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ABSTRACT

A new closed-form equation for the local instabilif pultruded fibre-reinforced plastic
beams in bending is derived by substituting sugdhlckling approximating functions
for compression flange and web into the total pidérenergy functional. Being
obtained from a full-section approach, the equatitmes not require independent
calculations for web and compression flange, whick typical of discrete plate
analysis. Moreover, the contribution of the elaséistraint stiffness commonly used to

reproduce the web—flange junction behavior natymalises in the proposed formulation



because of the assumed buckling shape. From casoparwith available experiments
on 10 beams and FE solutions for 55 beams, theopeap equation appears to be

accurate and reliable.
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1. INTRODUCTION

Pultruded Fibre-Reinforced Plastic (PFRP) thin-aa@lprofiles can be considered, from
a macro-mechanical viewpoint, as linearly elagtmnogeneous, and orthotropic, with
the axes of orthotropy coinciding with the prindiges of the cross-sections. Their
behavior is highly affected by the relatively lovalwes of the Young's modulus,
especially in the transverse direction [1], andhef transverse shear elastic modulus [2,
3], which more or less coincides with that of tr@ymeric resin and shows a strong
time dependency (see [4] and references citedrjefdioreover, warping strains play
an important role in the mechanical response of pasite thin-walled beams,
especially in the case of open sections [5]. THeatures can provoke non-negligible
increases in deformations and deflections with @éesfo isotropic materials and affect
both local and global buckling loads. Finally, pbstkling of pultruded shapes is
influenced by the strength of web—flange junctighs 6, 7], resin-rich zones from
which failure typically propagates t80]. As a consequence, PFRP profiles exhibit a
complex behavior related to the multi-interactiogtviieen shear deformability, non-
uniform torsion, and creep, and therefore requirable modeling criteria.

The flexural-torsional (global) response of PFRBre has been widely investigated

in the literature with regard to both vibrationd]hAnd buckling [5, 1215]. The present



paper, instead, focuses on the local bucking phenom starting from a wide overview

of the literature, reported in the next section.

2.  LITERATURE REVIEW

A brief survey of the literature concerning analgti studies on local buckling of
composite structural sections is presented hefdia.referenced papers are subdivided

into two main categories according to the typeralgsis presented.

2.1. Discreteplateanalysis

The local buckling analysis of a PFRP shape unxial eompression, uniform bending,
pure shear, or combinations of the relevant stetates is generally reduced to the
analysis of each of the wall segments comprisirgstiiape, which is considered as an
individual orthotropic plate that has suitable bdary conditions and is subjected to in-
plane loading. In this approach, usually referredas discrete plate analysis, the
longitudinal edges shared by two or more wall segmare usually provided with a
continuous elastic restraint, reproducing theestitig effect due to the adjacent plates.

In [16], the local instability of carbon-fiber-réorced flanges of I-section beams and
columns was analyzed by taking the web restraietficent into account.

In [17], a model for the local buckling analysisloand box sections was developed,
considering the compression flange as an orthatnplpite that was elastically restrained
in correspondence with the web—flange junctionse Tdtational spring stiffness was
assumed to coincide with the bending stiffneshiefweb in the transverse direction.

The buckling load of orthotropic plates in uniax@mpression, simply supported

along the loaded edges and having one of the uatbadges elastically restrained and



the other free, was found in [18] by solving thes@ming characteristic transcendental
equation numerically. On the basis of a parametniglysis highlighting the role of the
coefficient of elastic restrainB, a procedure is presented to estimate, from &est @h
FRP beams, the value Bfto be used in the local buckling analysis of thenpression
flange.

Local buckling of box and I-sections under non-anifi bending was analyzed in
[19]. In patrticular, it was assumed that bendinghanly resisted by the flanges, which
were subjected to constant compression or tensimesses, whereas non-uniform
bending stresses on the web panels were ignored. Wdb panels were instead
subjected to in-plane shear. The local bucklingcompression flanges and webs,
elastically restrained in correspondence with thebiffange junctions, was then
evaluated by solving two transcendental equatioimaulsaneously. Simplified
expressions for the buckling strengths were finablyained using a regression analysis.

Explicit expressions for the local buckling stremgbf flange and web panels of box
and I-section profiles were reported in [20] and][2espectively. In particular, an
equation for the local buckling of web panels ugdarg non-uniform normal stresses
and elastically restrained along the unloaded edgesgiven in [20], seemingly for the
first time. Other explicit expressions for web afldnge panels of different FRP
structural shapes were derived in [22], wherea$28] the explicit solution to the
eigenvalue problem for a composite plate in uniageampression with all four edges
elastically restrained was reported, followed byagplication to honeycomb sandwich
structures.

Currently, the best compromise between accuracy sindaplicity, and thus

practicality in design, is probably represented thg closed-form local buckling



expressions for orthotropic plates derived by Koila[24] by combining the buckling
loads of plates without bending stiffness, withdotsional stiffness and Huber-
orthotropic plates. Following the method outlingdBieich [25] for steel profiles, these
expressions, which take account of the rotatioeatraint offered by adjacent wall
segments, were then applied in [26] to the localkbng analysis of thin-walled FRP
columns and beams.

Kollar's formulation was adopted by the Italian DesGuide CNR DT 205/2007
[27]. With regard to the local flange buckling ofséction beams, an interesting
sensitivity analysis of Kollar's equation was presd in [28, 29], where it was shown
that this equation correlates significantly bettéh the experimental results than those
that assume that the half-flanges are simply supgon correspondence with the web—
flange junction. Comments on the need to take adcofithe elastic restraint at the
web—flange junction and on the advantages of ukwifar's formulation were reported

in [30].

2.2. Analysisof plate assemblies

An approach alternative to that described abovesists1in applying a variational
formulation to the whole thin-walled profile andeth minimizing the resulting
functional.

Following the work of Bulson [31] on isotropic thwalled profiles, Zureick and
Shih [32] studied the local buckling in FRP beanmsl @olumns and deduced the
governing stability equations for box and I-sectroembers as special cases. In their
proposal, the authors assumed that all plates hlawesame orthotropic material

properties.



In [33], the case of composite I-sections undeemampression was analyzed with
regard to both initial buckling and post-bucklingnd a numerical solution to the
stability equations was finally developed.

In [34], the solution to the general characterisamscendental buckling equation for
FRP profiles subjected to eccentric compression wbgined numerically (pure
bending was regarded as a particular case). licpkat, the actual stress state on the
cross-section was approximated by constant andewise constant normal stress
distributions applied to flange and web panelspeesvely. Different properties were
considered for web and flanges.

The formulations presented in [324] undoubtedly lead to very accurate reference
solutions to the local buckling problem for ortlogiic profiles, but they are barely
applicable for design purposes. In this contexg thevelopment of closed-form
expressions would be welcome.

To the authors' knowledge, the only relatively denglosed-form expressions
concerning the local buckling of FRP profiles sagtias a whole (and not by a discrete
plate analysis) are those recently derived in [@6]box, angle-, |-, and C-shaped
sections using the Rayleigh energy method [36]. Thesed-form local buckling
equation for I-sections presented in [36] was psagloagain in [37]. These expressions,
based on the hypothesis of infinitely long profil[gee as to ignore the influence of the
end effects), are restricted to the case of unifasial compression and assume the

same thickness and material properties for aleglabmprising the column.



3. MOTIVATION FOR THE STUDY

Kollar's equation [26] is the most widely used egsion for the local (flange) buckling
resistance of PFRP beams in bending. McCarthy 8] McCarthy and Bank [29]
showed that, in the case of wide-flange I-secti@ans, the professional bias for
Kollar's equation, defined as the ratio of the expentally determined local buckling
strength to the strength predicted by the equatiakes a mean value of 1.20 and
exceeds 1.5 for two of the ten profiles investigatgee Table 1, where the reciprocals
of this ratio are reported according to a conventioore usual in Europe). The test
results included in the study were collected fra®8]] where the profile stiffnesses
obtained from coupon tests were also reported.hkn ¢ase of columns in pure
compression, the professional bias of Kollar's éqonas 1.07 [29], indicating that the
overestimation of the local buckling strength iuanced by the stress distribution on

the web.

3.1. Reationship between local buckling moment and bending moment resistance
The Italian Design Guide [27] recommends that teading moment resistance of

PFRP beams in pure bending be determined as
Mga = Xum ()\M )M locRd 1)

whereMqc rd IS the design value of the local buckling momend yau(Av) is a function

of non-dimensional slendernesds, =M zi/Mrqs (With Merrg being the design

value of the flexural-torsional buckling moment)hiash accounts for the interaction

between local and global buckling modes [9].



It can be shown that M. rg iS underestimated by 20 and 50% (in line with the
mean and maximum values of the professional bias@tlar's equation reported by
McCarthy [28]), the momerni¥lgq obtained from Eq. (1) turns out to be underestthat
by about 10 and 21%, respectively. Therefore, bexai the relation betwedW o rq
andMgyg, it appears evident that an accurate predictiomaihentM o rq iS required for
design purposes.

The main objective of the present study is thendéeelopment of a new closed-
form equation for I-section beams that providihs-predictions that are more accurate
than those provided by Kollar's equation. The apgnoused in the paper is that
mentioned in Section 2.2. Therefore, distinct binckktress calculations for flange and
web panels are not required, and the resultingskdtion equation can be applied to
estimateMo. independently of whether local instability is tjeyed by compression

flange or web.

4. PROPOSED CLOSED-FORM EQUATION

The closed-form expressions developed in this pap@ly to I-section beams with
overall cross-section deptth, flange breadthy, and web and flange thicknessgsand
tr, respectively (Fig. 1a). Since the flange and vpalmels of commercial profiles
typically show different mechanical properties [38])bscripts "f* and "w" will be used
in the following to refer to flanges and web, redpely. Note that in standard PFRP
structural shapes the equality=t; generally holds, but for generality of the wordihg
will be assumed that flanges and web have diffeiteoknesses.

The assumptions at the basis of the formulatiosgreed hereinafter are the same as

those typically adopted for the local buckling as&éd of PFRP sections (see for



example [19, 32, 34]); that is, (1) each of thegisuconstituting the pultruded shape is a
linearly elastic orthotropic plate with the orthmly axes coinciding with the principal
axes of the plate; (2) deformations are small and geometric imperfection is
considered; (3) on buckling, the junctions betwadjacent panels remain straight; (4)
the original angles between adjacent panels remmashanged; (5) the wavelengths of
the various buckled panels are the same; and #Bbiity occurs simultaneously for
every panel. Because of assumption no. (4), thélingcshape of the compression
flange turns out to be symmetric with respect sowkeb—flange junction.

For a PFRP beam in major-axis bending, the localklpng moment may be
evaluated from the following relation (see [27]):
Mise =Whax fioc (2)
where Whax is the beam section modulus in the bending plarkfa indicates the
critical normal stress. Thin-walled profiles canuaky be reduced to their middle
surface. Under this assumptiofy in Eq. (2) corresponds to the stress acting at
buckling along the compression flange. At the séime, the tension flange is subjected
to constant stressfi,c, whereas the web undergoes a linearly varyingstaéstribution
between-fi,c andfioc.

In the present paper, the critical normal stredlsb&iexpressed in the general form:

f T[ZELf (tf jz — k T[ZDll.f

oc :koc | T Moc
| I 12(1_ULT,fUTL,f) b ! tfbr2

®3)

whereE, s, U.Tt, andur ¢ are the longitudinal elastic modulus and the majat minor
in-plane Poisson's ratios of the flanges, respelgtiwhereads: r, whose definition is

reported in Table 2, is the longitudinal bendindfratiss of the flange panels. Finally,



koc in EQ. (3) represents a buckling coefficient todstermined by making the total

potential energy of the buckled beam stationary.

4.1. Variational formulation

A Cartesian coordinate system (Qy) is considered. A generic, rectangular orthotropic
platei is assumed to have one of the vertexes coinciditig the origin O and edges
with dimensionsa andb parallel to the directions andy, respectively. If the plate is
subjected to an out-of-plane displacement funotwgr, y), its strain energy, neglecting

transverse shear deformations, takes the folloang [40]:

2w \’ 0°w \ 0°w
"\ oy ) oy
0w ’
+4D dydx 4
66'(6)(6)/} } y ( )

where coefficient®i1;, D22, D12j, andDes; represent the plate bending stiffnesses (see

Table 2).
The work done by a constant compressive sfiemgplied to the plate edges parallel

to they-axis can be written as [40]:

V, = ftJ‘ J‘ dydx (5)

wheret; indicates the plate thickness. Otherwise, the wawke by a normal stress
distribution applied to the same edges but varjimgarly between compression stress

fx (aty = 0) and tension stres$; (aty = b) is given by [20]:
V, =— ft-“j 1 2 dydx (6)

10



For an I-beam in major-axis bending, it is assurtteat, at buckling, the tension
flange remains undeformed [32]. Therefore the tptakntial energy, comprising the
contributions of the compression flange and wely,azdn be written as:
n=u, -V, +U, -V, 7)
where, for a beam of length corresponding to one single half-wave in the bingkl
shape,Us and V; are obtained by doubling Egs. (4) and (5), respelgti written for
i=f, a=L, and b=by/2. Moreover,U,, and V,, follow from Egs. (4) and (6),
respectively, for =w,a=L, andb =H - t; = b,.

The local buckling stress for a given fi,c,, corresponds to the value f that

minimizes Eq. (7).

4.2. Assumed buckling shape
Suitable displacement fieldg must be substituted into Egs. €4) to obtain a reliable
prediction of the local buckling stress. In thipeg the buckling shape is approximated
using sinusoidal and polynomial functions.

To express functionsy; for compression flange and web, three local coare
systems are introduced, with the origin placedhatvteb—flange junction (Fig. 1a).

With regard to the buckling displacements in thenpl of the beam cross-section, the
cubic shape function proposed in [21, 22] is uswdetch of the half-flanges, whereas
the product of a sinusoidal function with a lin@alynomial is proposed for the web.

The resulting buckling approximating functions camgitten as (see Fig. 1b):

TR R

for y, 0[0h/2],j=1,2

11



= —wiﬁ— Si Msi ™ or
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wherea represents the amplitude of the flange bucklingpsh whereasoD[O;L] is a
constant coefficient to be determined by imposiagable boundary conditions. Note
that, for w= 0, Eqg. (8) yields zero curvature in the flangansverse direction.
Moreover, forw = 1, no rotation is allowed at the web—flange jiorcin compression,
leading, from Eq. (9), taw, = 0 everywhere.

It can readily be observed that Eqgs. (8) and (%sfyathe boundary conditions

Wij(X, 0) =wy(x, 0) =0 and[awj/ayfj] o= [c?ww/ayw]y _, at the web—flange junction in

Yij =
compression. Moreover, Eq. (9) also satisfies thenbary conditionsv,(x, b,) = 0 and

[c'iww/ayw]yW:bw =0 at the web—flange junction in tension.

The moment equilibrium at the web—flange junctiorcompression yields:
24D, /b = 41-w)D,,,, /(bb,) (10)
from whichw is obtained in the form:

w=[L+6c,(0, /0 )] (11)

where coefficient,, takes the definition reported in Table 2.

4.3. Local buckling stress

Substituting Egs. (8) and (9) into Eq. (7) and mgkithe total potential energy
stationary yield the critical stre§s;, for a given value of half-wave length If fioc, is
expressed in the same form as Eq. (3), the comelspy buckling coefficientkiyc,,

takes the following expression:

12



= 4bf2tf 4 2
Koo, ChatiLr, + i Fma){35L Lam, oic,, +bF,)hhb,

+ 700, Fousy, + 108 (L68FC,, - 4200, + 840G, | + 352, Gy, + TOC,F. /4]

(12)

with Ci2, C32, Cs2, Ci122, Ciows Ca2w @NdFy (1 =1, ..., 5) being coefficients reported in
Table 2. From minimization ok with respect toL, the half-wave length_pin

satisfying the relatiomk,., /0L =0 is obtained in the form:

3 3 ya
Lmin _ {bf QN[1401N le + T[Abf F(,QSCLI] w} (13)
1400 F,, +1400,0C,|

Finally, substituting Eqg. (13) into Eqg. (12) leawtsthe following expression for the
minimum buckling coefficient:
4 2
5 L [7wa FuCorw +T[2bf (168*)2C32_42G*)Q22
C12(:]-4'(hmtw Foa t T[Abratf Fma) (14)
+8405,) +1[356,,, (403, + 0. J14, 07, +B ), |

kIoc =

In conclusion, the present proposal for estimativeglocal buckling moment for PFRP
I-section beams relies upon EqQ. (2) in conjunctwath Eqgs. (3) and (14) for local
buckling stresdi,c and coefficientk,, respectively, and with coefficiemd computed
from Eq. (11).

The assumption thab = 0 does not allow the moment equilibrium at trebwflange

junction in compression to be satisfied locallyd &vg. (14) reduces to:

oht {QN (3+212)e,,,, +1280,Gep +4/C,s,, 33+ 272 J12 (212 ~ 3)+ e, |y, }
Clzlh/svtw (T[2 - 6) + 1t ]

. (15)

kIocO =

13



5.  VALIDATION OF THE PROPOSED EQUATION

Reported in this section are the comparisons ofptioposed equation with available
experimental results and closed-form equations el as with finite element (FE)
solutions. The acronym “PA” will be used in theldoVing to indicate the results of the

present analysis.

5.1. Comparison with available experimental data

The present formulation is compared in Table 1 \ilig experimental results reported
in [28]. In particular, the mean value of the ratiq between the local buckling moment
obtained from Egs. (2), (3), (11), and (1M pa) and the experimental buckling
moment Mioc.exp IS approximately 0.98, a value significantly @ogo unity than the
mean value of the ratioko = Mioc,ko/Mioc,exp (= 0.85), with Miec ko being the local
buckling moment provided by Kollar's equation. Tdeefficients of variation (COVS)

of rpa andrg, are substantially coincident.

5.2. Numerical validation
The effectiveness of the proposed formulation s alerified by comparison with the
FE-computed local buckling stresses. For this pgepseveral FE models of simply
supported PFRP beams are developed using ABAQUFE IdJparticular, four-node
plate elements S4 are adopted. The constitutiveemadiopted to describe the beam
behavior was the transversally isotropic one. Ahatropic constitutive model, with the
orthotropy axes parallel to the principal beam aieassigned to each element.

At the beam end sections, whilst flexural rotatioase left free, in-plane

displacements are prevented at each node in oodesptoduce the simply supported

14



configuration. Moreover, to avoid any possible digbody motion in the beam
longitudinal direction, axial displacement of thedspan cross-section centroid is
prevented. Finally, in order to avoid flexural-torsal instability, displacements of the
web—flange junctions in the transverse directianfared.

Taking account of the actual flange thickness, fiseblocating the meshes on the
inner surfaces of the flanges is introduced, makipgssible to avoid overlapping web
and flanges at the web—flange junctions.

Uniform major-axis bending is reproduced by meahdirearly varying normal
stress distributions applied at the end sectiondegécted in Fig. 2. The critical stress
associated with the first local buckling modggrem IS searched for using an
eigenvalue analysis.

A preliminary convergence test on the beam refetedhs V8A in Table 1 is
performed to define the optimal mesh to be useé (Ba&ble 3). The mesh finally
adopted is composed of 20 and 18 subdivisions adaa of the flanges and the web,
respectively, and 274 subdivisions along the spmangth, resulting in 15892 finite
elements (mesh #6 in Table 3). A typical local bugkshape obtained from the FE
analysis is shown in Fig. 3.

Using the same FE discretization, all beams of &dbare analyzed and the results
are reported in Table 4 in terms of local bucklgtgessfiocrem. Critical stresse§ioc exp
andfi.c pa Obtained from the experiments [28] and proposethdibation, respectively,
and the ratioSsexp = fioc,exdfioc,;Em @and rspa = fioc pAlfioc,FEm are reported in the same
table. Taking account of all possible sources afeutainty affecting the experimental
results, as well as the estimates of material ptigsereported in Table 1 (see [28, 38]),

which do not consider possible differences betwitserge and web properties and, for

15



vinylester beams, were obtained from coupon daimn ftwo actual beams and then
averaged for all eight beams, a good agreement eeetwthe FE analysis and
experimental results is obtained.

Therefore, FE models such as that described abmvde regarded as the reference
for assessing the predictive capacity of the pregdermulation. With regard to the ten
beams of Table 1, the ratigpa takes a mean value and a COV of 1.053 and 0.070,
respectively (Table 4), indicating a very good agnent.

For a deeper assessment of the proposed equatiggasametric analysis is finally
carried out. A total of 55 beams, comprising withsfe (WF) and narrow-flange (NF)
profiles, are investigated. In particular, with aed) to WF beams (Table 5), eight
property sets are considered, in conjunction wihttee different values of the cross-
section thicknesg;(i = 1, ..., 3) and two values of the in-plane simeadulus G;, j = 1,

2), resulting in 48 PFRP profiles. These profiles @ferred to as WF(X-G;), with X
being the integer part of the transverse Young'dutus of the flanges;, expressed
in gigapascals. With regard to NF beams (Table s&yen different profiles are
considered. These profiles are referred to as MNXXX3), with X3, X5, and X%
indicating the integer parts of cross-section deptth wall thickness in millimeters and
the transverse Young's modulus of the weR,) in gigapascals, respectively.

The span lengths of the profiles analyzed are ige lthat the number of half-waves
in the first local buckling shape ranges betweem@& 20. Therefore, the FE-computed
buckling stress can be regarded as a very accapai®ximation of the minimum local
buckling stress.

The results of the comparison between the preseatysis and FE models are

summarized in Fig. 4 (data points indicated by dsalircles) in terms of the ratio

16



fioc,predfioc,FEM DEtwWeen the predicted and FE-computed bucklingsséis. Reported in
the same figure is an analogous ratio but \i§thqreferred to Kollar's equation (data
points indicated by open circles). In particuldre tmean values dfoc predfioc,Fem are
0.966 (thick solid line in Fig. 4) and 0.827 (dagHme in Fig. 4) in the cases of the
present analysis and Kollar's equation, respegtividie coefficients of variation for the
two cases are 0.042 and 0.044. In conclusion, @dlesgatter, the proposed equation is
more accurate.

Assuming thatw= 0 and then calculating the buckling coefficiértm Eq. (15)
rather than from Eq. (14) produces an increasenenliuckling stress. In particular,
fioc,predfioc,FEM takes @ mean value of 1.036, whereas the coefficievariation becomes

0.057.

6 CONCLUSIONS

A new closed-form equation for the local bucklingment of pultruded FRP beams in
bending is derived using suitable displacement tfans for compression flange and
web in the total potential energy expression. Beoiained from a full-section
approach, the equation does not require independaltdulations for web and
compression flange, which are typical of discrdédepanalysis.

Comparisons with available experiments on 10 beamdsFE solutions for 55 beams
indicate that the proposed equation is very acewaat reliable.

A simplified version of the buckling coefficientqposed, based on the assumption
of zero curvature in the buckled flange, is provede satisfactory from a technical

viewpoint. Its implementation into the Italian DgsiGuide [27] is suggested.
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Table 1. Ratiosk, = Mioc,ko/Mioc,exp (r€CIprocals of the values reported in [28]) agc-
Mioe,pA/Mioc,exp OF predicted to experimental buckling momemtig,{ ey, With Mige ko aNdMioc pa
indicating buckling moments provided by Kollar'suation and the present analysis,

respectively.

BeamI? H=by t=t, E® E®? G:® v L Winas Mloc,exr(b) Mot Ipa

[mm] [mm] [GPa] [GPa] [GPa] [ [m] [1&mnf] [kNm] -] [-]
V8A 203.2 953 246 10.3 3.7 0.33 2.74 4.07 30.62 92D. 1.075
V8B 203.2 953 246 10.3 3.7 0.33 2.74 4.07 33.89 83D. 0.971
V81l 203.2 953 246 10.3 3.7 0.33 2.74 4.07 33.10 850. 0.994
V82 203.2 953 246 10.3 3.7 0.33 2.74 4.07 33.22 854. 0.991
V83 203.2 953 246 10.3 3.7 0.33 2.74 4.07 33.56 84@. 0.981
V84 203.2 953 246 10.3 3.7 0.33 2.74 4.07 30.73 923. 1.071
V87 203.2 127 246 10.3 3.7 0.33 2.74 5.20 67.00 960. 1.119
V88 203.2 127 246 10.3 3.7 0.33 2.74 5.20 68.69 943. 1.091
P81 203.2 953 240 7.5 2.6 0.31 2.74 4.07 33.56 6590. 0.761
P82 203.2 953 240 7.5 2.6 0.31 2.74 4.07 34.01 6500. 0.751
Mean 0.846 0.981

COV 0131 0131

@ Capital letters V and P in the beam ID refer toyléster and polyester resins, respectively.
® For details on material properties and experimersailts, see [28, 38].

Table 2. Expressions for the elastic constantspanameters used in Egs. (2(04).

Elastic constants € f, w)

D11 ELt12(1- uriuT)
Da2y; Ert/12(1- uirivr)
D1y; ULT,iDoy;

Des; Gur, it /12

Dags; D1y + 2D,
Inhomogeneity and anisotropy ratios

C11 D11/D11w

(&) D22 /D2

Ci2 D11 /D2

Ci12: D12/D2on

Cs2 2Dg6 /D22,

Cs2 D33 /D2

Ci2n D11,WDa22n

Ca2.n D33 w/Dazw
w—functions

Fu @ -3)w - 1y

Fmg le + 36((*] - 1)2

Feus 140- 490+8w?

Fu Fu1 = (M+3)(w - 1)
Fms le + 6((*] - 1)2
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Table 3. Convergence test for beam V8A of Tableumber of subdivisions along each of the
flanges (), web ), and span lengtm(); total number of FEs|,= (2n:+ n,)n.]; and
corresponding critical stress for six FE modeldwiniicreasing mesh refinement.

Mesh # Ny Ny no Nel roc,FEM
[MPa]

1 8 8 110 2640 87.33

2 10 10 137 4110 86.82

3 14 12 183 7320 86.50

4 16 16 228 10944 86.34

5 18 16 249 12948 86.29

6 20 18 274 15892 86.25

Table 4- Ratiosf,expz floc,exp/floc,FEM andl’f,PAz floc,PA/roc,FEMv W|th 1:Ioc,exp f|OC,PA1 a-ndfloc,FEM
indicating local buckling stresses provided by eipents [28], the present analysis, and FE
models, respectively.

Beam ID floc,FEM 1:Ioc,ex[(a) floc,PA(b) r'f,exp r'f,PA
[MPa] [MPa] [MPa]
V8A 86.25 75.32 80.97 0.946 1.017
V8B 86.25 83.36 80.97 1.047 1.017
V81 86.25 81.42 80.97 1.023 1.017
V82 86.25 81.71 80.97 1.026 1.017
V83 86.25 82.55 80.97 1.037 1.017
V84 86.25 75.59 80.97 0.949 1.017
V87 154.80 128.82 144.08 1.067 1.193
V88 154.80 132.07 144.08 1.094 1.193
P81 66.69 82.55 62.86 1.337 1.018
P82 66.69 83.66 62.86 1.355 1.018
Mean 1.088 1.053
cov 0.132 0.070

® Obtained fromioc, exp= Mioc,exd Winax With Migc exp @ndWiax reported in Table 1.
®) fioe.pa= roaMioc exd Winax With rp, also reported in Table 1.

Table 5. Mechanical properties of the 48 WF-sedbeams investigated. For all beams
H =by = 203.2 mmE, ¢ = 23 GPa, and,ts = U1 = 0.33.

tf:tW:ti (I = 1, 2, 3) GLT’f: GLT,W: Gj (j:]., 2)

Beam ID Ers ELw Erw ty t, ts G, G,
[GPa] [GPa] [GPa] [mm] [mm] [mm] [GPa] [GPa]
WF(234-G) 23.0 23.0 23.0 6.53 9.53 12.7 4.0 2.3
WF(184-G)) 18.4 23.0 15.3 6.53 9.53 12.7 4.0 2.3
WF(154-G) 15.3 23.0 11.5 6.53 9.53 12.7 4.0 2.3
WF(134-G) 13.1 23.0 9.2 6.53 9.53 12.7 4.0 2.3
WF(114-G) 11.5 19.0 15.3 6.53 9.53 12.7 4.0 2.3
WF(104-G) 10.2 19.0 11.5 6.53 9.53 12.7 4.0 2.3
WF(94-G) 9.2 19.0 9.2 6.53 9.53 12.7 4.0 2.3
WF(84-G)) 8.4 19.0 6.0 6.53 9.53 12.7 4.0 2.3
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Table 6. Mechanical properties of the seven NFisedteams investigated. For all beams
Uts=Urw= 0.33.
Beam ID H bx t=ty, = = = Erw  Guri=Girw
[mm] [mm] [mm] [GPa] [GPa] [GPa] [GPa] [GPa]

NF(203-9-13) 203.2 1016 9.53 23.0 13.1 23.0 13.1 .0 4

NF(203-9-9) 203.2 101.6 9.53 23.0 13.1 19.0 9.2 4.0
NF(203-12-13) 203.2 1016 12.7 23.0 13.1 23.0 131 4.0

NF(254-9-13) 254 127 9.53 23.0 13.1 19.0 131 4.0
NF(254-12-9) 254 127 12.7 23.0 13.1 19.0 9.2 4.0
NF(305-12-13) 305 152 12.7 23.0 13.1 19.0 13.1 3.5
NF(305-12-6) 305 152 12.7 17.2 6.2 17.2 6.2 29
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