𝛽} − 𝐸{𝛽} and 𝑞 =

𝑝/𝐸{𝛽} − 𝑝. 

3. The correlation between 𝛥𝑊(𝑡, 𝑡 + 𝛥𝑡) and 𝑊(𝑡) is known to be negative: 

a.  if the only prior information available is that 𝛽 > 1, then the following 3-parameter gamma 

distribution, with unit location parameter, is used: 



 

 

															𝑔(𝛽) =
𝑞E(𝛽 − 1)E*+

	Γ(𝑝) 	exp[−𝑞(𝛽 − 1)],					𝛽 > 1; 		𝑝, 𝑞 > 0																	(16) 

with parameters 𝑞 = (𝐸{𝛽} − 1)/𝑉{𝛽} and 𝑝 = 𝑞(𝐸{𝛽} − 1) calculated in correspondence 

of very large 𝐸{𝛽} and 𝑉{𝛽} values, so that the resulting pdf (16) is “flat” over the region 

supported by the likelihood; 

b. if the analyst is also able to formulate a prior mean 𝐸{𝛽} and a prior variance 𝑉{𝛽} on 	𝛽 >

1, the prior (16) is still adopted, whose parameters 𝑞 and 𝑝 are calculated in correspondence 

of these prior moments. 

4. The correlation between 𝛥𝑊(𝑡, 𝑡 + 𝛥𝑡) and 𝑊(𝑡) is known to be null or weak: the following 

gamma prior with mean equal to 1 is used: 

																											𝑔(𝛽) =
𝑝E𝛽E*+

	Γ(𝑝) 	exp(−𝑝𝛽)	,			𝛽 > 0	; 		𝑝 > 0	,																																				(17) 

where the parameter 𝑝 is determined as 𝑝 = 1/𝑉{𝛽} by formulating a prior variance 𝑉{𝛽}. 

Figure 2 depicts the behavior of the mean degradation 𝐸{𝑊(𝑡)} given in (5) for selected values of 

the shape parameters 𝑏 and 𝛽, and arbitrarily chosen values of the scale parameters 𝑎 and 𝛼 which do 

not affect the behavior of the mean degradation curve. From these plots, we notice that 𝐸{𝑊(𝑡)} 

increases almost linearly with the observation time when 𝑏 = 𝛽, is concave when 𝑏 < 𝛽, while is 

convex when 𝑏 > 𝛽. In addition, the smaller (larger) the ratio 𝑏/𝛽, the more concave (convex) 

𝐸{𝑊(𝑡)} is. Of course, if 𝑏 = 𝛽 = 1, the degradation mean 𝐸{𝑊(𝑡)} increases exactly linearly, 

because the TG process with 𝑏 = 𝛽 = 1 is a homogeneous gamma process. 

The same conclusions can be derived by approximating the expression of the mean degradation in 

(5). In particular, by using the asymptotic first order approximation Γ(𝑧 + 𝑐)/Γ(𝑧 + 𝑑) ≅ 𝑧G*H 

(Abramowitz and Stegun9), we obtain: 

𝐸{𝑊(𝑡)} = 𝛼
Γ[(𝑡/𝑎)/ + 1/𝛽]

Γ[(𝑡/𝑎)/] ≅ 𝛼	(𝑡/𝑎)//0 			.																																						(18) 

From (18), the 𝐸{𝑊(𝑡)} curve (approximately) increases linearly with the observation time 𝑡 

when 𝑏/𝛽 = 1, is concave when 𝑏/𝛽 < 1, and is convex when 𝑏/𝛽 > 1. Thus, if the observation 

period is sufficiently large, the behavior of the mean degradation depends (approximately) only on the 

ratio 𝑏/𝛽. It is worth noting that, even when 𝑏 = 𝛽, although the mean increases almost linearly with 

the operating time, the TG process does not tend to a (homogeneous) gamma process. Indeed, Figure 

3 shows that the variance-to-mean ratio of the TG process with 𝑏 = 𝛽 ≠ 1 is not constant with 𝑡, as 



 

 

under the gamma process, but varies with 𝑡, being monotonically decreasing when 𝑏 = 𝛽 < 1, and 

monotonically increasing when 𝑏 = 𝛽 > 1. 

As a consequence of the above considerations, prior information on the behavior of the 𝐸{𝑊(𝑡)} 

curve can be easily converted into (conditional) prior information on 𝑏, given 𝛽. In particular, 

depending on the available information, the analyst can make one of the following assumptions: 

1. No information is available on the behavior of the mean function, and hence the (improper) vague 

prior 𝑔(𝑏) ∝ 1/𝑏, 𝑏 > 0, is adopted. 

2. Prior information on the ratio 𝑏/𝛽 is available; it is expressed in terms of the ratio 𝛾 between the 

conditional mean of 𝑏|𝛽 and 𝛽, that is 𝐸{𝑏|𝛽}/𝛽 = 𝛾, and in terms of the coefficient of variation 

of 𝑏|𝛽, that is 𝜎(𝑏|𝛽)/𝐸{𝑏|𝛽} = 𝜌. The (conditional) gamma prior is used: 

𝑔(𝑏|𝛽) =
𝑠0I𝑏I*+

Γ(𝑟) exp[−𝑠0𝑏]		,			𝑏 > 0	; 	𝑠0 , 𝑟 > 0																																									(19) 

with parameters 𝑠0 = 1/(𝜌1𝛾𝛽) and 𝑟 = 1/𝜌1; 

3. It is known that 𝐸{𝑊(𝑡)} is convex, so that 𝑏 > 𝛽; 

a. If this is the only information available on 𝑏, then the (conditional) 3-parameter gamma prior 

on	𝑏|𝛽: 

𝑔(𝑏|𝛽) =
𝑠0I(𝑏 − 𝛽)I*+

	Γ(𝑟) 	exp�−𝑠0(𝑏 − 𝛽)�,			𝑏 > 𝛽; 		𝑟, 𝑠0 > 0,															(20) 

is adopted, with location parameter 𝛽, and hyper-parameters values resulting in a very large 

prior mean and variance, so that the resulting pdf (20) is “flat” over the region supported by 

the likelihood; 

b. If the analyst is also able to provide prior values of the ratio 𝐸{𝑏|𝛽}/𝛽 = 𝛾 > 1 and of the 

coefficient of variation	𝜎(𝑏|𝛽)/𝐸{𝑏|𝛽} = 𝜌	(for example, by exploiting information on  the 

mean degradation curve relative to previous data sets of similar units), then pdf (20) is used, 

where the hyper-parameters are equal to	𝑟 = [(𝛾 − 1)/(𝛾𝜌)]1	and	𝑠0 = (√𝑟/𝜌 − 𝑟)/𝛽.  

4. It is known that 𝐸{𝑊(𝑡)} is concave, and hence that 𝑏 < 𝛽: 

a. If this is the only information available on 𝑏, then the conditional (improper) vague 

distribution on 𝑏|𝛽: 

																																							𝑔(𝑏|𝛽) = 1/𝑏		,				0 ≤ 𝑏 ≤ 𝛽	,																																												(21) 

is used; 



 

 

b. If the analyst is also able to provide a prior value of the ratio 𝐸{𝑏|𝛽}/𝛽 = 𝛾 < 1 and a prior 

value of the coefficient of variation 𝜎(𝑏|𝛽)/𝐸{𝑏|𝛽} = 𝜌, then a (conditional) Beta prior on 

𝑏|𝛽 is adopted: 

																													𝑔(𝑏|𝛽) =
𝑏I*+(𝛽 − 𝑏),*+

𝐵(𝑟, 𝑠)𝛽I&,*+ 		,				0 < 𝑏 < 𝛽		; 		𝑟, 𝑠 > 0,																						(22) 

where 𝑟 = (1 − 𝛾)/𝜌1 − 𝛾 and 𝑠 = 𝑟/𝛾 − 𝑟. 

Finally, we assume that no prior information is available on the scale parameters 𝑎 and 𝛼, so that 

the Uniform vague prior pdfs over the intervals (0, 𝑎J) and (0, 𝛼J), that is 𝑔(𝑎) = 1/𝑎J and 𝑔(𝛼) =

1/𝛼J, respectively, are adopted, where 𝑎J and 𝛼J are sufficiently large values. Thus, the joint 

posterior pdf of the TG parameters is given by: 

𝜋(𝑎, 𝑏, 𝛼, 𝛽|𝒘) ∝ 𝐿(𝒘|𝜽)𝑔(𝑏, 𝛽)	,																																										(23) 

from which the posterior pdf of any process parameter or function thereof can be derived.  

From (23), the posterior predictive distribution of the degradation increment ∆𝑊@ = 𝑊(𝑡@,A$ +

∆𝑡) −𝑊(𝑡@,A$) of unit 𝑖 during the future time interval (𝑡@,A$ , 𝑡@,A$ + ∆𝑡) given 𝑊(𝑡@,A$) = 𝑤@,A$, can be 

formulated as: 

𝑓∆#$(𝛿|𝒘) = X X X X 𝜋(𝑎, 𝑏, 𝛼, 𝛽|𝒘)𝑓∆#$�𝛿�𝑤@,A$ d𝑎	d𝑏	d𝛼	d𝛽
:/K0

	,										(24) 

where from (1) and (4): 

𝑓∆#$(𝛿|𝑤@,A$) =
𝛽
𝛼	U

𝑤@,A$ + 𝛿
𝛼 V

0*+ {[(𝑤@,A$ + 𝛿)/𝛼]
0 − (𝑤@,A$/𝛼)

0}((!$,($ ,!$,($&)!)*+

	Γ[𝜂(𝑡@,A$ , 𝑡@,A$ + Δ𝑡)]
 

× exp r−U
𝑤@,A$ + 𝛿

𝛼 V
0

+ \
𝑤@,A$
𝛼 ]

0
�			.							(25) 

Similarly, by using the (approximate) pdf (13) of the lifetime 𝑇, we obtain the posterior predictive 

distribution 𝑓7(𝑡|𝒘) of the lifetime 𝑇 of a new unit: 

𝑓7(𝑡|𝒘) = X X X X 𝜋(𝑎, 𝑏, 𝛼, 𝛽|𝒘)	
𝑏
𝑎 Z

𝑡
𝑎[

/*+ 1
Γ[(𝑡/𝑎)/]	:/K0

 

× rIG y\
𝑤345
𝛼 ]

0
; Z
𝑡
𝑎[

/
z U𝜓 yZ

𝑡
𝑎[

/
z − ln y\

𝑤345
𝛼 ]

0
zV 	+|

(−1)8(w345/𝛼)0[(!/:)
!&8]

[(𝑡/𝑎)/ + 𝑘]1	𝑘!

2

8;.

� d𝑎	d𝑏	d𝛼	d𝛽		(26) 



 

 

From the posterior pdf, the posterior mean, which is the most commonly adopted point estimator 

within the Bayes framework, can be obtained. However, it is well known that the posterior mean is 

also the Bayes estimator under the squared error loss (SEL) function. Such a loss function is 

symmetric, and hence its use is generally inappropriate when a point estimate of the reliability 

function or of the mean lifetime is required, because in these cases overestimation is often much more 

serious than underestimation. For this reason, an asymmetric loss function, namely the General 

Entropy loss (GEL) initially proposed in Calabria and Pulcini10-11 

𝐿LMN(ℎ£(𝜽), ℎ(𝜽)) ∝ �ℎ£(𝜽)/	ℎ(𝜽) 
H − 𝑑	ln(ℎ£(𝜽)/	ℎ(𝜽)) − 1		,																						(27) 

is used, where the loss parameter 𝑑 > 0 implies that an overestimation causes more severe 

consequences than underestimation, and vice versa. The Bayes estimate of ℎ(𝜽) under the loss (27) is 

in closed form: 

ℎLMN(𝜽|𝒘) = �𝐸O(𝜽){[ℎ(𝜽)]*H|𝒘} 
*+H 		,																																																		(28) 

provided that the posterior mean 𝐸O(𝜽){[ℎ(𝜽)]*H|𝒘} exists and is finite. 

The value of the loss parameter 𝑑 can be set once a suitable value of the ratio 𝑟 between the 

expected loss caused by overestimating ℎ(𝜽) of 𝛿 times and the expected loss for an underestimation 

of 𝛿 times, that is 

𝑟 =
𝐿LMN�ℎ(𝜽) ∙ 𝛿, ℎ(𝜽) 

𝐿LMN U
ℎ(𝜽)
𝛿 , ℎ(𝜽)V

		, 

is formulated. In particular, 𝑑 can be obtained solving the following equation: 

𝛿H − 𝑑	ln(𝛿) − 1
𝛿*H + 𝑑	ln(𝛿) − 1 = 𝑟		.																																																														(29) 

From (28) it is easy to see that ℎLMN(𝜽|𝒘) coincides with the posterior mean 𝐸{ℎ(𝜽)|𝒘} when 

𝑑 = −1. Likewise, when 𝑑 = 1, the Bayes estimate (28) coincides with the Bayes estimate under the 

weighted squared-error loss function [ℎ£(𝜽) − ℎ(𝜽)]1/ℎ(𝜽), used for example in Varde12. 

 

5. The Monte Carlo Markov Chain procedure 

The Bayesian inferential procedure presented in Section 3 could be implemented, in line of 

principle, by adopting numerical multivariate integration that, however, is often unfeasible or highly 

time consuming in the practice. Thus, in this paper we adopt an MCMC technique for posterior 



 

 

sampling in order to reduce the computational burden and thus the execution time of the computer 

code. The software package OpenBUGS (Lunn et al.13), that implements different families of MCMC 

algorithms, such as Gibbs, Metropolis and slice sampling, is used and the adaptive Metropolis 

algorithm (Haario et al.14) is adopted. The main reason of such a choice is that the adaptive Metropolis 

algorithm typically provides good convergence characteristics in OpenBUGS also in the presence of 

probability distributions not included in the software tool, such as the distribution of the degradation 

increment Δ𝑊(𝑡, 𝑡 + Δ𝑡), the 3-parameters gamma prior distribution (16) and the conditional 

improper prior distribution (21). 

We first draw a four-dimensional vector sample of size 𝑀, that is 𝜽Q = �𝑎Q , 𝑏Q , 𝛼Q , 𝛽Q ,	𝑗 = 1,… ,𝑀, 

from the posterior pdf 𝜋(𝑎, 𝑏, 𝛼, 𝛽|𝒘) in (23), generated after a sufficiently large burn-in period 

performed to make the influence of the starting point of the numerical procedure negligible. 

Convergence to the stationary (target) distribution 𝜋(𝑎, 𝑏, 𝛼, 𝛽|𝒘) of the Markov Chain is also 

monitored and assessed. 

From the vector sample 𝜽Q, the posterior mean and the (1 − 𝛾) highest posterior density (HPD) 

interval of each parameter can be estimated: the former is given by the mean of the corresponding 

elements of the posterior sample, for instance 

𝐸{𝛼|𝒘} = X X X X 𝛼	𝜋(𝑎, 𝑏, 𝛼, 𝛽|𝒘)d𝛼	d𝛽	d𝑏	d𝑎	
K0/:

≅| 𝛼Q
R

Q;+
/𝑀	, 

while the latter is obtained by ordering the posterior sample and selecting the shortest interval 

containing the fraction (1 − 𝛾) of the sample.  

The posterior sample of any function ℎ(𝜽) of the TG parameters, such as the residual reliability 

𝑅!(𝜏|𝑤!) in (8) or the mean degradation 𝐸{𝑊(𝑡)} in (5), is simply given by ℎQ = ℎ(𝜽Q), 𝑖 = 1,… ,𝑀, 

from which the posterior pdf, the mean and the HPD interval of such a quantity are easily obtained 

(Robert and Casella15). 

The posterior sample of the (conditional) degradation increment Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑤!, given the 

current degradation level 𝑤!, is obtained by using the conditional pdf (1). In particular, by applying 

the method of composition (see, e.g., Tanner16), the conditional increment 𝛿Q|𝑤! , 𝑗 = 1,… ,𝑀, given 

𝑤!, is obtained by firstly generating a sample of size M, that is 𝑧Q|𝑤! , 𝑗 = 1,… ,𝑀, from a gamma 

distribution with unit scale parameter and shape parameter 𝜂Q(𝑡, 𝑡 + Δ𝑡) = [(𝑡 + Δ𝑡)/𝑎Q]/) − (𝑡/

𝑎Q)/), and then by transforming each element 𝑧Q|𝑤! of the pseudo-random sample by  

										𝛿Q|𝑤! = 𝛼Q s𝑧Q|𝑤! + U
𝑤!
𝛼Q
V
0)

t

"
*)

−𝑤!	.																																																	(30) 



 

 

A posterior sample of the lifetime 𝑇, that is 𝑡Q, 𝑖 = 1,… ,𝑀, is obtained by first generating a 

sample of size M, that is 𝑢Q , 𝑗 = 1,… ,𝑀, from a Uniform standard distribution, and then by searching 

the value of 𝑡Q such that  

										
IG[(𝑤345/𝛼Q)0); (𝑡Q/𝑎Q)/)]

Γ[(𝑡Q/𝑎Q)/)]
− 𝑢Q = 	0	.																																			(31) 

Likewise, a posterior sample of the (conditional) residual lifetime 𝑋|𝑤!, that is 𝑥Q, 𝑖 = 1,… ,𝑀, is 

obtained by the uniformly distributed random sample 𝑢Q , 𝑗 = 1,… ,𝑀, by searching the value of 𝑥Q 

such that  

										
IG[(𝑤345/𝛼)0 − (𝑤!/𝛼)0; 	[(𝑡 + 𝑥Q)/𝑎]/ − (𝑡/𝑎)/]

Γ{[(𝑡 + 𝑥Q)/𝑎]/ − (𝑡/𝑎)/}
	− 𝑢Q = 	0	.												(32) 

From the posterior samples obtained from (30)-(32), the posterior pdf, 	the posterior mean, and the 

(1 − 𝛾) HPD interval of the conditional increment Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑤!, of the lifetime 𝑇, and of the 

conditional residual lifetime X|𝑤!, respectively, are easily derived. 

Finally, from (28), the Bayes estimate under the GEL function of the generic function ℎ(𝜽) is 

given by: 

ℎLMN(𝜽|𝒘) = u
∑ �ℎQ(𝜽)�

*HR
Q;+

𝑀 {

*+H

		.																																										(33) 

 

6. Numerical application 

Let us now consider the wear measures, given in Table 1, of the liners of the 8-cylinder engine 

which equips a cargo ship of the Grimaldi Lines. A total of 23 inspections were carried out during a 

total operating time of 185,000 hours. Due to the caliper sensitivity, all of the wear measures are 

rounded up to the nearest multiple of 0.05 mm. In Figure 4, the observed paths are depicted, where the 

measured points are linearly connected for graphical display. 

This wear dataset was analyzed within the TG process in Giorgio et al.7 in order to illustrate a 

condition-based maintenance policy for deteriorating units. Maximum likelihood estimates were then 

obtained. The liners were assumed to fail when the accumulated wear exceeds the threshold value 

𝑤345 = 4 mm. 

In order to perform the Bayesian estimation and prediction procedure, we have to formulate the 

prior information on the TG parameters. We then assume that the analyst, on the basis of previously 

observed similar wear processes, knows that: a) the wear increment Δ𝑊(𝑡, 𝑡 + Δ𝑡) during a future 



 

 

time interval is strongly negatively correlated to the current level 𝑊(𝑡), so that 𝛽 should be larger 

than 1, and b) mean degradation curve is quite concave, so that 𝑏 ≪ 𝛽. 

On the basis of previous data sets relative to similar wear processes, the analyst is also able to 

provide prior values of the mean and variance of 𝛽, that is 𝐸{𝛽} = 3.0 and 𝑉{𝛽} = 1.0, and prior 

values of the ratio 𝛾 = 𝐸{𝑏|𝛽}/𝛽 = 0.7 and of the coefficient of variation 𝜌 = 𝜎(𝑏|𝛽)/𝐸{𝑏|𝛽} = 0.2. 

In particular, the prior values of 𝛾 and 𝜌 have been derived from the behavior of the mean degradation 

curve relative to data sets of similar wear processes. Thus, the analyst chooses: 

• the 3-parameter gamma pdf (16) with parameters 𝑞 = (𝐸{𝛽} − 1)/𝑉{𝛽} = 2 and 𝑝 = 𝑞(𝐸{𝛽} −

1) = 4 as prior on 𝛽, and 

• the Beta prior (22) with parameters 𝑟 = (1 − 𝛾)/𝜌1 − 𝛾	 = 6.8 and 𝑠 = 𝑟/𝛾 − 𝑟 = 2.9143 as 

conditional prior on 𝑏|𝛽. 

The parameters 𝑎J and 𝛼J of the Uniform vague prior pdfs on 𝑎 and 𝛼 are set equal to 105 and 

102, respectively, so as to ensure that these priors are “flat” over the region supported by the 

likelihood. Thus, the joint prior pdf on the TG parameters results in: 

𝑔(𝑎, 𝑏, 𝛼, 𝛽) 

∝ ª
𝑏I*+(𝛽 − 𝑏),*+(𝛽 − 1)E*+

	𝛽I&,*+
exp[−𝑞(𝛽 − 1)] , for	𝑎 < 10S, 𝑏 < 𝛽, 𝛼 < 101, 𝛽 > 1

																																			0																																												, elsewhere
		(34) 

with 𝑞 = 2, 𝑝 = 4, 𝑟 = 6.8, and 𝑠 = 2.9143.  

The inferential procedure used to estimate the TG parameters from the joint posterior pdf (23) is 

based on the adaptive Metropolis algorithm implemented in the OpenBUGS software. Given that the 

distributions of degradation increment and the prior (16), as well as the improper prior (21) considered 

in the last part of this section, are not included in the software library, we implemented some “zero 

tricks” procedures in the OpenBUGS code for the likelihood (14) and the nonstandard prior 

distributions. For further information on zero tricks, refer to Lunn et al.17 and Méndez-González et 

al.18. 

The OpenBUGS code is launched by an R code (R Core Team19), that exploits R2OpenBUGS 

(Sturtz et al.20) and CODA (Plummer et al.21) packages to run OpenBUGS, to import the generated 

samples and to check MCMC convergence. 

Convergence to the stationary posterior distribution is assessed by visual inspection of some plots 

(trace plots, running mean plots) and by running some diagnostic tests. In particular, the Gelman-

Rubin convergence tool (with three chains), the Geweke test, the Raftery-Lewis diagnostics and the 



 

 

Heidelberger-Welch stationary and half-width tests are performed and the autocorrelation function of 

all the parameters are computed (Robert and Casella15). 

In order to collect posterior samples of (𝑎, 𝑏, 𝛼, 𝛽) composed by M = 105 four-dimensional vector 

elements, we use a burn-in period of 2∙105 iterations and a thinning interval equal to 300, that 

guarantee convergence of the MCMC algorithm to the target distribution, a proper mixing, and a 

negligible correlation between consecutive points of the Markov chain, for all the prior models of 

interest. The execution time of the OpenBUGS routine depends on the adopted priors, and is between 

60 and 300 minutes (for each chain) on a notebook based on an Intel® CoreTM i7 CPU@2.60GHz, 

showing the feasibility of the proposed Bayesian MCMC procedure.  

The Bayesian inferential procedure on the posterior sample is implemented by an R code, as 

described in Section 5. The posterior means of the process parameters are 𝐸{𝑎|𝒘} = 6794 hours, 

𝐸{𝑏|𝒘} = 1.870, 𝐸{𝛼|𝒘} = 0.9562 mm and 𝐸{𝛽|𝒘} = 2.662, while the corresponding 0.90 HPD 

intervals are (3307 h, 10110 h), (1.318, 2.401), (0.5433 mm, 1.370 mm), and (1.739, 3.541), 

respectively. For a comparative purpose, the ML estimates given in Giorgio et al.7 are 𝑎̄ = 5107 

hours, 𝑏° = 1.701, 𝛼̄ = 0.750 mm, and 𝛽± = 2.31, whereas the approximate 0.90 confidence intervals, 

based on the log-normal approximation for the distribution of the ML estimators of the (positive) 

parameter, are, respectively (1985 h, 13138 h), (1.077, 2.686), (0.322 mm, 1.746	mm), and (1.305, 

4.099). 

It should be noted that the HPD interval of 𝑏 does not include the value 1, and that the lower limit 

is greater than 1. Thus, the wear increment of the cylinder liners is positively correlated to the current 

age. Indeed, from (7), we have that, given the current degradation level 𝑤!, the conditional mean 

𝐸{Δ𝑊(𝑡, 𝑡 + Δ𝑡)|𝑤!} increases (decreases) with the current time 𝑡 when the shape parameter 𝑏 of the 

age function is larger than 1 (smaller than 1). This implies (see, e.g., Lehmann8) that, given 𝑊(𝑡) =

𝑤!, the wear increment Δ𝑊(𝑡, 𝑡 + Δ𝑡), in the future interval of width Δ𝑡 is positively (negatively) 

correlated to the age 𝑡 at which the liner reaches the (given) wear level 𝑤! when 𝑏 > 1 (𝑏 < 1). We 

also note that all the HPD intervals are quite narrower than the corresponding confidence intervals, 

thus showing how the Bayes procedure based on informative priors provides more accurate estimates.  

In Figure 5, the joint prior 𝑔(𝛽, 𝑏) and the marginal joint posterior pdf 𝜋(𝛽, 𝑏|𝒘) are compared to 

depict the effect of the observed data on the knowledge on the shape parameters 𝑏 and 𝛽. The plot of 

the posterior pdf also shows that the shape parameters 𝛽 and 𝑏 are, a posteriori, strongly positively 

correlated. 

In Figure 6 the posterior mean and the 0.90 HPD interval of the mean and variance of the wear 

level 𝑊(𝑡) are depicted, and compared to the empirical estimates. Note that, since the inspection 



 

 

times can vary from unit to unit, and hence the wear measures generally refer to different operating 

time of the liners, the empirical estimate of the variance is obtained by using an interpolation 

procedure at selected equispaced times as suggested in Giorgio et al.1. From Figure 6(a) we have that 

the posterior mean of the mean wear 𝐸{𝑊(𝑡)} is very close to the empirical estimate, and that the 0.90 

HPD interval is very narrow and includes all the empirical estimates. In addition, from Figure 6(b), we 

note that the empirical estimate of the variance does not monotonically increase with the age 𝑡, as it 

should happen if the degradation process were state-independent. Thus, only a degradation model 

which is not purely age-dependent can adequately describe the observed wear process. The posterior 

mean of the wear variance reproduces the non-monotone behavior of the empirical estimates, even if 

increases initially more quickly that the empirical estimates and decreases quite more slowly. 

However, it should be considered that the empirical estimates of the variance are based on a few 

number of “points”, and that the “points” are not observed but obtained through linear interpolation of 

the observations. 

Figures 7 and 8 give the posterior mean and the Bayes estimator under the GEL function, with 

𝑑 = 2.87, of the reliability function (9) of a new liner and of the residual reliability (8) of the liners 

#1, 5, and 6, with 𝑤345 = 4 mm. The value 𝑑 = 2.87 has been obtained from (34), having assumed 

that an overestimation of 10% (𝛿 = 1.1) produces an expected loss which is 1.2 times larger than the 

expected loss caused by an underestimation of 10%. Note that, because the GEL parameter 𝑑 > 0, the 

Bayes estimate under the GEL function is smaller than the posterior mean, and decreases with the age 

𝑡 very sharply. The very sharply decline in reliability under the GEL function, depicted in Figures 7 

and 8, is due to the adopted value of 𝑑 that strongly penalizes the reliability overestimation; a smaller 

positive value of 𝑑 would produce less rapid declines. 

We have also predicted the lifetime of a new liner and the residual lifetime of the liners #1-8. In 

Table 2, the posterior mean and the 0.90 HPD interval are given. 

In Table 3, the posterior mean is compared to the Bayes estimator under the GEL function, with 

𝑑 = 2.16. Such a 𝑑 value has been obtained by assuming that an underestimation of 20% (𝛿 = 1.2) of 

the mean lifetime produces an expected loss 𝑟 = 1.3 times greater than that caused by an 

underestimation of 20%. We have that the GEL estimates are equal to 95%-98% of the posterior 

means. 

In Figure 9 the posterior predictive distribution (24) of the wear increment 𝛥𝑊(𝑡@,A$ , 𝑡@,A$ + Δ𝑡) 

during the future time interval of width ∆𝑡 = 20,000 hours, relative to the liners  #3, 6, and 8, are 

depicted. The dependence of the growth of the wear process on the current wear level and current age 

is there highlighted. In particular, the wear increment relative to the liner #3 is much larger than the 



 

 

increment of liner #8 because, although their current age is the same, the current wear level 𝑤T,1 =

1.35 mm of liner #3 is smaller than the current wear level 𝑤U,V = 2.10 mm of liner #8 and the wear 

increment is negatively correlated to the current level (the shape parameter 𝛽 is larger than 1). 

Likewise, the wear increment relative to the liner #6 is much larger than the increment of liner #8 

because, although their current wear level is about the same, the current age 𝑡W,T = 24,710 hours of 

liner #6 is larger than the current age 𝑡U,V = 16,300 hours of liner #8 and this wear increment is 

positively correlated to the current age because the shape parameter 𝑏 is larger than 1. 

Finally, in order to make a check on the effect of the prior information on 𝑏 and 𝛽 on the posterior 

results, we have performed the Bayes estimation assuming that the analyst possesses only little 

information on the wear process, in particular that: 

• there is a negative correlation between Δ𝑊(𝑡, 𝑡 + Δ𝑡) and 𝑊(𝑡), without being able to anticipate 

any plausible value for 𝛽, and hence the 3-parameter gamma pdf (16) with prior mean 𝐸{𝛽} =
100 + 1 = 101 and prior variance 𝑉{𝛽} = 10V (so that 𝑝 = 1 and 𝑞 = 0.01) is used, and 

• the mean wear curve 𝐸{𝑊(𝑡)} is surely concave, without being able to anticipate any plausible 

value for the ratio 𝑏/𝛽, and hence the conditional (improper) vague prior (21) on 𝑏|𝛽, in 0 < 𝑏 <
𝛽, is used. 

Thus, using the uniform prior pdfs 𝑔(𝑎) = 1/𝑎J and 𝑔(𝛼) = 1/𝛼J over the intervals (0, 𝑎J) and 

(0, 𝛼J), respectively, where 𝑎J = 10S and 𝛼J = 101, the resulting joint prior pdf is: 

𝑔(𝑎, 𝑏, 𝛼, 𝛽) ∝ r
exp[−𝑞(𝛽 − 1)]

𝑏 , for		𝑎 < 10S, 𝑏 < 𝛽, 𝛼 < 101, 𝛽 > 1

															0														, elsewhere
												(35) 

with 𝑞 = 0.01. Under the weak joint prior (35), the posterior means are 𝐸{𝑎|𝒘} = 6585 hours, 

𝐸{𝑏|𝒘} = 1.815, 𝐸{𝛼|𝒘} = 0.9407 mm and 𝐸{𝛽|𝒘} = 2.641, and the corresponding 0.90 HPD 

intervals are (2266 h, 10650 h), (1.124, 2.452), (0.3886 mm, 1.474 mm), and (1.399, 3.831), 

respectively. Such posterior means are close to the posterior means under the strong informative prior 

pdf (34), whereas these HPD intervals are much wider that the intervals under the pdf (34), due to the 

little informative nature of the weak prior pdf (35). 

 

7. Conclusions 

In this paper, a Bayesian estimation procedure for the parameters of the transformed gamma (TG) 

degradation process has been proposed, when physical/technological prior information on the 

correlation between the future degradation increment and the current state and on the behavior of the 

mean degradation curve is available. The use of different types of prior distributions, reflecting 



 

 

different degrees of information on the degradation process under study, has been proposed and 

motivated. Computations have been performed using a Monte Carlo Markov Chain technique. 

The posterior distribution of the parameters of the TG process, as well as of other quantities of 

interest such as the residual reliability, has been derived. From these posterior distributions, the 

posterior mean and the 0.90 highest posterior density credibility interval have been obtained. The 

Bayes estimates of the reliability function and unit lifetime under the (asymmetric) General Entropy 

loss function have been derived, too. Prediction of the liner lifetime and of the degradation increment 

over a future time interval, in the case of both new and used liners, has been also specifically 

addressed. The applicative example, referring to the wear process of the liners of a cargo ship engine, 

demonstrates the feasibility of the suggested Bayesian procedure. 
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Table 1. Wear 𝑤!,#  [mm] accumulated by liner 𝑖 up to the inspection time 𝑡!,# [hours]. 

 
𝑖 𝑡!,$ 𝑤!,$ 𝑡!,% 𝑤!,% 𝑡!,& 𝑤!,& 𝑡!,' 𝑤!,' 

1 11,300 0.90 14,680 1.30 31,270 2.85   

2 11,300 1.50 21,970 2.00     

3 12,300 1.00 16,300 1.35     

4 14,810 1.90 18,700 2.25 28,000 2.75   

5 10,000 1.20 30,450 2.75 37,310 3.05   

6 6,860 0.50 17,200 1.45 24,710 2.15   

7 2,040 0.40 12,580 2.00 16,620 2.35   

8 7,540 0.50 8,840 1.10 9,770 1.15 16,300 2.10 

 



 

 

 
Table 2. Prediction of the lifetime [in hours] of new and used liners. 

 Posterior mean 0.90 HPD interval 

New liner 51,327 (40,652 , 61,703) 

Liner #1 20,003 (12,110 , 27,828) 

Liner #2 30,749 (21,107 , 40,156) 

Liner #3 36,841 (26,793 , 47,003) 

Liner #4 22,210 (13,470 , 30,170) 

Liner #5 16,057  (9,101 , 22,954) 

Liner #6 28,484 (19,088 , 37,628) 

Liner #7 31,215 (20,970 , 40,938) 

Liner #8 33,207 (23,139 , 43,089) 

 



 

 

 
Table 3. Posterior mean and Bayes estimator under the GEL function of the life [in hours] of new and used 

liners. 

 Posterior mean GEL estimate 

New liner 51,327 50,715 

Liner #1 20,003 19,103 

Liner #2 30,749 29,835 

Liner #3 36,841 36,027 

Liner #4 22,210 21,266 

Liner #5 16,057 15,221 

Liner #6 28,484 27,557 

Liner #7 31,215 30,206 

Liner #8 33,207 32,292 

 



 

 

 

  
Figure 1. Plots of the coefficient of correlation between 𝑊(𝑡) and Δ𝑊(𝑡, 𝑡 + 𝛥𝑡), for arbitrary values of 𝑎, 𝛼, 

𝑡, and  ∆𝑡. 
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Figure 2. Behavior of the mean degradation 𝐸{𝑊(𝑡)} for different values of the parameters 𝑏 and 𝛽 (the blue, 

green, and red curves refer to, respectively, 𝑏 = 𝛽, 𝑏 > 𝛽, and 𝑏 < 𝛽).  



 

 

 

 
Figure 3. The variance-to-mean ratio of the TG process for different values of 𝑏 = 𝛽. 
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Figure 4. Observed paths of the liner wear (the measured points are linearly connected for graphical 

opportunity). 
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Figure 5. The joint prior 𝑔(𝛽, 𝑏), on the left, and the marginal joint posterior pdf  𝜋(𝛽, 𝑏|𝒘), on the right (the 

level lines in the maps are for 5%, 20%, 50%, and 90% of the maximum). 
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Figure 6. Empirical and Bayesian estimates (posterior mean and 0.90 HPD intervals) of the mean (a) and 

variance (b) of the wear process. 
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Figure 7. Posterior mean (solid line) and Bayes estimator under the GEL function (dashed line) of the 

reliability of a new liner. 
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Figure 8. Posterior mean (solid line) and Bayes estimator under the GEL function (dashed line) of the residual 

reliability of liners #1, 5, and 6.  
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Figure 9. Posterior predictive distribution of the wear increment during the future interval of 20,000 hours 

process of liners #3, 6, and 8. 
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