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Abstract

Spectrum Sensing schemes in Cognitive Radio systems are fundamental elements for a complete opportunistic com-
munication technology. They usually reveal the presence of occupied bands without performing a measurement of
the spectrum portion actually occupied. Considering that the final aim of Cognitive Radios is the exploitation, in the
most efficient way, of the spectrum holes left free by primary users, the measurement of the actual occupied spectrum
becomes a fundamental task. In this framework, this paper proposes a two–stage spectrum sensing method, tailored
to work in TV bands, offering a good detection of the occupied bands with selectable false alarm rates (Stage 1) and
an accurate measurement of the real occupied spectrum (Stage 2). Performance results, achieved in simulation and
emulation environments, prove the method’s goodness and robustness to non–idealities of real acquisition systems. A
comparison, with another two–stage method available in literature, has confirmed its efficacy in real contexts.

Keywords: Spectral Measurements; Cognitive Radio; Radio frequency; TV White Space (TVWS); W–RAN;
Frequency–domain analysis.

1. Introduction

Every day millions of people are logged into the
Internet to keep up with the news, listening web ra-
dios, watching web TVs, to manage their business or
financial investments and for communication purposes.
For these reasons, the diffusion of Internet access is a
very important need for the common users and also for
the providers of these services in order to reach even
more customers. This is generally true but it is fun-
damental for developing and least developed countries
(LDCs), because the percentage of individuals, that live
in these countries, using the Internet is only 41.3% and
the 17.5% [1]. A big gap respect to the developed coun-
tries in which this percentage is 81%. The reasons of
this scarce diffusion of the Internet access are several,
but one of the main reasons is related to the presence
in these countries of wide rural areas. In these areas
and in general in areas with low population density, to
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build telecommunication infrastructure, able to provide
a broadband network coverage, has a very low economic
efficiency ratio. As a consequence, taking into account
the importance of a broadband Internet access as a pos-
sible developing factor for these countries, it is impor-
tant to tackle this problem identifying optimal strategies
and technologies that could grant a very good connec-
tivity and, at the same time, cheap fares for the user and
fast return on investment for network providers when
they will be implemented. Taking into consideration the
economic constraints reported in [2], wired communica-
tion technologies cannot be adopted, especially in rural
areas with very low population density [3]. Regarding
wireless technologies, they seem to be more suitable to
this aim, but the main problem is the spectrum scarcity.
In fact, radio spectrum resource is very crowded and to
find free bands, to allocate for this service, is very dif-
ficult. Fortunately many studies about the spectral effi-
ciency of the traditional frequency allocation policy in
main cities of different countries, in urban and rural ar-
eas [4–10], have highlighted that some bands are heav-
ily exploited but other bands are not in use or used for
only a portion of the time. As a consequence, a possi-
ble solution could be the adoption of a Dynamic Spec-
trum Access (DSA) approach that allows the exploita-
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tion of frequency bands, allocated for specified services,
and not currently used by their licensed users (Primary
Users or PUs). Among the several bandwidths, VHF
and UHF bands, traditionally used for TV broadcasting,
are the most promising thanks to their good propagation
characteristics that allow to cover very large areas with a
single base station (BS). Thanks to these good features
many national regulators have supported the possibil-
ity to use vacant channels or frequency in these bands,
called TV White Spaces (TVWSs), for unlicensed wire-
less network implementations. Many are the attempts
to accomplish this task, one of the most promising is a
standard approved by IEEE in 2011 and called IEEE
802.22 [11]. It specifies MAC and PHY layers of a
Wireless Regional Area Network (W–RAN) that oper-
ates in VHF and UHF bands. It promises to reach a
maximum data–rate close to 23 Mbit/s and coverage
area with a radius of 30 km with a single BS. Recently,
many trials have been carried out in different coun-
tries, especially in Japan [12] and India[13], demon-
strating the potentiality of this standard. Furthermore,
research community in measurement and communica-
tion fields is currently working on a new standard pro-
posal, namely IEEE 802.22.3 [14], with the aim of de-
veloping the specification a Spectrum Characterization
and Occupancy System as a fundamental support for
the implementation of a dynamic spectrum access pol-
icy. Of course, to make possible the use of TVWSs and
to really enhance the efficiency in the spectrum usage,
very straightforward spectrum sensing methods have to
be developed with the aim of satisfying some impor-
tant and often contrasting requirements, as (i) capabil-
ity of detecting the presence of PUs also with unfavor-
able SNR, (ii) high promptness in detecting a PU which
starts to occupy the channel previously left free, (iii) ca-
pability of measuring with good accuracy and resolution
the frequency range occupied by PUs. In this frame-
work, several sensing methods have been proposed in
literature taking into account different applications and
hardware resources [15–20].

The authors, stemming from their past experience in
the development and characterization of digital signal
processing methods for spectrum sensing [21–24] and
frequency agility in CR networks [25] and being an ac-
tive part of the standard committee[14], propose a two–
stage spectrum sensing method for dynamic spectrum
access in TVWS. It has been developed in order to sup-
port every cognitive standard that is going to operate
in VHF and UHF bands with particular regard to IEEE
802.22.3 system typology. The first stage offers a good
detection of the occupied bands and is characterized by
a low computational burden. The second stage mea-

sures the real occupied spectrum. Dependently on the
accuracy requirements and the promptness degrees re-
quired by the context, the user has the possibility to
select to carry out a fast analysis (rough occupied fre-
quency band measurement) or a slow analysis (accurate
occupied frequency band measurement). For example,
when a DSA communication is already on, it could be
useful to use a coarse sensing stage to detect primary
activity restart and leave the channel in the shortest pos-
sible time. On the other way around, when a Cogni-
tive Device wants to start an opportunistic communi-
cation (frequency agility), the fine occupied frequency
band measurement could be necessary to appreciate also
small frequency holes, which are undetectable by Stage
1, due to its limited frequency resolution.

The peculiarities of this method respect to other
methods available in literature [26–30] are the se-
lectable trade–off between frequency measurements ac-
curacy and promptness, the capability to provide good
results on a single and fast acquisition, the possibility
to have a-priori tunable false alarm rates. In detail, the
first stage of the proposed method, operates according
to an energy detection scheme (that is the fastest and
lightest spectrum sensing method available in literature)
in a wide–band manner, by digitally filtering different
channels and giving as output the occupied frequency
bands without any a–priori information. Another paper
in literature [31] also adopts a similar approach with re-
spect to the presented Stage 1, but it employs sub–band
widths that are equal to channel bandwidth (in DVB–T
case it could be 6, 7 or 8 MHz wide) and gives binary
output for each of the considered spectrum portion, thus
forcing the sensing resolution to be the channel band-
width.

On the other way around, the authors employs a
uniform sub–band division, where each spectrum sub–
portion is 1.45 MHz wide, in order to be able to detect
both primary users, that are typically present in the VHF
and UHF bands (DVB–T and Wireless microphones)
and not only DVB–T users, that could be easily detected
also with a 6 MHz informed channelization.

The second stage of the proposed method measures
the real occupied bandwidth through a “bin by bin”
analysis, instead of other methods that calculate the
occupied bandwidth based on the sub-bands frequency
widths.

The importance of second stage is also crucial when
other secondary users must be detected in order to avoid
interference to them. In this case, no a priori knowledge
is available about channelization and carrier frequency
positions and a detailed analysis (bin–based resolution)
is the best to do to be accurate in detection and sensitive
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to low transmission powers.
Both stages proposed novelties for the proposed

method respect to those presents in literature.
The adoption of wide-band energy detection in fre-

quency domain (for the Stage 1) and the real occupied
bandwidth (for the stage 2) represent the biggest nov-
elties of the method. Looking at the realization of the
measurement instrument that could implement the pro-
posed algorithm (as sensor devices described inside the
draft specifications in [14]), another key aspect is that
the method allows employing a light stage in the RF
acquisition section avoiding the need to have very nar-
row band–pass, fixed or variable, filters. In addition, the
proposed method does not require any theoretical as-
sumption on the noise variance, since it is directly mea-
sured on a surely vacant channel. Finally, as shown in
the following, it requires a single shot acquisition with a
limited number of samples to allow appreciable results.

The method analysis and its performance assessment
have been carried out in two phase: simulation, where
the algorithm has been tuned and make suitable to
achieve the target performance and through an exper-
imental measurement campaign on emulated signals,
where the proposed method and its robustness to non–
idealities of real hardware and generation instruments
have been validated.

The paper is organized as follows: the problem state-
ment is discussed in Section 2, while the proposed
method is reported in Section 3 and the performance as-
sessment is provided in Section 4. A comparison with
another sensing method is provided in Section 5 and
conclusions follow in Section 6.

2. The problem statement

In order to efficiently use the spectrum and protect
licensed users from harmful interference by secondary
transmitters, i.e. Cognitive Radio devices, a crucial
phase of the Cognitive Cycle is represented by the Spec-
trum Sensing (SS) task. It can be defined as an hypoth-
esis test problem, i.e. for a given frequency interval un-
der analysis, the SS method has to perform a binary de-
cision about the presence/absence of an active user in
such frequency span. In other words, it has to classify
the analyzed spectrum portion as occupied or free by
incumbent users. This problem can be formulated ac-
cording to detection theory principles.
Let y(t) the received signal at time instant t. It can be
described as:

y(t) =

s(t) + w(t), under H1 hyp.
w(t), under H0 hyp.

, (1)

where s(t) and w(t) represent the transmitted signal and
the noise realization, respectively. H0 and H1 hypoth-
esis describes the free and occupied channel cases, re-
spectively.

The detection problem can be reduced to the identifi-
cation of the best hypothesis according to the received
signal y(t).

Possible solutions are:

• Output H0 under H0 condition (case 1) =⇒

P(H0 | H0) > P(H1 | H0);

• Output H1 under H1 condition (case 2) =⇒

P(H1 | H1) > P(H0 | H1);

• Output H1 under H0 condition (case 3) =⇒

P(H1 | H0) > P(H0 | H0);

• Output H0 under H1 condition (case 4) =⇒

P(H0 | H1) > P(H1 | H1);

where P(Hi | H j) indicates the conditional probability
for the event Hi given the H j condition satisfaction.
In cases 1 and 2 the problem is correctly solved, while
cases 3 and 4 can be defined "false alarm" and "missed
detection", respectively.

Several techniques are proposed in literature to solve
such problem. The main categorization is among blind
and informed techniques. The former methods do not
exploit any a priori information about the signal typol-
ogy to be detected, the channelization of the frequency
span to be analyzed, resulting in a wider applicability
range. The latter techniques are specifically tailored on
particular signal shapes and typologies, exploit a pri-
ori knowledge about signal features and such informa-
tion allow them to be more effective in difficult operat-
ing scenarios. Sensing techniques such as energy detec-
tion, wavelet–based detection and Maximum–Minimum
Eigenvalue (MME) belong to blind category, whilst
matched–filter, cyclostationarity and waveform based
detection are in the informed techniques subset. Further
subdivisions concern the application domain of each
technique (time, frequency) and the spectrum interval
width under analysis (narrow–band, wide–band).
Informed techniques usually provide binary information
about the presence/absence of the specific user they are
developed for, while blind techniques’ output needs ad-
ditional information, such as user bandwidth and exact
edge locations, just to cite the strictly needed pieces of
data.
The main goal of this work is to present a two–stage
wideband spectrum sensing technique having semi–
informed features, i.e. developed for well–performing
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in TVWS, but able to detect very different typologies of
signals, such as DTV broadcasters and Wireless Micro-
phones (WMs).
According to its detection capabilities, the presented
sensing method can be used as support by actors in-
volved in DSA access in TVWS, as IEEE 802.22s [11].
Furthermore, a secondary goal is to provide a tunable
computational burden method, able to be run in low–
cost or high performance scenarios, with variable accu-
racy and resolution levels.
Finally, a real–scenario test set–up is also presented, to
verify the robustness of the described method to real
signals, where ideal hypotheses can not always be con-
sidered as valid, due to the use of real generation and
acquisition instrumentation.

3. Proposal

The proposed method is divided into two stages: the
first stage consists of the implementation of an energy
detection method in frequency domain, where a uni-
form segmentation process of the analyzed spectrum is
carried out to perform sub–band accurate detection; the
second stage is a refinement algorithm, taking as input
the sub–bands declared as occupied by the Stage 1 and
refining the output results, in order to have a bin–level
resolution and exploit also within–sub–band spectrum
holes. Following this approach, the method presents
two different exit points: the coarse results of first Stage
procedure and the fine and improved output of the over-
all technique. According to different needs of the target
application and its computational capabilities, it is pos-
sible to extract first or second set of data.

3.1. Stage 1: Frequency domain Energy Detection

Let Y(k), (k ∈ 1, . . . ,N f b) be the DFT of received
signal samples in time domain, y(n), (n ∈ 1, . . . ,Ns),
where N f b and Ns represents the computed frequency
bins and the acquired samples number, respectively.

In this paper, the value of Ns is fixed to 2401, in or-
der to have a 20 kHz resolution over a 48 MHz span.
Such resolution value is suitable for sensing purposes in
802.22 framework.

The obtained spectrum samples are divided into sub–
sets, representing the sub–band segmentation of contin-
uous spectrum analysis. The sub–sets’ size has been
chosen as uniform,in order to keep low the computa-
tional burden of the entire method, and the number of
obtained sub–bands (M) is the result of three imposed
constraints:

• having at least 30 samples per sub–band, so that
theory deriving from the Central Limit Theorem
(CLT) can be applied;

• sub–band width small enough to detect also
narrow–band users, such as wireless microphones.

• finding the optimal trade–off between computa-
tional burden and achievable performance.

For each sub–band, a BHT testing different conditions
for received signal can be applied:

Ym(k) =

S m(k) + Wm(k), under H1
m

Wm(k), under H0
m
, (2)

where the following notation has been used:

• S m(k) is the frequency spectrum of the transmitted
signal;

• Wm(k) is the DFT of the additive white Gaussian
noise;

• H0 and H1 are hypothesis about the presence of
user signals, as described in Section 2.

It is easy to prove that: Wm(·), S m(·) are vectors of inde-
pendent and identically distributed (i.i.d.) realizations
of a complex Gaussian random process [31].
In particular:

Wm(k) ∼ CN(0, σ2
w), (3)

since its time–frequency transform is a linear and uni-
tary operation, not modifying the random process dis-
tribution;

S m(k) ∼ CN(0, σ2
s,m), (4)

since the method does not include any demodulation of
the received signal and, consequently, independence hy-
pothesis can be still considered valid.

By considering the samples (N) in the mth sub–band,
it is possible to obtain the following computation for-
mulas.

Starting from the (3) and (4), it is possible to obtain
the distribution of received signal Ym(k), reported in (5).

Ym(k) ∼ CN(0, σ2
s,m + σ2

w) under H1

Ym(k) ∼ CN(0, σ2
w) under H0

. (5)

Following Neyman–Pearson approach, and considering
~Ym as the vector containing all samples of Y in the mth

sub–band, it is possible to evaluate the likelihood ratio
as follows:
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Tm( ~Ym) =
p( ~Ym|H1)

p( ~Ym|H0)
≶ γm, (6)

where γm is a suitable threshold to be determined in the
following, while p( ~Ym|H1) and p( ~Ym|H0) are the con-
ditional probability density functions of ~Ym under the
hypotheses of noise only (H0) or signal plus noise (H1)
channel conditions.

Therefore, the test statistic (Tm( ~Ym)) can be computed
as:

Tm( ~Ym) =

∏N
k=1

1
π(σ2

s,m+σ2
w) e
−
|Ym (k)|2

(σ2
s,m+σ2

w )

∏N
k=1

1
π(σ2

w) e
−
|Ym (k)|2

(σ2
w )

. (7)

By computing the products, a further formulation is:

Tm( ~Ym) =

1
[π(σ2

s,m+σ2
w)]N e

− 1
(σ2

s,m+σ2
w )

∑N
k=1 |Ym(k)|2

1
[π(σ2

w)]N e
− 1

(σ2
w)

∑N
k=1 |Ym(k)|2

. (8)

The ratio between quantities in (8) can be rewritten
as:

Tm( ~Ym) =

( σ2
w

σ2
s,m + σ2

w

)N
e
(

1
σ2

w
− 1
σ2

s,m+σ2
w

)∑N
k=1 |Ym(k)|2

≶ γm.

(9)
Let us simplify the (9) by defining:

α =

( σ2
w

σ2
s,m + σ2

w

)N
. (10)

Furthermore, by applying natural logarithm to both
sides of eqn. (9), it is possible to obtain:

σ2
s,m

σ2
w(σ2

s,m + σ2
w)

N∑
k=1

|Ym(k)|2 ≶ ln(
γm

α
) = γ̂m. (11)

One more constant quantity can be renamed as β:

β =
σ2

s,m

σ2
w(σ2

s,m + σ2
w)
. (12)

Thus, the test statistic assumes the following simple
formulation:

Tm( ~Ym) =

N∑
k=1

|Ym(k)|2 ≶
γ̂m

β
= γ̄m. (13)

The summation of squared modules of received sam-
ples can be decomposed in its mathematical formulation
as:

Tm( ~Ym) =

N∑
k=1

[(
Re{Ym(k)}

)2
+

(
Im{Ym(k)}

)2]
. (14)

Both the real and imaginary parts of Ym(k) are dis-
tributed as N

(
0, σ

2

2
)
, where the value of σ2 is:σ2 = σ2

s,m + σ2
w under H1

σ2 = σ2
w under H0

. (15)

It is possible to standardize such variables and obtain:

Tm( ~Ym) =
σ2

2

{ N∑
k=1

(Re{Ym(k)}
σ
√

2

)2
+

N∑
k=1

( Im{Ym(k)}
σ
√

2

)2}
.

(16)
At this stage, each element of the summations is a

standard normal distribution (N(0, 1)) and each sum-
mation is a chi–square distribution with N degrees of
freedom.

Therefore, the whole test statistic Tm is:

Tm ∼
σ2

2
χ2(2N). (17)

In further details, the test statistic (Tm) has the fol-
lowing possible distributions:Tm ∼

σ2
s,m+σ2

w

2 χ2(2N) under H1

Tm ∼
σ2

w
2 χ

2(2N) under H0
. (18)

.
If the number of samples (N) is large enough (typi-

cally greater than 30), the distributions expressed in (18)
can be approximated with Normal distributions as fol-
lows:

Tm ∼ N(N(σ2
s,m + σ2

w),N(σ2
s,m + σ2

w)2) under H1

Tm ∼ N(Nσ2
w,Nσ

4
w) under H0

.

(19)
From distributions in (19), detection and false alarm

probability can be computed in closed form as:

• Probability of detection (Pd):

Pd,m = P(Tm > γ̄m|H1) = Q
( γ̄m − N(σ2

s,m + σ2
w)

√
N(σ2

s,m + σ2
w)

)
;

(20)

• Probability of false alarm (P f a):

P f a,m = P(Tm > γ̄m|H0) = Q
( γ̄m − Nσ2

w
√

Nσ2
w

)
. (21)
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From such equations and, in particular, from P f a ex-
pression (21), it is possible to compute the value for the
threshold γ̂m:

γ̂m = σ2
w
[√

NQ−1(P f a,m) + N
]
. (22)

In eqns. (20), (21), (22) the subscript m refers to the
quantity evaluated for the mth sub–band, while Q(·) and
Q−1(·) are the tail distribution function of the standard
normal distribution and its inverse, respectively.

Therefore, the γm value can be calculated just once at
the beginning of sensing phase, thus reducing the com-
putational load of the algorithm. Moreover, if the false
alarm rate can be kept constant for all sub–bands, i.e.
the same performance level is targeted along the ana-
lyzed spectrum, the number of thresholds is reduced to
a unique value. Furthermore, in (22), a fundamental
parameter is the noise variance, i.e. σ2

w. In the pro-
posed method, it is computed at the beginning and peri-
odically updated by acquiring a surely vacant channel,
as the ones that exist for regulatory purposes in many
world countries (e.g. in USA, channel 37), differently
from other methods where it is assumed to be known a
priori.

Main operations performed for Stage 1 are reported
in Fig. 1. The output of such Stage is a M–sized binary
vector, whose ith component is set to "1" is the ith sub–
band is detected as occupied.

3.2. Stage 2: refinement method based on iterative ap-
proach

Since overall goal is to obtain efficient use of the
spectral resource, the sub–band resolution could be poor
and lead to useful band waste. The aim of Stage 2 is
to refine outputs deriving from Stage 1, paying atten-
tion to ”1s” sub–bands, i.e. the spectrum portions de-
clared as occupied by energy detector. Therefore, Stage
2 focuses on a very fine resolution, that is the frequency
bin width obtained by transforming time signal samples
through DFT. The proposed "Stage 2" is composed of a
preliminary section and an iterative one. As for the pre-
liminary section, the M–sized vector coming from the
"Stage 1" is managed to make it suitable for the further
operations. In detail, at first, contiguous bands (i.e. ’1s’
of the vector) are joint and starting and ending frequen-
cies of these bands are estimated. Then suitable guard
intervals, equal to half sub–band, are added at the be-
ginning and at the end of each jointed interval. Finally,
a smoothing filter (linear moving average) is applied to
each joint interval to remove the noise from the trace.

Smoothing is a needed process, since such algorithm
mainly works on the signal shape and noise ripples can
heavily affect the detection process.

During the iterative phase, relevant levels of the
smoothed trace are computed, i.e. signal top level (Tl)
and noise floor (N f ). The former is computed as the
mean value of local maxima, by considering as valid
maxima only frequency bins whose amplitude is greater
than the average value of the considered trace; the latter
is similarly computed by taking into consideration the
local minima. The noise proximity level (λ) is calcu-
lated according to (23).

λ = Tl − N f . (23)

To establish whether N f and Tl are significantly differ-
ent to allow detection, a comparison with a detectability
threshold (λdet = 3σw) is performed. This value cor-
responds to a 99.7% of noise possible excursion. As a
consequence if λ > λdet, it can be supposed that there
is a signal with a confidence level equal to 99.7% under
the assumption of a Gaussian distribution of noise.

Only in this case, it is possible to determine the de-
tection threshold, Th, defined as:

Th = αTl + βN f (24)

In this work, α and β have been both set to 0.5.
By comparing the amplitude of each frequency bin

with the threshold Th, the occupied bandwidth is defined
as:

fbi ∈ Occ(B) if Y( fbi) > Th, (25)

where fbi is a ith discrete frequency bin, and Occ(B) is
the set of occupied bins.

After having checked all frequency bins delivered
to Stage 2 analysis, adjacent bins belonging to the set
(Occ(B)) are joint and considered occupied as a whole
bandwidth. Spurious bins, passing the threshold check
but being isolated, are rejected and considered as out-
liers. The so–obtained occupied bands undergo the nor-
malization process, representing the last task of the it-
erative step. Such operation consists of replacing the
amplitude of frequency bins belonging to the occupied
bands with N f value. In this way, high power users are
detected during the first iterations (Tl is their top value),
whilst weakest users can be detected in the following
iterations, when the former have been normalized with
estimated noise level. The detection of more powerful
users will affect the computation of Tl level in the next
iteration, since local maxima belonging to detected user
signals are moved to have N f value, due to the normal-
ization process. Therefore, while N f will remain pretty
constant, since it especially depends of noise samples,
Tl level will decrease iteration by iteration. Such trend
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Vacant Channel

Frequency interval 
under test

Noise variance 
estimation and 

threshold computation
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Frequency-domain signal 
acquisition

Spectrum 
segmentation

Energy detection 
test

Occupied sub-
bands

Figure 1: Block Diagram of Stage 1’s main operations.

will lead the λ value to be very close to λdet, thus not al-
lowing to overcome the detectability threshold. In such
condition, the algorithm ends.

When Stage 2 outputs null vectors, for example when
very low SNR conditions are considered, Stage 1 results
are the final outputs.

3.3. Computational Complexity
The proposed method is composed of two stages.

Stage 1 operations consist of: N–point Fast Fourier
Transform (FFT), N square operations, M (M<N) sum-
mations of dN/Me samples, M comparisons. Stage 2
operations for each iteration consist of : evaluation of
minimum and maximum in a K–sized array (K < N);
K + 1 comparisons and S (S << M) assignments for
normalization process, where K is the number of bins
delivered to stage 2 by the algorithm and S is the num-
ber of occupied frequency bins. Considering the aggre-
gate algorithm, the most resource–demanding operation
is FFT, that is widely known [32] having computational
complexity equal to O(NlogN), while other tasks are all
upper–bounded by O(N). Furthermore, even if more
than one iteration is considered for Stage 2, the aver-
age number of iterations is quite small (2 in our ex-
perimental test) and it does not significantly affect the
computational complexity, that remains upper–bounded
by O(N) as Stage 2 regards. Therefore, for an N–sized
input array, the obtained computational complexity is
O(NlogN).

4. Performance Assessment

Performance evaluation has been carried out by con-
sidering the output of the figures of merit described in
subsection 4.1 obtained in simulation and emulation en-
vironments.

Three different scenarios representing typical users
communicating in TVWSs have been realized. In par-
ticular, DTV and WM signals are considered in the an-
alyzed frequency interval.

First scenario represents a DVB–T user in VHF band
174–222 MHz, having a 7 MHz bandwidth. Second
and third scenarios are, instead, focused on UHF band
494 – 542 MHz and represent a situation of two simul-
taneously transmitting 8 MHz DVB–T users and a 200
kHz WM within a vacant TV channel, respectively.
Such scenarios have been tested for several channel
conditions, expressed in terms of SNR. The considered
SNR range is {−20 + 5k, 0 ≤ k ≤ 4}.

A snapshot of the acquired spectra is reported in Fig.
3 , where the considered scenarios are depicted in var-
ious SNR conditions, which are obtained by locking
Noise Power to a fixed typical value (σ2

w = −86.5 dBm)
and adjusting signal power to get the required ratio.
Moreover, for each channel conditions, 1000 repeated
trials have been performed in order to give statistical
relevance to the test.
As concerns Stage 1, different values for P f a, ranging
from 0% to 10%, have been tested and a number of
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Figure 2: Block diagram of Stage 2’s main operations.

Table 1: Description of proposed scenarios - frequency features.

Scenario ID No. PUs fc1 [MHz] fc2 [MHz] B1 [MHz] B2 [MHz]

A 1 210 / 7 /

B 2 489 505 8 8
C 1 501 / 0.2 /

sub–bands equal to 33, each corresponding to 1.45 MHz
width, has been chosen to obtain the described trade–off

between capability to detect narrow–band signals and
possibility to apply CLT [23].
The used frequency resolution is 20 kHz, corresponding
to a total number of 2401 frequency bins in a 48 MHz
span. Consequently, each sub–band is composed of a
sub–set of about 70 bins, greater than the "30" required
by CLT.

4.1. Figures of Merit

The considered performance indexes are:

• Mean Detected Bandwidth (MDB), defined as:

MDB[%] =
1

Nsig

Nsig∑
i=1

∑Nb,i

j=1 B j,i|H1

Bi|H1

100%, (26)

where:
– Nsig is the total number of trials for each test

conditions;
– Nb,i is the number of sub–bands (frequency

bins) declared occupied by Stage 1 (Stage 2);
– B j,i|H1 is the jth detection in the ith test within

the H1 zone (truly occupied bandwidth);
– Bi|H1 is the total bandwidth in H1 zone.

This figure of merit has been designed to esti-
mate the average detected bandwidth at each test

8



  Frequency [MHz]
170 180 190 200 210 220 230

V
ol

ta
ge

 [d
B

V
]

-90

-85

-80

-75

-70

-65

-60

(a) Scenario A, SNR = 0 dB

Frequency [MHz]
470 480 490 500 510 520 530

V
ol

ta
ge

 [d
B

V
]

-84

-82

-80

-78

-76

-74

-72

-70

-68

-66

(b) Scenario B, SNR = − 5 dB

Frequency  [MHz]
470 475 480 485 490 495 500 505 510 515 520

V
ol

ta
ge

 [d
B

V
]

-85

-80

-75

-70

-65

-60

(c) Scenario C, SNR = − 10 dB

Figure 3: A snapshot of the acquired spectra for each considered sce-
narios.

with respect to the occupied zone. It is an im-
portant indication because it provides estimation
information to the next stage designers for Cog-
nitive Communications. The proposed figure of
merit is quite new in Cognitive Radio field, but
it derives from the measurement field experience
and remarks a primary aspect when evaluating the
capability of a spectrum sensing technique. It de-
clares the percentage of the total bandwidth that
the detector is able to reveal in average case, for a
specific condition. Consequently, it provides im-
portant indications on the reliability and accuracy
of the spectrum sensing method in estimating the
actual occupied bandwidths, and such information

can be advantageously employed in the next op-
erating stage of Cognitive Radios (i.e. frequency
agility) which is devoted to select the most proper
frequency bands and modulation schemes to be
adopted (during the transmission of the Secondary
User) for minimizing the possibility of interfering
with Primary Users.

• Probability of Detection (Pd) (Stage 1 only), de-
fined as:

Pd =
1

Ntest

Ntest∑
i=1

AND(Bout,i,Maskdet) (27)

Since the Stage 1 of the proposed algorithm is
based on a uniform sub-band division, its output
is a binary array Bout, reporting "1" and "0" val-
ues where the energy test is passed or failed, re-
spectively. To evaluate the capability to correctly
reveal the occupied bandwidth, a same–size detec-
tion mask array (Maskdet) has been defined, report-
ing "1" and "0" values where signal plus noise or
noise only are present, respectively. Therefore Pd

evaluates the capabilities to detect the target sig-
nals, sub–band by sub–band, over the total number
of tests (Ntest). Consequently, Pd is an array, whose
size is equal to number of adopted sub–bands.

Due to the typology of tested signals, each of them
is usually wider than a single sub–band; therefore,
it makes sense to subdivide the detected sub–bands
into inner and outer (boundary) bands. The for-
mer are spectrum portions completely contained in
the user signal bandwidth, while the latter are the
first and the last sub–bands, that contain only the
tails of the user signal spectrum. Stemming from
such statement, two different Pd evaluations are
proposed, by processing the Pd array defined in eq.
27.

Pd,in =

∑stop_index
j=start_index Pd( j)

stop_index − start_index + 1
; (28)

Pd,out =
Pd(start_index − 1) + Pd(stop_index + 1)

2
.

(29)

In eq. 28, the average value of Pd results in inner
bands is evaluated. This is obtained by considering
start_index and stop_index as the first and last indexes
of inner sub–bands. In scenarios reported in Table 2,
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user signals are always simulated to occupy an inner
zone of the analyzed spectrum, therefore it is always
possible to define boundary bands, over which the Pd,out

is computed according to eq. 29.
Probability of detection (Pd) can be evaluated only

for stage 1 in the proposed scheme, since stage 2 has
a customized detection algorithm, that is not based on
classical binary hypothesis testing.

Performance results are presented in terms of MDB%
versus the imposed False Alarm Probability (P f a), that
represents a degree of freedom of the presented method,
and ROC curves (Pd vs P f a).

4.2. Preliminary performance assessment in simulation
environment

A preliminary analysis, aimed at verifying the be-
havior of the proposed method in a controlled environ-
ment and discovering the target performance indexes,
has been carried out performing several numerical tests
applying the method to simulated signals. To this aim,
Scenario A has also been tested in simulation environ-
ment, and its results are reported in Figs. 4 – 7. In such
figures, the behaviors of Pd and MDB versus S NR and
P f a are shown.
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Figure 4: ROC curve for inner sub–bands Pd,in vs P f a at various
SNRs.
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Figure 5: ROC curve for outer sub–bands Pd,out vs P f a at various
SNRs.

P
fa 

 [%]
0 1 2 3 4 5 6 7 8 9 10

M
D

B
 [

%
]

0

20

40

60

80

100

SNR:       0 dB
SNR:       -5 dB
SNR:     -10 dB
SNR:     -15 dB
SNR:     -20 dB

Figure 6: Scenario A - Stage 1 results.
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Figure 7: Scenario A - Overall results.

In particular, the ability of the proposed method to
detect occupied bandwidth is tested with Stage 1 and
its performance is reported in Figs. 4–5, while the ca-
pability to correctly measure the occupied spectrum is
devoted to Stage 2 and its results are depicted in Fig. 7.
To highlight the benefit introduced by the Stage 2, also
Stage 1 MDB vs P f a is reported in Fig. 6. As explained
in subsection 4.1, Pd results are reported in terms of
inner (see Fig. 4) and outer (see Fig. 5) detection
(Pd,in and Pd,out, respectively). Results show that, in in-
ner bands case, Pd,in values achieve 100% for SNRs >

−15 dB, while for lower SNR, the increasing trend with
respect to P f a is appreciable but the method achieves
lower Pd,in values, upper–bounded by 66% and 24%
for SNRs equal to −15 dB and −20 dB, respectively.
The observation of Fig. 5 allows to understand how the
boundary bands suffer worse detection performance be-
cause the occupancy percentage of those sub–bands by
user signal is limited and the computed energy is often
too low to pass the detection test. That is the reason why
Stage 2 is employed, since it allows to refine the signal
boundaries, especially acting on the rising and falling
edges of the signal spectrum.

In terms of MDB, it is possible to distinguish Stage
1 results (Fig. 6) and Stage 2 results (Fig. 7). MDB
trend is always increasing with the SNR. In particular,
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Table 2: MDB Comparison in Scenario A - simulation case.

SNR [dB] -20 -15 -10 -5 0

P f a [%] 1 10 1 10 1 10 1 10 1 10

Stage 1 MDB [%] 5.2 22.5 26.5 55.8 79.9 85.2 84.7 89.2 94.9 98.6
Stage 2 MDB [%] 11.1 32.9 52.7 75.9 93.1 94.3 97.2 97.6 98.8 98.9

by observing Fig. 6, and paying attention at a particular
P f a value (e.g. 5%), MDB obtained results range from
15% @ SNR = -20 dB to 98% @ SNR = 0 dB. Further-
more, the increase of imposed P f a generates a further
performance improvement. This phenomenon is more
evident when low SNRs are considered, where the im-
position of a P f a ranging from 0.5% to 10% leads to a
clear increase of the mean detected bandwidth (e.g. in
Fig. 6, SNR = −20 dB, MDB = 4 % @ P f a = 0.5 %
towards MDB = 22 % @ P f a = 10 %). Considering
obtained numerical bounds, Stage 1 results show MDB
values higher than 80% for any SNR > −15 dB. In case
of worse SNRs, MDB is generally lower than 60%. By
comparing Stage 1 and Stage 2 results, it is possible to
note a general increasing of MDB values for all consid-
ered SNRs. As an example, let us consider two specific
P f a points (e.g. 1% and 10%). In this cases, obtained
MDBs, reported in Tab. 2, describe the actual improve-
ment obtained by adding Stage 2 to the Energy Detector
algorithm. In any SNR condition, the overall sensing
method performs better than Stage 1 only. Particularly,
for lower SNRs the obtained enhancement is relatively
greater than higher SNRs case.

4.3. Experimental Set–Up
The target performance, obtained for Scenario A in sim-
ulation environment, is the starting point for the exten-
sive assessment of the proposed method through the use
of scenarios realized by a laboratory set-up, containing
real instrumentation for generating and acquiring the
test scenarios.
To this aim, a measurement station, depicted in Fig. 8,
has been designed and implemented. It includes:

(i) a RF vector signal generator, model Agilent
TechnologiesTM N5182A (100 kHz–6 GHz output
frequency range);

(ii) a TektronixTM RSA6114A Real–time spectrum an-
alyzer (9 kHz–14 GHz input frequency range, 14–
bits ADC);

(iii) a standard PC as control unit for the instruments
automatic operation through GPIB and Ethernet in-
terfaces.

Control Unit

Real-time 
Spectrum
Analyzer

Vector Signal
generator

GPIB 
CABLE

Ethernet 
CABLE

RF CABLE

Figure 8: A sketch of the measurement station adopted for the exper-
imental validation of the proposed method.

In particular, the signal generator has been pro-
grammed through its Ethernet interface and by using
the software Agilent Signal Studio for Digital Video
N7623B with the aim of generating scenarios reported
in Table 1, representing typical users in the analyzed
frequency interval. The generator allows emulating an
AWGN channel with an imposed SNR (same values
adopted in simulation environment were considered).
The RSA has been used to acquire the signals that are
successively processed by the proposed sensing method.
The control software has been developed in LabView
environment and allows to communicate with the instru-
ment through GPIB interface. Main RSA setting param-
eters considered during the experimental tests are:
• Detector: CISPR Peak;
• Filter shape: CISPR;
• Function: AVG (VRMS );
• SPAN: 48 MHz;
• Resolution Bandwidth: 20 kHz;
• Trace points: 2401.

4.4. Experimental Results

Obtained performance in emulated scenario is reported
in Figs. 9–14. The same figure of merit has been used
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Figure 9: Scenario A - Stage 1 results - emulation.
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Figure 10: Scenario A - Overall results - emulation.

to estimate the detection capability of the method. Re-
sults depicted in Figs. 9, 10 can be compared with those
obtained in simulation environment (Figs. 6, 7), regard-
ing Scenario A. The effect of actual hardware, adding
quantization noise and other acquisition non–idealities,
is particularly remarkable for any tested SNR, both in
Stage 1 and Stage 2 results. It is possible to quantify the
performance gap in about 10% in medium case. In em-
ulation case, the addition of Stage 2 is strictly necessary,
for Scenario A, since it allows to achieve good perfor-
mance level, by compensating the effect of real signal
generation through the further processing stage.

Best results are obtained for higher SNRs, when
MDB in the overall computation achieves values greater
than 90%, for SNR > −10 dB and any imposed P f a

value. Lower SNRs show a good increasing trend ver-
sus P f a.

As for Scenario B, situation gets worse because of
two simultaneously transmitting users in the frequency
span of interest. Since the SNR condition is imposed as
a wide–band setting, the real experienced SNR by each
of the user is less than the one obtained in Scenario A,
where a single user is present.

This scenario has been carried out to further stress the
method with respect to difficult operating conditions in
the channels of interest. The MDB values, displayed

in Figs. 11, 12, are mean values of estimated band-
width percentage for the considered users. Therefore,
even for higher SNRs (0 dB, −5 dB), MDB results are
around 65% for Stage 1 and 85% after Stage 2 applica-
tion. Similar performance is obtained for lower SNR,
resulting in a reliable detection down to −10 dB. Even
for Scenario B, the introduction of a second refinement
stage brings to strongly improve obtained performance
levels.
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Figure 11: Scenario B - Stage 1 results - emulation.
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Figure 12: Scenario B - Overall results - emulation.

In Scenario C, a wireless microphone case is pre-
sented. In this situation, the 200 kHz bandwidth is an
improvement factor in terms of experienced SNR to-
wards the wide–band imposition. This motivation leads
to a strong improvement of the MDB index, by making
the detection reliable down to SNR = −20 dB, where af-
ter Stage 2 processing an average MDB = 75% is ob-
tained.
In this case, the application of second Stage to the sens-
ing method does not carry out the same improvement
ratios seen for Scenario A and B. SNRs > −20 dB al-
ways allow to have MDB close to 100% for every tested
P f a value.

The SNR is surely the most influencing parameters
for obtaining reliable detection of different users in
TVWSs. Adding further computation effort has led to
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Figure 13: Scenario C - Stage 1 results - emulation.
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Figure 14: Scenario C - Overall results - emulation.

an important improvement when Stage 1 performance
was damaged by bad channel conditions. The emula-
tion environment is a further influencing factor and its
effect is particularly clear when performance related to
the same scenario (A) is compared. Therefore, the most
the method works on real operating conditions, the best
the application of a two–stage to the sensing, since the
Energy Detector (Stage 1) only is not able to guarantee
adequate detection capabilities in difficult scenarios.

5. Comparison against another two–step energy de-
tection scheme

The proposed method is characterized by two stages,
as others that are in literature. Particularly interesting is
the analysis and comparison with the method proposed
in [33]. Several reasons allow to accomplish the com-
parison: both of them start from classical definition of
energy detection, evaluate the behavior of their perfor-
mance with varying SNR regime, claim to overperform
standard energy detection and are two–stage featured,
with optional second stage. Some figures of merit could
be adopted to perform the comparison. Some of them
are related to the metrological feature of the methods
(accuracy, resolution, sensitivity), while others could be
related to the applicability of the methods on real plat-

forms and in real applications (detection time, computa-
tional complexity,etc). In this paragraph both these as-
pects are considered. To achieve the goal, common per-
formance index (Pd) has been computed for first stage
only in case of proposed method. A first important dif-
ference has to be declared at this point: while in [33],
the channelization is assumed to be known and the en-
ergy detection is performed in time domain, focused
only on the channel of interest, the algorithm proposed
in this paper is completely blind in terms of knowledge
about signal position and bandwidth, although it is cus-
tomized to work in TVWS context.

Therefore, while it is clear and unequivocal the Pd

definition when a single channel is sensed, in a blind
wide–band energy detection case, different definitions
can be achieved. For the comparison the definitions,
reported in eqs. 27– 29, are adopted.

Results provided in Table 3 are obtained by impos-
ing a constant false alarm rate P f a = 10%. To have
knowledge about the Pd,in and Pd,out behavior vs P f a

and SNR, full ROC curves are provided in Figs. 4–5,
in case of Scenario A, that is the same one adopted for
comparison. Since Stage 1 is related to energy test in in-
dependent sub–bands, the choice of Scenario A instead
of Scenario B does not affect statement validity.

Obtained compared results highlight two different is-
sues: as for inner bands, the proposed method over-
comes performance obtained in [33]. As regards outer
bands, results got worse and therefore the adoption of
the Stage 2 is intended to improve detection capabil-
ity by measuring the actual occupied signal spectrum,
through a bin–based detection scheme. In particular, the
worsening of performance in outer bands is due to the
uniform sub–band division, causing that tails of the sig-
nal occupy only a very small portion of each outer bands
(either the starting rising edge or the ending falling one),
not resulting sufficient for energy test passing. Since
Stage 2 adopts the policy to analyze the Stage 1 oc-
cupied sub–bands and takes guard intervals before and
after such bands, such results can be improved by an-
alyzing the spectrum bin by bin, as Stage 2 does. The
improving effect is shown in Section 4. Therefore the

Table 3: Comparison between proposed and compared approach on
common SNR regimes

Method\ SNR −10 dB −5 dB 0 dB

Proposed Method (Pd,in[%]) 99 100 100
Proposed Method (Pd,out[%]) 58 72 99

Comparison Method (Pd) 40 92 100
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overall comparison states that the proposed method per-
forms better than [33] sub–bands are contained in the
user signal and, for outer bands case, Stage 2 is able to
fill the gap by analyzing signal tails bin by bin. In terms
of applicability to general case a uniform sub–band di-
vision, as the proposed method carries out, allows to
detect several typologies of signals and it is independent
of the channelization and signal bandwidths. It is an im-
portant advantage with respect to various typologies of
energy detection based system, where channelization is
usually known a priori and only specific signals can be
detected at a time. In terms of sensitivity, the proposed
method is able to detect signals down to −15 dB corre-
sponding, considering a typical noise level of −95 dBm
for a real instrument such as a Software Defined Radio,
to a detection sensitivity equal to −110 dBm. Compared
methods and other present in literature do not provide
this kind of information and SNR = − 10 dB is usually
a typical lower bound for performance assessment. Fur-
thermore, as frequency resolution regards, standard en-
ergy detection and also the one proposed in [33] present
frequency resolution equal to the channel bandwidth to
be detected since the detection phase is carried out in
time domain and only a band–pass filter is adopted. On
the contrary, the proposed approach allows to have a
frequency resolution equal to the sub–band for stage 1
and to the frequency bin for Stage 2. To include nu-
merical values, the sub–band width is set to 1.4 MHz
and the frequency bin has a 20 kHz bandwidth. Finally,
as for computational complexity it is reported in Sec-
tion 3.3 and it is mainly due to FFT process. All sens-
ing methods adopting a frequency domain approach are
lower–bounded by this complexity value. As for detec-
tion time, the authors in [33] claim to have reduced the
detection time thanks to an optimization in the number
of needed samples. The proposed approach is modular
in terms of detection time, as explained in the introduc-
tion, and it can be reduced or extended according to the
needs a specific application can have.

6. Conclusions

This paper has presented a spectrum sensing method
for dynamic spectrum access in cognitive radio applica-
tions. It has been designed for operating in VHF and
UHF bands where TVWSs could be found and then ex-
ploitable by SUs for enhancing the overall efficiency in
spectrum usage.

According to different needs of the target application
in terms of computational efforts and accuracy level in
the detection of actual bandwidths occupied by PUs, the
proposed method is based on two sequential stages, the

first one employing an energy detection in frequency
domain able to quickly reveal the sub bands occupied
by PUs, and the second one which analyzes only the
sub–bands declared as occupied (by Stage 1) for refin-
ing and improving the frequency resolution and accu-
racy in the PU detection. Dependently on the accuracy
and promptness levels required by the context, the user
has the possibility to select to carry out a fast analysis
(less accurate) or a slow analysis (more accurate).

To evaluate the method performance, a suitable fig-
ure of merit, namely the Mean Detected Bandwidth
(MBD), has been defined for evaluating the accuracy of
the method in correctly measuring the PU bandwidth.
An experimental campaign has been carried out by vary-
ing the target False Alarm probability (from 0.5% up to
10%) and the SNR (from −20 dB up to 0 dB) when
the method is applied on signal coming from a signal
generator and acquired by a real Radio Frequency Data
acquisition system.

In particular, the benefits of Stage 2 on the overall
performance has been verified on several emulated sce-
narios compliant with the contexts defined in the IEEE
802.22 standard. In a more detail, the second stage al-
lows improving the MDB of about 15% (for scenarios
A and B).

Furthermore, for SNR > −10 dB, the two–stage
method warrants a MDB > 80% whatever be the sce-
nario and the selected target P f a. These features are
very promising for an implementation on real devices
operating in DSA communications such as SDR.
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