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Abstract 

This paper presents a geometrically non-linear one-dimensional model suitable for analyzing 

thin-walled fiber-reinforced polymer profiles, which accounts for the effect of manufacturing 

imperfections. The kinematic model is developed under the hypotheses of small strains and 

moderately large rotations of the cross-sections, and is able to take into consideration the 

contribution of shear strains and the effects related to warping displacements. 
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The aim of the study is to develop a proper tool to analyze the pre-buckling behavior of such 

beams, since current approaches based on two-dimensional finite element method analysis 

demand significant computational efforts to be applied to real structures. The numerical results 

underline the effectiveness of the proposed mechanical model in analyzing case studies of 

technical interest in Civil Engineering, and the relevant influence of geometrical imperfections on 

the structural performance of FRP components with regard to serviceability design requirements. 
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1. Introduction 

Pultruded fiber reinforced polymer (PFRP) profiles are characterized by very slender 

proportions due to their high strength and relatively low stiffness combined with low density. 

Therefore, the design of all-PFRP structures is usually controlled by buckling behavior as 

opposed to material strength. In addition, the thin-walled beam cross-section and low shear 

stiffness of the composite materials may affect the ultimate behavior of PFRP beams, which is 

typically characterized by either local or global buckling. 

Numerous experimental, theoretical and  numerical studies dealing with the influence of shear 

deformation on the global and local buckling behavior of PFRP beams are available in current 

literature [1]-[7]. With reference to the non-linear behavior of thin-walled composite beams, a 

number of suitable mechanical models were proposed by several researchers [8]-[11]. However, 



these investigations do not examine the serviceability design implications related to the high 

deformability of composite materials.  

On this topic, Nguyen et al. [12] studied, through FEM and orthotropic plate elements based 

on Mindlin’s theory, the lateral torsional buckling resistance of composite I-beams in 

consideration of initial geometrical imperfections. Moreover, Laudiero et al. [14] investigated the 

imperfection sensitivity of PFRP profiles in pure compression. Both studies were performed with 

the aim of analyzing the pre-buckling behavior of thin-walled composite beams and collecting 

results useful for practical purposes. However, these approaches cannot be easily applied to real 

structures (e.g., all-PFRP frames or trusses) due to computational complexity, as they are based 

on two-dimensional FEM analysis. Ascione and Mancusi [15] and Ascione [16] proposed a 

mechanical model based on the subdivision of cross section into interconnected thin sub-

components, each one analyzed on the basis of the classical Timoshenko beam theory. In this 

case, an approximation of warping effects is given by the relative displacements among the 

different sub-components. 

Therefore, within the context of structural design at Serviceability Limit States, further and 

effective models are required in order to give more expedient and quick computational tools 

useful for designers and able to consider the effects of warping displacements variation on the 

cross-section. 

In this paper, the authors present a one-dimensional non-linear mechanical model formulated 

by extending Vlasov’s theory to composite beams and capable of predicting the pre-buckling 

behavior of imperfect PFRP beams with open thin-walled cross-sections. The mechanical model 

takes into account the contribution of shear deformation in the kinematic hypotheses under the 

assumption of small strains and moderate rotations.  



Moreover, a FEM code was implemented in order to study the mechanical behavior of typical 

PFRP I-beams loaded in bending with initial geometric imperfection. Different values for the 

beam slenderness and imperfection amplitude are considered in order to study in-depth the 

imperfection sensitivity on pre-buckling behavior. 

 

2. Kinematics 

The kinematics of a straight thin-walled beam with a constant cross-section is taken into 

consideration (Figure 1a). The cross-section is defined by its middle line ( )s  and thickness 

( )b s , with s  being a curvilinear abscissa with its origin in a generic point M  of ( )s  (Figure 

1b).  

Two different reference frames were introduced into the analytical developments that follow. 

The global reference frame {G, , , }i j k  has its origin in the centroid of the 0  cross section: the x  

and y  axes coincide with the principal axes of inertia, while the z  axis coincides with the axis of 

the beam. The local reference frame {P, , , }n t k  has its origin in a generic point on the cross-

section of the middle line curve ( )s : the unit vectors n  and t  are respectively normal and 

tangent to ( )s  (Figure 1b). 
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Figure 1 – Thin-walled beam: a) Global reference frame and displacement field; b) Cross-

section and local reference frame. 

 

The present non-linear formulation is based on the assumptions of small strains and moderate 

rotations. The beam cross-section is assumed to be undeformable in its own plane. It is also 

assumed that the beam cross-section does not remain plane in the deformed configuration due 

to warping displacements. Since the changes in geometry are small, no distinction between the 

second Piola-Kirchhoff and Cauchy stress tensors is considered. The composite material is 

assumed to be linear-elastic, homogeneous, and transversely isotropic, with the isotropy plane 

coincident with the cross-section plane of the beam. Moreover, the thin-walled geometry allows 

us to neglect the shear strains between the n  and z  axes. 

Accordingly, the displacement components, u , v  and w , of the generic point of the beam in 

the global reference system (Figure 1a) can be expressed as follows: 

( )0 0 0( , , ) ( ) ( )u u x y z u z z y y= = − − , (1a) 

( )0 0 0( , , ) ( ) ( )v v x y z v z z x x= = + − , (1b) 



( ) ( )( , , ) ( ) ( ) ( , , ) = = − − − +x M y Mw w x y z z y y z x x w x y z . (1c) 

Equations (1a,b,c) express the displacement field of the beam in terms of: 

- the rotations 0  around the arbitrary pole, O, lying in the cross-section plane (Figure 1b); 

- the displacements of the pole in the x  and y  directions, 0u
 
and 0v , respectively; 

- the component w  of the warping displacement along the z  axis; 

- the rotations x  and
 y  around the two axes intersecting at the point M  and parallel to the x  

and y  axes. 

To understand the role of warping in deriving the Green-Saint Venant strain tensor, additional 

approximations are performed beginning with the infinitesimal shear strain component ( , , )tz n s z  

in the local reference frame {P, , , }n t k . While considering the thin-walled geometry and 

introducing a first-order MacLaurin approximation, it is possible to represent ( , , )tz n s z , as 

follows (see [4]): 

0
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n
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
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 (2) 

with r  being the component of R  along n  direction (Figure 1b). It should be noted that the term 

0 ( )z n  in Equation (2) corresponds to the torsional strain according to De Saint Venant’s theory 

for pure torsion. 

Moreover, according to Roberts and Al-Ubaidi [1], the torsional rotation 0 ( )z  is assumed to 

be the sum of: 

- a rotation 0, ( )w z  associated with axial warping and negligible shear strains; 

- a rotation 0, ( )s z  associated with shear strains 2 (0, , )tz tz s z =  in the middle surface. 



Consequently, the infinitesimal shear strain component on the cross-section middle line 

(0, , )tz s z  can be rearranged as follows: 

( ) ( )(0, ) (0, )

0, 0 0 0,

1 1
(0, , )

2 2

w s

tz tz tz w y x s

w dx dy
s z r u v r

s ds ds
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. (3) 

By assuming infinitesimal shear strains due to the warping to be negligible, (0, ) 0w

tz  , it follows 

that: 

0, 0, 0 0,( , ) ( )

P P

w w w

M M

w w
r ds rds w s z w z

s s
   

 
  = −  = −  = −

   , (4) 

where 0 ( )w z  is the displacement of the origin M  along the z  axis and ( )s  is the sectorial area, 

given by: 

0
( )

s

s r ds =  . (5) 

According to the aforementioned hypotheses, the non-zero Green-Saint Venant strain 

components in the local reference frame {P, , , }n t k  result in the following: 
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The weak form of the equilibrium equations is given by the principle of virtual displacements: 

int ext 0= + =W W W   . (7) 

In Equation (7), intW  and extW  are respectively the internal strain energy and work of the 

externally applied loads: 

int


=  ij ijW H T dV  , (8a) 

ext 0 0

10 0

(z) ( )

L L n

i i

i

W q w dz p z u dz Q   
=

= + +   . (8b) 

where   is the region occupied by the beam, L  the beam length, and ijH  and ijT  the respective 

components of the Green-Saint Venant strain tensor and the stress tensor with   being the 

symbol of variation; ( )q z  is the distributed transverse load per unit length; ( )p z  is the 

distributed axial load per unit length; iQ  are the generalized nodal forces and i  the 

corresponding virtual displacements. 

It is worth noting that by integrating the internal work on the cross-section of the beam, it is 

possible to express the equation as a function of the variable z  so as to obtain a one-dimensional 

model. 

 



3. Finite Element Model 

Let us consider a finite element discretization of the beam axis into a collection of two nodes 

Hermitian elements. With reference to the e-th finite element,  

T T
( ) ( )

0 0 0 0, 0,( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )e e

i x y w su v w               =  =   Δ , (9) 

is the vector collecting the independent displacement components as a function of the natural 

coordinate   of the generic cross-section, referred to the element of length ( )el . 

This discretization allows us to express the non-zero Green-Saint Venant strain components (6

a,b) in matrix form, as a function of 14 nodal displacement and their first derivatives vectors ( )e
Δ : 

( ) ( ) ( ) ( )( )=e e e e
H B Δ Δ  (10) 

where 

 
T( ) =e

zz tzH HH , (11) 

T
( )

0 0 0 0, 0, 0 0 0 0, 0,, , , , , , , , , , , , ,e

i i i xi yi si wi i i i xi yi si wiu v w u v w              =  Δ  ( 1, 2i = ) (12) 

and ( )e
B  is a matrix that is function of ( )e

Δ  and includes the Hermite shape functions. 

Let us assemble the components of the stress tensor corresponding to the aforementioned 

strain components in the following vector: 

 
T( )e

zz tz =T . (13) 

By considering transversally isotropic constitutive behavior and according to the beam strain 

regime, the following constitutive law can be adopted: 

( ) ( )=e e
T CH , (14) 

where C  is a matrix collecting the material properties: 



0

0

zz

tz

E

G

 
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C . (15) 

Although a transversely isotropic material is, in general, defined by 5 parameters, according to 

the kinematic assumptions previously introduced, we can refer to only two parameters. In detail, 

zzE  is the longitudinal modulus of elasticity and tzG  is the shear modulus of elasticity in the cross 

section plane. 

The finite element discretization of the virtual strain energy and external work allows one to 

define the non-linear stiffness matrix of the generic finite element, ( ) ( )( )e eK Δ , and the vector 

collecting the generalized nodal forces of the element, ( )e
F . By assembling them into the global 

non-linear stiffness matrix, ( )K Δ , and into the global force vector, F , respectively, the non-

linear problem (7) can be expressed on the beam domain as follows: 

 ( )         −  = K Δ Δ F Δ 0 Δ . (16) 

 

The non-linear set of Equation (16) can be solved by an incremental-iterative procedure 

controlled by load and based on the Newton-Raphson method. The incremental procedure can be 

adopted starting with perfectly straight or geometrically imperfect beams. 

 

4. Numerical Results 

The numerical investigation presented here deals with the non-linear behavior of glass PFRP 

thin-walled I-beams.  

The profiles considered are constrained at the ends by torsional restraints, that allow only the 

rotations about x and y axes. They are subject to a uniformly distributed transverse load in the 



(y,z) plane and applied to the middle line of the upper flange (Figure 2). The cross-section has the 

following geometrical properties: 200 mmh = , 100 mmb = , and 10 mmf wt t= =  (Figure 3).  

y

z

L

  q
y

x

y

z=0,L

 
Figure 2 – Static scheme of PFRP analyzed beam 

x G=O

y

  q
y

b=100mm

h=200mm

t  =10mm

t  =10mm

f

w

A

 
Figure 3 – Cross-section of PFRP analyzed beam 

 

Considering the cross-section as an isotropy plane, the material is characterized by the 

longitudinal elastic modulus zzE =23.0 GPa and shear transverse modulus tzG =3.0 GPa. The 

choice of mechanical properties used here relates to the typical values given by producers with 

reference to glass PFRP beams. 

With the aim of investigating the non-linear behavior of such profiles, the numerical analysis 

is conducted on geometrically imperfect I-beams, while considering three different span lengths, 

L, and three different initial defects. The assumed geometrical imperfection corresponds to a 

quadratic out-of-straightness, whose maximum value of lateral displacement is equal to f (Figure 

4). This type of defect can typically be found in current all-PFRP structures due to the profile 

manufacturing process and/or on-site mounting.  
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Figure 4 – Out-of-straightness of the imperfect beam. 

 

Table 1 reports, for each of the case analyzed (I1, I2, I3), the beam length, the h/L ratio, the 

value of the reference buckling under the uniformly distributed load, ,CR PBq , calculated using the 

present model on almost perfect beams (f/L = 0.00001), the maximum amplitude of 

imperfections,  f , the f/L ratio and the number of adopted elements, Ne. These values are lower 

than the maximum magnitude allowed by ASTM D3917-11 [17], which is equal to 0.00417 

(L/240). 

Table 1 – Case studies geometrical properties, buckling loads for perfect beams and 

number of elements adopted in FEM analyses. 

 

ID L  h  /h L  f  /f L  ,CR PBq  eN  

 [mm]   [mm]  [N/mm]  

I1 1000 200 1/5 

1 0.001 

300.10 15 2 0.002 

4 0.004 

I2 2000 200 1/10 

2 0.001 

20.36 20 4 0.002 

8 0.004 

I3 3000 200 1/15 

3 0.001 

4.10 25 6 0.002 

12 0.004 

 

 

Let us first consider the effect of imperfections on the I2 beam according to the present theory.  

Figures 5 and 6 show load mid-span cross-sectional plane centroidal displacements 

components obtained. More specifically, they refer respectively to the centroid horizontal and 



vertical displacements, hereafter denoted by the symbols Gu , and Gv . The straight lines depicted 

in Figure 6 also show the behavior of the beam in bending considering either Timoshenko or 

Eulero-Bernoulli classical theories, without including nonlinear effects (Figure 6). Since no 

lateral loads are applied, a linear analysis does not allow for horizontal displacements in the cross 

section centroid (Figure 5). 

According to the present theory, two stages can be clearly distinguished in the load paths: the 

first characterized by pre-buckling behavior and the second by buckling and initial post-buckling 

behavior. It should be noted how the initial imperfection can significantly affect the lateral 

displacement, as the effect of nonlinearities appears very relevant when the higher values of f/L 

are considered. In fact, the displacement corresponding to the transition between the two stages is 

about three times greater when an imperfection of f/L = 0.004 rather than f/L = 0.001 is 

considered. On the contrary, the initial imperfection may only slightly influence the maximum 

vertical displacement. 

Figures 7, 8, 9 show the normalized distributed load, given by the ratio between the uniformly 

distributed load and the buckling load (Table 1), against the torsional rotation 0  exhibited by the 

I2 beam. In these Figures, each referring to a different magnitude of the imperfection, the results 

of the present theory are compared with a linear analysis performed according to both Vlasov’s 

and Saint Venant’s classical theories. 

According to Vlasov’s theory, both primary and secondary torsion are taken into account 

whereas Saint Venant’s theory is not able to take into account for secondary torsion effects. Both 

theories neglect the effects of shear deformability. It is well known that Saint Venant theory is 

not adequate to evaluate torsional behavior of thin walled beams as it lead to underestimate its 

torsional stiffness. 



According to present theory, as shown in Figures 7, 8 and 9, pultruded FRP thin walled beams 

may experience torsional stiffness significantly lower than what is considered by Vlasov’s theory. 

This happens not only for high values of the load, when the effects of the nonlinearities are 

significant, but also in the initial linear branch, due to the effects of shear deformability. 

Moreover, this effect is all the more significant the higher is the initial degree of imperfection 

considerer (cf. Figures 7, 8 and 9). 

Further simulations were carried out with the aim of identifying the uniformly distributed load 

corresponding to a suitable deformation limit for different values of imperfection. Due to the lack 

of specific requirements suggested for PFRPs, the maximum value of displacement was assumed 

to be equal to L/400 in accordance with the deformation limits commonly suggested for steel 

structures in international codes and guidelines. 

Let us define Gd  and Ad  as the magnitude of the displacement vectors respectively exhibited 

by the beam at the centroid, G, and at the end point of the flange middle line, A, both being 

considered at middle span cross-section (Figure 3). The normalized distributed load, given by the 

ratio between the uniformly distributed load and the buckling load (Table 1) are depicted in 

relation to the normalized displacements Gd L  and Ad L  in Figures 10, 11, and 12. More 

specifically, each figure refers to a given length (L=1000 mm, Figure 10; L=2000 mm, Figure 11; 

L=3000 mm, Figure 12) and shows the numerical predictions computed in relation to the three 

different amplitudes of initial imperfection. In these figures, the perfect beam linear behavior 

(PBLB) and serviceability limit deflection (L/400) are represented. Such diagrams show that the 

effects of nonlinearities may be relevant in terms of beam deformability, as the span length and 

initial imperfection tend to increase. Furthermore, due to thin-walled geometry, the displacements 



of point A are generally much more relevant than those of point G because of the torsional 

rotation contributions. 

These results highlight that the initial defect does not significantly affect the displacements in 

short-span beams (h/L=1/5), as the load path shown is almost linear, although high imperfections 

are considered (Figure 10). On the contrary, the intermediate-length beams (h/L=1/10) are 

characterized by a non-linear load path, which influences the initial imperfection (Figure 11). 

This behavior is much more marked in slender beams (h/L=1/15), where the stiffness shows a 

strong decrease even for the low values of external loads (Figure 12). 

Let us introduce the value Sq  corresponding to a displacement Ad  equal to the limit deflection 

L/400: such value can be considered as the load at the serviceability limit state. Table 2 reports 

the percentage differences, Sq , between the serviceability load exhibited by each imperfect 

beam, ,S IBq , and that obtained by a linear analysis on the perfect beam, ,S PBq . 

 

Table 2 – Comparison between serviceability load of perfect and imperfect beams. 

 

ID ,S PBq  /f L  ,S IBq  
Sq  

 [N/mm]  [N/mm] % 

I1 59.43 

0.001 57.17 -1 

0.002 54.74 -5 

0.004 49.81 -14 

I2 11.82 

0.001 9.91 -15 

0.002 8.32 -29 

0.004 6.26 -46 

I3 3.93 

0.001 2.60 -34 

0.002 2.05 -48 

0.004 1.46 -63 

 



As expected, the magnitude of Sq  increases as the beam slenderness and imperfection 

amplitude increase. Moreover, it can be observed that the influence of defect is much more 

relevant when higher spans are considered since the limit deflection 1/400 corresponds to a 

highly non-linear regime ( Sq  is quite close to ,CR PBq ). In particular, the case I1 (short-span 

beams) shows that the results for the serviceability load prediction are only 1% to 14% lower 

than the perfect beam reference value for the considered defect range. In contrast, decreases in Sq  

of up to 46% and 63% are observed in cases I2 (medium-length beams) and I3 (slender beams), 

respectively.

 

Figure 5 – Uniformly distributed load qy versus the displacement component uG (beam I2). 

 



 
Figure 6 – Uniformly distributed load qy versus the displacement component vG (beam I2). 

 

 
Figure 7 – Normalized uniformly distributed load versus  (beam I2,  f/L =0.001) 



Figure 8 – Normalized uniformly distributed load versus  (beam I2,  f/L =0.002) 

 

 
Figure 9 – Normalized uniformly distributed load versus  (beam I2,  f/L =0.004) 



(a)  

 
  

(b) 

 
 

Figure 10 – Beam I1: a) Normalized uniformly distributed load versus dG; b) Normalized 

uniformly distributed load versus dA. 



(a)  

 
  

(b) 

 
 

Figure 11 – Beam I2: a) Normalized uniformly distributed load versus dG; b) Normalized 

uniformly distributed load versus dA. 
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Figure 12 – Beam I3: a) Normalized uniformly distributed load versus dG; b) Normalized 

uniformly distributed load versus dA. 



5. Conclusions 

This paper presented a non-linear mechanical model capable of predicting the pre-buckling 

behavior of PFRP imperfect beams with open thin-walled cross-sections. The model was 

formulated by assuming the material to be linear-elastic, homogeneous, and transversely 

isotropic, and considering the contribution of shear deformability on geometric non-linearity.  

A numerical investigation conducted by means of a FEM code, as proposed by the authors 

based on this mechanical model, was also shown. The analysis was conducted on geometrically 

imperfect I-beams, considering three different span lengths and three different amplitudes of the 

initial out-of-straightness imperfections. 

The results show the relevance of nonlinearities and thin-walled geometry on beam 

deformability, especially when slender beams are considered. Furthermore, the maximum 

displacements of the flange are generally much more relevant than those of the cross-section 

centroid because of the torsional rotation contributions.  

As expected, the study also highlighted that: 

- the load-deflection curve of short-span beams is almost linear, although high 

imperfections are considered;  

- slender beams exhibit a marked non-linear behavior, with the significant influence of 

the initial imperfection; 

- the load at the serviceability limit state in beams with defects was significantly lower 

than the load exhibited by an equivalent perfect beam, especially when high 

slenderness and imperfection amplitudes are considered. 

The present study highlights the effectiveness of the proposed mechanical model for analyzing 

the pre-buckling behavior of PFRP beams in order to satisfy serviceability design requirements at 

a reasonable computational cost. On the basis of the numerical results, it should be noted that due 



to the effect of imperfections, the decrease of loads that can be assigned to PFRP structural 

elements can be very significant. Therefore, the effect of geometric nonlinearity on their 

mechanical behavior must be mandatory taken into account by international codes and guidelines. 
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