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Abstract

Circular splicing systems are a formal model of a generative mechanism of
circular words, inspired by a recombinant behaviour of circular DNA. They
are defined by a finite alphabet A, an initial set I of circular words, and a
set R of rules. In this paper, we focus on the still unknown relations between
regular languages and circular splicing systems with a finite initial set and
a finite set R of rules represented by a pair of letters ((1,3)-CSSH systems).
When R = A ⇥ A, it is known that the set of all words corresponding to
the splicing language belongs to the class of pure unitary languages, intro-
duced by Ehrenfeucht, Haussler, Rozenberg in 1983. They also provided a
characterization of the regular pure unitary languages, based on the notions
of unavoidable sets and well quasi-orders. We partially extend these notions
and their results in the more general framework of the (1,3)-CSSH systems.
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1. Introduction

In this paper we deal with connections between unavoidable sets and
regularity of languages generated by circular splicing systems, continuing a
research initiated in [4, 12].

The circular splicing operation is a language-theoretic word operation
introduced by Head in [17] which models a DNA recombination process on
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two circular DNA molecules by means of a pair of restriction enzymes. For
instance, circular splicing models the integration of a plasmid into the DNA
of a host bacterium (see [14] for an overview on circular DNA in Nature).

Obviously a string of circular DNA can be represented by a circular word,
i.e., by an equivalence class with respect to the conjugacy relation ⇠, defined
by xy ⇠ yx, for x, y 2 A

⇤ [22]. The set of all strings equivalent to a given
word w is the full linearization of the circular word ⇠w. A circular language C
is a set of circular words. It is regular (resp. context-free, context-sensitive)
if so is its full linearization Lin(C), i.e., the union of the full linearizations of
its elements.

We deal with one of the several existing variants of the circular splicing
operation, named here Păun definition. Correspondingly, a Păun circular
splicing system is a triple S = (A, I, R) where A is a finite alphabet, I is the
initial circular language and R is the set of rules r, represented as quadruples
of words r = u1#u2$u3#u4 [18]. Both I, R will be supposed to be finite sets.
The circular language generated by a circular splicing system S (splicing
language) is the smallest language which contains I and is invariant under
iterated splicing by rules in R. The main results on the computational power
of such systems will be discussed later in detail. They have been obtained in
[2], first for a new variant of circular splicing, introduced in the same paper
and named flat splicing, then easily extended to the classical model.

In this paper, we focus on (1, 3)-CSSH systems. Păun circular semi-

simple splicing systems (or CSSH systems), previously considered in [8, 9, 27],
are such that both u1u2, u3u4 have length one for any rule u1#u2$u3#u4. A
(1, 3)-CSSH system is a CSSH system such that u2 = u4 = 1. Therefore R

is a symmetric binary relation on A. The following problem is still unsolved,
even for (1, 3)-CSSH systems.

Problem 1.1 Given a circular splicing system S = (A, I, R), where I, R

are finite sets, can we decide whether the corresponding generated language

is regular?

The above question has been positively answered for unary languages
[6, 7], for (monotone) complete systems [4], and for marked systems [11]. A
(1, 3)-CSSH system S = (A, I, R) is complete if R = A ⇥ A whereas S is
marked if I = A.

Regular languages play a central role in Formal Language theory and
admit several characterizations based on di↵erent concepts. In particular,
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regular languages can be characterized as the upward closed sets of mono-
tone well quasi-orders on a finitely generated free monoid [13]. There exist
di↵erent characterizations of the notion of a well quasi-order (wqo). Fol-
lowing one of them, a quasi-order is a wqo on a set X if, for each infinite
sequence {xi} of elements in X, there exist i < j such that xi  xj.

A famous Higman’s Theorem states that the subword ordering over a
finitely generated free monoid A

⇤ is a well quasi-order (wqo) on A
⇤ [10, 19,

22, 23]. The subword ordering on A
⇤ is the quasi-order where, for words

u, v over A, u  v if v can be obtained from u by inserting zero or more
letters in u. This theorem has been subsequently extended in [13]. Loosely
speaking, the authors considered insertions of words from a fixed finite set
Y ✓ A

⇤ instead of letters. They defined the quasi-order Y as the reflexive
and transitive closure of the relation {(uv, uyv) | y 2 Y, u, v 2 A

⇤}. They
proved that Y is a wqo if and only if Y is unavoidable, i.e., A⇤ \ A

⇤
Y A

⇤

is a finite set. This condition also characterizes regularity of the language
LY = {w 2 A

⇤ | 1 Y w}. Roughly LY is the smallest set of words containing
Y and invariant under the iterated insertion operation, defined in [15].

It turns out that, when Y is closed under the conjugacy relation, the
same holds for the language LY . Moreover the family of these languages LY

coincides with the class of the full linearizations of the circular languages
generated by complete splicing systems. Thus, regular circular languages
generated by complete systems have been characterized in [4] by the above
mentioned result in [13].

In this paper, we consider a further generalization of this situation. We
have a fixed finite set Y of words over a finite alphabet A and a symmetric
relation R ✓ A ⇥ A. We introduce a generalization of the above operation,
the iterated R-insertion. We consider the language LY,R, defined as the small-
est set of words containing Y and invariant under the iterated R-insertion
operation. Of course LY,R and LY agree when R = A ⇥ A. We show that,
once again, when Y is closed under the conjugacy relation the same holds for
the language LY,R. Moreover, we prove that languages Lin(C), where C is
generated by a (1, 3)-CSSH system S = (A, I, R), are exactly those languages
LY,R, with Y = Lin(I) closed under conjugation. Therefore, the search of
a characterization of regularity of languages generated by (1, 3)-CSSH sys-
tem is actually the search of a characterization of regularity of LY,R, hence
a generalization of the above mentioned result in [13]. In this paper we give
partial results in this direction, described below.

Marked systems generating regular languages have been characterized by
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a property of the set of rules in [11]. As a main result of this paper, we prove
that this property of the set of rules, along with strong R-unavoidability of the
language Lin(I), ensures the regularity of the language generated by a (1, 3)-
CSSH system S = (A, I, R). Of course, the notion of strong R-unavoidability
extends the classical one. The results proved in this paper show that there are
relations between wqo, unavoidability and regularity of languages generated
by (1, 3)-CSSH systems which are not thoroughly investigated.

This paper is organized as follows. Basics on words and splicing are
collected in Section 2. In Section 3, we briefly sketch the content of this
paper. In Section 4, we extend to the languages generated by (1, 3)-CSSH
systems the relation between insertion, circular splicing operation and flat
splicing previously proved for complete systems in [3]. Then in Section 6,
we mimic another construction given in [13] to alternatively define languages
generated by (1, 3)-CSSH systems. The latter construction is recursive and
obtained by means of a new operation introduced in Section 5. In the same
Section 5, we also define special marked systems associated with languages
generated by the intermediate steps of this construction. We introduce our
notions of R-unavoidability and strong R-unavoidability in Section 7. We
prove our main result in Section 8. Finally, in Section 9 we discuss future
perspectives that follow on from the above results.

2. Basics

2.1. Words and circular words

We suppose the reader familiar with classical notions in formal languages
[20, 22]. We denote by A

⇤ the free monoid over a finite alphabet A and we
set A+ = A

⇤ \ 1, where 1 is the empty word. For a word w 2 A
⇤, |w| is the

length of w and alph(w) = {a 2 A | |w|a > 0}. A word x 2 A
⇤ is a factor

of w 2 A
⇤ if there are u1, u2 2 A

⇤ such that w = u1xu2. If u1 = 1 then x is
a prefix of w. A language is regular if it is recognized by a finite automaton.
A substitution � from B

⇤ into A
⇤ is a (monoid) morphism from B

⇤ into the
powerset P(A⇤) of A⇤. It is called regular if �(b) is a regular language for all
b 2 B. Regular languages are closed under regular substitution [1]. Moreover,
for any language X, we set alph(X) = [w2X alph(w). A X-factorization of
w of length n is any n-tuple (x1, . . . , xn) of elements of X such that w =
x1 · · · xn. Finally, for a word u in A

⇤, we set u�1X = {v 2 A
⇤ | uv 2 X}. If

X is regular then so is u�1X.
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For a given word w 2 A
⇤, a circular word ⇠w is the equivalence class of

w with respect to the conjugacy relation ⇠ defined by xy ⇠ yx, for x, y 2 A
⇤

[22]. The notations |⇠w| and alph(⇠w) will be defined as |w| and alph(w) for
any representative w of ⇠w.

Let ⇠A⇤ denote the set of all circular words over A, i.e., the quotient of A⇤

with respect to ⇠. Given L ✓ A
⇤, ⇠L = {⇠w | w 2 L} is the circularization

of L, i.e., the set of all circular words corresponding to elements of L. A
subset C of ⇠A⇤ is named a circular language and every subset L of A⇤ such
that ⇠L = C is called a linearization of C. In particular, a linearization of
a circular word ⇠w is a linearization of {⇠w}, whereas the full linearization

Lin(C) of C is the set of all the words in A
⇤ corresponding to the elements

of C, i.e., Lin(C) = {w0 2 A
⇤ | 9 ⇠w 2 C : w

0 ⇠ w}.
Given a family of languages FA in the Chomsky hierarchy, FA

⇠ is the
set of all those circular languages C which have some linearization in FA. In
particular, Reg

⇠ is the class of circular languages having a regular lineariza-
tion, i.e., Reg

⇠ = {C ✓ ⇠A⇤ | 9L 2 Reg : ⇠L = C}. If C 2 Reg
⇠ then C

is a regular circular language. Analogously, we can define context-free and
context-sensitive circular languages. The rotational closure of language X,
written RC(X) = {yx | x, y 2 A

⇤ and xy 2 X}, is the set of all words in the
conjugacy classes of the elements in X. It is known that the class of regular
(resp. context-free, context-sensitive) languages is closed under rotational
closure [20, 21, 26]. Consequently, a circular language C is regular (resp.
context-free, context-sensitive) if and only if its full linearization Lin(C) is
regular (resp. context-free, context-sensitive).

2.2. Circular and flat splicing

A Păun circular splicing system is a triple S = (A, I, R), where A is a
finite alphabet, I is the initial circular language, with I ✓ ⇠A⇤, I 6= ;, and
R is the set of rules, with R ✓ A

⇤#A
⇤$A⇤#A

⇤ and #, $ 62 A. Given a rule,
r = u1#u2$u3#u4 and circular words ⇠w0, ⇠w00, if there are linearizations w0

of ⇠w0, w00 of ⇠w00 and words h, k, such that w0 = u2hu1, w00 = u4ku3, then
the result of the splicing operation applied to ⇠w0 and ⇠w00 by r is the circular
word ⇠w such that w = u2hu1u4ku3. Therefore, we set (⇠w0, ⇠w00)`r⇠w and
we say that ⇠w is generated (or spliced) starting with ⇠w0, ⇠w00 and by using
a rule r. The splicing operation is extended to circular languages in order
to obtain the definition of circular splicing languages. Given a Păun circular
splicing system S and a circular language C ✓ ⇠

A
⇤, we set �

0(C) = {w 2
⇠
A
⇤ | 9w0, w00 2 C, 9r 2 R : (w0, w00)`r w}. We also define �

0(C) = C,
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�
i+1(C) = �

i(C) [ �
0(�i(C)), i � 0, �⇤(C) =

S
i�0 �

i(C). Then, L(S) =
�
⇤(I) is the circular language generated by S. A circular language C is Păun

generated (or C is a circular splicing language) if a Păun circular splicing
system S exists such that C = L(S).

In this paper R will always be a finite set. Moreover we focus on finite
circular splicing systems. A circular splicing system is finite (resp. regular,

context-free, context-sensitive) if its initial set is finite (resp. regular, context-
free, context-sensitive). We suppose that I does not contain the empty word
(adding the empty word to I will only add the empty word to L(S) [2, 11]).
Furthermore, as observed in [4], in order to find a characterization of the
circular splicing languages, there is no loss of generality in assuming that the
set R of the rules is symmetric (i.e., for each u1#u2$u3#u4 2 R, we have
u3#u4$u1#u2 2 R). Thus, in what follows, we assume that R is symmetric.
However, for simplicity, in the examples of Păun systems, only one of either
u1#u2$u3#u4 or u3#u4$u1#u2 will be reported in the set of rules. It is
known that the corresponding class of generated circular languages is not
comparable with the class of regular circular languages [6, 24, 27] and it is
contained in the class of context-sensitive circular languages [2].

In [2], the authors also proved that the splicing language is context-free if
it is generated by an alphabetic context-free splicing system (i.e., a context-
free splicing system such that in any rule u1#u2$u3#u4, the words uj are
letters or the empty word). All the above mentioned results from [2] have
been obtained first for a new variant of circular splicing, introduced in the
same paper and named flat splicing, then easily extended to the classical
model. This new variant allow us to separate operations on formal languages
and grammars from the operation of circular closure (circularization).

A flat splicing system is a triplet S = (A, I, R), where A is an alphabet, I
is a set of words over A, called the initial set, and R is a finite set of splicing
rules, which are quadruplets h↵|���|�i of words over A. The words ↵, �, �
and � are called the handles of the rule.

Let r = h↵|���|�i (or ↵#�$�#�) be a splicing rule. Given two words
u = x↵ · �y and v = �z�, applying r to the pair (u, v) yields the word
w = x↵ · �z� · �y (The dots are used only to mark the places of cutting
and pasting, they are not parts of the words.) We denote this operation by
u, v `r w. Note that the first word (here u) is always the one in which the
second word (here v) is inserted. The language generated by the flat splicing
system S = (A, I, R), written L(S), is the smallest language containing I

and closed by R.
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A rule r = h↵|���|�i is alphabetic if its four handles ↵, �, � and � are
letters or the empty word. A flat splicing system is alphabetic if all its rules
are alphabetic. In [2], the authors introduced a suitable “normal form” for a
flat splicing system, named flat heterogeneous splicing system. They proved
that, for any alphabetic circular splicing system S we may always find a flat
heterogeneous splicing system S such that Lin(S) = L(S). Finally, they
stated the following result.

Theorem 2.1 [2] The language generated by a flat or circular alphabetic

context-free splicing system is context-free.

In this framework, the following still open questions may be asked.

Problem 2.2 Given a splicing system, can we decide whether the corre-

sponding generated language is regular?

Problem 2.3 Given a regular circular language, can we decide whether it is

a splicing language?

Problem 2.4 Can we characterize the structure of the regular circular lan-

guages which are splicing languages?

Problem 2.3 has been solved for alphabetic splicing systems in [2], along
with a similar question for general systems. Moreover, the above problems
have been solved for unary languages [6, 7]. In this paper, we tackle Problem
2.2 for a special class of alphabetic splicing systems, namely (1, 3)-CSSH
systems.

Definition 2.5 [8, 9, 27]. A circular splicing system S = (A, I, R) is a Păun

circular semi-simple splicing system (or CSSH system) if S is finite and, for

any rule u1#u2$u3#u4 in R, we have |u1u2| = |u3u4| = 1. A (1, 3)-CSSH
system is a CSSH system such that u2 = u4 = 1.

Let S = (A, I, R) be a (1, 3)-CSSH system. By Theorem 2.1, L(S) is
a context-free language. From now on, we will adopt the simpler nota-
tion (ai, aj) for the rule ai#1$aj#1. Moreover, we suppose that alph(R) =
{ai | (ai, aj) 2 R} ✓ alph(I) = A and alph(w) \ alph(R) 6= ;, for any w 2 I.
Indeed, omitting rules or circular words in I which do not intervene in the
application of the splicing operation, will not change the language generated
by a CSSH system, beyond the finite set of words removed from I. This
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result was incorrectly stated for Păun circular splicing systems in [11] but it
is not di�cult to see that it holds for CSSH systems.

Definition 2.6 [4, 11] A (1, 3)-CSSH system S = (A, I, R) is complete if

R = A⇥ A. A (1, 3)-CSSH system S = (A, I, R) is marked if I = A.

Problems 2.2–2.4 have been solved for marked systems in [11]. A char-
acterization of languages generated by marked systems will be recalled in
Section 6.4. In Section 1 we mentioned the characterization of regular cir-
cular languages generated by complete systems. More generally, in [4] it has
been proved that unavoidability of Lin(I) characterizes monotone complete

systems S = (A, I, R) generating regular circular languages, thus answering
to Problem 2.2 (a monotone complete system is a CSSH system such that
for two fixed integers i, j, with 1  i < j  4, one has ui = uj = 1 in any
rule u1#u2$u3#u4).

3. Outline of the results

We briefly sketch the content of this paper. In [3], the connection between
alphabetic circular and flat splicing systems, stated in [2] and mentioned
in Section 2, has been simplified for complete systems. The full lineariza-
tions of the corresponding splicing languages have also been characterized
through the insertion operation given in [15]. For languages Z, Y ✓ A

⇤,
the result of the insertion operation applied to Z, Y is the language Z  
Y = {z1yz2 | z1z2 2 Z and y 2 Y }. The result of the iterated insertion

operation applied to Y , is the language Y
 ⇤ = [i�0Y  i , where we induc-

tively define Y
 0 = {1}, Y  i+1 = Y

 i  Y , for i � 0. As stated in [15],
Y
 ⇤ = LY = {w 2 A

⇤ | 1 Y w}, where the quasi-order Y is the reflexive
and transitive closure of the relation {(uv, uyv) | y 2 Y, u, v 2 A

⇤}.
In Section 4, we investigate further in this direction. We introduce a

generalization of the above operations, named R-insertion and iterated R-

insertion. On the other hand, we know that, given a (1, 3)-CSSH system S,
there is a flat splicing system S such that Lin(S) = L(S) [3]. Then we show
that Lin(S) may be alternatively defined through the iterated R-insertion.

This result allow us to work on the full linearization of the circular splicing
language instead on circular languages, thus to simplify many proofs. In
particular, it is of great help for stating another characterization of Lin(S),
through a construction given in Section 6, which in turn is needed for the
proof of our main result.
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Regarding this second construction, we recall that a characterization of
the quasi-orders Y which are wqo has been given in [13]. Their proof uses a
recursive construction of sets In, obtained starting with a finite set X and by
using the star ⇤ and the concatenation · operations on languages. In Section
6, we obtain another equivalent definition of Lin(S) through an extension of
the above operations ⇤, · and of sets In.

In our context, these operations may be extended in several ways. Our
extension ⇤R of the ⇤ operation is obviously based on an extension ·R of
the concatenation operation. Both extensions will be defined in Section 5.
Loosely speaking the ·R operation is a concatenation between words allowed
by the rules R. Moreover it allows us a “proper” insertion of an element of
X between two elements of X in special factorizations defined in Section 5.
The main result concerning the second construction in our paper, is that we
may obtain X

⇤
R as the image by a substitution of a language generated by a

marked system, and this substitution is regular if so is X (Sections 5.1, 5.2).
As said in Section 1, in [13] the authors proved that Y is a wqo if and

only if Y is unavoidable in A
⇤. The latter condition also characterizes the

regularity of LY = {w 2 A
⇤ | 1 Y w}. We recall that Y is unavoidable

in A
⇤ if there exists k0 2 N such that any w in A

⇤, with |w| > k0, has a
factor in Y . This notion appeared in a paper by Schützenberger [25], then
explicitly introduced in [13] and considered also by other authors. There are
algorithms to check that a given finite set Y is unavoidable (see Chapter 1 in
[23]). In Section 7, we extend this notion by the concepts of R-unavoidable
and strong R-unavoidable sets. We also prove relations between these two
notions.

In Section 8, we prove our main result. In details, let S = (A, I, R) be a
(1, 3)-CSSH system. We prove that the strong R-unavoidability of Lin(I) in
Lin(L(S)) and a condition on the set R of rules guarantee the regularity of
Lin(L(S)) (Section 8). The mentioned condition on R is the same condition
that characterizes regularity of languages generated by marked systems.

There are several issues that follows from the results stated in this paper,
they will be discussed in Section 9.

4. (1, 3)-CSSH systems, flat systems and the iterated R-insertion
operation

We give below the notion of the R-insertion operation.
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Definition 4.1 Given Z ✓ A
⇤
, Z

0 ✓ A
+
and a symmetric relation R over

A, the result Z  R Z
0
of the R-insertion operation applied to Z,Z

0
, is the

following language

Z  R Z
0 =

(
Z
0

if Z = {1},
{z1zz2 | z1z2 2 Z, z2z1 2 A

⇤
a, z 2 Z

0 \ A
⇤
b, (a, b) 2 R} otherwise.

Definition 4.2 Given Y ✓ A
⇤
and a symmetric relation R over A, the result

Y
 ⇤,R of the iterated R-insertion operation applied to Y , is the language

Y
 ⇤,R = [i�0Y  i,R, where

Y
 0,R = {1}

Y
 1,R = Y

Y
 i+1,R =

[

0<ji

(Y  i,R  R Y
 j,R) [ (Y  j,R  R Y

 i,R), for i � 1.

Since Y  ⇤,R = (Y \{1}) ⇤,R , in what follows, we assume Y ✓ A
+. Moreover,

we also set Y  +,R = Y
 ⇤,R \ {1}.

Lemma 4.3 Let Y be a finite set and let R be a symmetric relation over

A. If w1w2, w 2 Y
 ⇤,R, with w2w1 2 A

⇤
a, w 2 A

⇤
b, (a, b) 2 R, then

w1ww2 2 Y
 ⇤,R.

Proof :
Let w1w2, w, (a, b) be as in the statement. Thus, w1w2, w 2 Y

 +,R . By
Definition 4.2, there are i, j > 0 such that w1w2 2 Y

 i,R , w 2 Y
 j,R . Set

t = max{i, j}. Hence, again by Definition 4.2, w1ww2 2 Y
 t+1,R ✓ Y

 ⇤,R .

The following result generalizes a result proved in [3]. Recall that in a
circular splicing system S = (A, I, R), the set R is supposed to be symmetric.

Theorem 4.4 For any circular language L over A the following conditions

are equivalent:

(1) There exists a (1, 3)-CSSH system S = (A, I, R) such that L = L(S).

(2) There exists a flat splicing system S = (A, Y,R0) such that L(S) =
Lin(L), where Y ✓ A

+
is a finite language closed under the conjugacy

relation, R
0 = {ha|1�b|1i | (a, b) 2 R}, and R is a symmetric relation

over A.
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(3) There exists a finite language Y ✓ A
+
such that Y is closed under the

conjugacy relation and a symmetric relation R on A such that Lin(L) =
Y
 +,R.

Theorem 4.4 is a direct consequence of the following two results. The first
of them, Proposition 4.5, has been proved in [3]. The second one generalizes
a result proved in the same paper.

Proposition 4.5 Let S = (A, I, R) be a (1, 3)-CSSH system. Then the flat

splicing system S = (A, Y,R0), where Y = Lin(I), R0 = {ha|1�b|1i | (a, b) 2
R}, is such that L(S) = Lin(L(S)). Conversely, let S = (A, Y,R0) be a flat

splicing system, where Y ✓ A
+
is a finite language closed under the conjugacy

relation, R
0 = {ha|1�b|1i | (a, b) 2 R} and R is a symmetric relation on A.

Let I = ⇠
Y be the circularization of Y . Then L(S) = Lin(L(S)), where

S = (A, I, R) is a (1, 3)-CSSH system.

Proposition 4.6 Let Y ✓ A
+

and let R be a symmetric relation on A.

Then Y
 +,R = L(S), where S = (A, Y,R0) is a flat splicing system and

R
0 = {ha|1�b|1i | (a, b) 2 R}.

Proof :
We prove that L = L(S) ✓ Y

 +,R . Of course L ✓ A
+. The proof is by

induction on the minimal number of steps used for generating w 2 L. If the
number of steps is null, we have w 2 Y ✓ Y

 +,R .
Suppose now that for any word w 2 L generated in at most k steps, we

have w 2 Y
 +,R . Let w be a word generated in at least k + 1 steps. By

the definition of the flat splicing operation, there are two words u and v,
generated in at most k steps, a rule ha|1�b|1i 2 R

0 and words x, y, z such
that u = xaz, v = yb, w = xaybz. Thus, (a, b) 2 R. Moreover, by induction,
u and v are in Y

 +,R , hence w is also in Y
 +,R , by Lemma 4.3.

Conversely, we prove that Y  i,R ✓ L(S), by induction on i, i � 1. Clearly
Y ✓ L(S). Let w be a word in Y

 i+1,R , i � 1. By definition there are
z1z2 2 Y

 j,R , w0 2 Y
 k,R , with 0 < j, k  i, w00 2 A

⇤, and (a, b) 2 R, such
that z2z1 2 A

⇤
a, w0 = w

00
b, and w = z1w

0
z2. By the induction hypothesis,

the nonempty words z1z2, w0 are in L(S). If z1 6= 1, set z1 = z
0
1a. Thus the

word w = z
0
1aw

00
bz2 is in L(S), by using the rule ha|1�b|1i 2 R

0. If z1 = 1,
then z2 2 A

⇤
a and (b, a) 2 R. Set z2 = z

0
2a. Thus the word w = w

00
bz
0
2a is in

L(S), by using the rule hb|1�a|1i 2 R
0.

11



5. The ·R and ⇤R operations

In this section we define two operations on languages, the ·R and ⇤R
operations. We begin with an informal description of them.

Let X be a language. The language X
⇤
R is defined below as the union

of the languages X
i,R. In turn, X i,R coincides with X

i for i 2 {0, 1}. For
i > 1, X

i is the set of the concatenations of all the X-factorizations of
length i, whereas X

i,R will be the set of the concatenations of some of the
X-factorizations of length i, called valid X-factorizations (or valid factoriza-
tions, when the context does not make it ambiguous) of X i,R.

A valid factorization of X2,R is a pair (x, y), where x 2 A
⇤
a \ X, y 2

A
⇤
b \ X, and (a, b) 2 R. Then the product xy is a member of X2,R. The

set of the valid factorizations of X3,R is the set of the tuples obtained by
inserting in any position of any valid factorization of X2,R either an element
of X or a sequence of two elements of a valid factorization of X2,R (or vice
versa), provided that the insertion is “allowed” by R. Then, X3,R is the set
of words which are products of elements in a valid factorization of X3,R. In
general, the set of the valid factorizations of X i+1,R is the set of the tuples
obtained by inserting in any position of any valid factorization of Xk,R a
sequence of elements of a valid factorization of X

j,R, with 0  k, j  i,
provided that the insertion is “allowed” by R. In other words, we get the
valid factorizations of X i+1,R by inserting a valid factorization inside another
valid factorization, both of them previously obtained, and provided that the
insertion is “allowed” by R. Then again, X i+1,R is the set of words which are
products of elements in a valid factorization of X i+1,R.

The set of the valid factorizations ofXn,R will be denoted by VF(Xn,R). If
(x1, . . . , xn) 2 VF(Xn,R), then we say that (x1, . . . , xn) is a valid factorization
of w = x1 · · · xn. For any i, 0  i  n, the pair (x, y), where x = x1 · · · xi,
y = xi+1 · · · xn is a valid pair for X

n,R. The set of the valid pairs of the
elements in X

n,R is denoted by VP(Xn,R).
The following example should clarify these notions and their relations

with the splicing operation.

Example 5.1 Let X = {a, ab, aba, ba, aab, baa} and R = {(a, b)}. Let
S = (A, ⇠X,R). We have (aba)(ab) 2 X

2 \ Lin(L(S)). Moreover, (aba, ab)
is in VF(X2,R) and abaab is a member of X2,R. Then, since (a, b) 2 R,
we may insert ab between (aba) and (ab) and we get abaabab 2 X

3,R, and
(aba, ab, ab) 2 VF(X3,R). We also have w

0 = (aba)(ab)(a) 2 X
3,R and

12



(aba, ab, a) 2 VF(X3,R). We cannot obtain w = (a)(baa)(ab)(ba) from w
0

even if w0 factorizes also as (a)(baa)(ba) since (a, baa, ba) is a X-factorization
of w0 2 X

3,R but (a, baa, ba) 62 VF(X3,R). However, w 2 X
4,R since (a)(ab) 2

X
2,R, hence (aba)(a)(ab) 2 X

3,R and finally w = (aba)(a)(ab)(ba) 2 X
4,R.

Observe that we also have w = (aba)(a)(ab)(ba) 2 X
3,R, since (aba)(ba) 2

VF(X2,R), (a)(ab) 2 VF(X2,R) and so w = (aba)(a)(ab)(ba) 2 VF(X3,R),
since aba 2 A

⇤
a, aab 2 A

⇤
b and (a, b) 2 R.

Definition 5.2 Let R be a symmetric relation over A and let X ✓ A
+

be a set. We set X
⇤R =

S
i�0 X

i,R
, X

+R =
S

i>0 X
i,R

, and VF(X⇤R) =S
i�0 VF(X i,R), where:

VF(X0,R) = {1}, X
0,R = {1};

VF(X1,R) = {(x)|x 2 X}, X
1,R = X;

and, for i > 1,

VF(X i+1,R) = {(x1, . . . , xj, x
0
1, . . . , x

0
t, xj+1, . . . , xk) | (x1, . . . , xj, xj+1, . . . xk) 2 VF(Xk0,R),

1  j  k, (x01, . . . , x
0
t) 2 VF(X t0,R), 0  k

0
, t
0  i,

xj+1 · · · xkx1 · · · xj 2 A
⇤
a, x

0
1 · · · x0t 2 A

⇤
b, (a, b) 2 R}

X
i+1,R = {x1 · · · xk | (x1, . . . , xk) 2 VF(X i+1,R), k � 1} =

=
[

0<ji

(X i,R ·R X
j,R) [ (Xj,R ·R X

i,R)

Thus, X1,R = X, X2,R = {xy | x 2 X \ A
⇤
a, y 2 X \ A

⇤
b, (a, b) 2 R}.

The language X
3,R is the set of the words x1x2x3 where x1x2 (resp. x2x3,

x1x3) is in X
2,R, (x1, x2) (resp. (x2, x3), (x1, x3)) is valid, and x3 (resp. x1,

x2) is in X
1,R [X

2,R and may be inserted thanks to a rule in R.
In Example 5.6, we will show that, for our aims, we cannot take a simpler

definition where all the X-factorizations are taken into account. Moreover
observe that, di↵erently from R, the operator ·R cannot insert words inside
an element of X.

5.1. A marked system associated with X
⇤R

Let X be a set of nonempty words, let A = alph(X), and let R be a
symmetric relation. In this section we define a marked system SX,R associated

13



with X
⇤R . Of course, we assume R ✓ A⇥A. Indeed, any (a, b) 2 R\ (A⇥A)

does not apply in the construction of X⇤R . In other words X
⇤R = X

⇤R1 ,
where R1 = R \ (A ⇥ A). We also assume Xa = X \ A

⇤
a 6= ;, for any

a 2 A = alph(X). Indeed, in our results X will be a set containing Y =
Lin(I), where S = (A, I, R) is a (1, 3)-CSSH system and we know that we
may assume ; 6= Ya = Y \ A

⇤
a. Thus Xa is also nonempty.

Definition 5.3 Let A be an alphabet and let R be a symmetric relation on

A. Let X ✓ A
+

be a language such that Xa = X \ A
⇤
a 6= ;, for any

a 2 A. Let B be any alphabet such that Card(A) = Card(B) and let � be any

bijection from A onto B. We say that the marked system SX,R = (B,R
0),

where R
0 = {(�(a), �(b)) | (a, b) 2 R}, and the substitution � : B⇤ ! P(A⇤),

defined by �(�(a)) = Xa are associated with (X,R).

In order to simplify notations, from now on we set �(a) = a
0, for any

a 2 A.

Example 5.4 Let X = {a, ab, aba, ba, aab, baa} and R = {(a, b)} as Exam-
ple 5.1. Thus Xa = {a, aba, ba, baa} and Xb = {ab, aab}. The marked system
SX,R = (B,R

0), where B = {a0, b0} and R
0 = {(a0, b0)}, and the substitution

�, defined by �(a0) = Xa, �(b0) = Xb, are associated with (X,R).

Proposition 5.5 For any language X of nonempty words and for any sym-

metric relation R over A, we have �(Lin(L(SX,R))) = X
+R.

Proof :
First we prove that �(Lin(L(SX,R))) ✓ X

+R . Let z 2 Lin(L(SX,R)). Thus, by
Theorem 4.4, z 2 B

 +,R0 . Hence there exists k0, k0 > 0, such that z 2 B
 k0,R0 .

Looking at the definition of the iterated R-insertion in this special case, we
may set z = a

0
1 · · · a0k, where a

0
1, . . . , a

0
k 2 B. Any w in �(z) = �(a01) · · ·�(a0k)

has the form w = w1 · · ·wk, where wr 2 �(a0r), 1  r  k.
Then we prove, by induction on k

0, that for any w1, . . . , wk such that
wr 2 �(a0r), 1  r  k, the k-tuple (w1, . . . , wk) 2 VF(Xk0,R) and w =
w1 · · ·wk 2 X

k0,R. Consequently, �(z) ✓ X
+R .

Let k
0 = 1, i.e., z = a

0 2 B. Thus, �(z) = �(a0) = Xa ✓ X
1,R and

(w) 2 VF(X1,R), for any w in �(a0).
Assume the statement for any j, with 1  j  k

0 and let us prove it
for k

0 + 1. Looking again at the definition of the iterated R-insertion in
this special case, if z 2 B

 k0+1,R0 , then there exists j  k
0 such that either

14



z 2 B
 k0,R0  R0 B

 j,R0 or z 2 B
 j,R0  R0 B

 k0,R0 . Suppose that the first
case holds (the argument is the same in the other case). Thus, there are
a
0
1, . . . , a

0
t, a
0
`1 , . . . , a

0
`s 2 B, z0 = a

0
1 · · · a0t 2 B

 k0,R0 , z00 = a
0
`1 · · · a

0
`s 2 B

 j,R0 ,
such that z = a

0
1 · · · a0ha0`1 · · · a

0
`sa
0
h+1 · · · a0t with 1  h  t, (a0h, a

0
`s) 2 R

0, and
where it is understood that for h = t the word on the right of z00 is empty.
(Note that the case z = z

00
z
0, (a0t, a

0
`s) 2 R

0, has not been considered since in
this case z 2 B

 j,R0  R0 B
 k0,R0 .)

By induction hypothesis, for any w1, . . . , wt such that wr 2 �(a0r), 1  r 
t, we have (w1, . . . , wt) 2 VF(Xk0,R) and w1 · · ·wt 2 X

k0,R. Similarly, for any
w
0
g 2 �(a0`g), 1  g  s, we have (w01, . . . , w

0
s) 2 VF(Xj,R) and w

0
1 · · ·w0s 2

X
j,R. Moreover, (ah, a`s) 2 R, by Definition 5.3. By Definitions 5.2, 5.3, it is

easy to conclude that (w1, . . . , wh, w
0
`1 , . . . , w

0
`s , wh+1, . . . , wt) 2 VF(Xk0+1,R)

and, as a consequence, w = w1 · · ·whw
0
`1 · · ·w

0
`swh+1 · · ·wt 2 X

k0+1,R.
Conversely, we prove that X

+R ✓ �(Lin(L(SX,R))). Let w 2 X
+R .

Therefore there exists k
0, k0 > 0, such that w 2 X

k0,R, i.e., (w1, . . . , wk) 2
VF(Xk0,R) such that w = w1 · · ·wk.

We prove, by induction on k, that there are a
0
1, . . . , a

0
k 2 B such that

z = a
0
1 · · · a0k 2 B

 k0,R0 and wr 2 �(a0r), 1  r  k. Hence, w 2 �(z) and, by
Theorem 4.4, w 2 �(Lin(L(SX,R))).

Let i = 1, i.e., w 2 X = X
1,R. Thus, there exists a 2 A such that

w 2 Xa. Hence w 2 �(z), where z = a
0 2 B = B

 1,R0 .
Assume the statement for any j, with 1  j  k

0 and let us prove it for
k
0 + 1. Now w 2 X

k0+1,R = [0<jk0(Xk0,R ·R X
j,R) [ (Xj,R ·R X

k0,R).
Notice that, since the elements of X are supposed to be nonempty words,

the same holds for the elements in a k-tuple in VF(Xk0,R). Thus, by Defi-
nition 5.2, there exist (w1, . . . , wk) 2 VF(Xk0,R), (w01, . . . , w

0
t) 2 VF(Xj,R),

(a, b) 2 R, with w
0
t 2 X \ A

⇤
b such that w = w1 · · ·whw

0
1 · · ·w0twh+1 · · ·wk,

1  h  k, wh 2 A
⇤
a, and where it is understood that for h = k the

word on the right of w
0
t is empty. (We do not consider the case where

w = w
0
1 · · ·w0hw1 · · ·wkw

0
h+1 · · ·w0t, with 1  h  t, and w

0
h 2 A

⇤
a, wk 2 A

⇤
b

since the argument below remains the same.)
By induction hypothesis there are a

0
1, . . . , a

0
k, a
0
`1 , . . . , a

0
`t 2 B such that

a
0
1 · · · a0k 2 B

 k0,R0 and wr 2 �(a0r), 1  r  k, a
0
`1 · · · a

0
`t 2 B

 j,R0 and
w
0
g 2 �(a0`g), 1  g  t. Moreover, by Definition 5.3, (a0, b0) = (a0h, a

0
`t) 2 R

0.
Finally, z = a

0
1 · · · a0ha0`1 · · · a

0
`ta
0
h+1a

0
t 2 B

 k0+1,R0 and the proof is ended.

The following example shows that Proposition 5.5 is no more true if we
choose a simpler definition of X⇤R .

15



Example 5.6 Consider againX = {a, ab, aba, ba, aab, baa} andR = {(a, b)},
as in Example 5.1. The associated marked system SX,R = (B,R

0) and sub-
stitution � were given in Example 5.4 and repeated here for convenience.
Hence, B = {a0, b0}, R

0 = {(a0, b0)}, and � is defined by �(a0) = Xa =
{a, aba, ba, baa}, �(b0) = Xb = {ab, aab}. In Example 5.1, we observed that
we cannot obtain w = abaaabba from w

0 = (aba)(ab)(a) 2 X
3,R by inserting

ab into w
0 = (a)(baa)(ba) before the second b. If we considered a simpler

definition of X⇤R that allows us to do that, the language X
4,R would not

match B
 4,R0 since a

0
a
0
a
0 62 B

 4,R0 . Notice that w
0 2 �(a0a0a0) \ �(a0b0a0),

where a
0
b
0
a
0 2 B

 3,R0 .

5.2. Regularity and non-regularity of X
⇤R

In this section we consider conditions under which the language X
⇤R is

regular. We use the same notations as in the previous section.
Let R

0 be a symmetric relation over B, represented by an undirected
graph G

0 = (B,R
0), where B is the vertex set and R

0 is the edge set. In
an undirected graph, self-loops - edges from a vertex to itself - are forbidden
but here we do not make this assumption. As in [3, 5], G0 will be referred
to as the graph associated with the marked system S = (B,R

0). A path in a
graph is simple if all vertices in the path are distinct. A graph G is simple if
there are no self-loops in G and the simple graph underlying G is the graph
obtained by dropping the self-loops in G.

We state below a characterization of the marked systems S generating
regular circular languages by means of a property of the graph G

0 associated
with S. This characterization was proved in [11], then reviewed in a graph
theoretical setting in [5]. The involved property of the graph G

0 is given by
means of the well known graph P4 = (V,E), where V = {a1, a2, a3, a4}, and
E = {(a1, a2), (a2, a3), (a3, a4)}. We also recall that a P4-free graph G is a
graph such that every connected subgraph of the simple graph underlying G,
which is induced by a set of four vertices of G, is not P4.

Theorem 5.7 Let S = (B,R
0) be a marked system, let G

0
be the graph

associated with S. The following conditions are equivalent:

(1) L(S) is a regular circular language.

(2) The simple graph underlying graph G
0
is P4-free.
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Two graphs which contain the same number of graph vertices connected
in the same way are said to be isomorphic. Formally, two graphs G and H

with graph vertices Vn = {1, 2, ..., n} are said to be isomorphic if there is a
permutation p of Vn such that {u, v} is in the set of graph edges E(G) if and
only if {p(u), p(v)} is in the set of graph edges E(H). The following result
is a direct consequence of the definitions.

Proposition 5.8 Let X ✓ A
+

be a set of nonempty words and let R be

a symmetric relation over A. Let SX,R = (B,R
0) be the marked system

associated with (X,R), where R
0 = {(a0, b0) | (a, b) 2 R}, let G0 be the graph

associated with SX,R. The graphs G
0
and G = (A,R) are isomorphic. In

particular, G
0
is P4-free if and only if G is P4-free.

The following is a direct consequence of the above results.

Corollary 5.9 Let X ✓ A
+
be a regular language of nonempty words such

that Xa = X \ A
⇤
a 6= ; for any a 2 A. Let R be a symmetric relation over

A. If G = (A,R) is P4-free, then X
⇤R is regular.

Proof :
Let X,R be as in the statement. Consider the marked system SX,R =
(B,R

0) and the substitution � associated with (X,R) (Definition 5.3). If
G = (A,R) is P4-free, then L(SX,R) is a regular language, by Theorem 5.7
and Proposition 5.8. Since the class of regular languages is closed under in-
tersection, � is a regular substitution. Finally, by Proposition 5.5, we have
�(Lin(L(SX,R))) = X

+R . Since regular languages are closed under regular
substitution, the languages X+R and X

⇤R are both regular.

6. Another construction of splicing languages

In this section, R will be a symmetric relation over A. Moreover, we
assume that Y ✓ A

+ is a finite set closed under the conjugacy relation, and
such that Y \ A

⇤
a 6= ;, for any a 2 A. Aimed to provide an alternative

construction of splicing languages, we first give some definitions.

Definition 6.1 Let A = {a1, . . . , an} and Ā = {b1, . . . , bn} be two disjoint

alphabets such that Card(A) = Card(Ā). We consider the morphism �C :
A
⇤ ! Ā

⇤
defined by �C(ai) = bi, for any i, 1  i  n. We set R̄ =

R [ {(�C(a), c), (c,�C(a)) | (a, c) 2 R}.
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Definition 6.2 We set

Base(I0) = Y, I0 = Y
⇤R

and, for n � 0, for each ai 2 A,

Īn(ai) = �
�1
C (ai)(({�C(ai)} [ In)

⇤R̄ \ (�C(ai)A
⇤ \ A+

�C(ai)A
⇤))

Base(In+1) = {a1w1 · · · akwk | a1 · · · ak 2 Y, wi 2 Īn(ai) [ {1} , 1  i  k}
In+1 = (Base(In+1,Y ))

⇤R

In the previous definition, it is clear that aj 2 A, for 1  j  k, and the
operation between the letters ai and the words wi is the usual concatenation
of words. Therefore, any element in In may be written as w = w1 · · ·wn,
where wj 2 Base(In) and (w1, . . . , wn) 2 VF(In). Next, when the context
does not make it ambiguous, we write In instead of In,Y .

In the following subsections we describe the properties of In sets. Briefly,
they form a non decreasing sequence of sets, with respect to the order of set
inclusion (Proposition 6.4). Their union is the splicing language (Theorem
6.9), hence they are closed with respect to the R-insertion operation (Propo-
sition 6.7). Finally, under an appropriate hypothesis, if In is regular, then so
is In+1 (Proposition 6.13).

6.1. Inclusion

The following result is a direct consequence of Definition 5.2.

Proposition 6.3 Let X1, X2 ✓ A
⇤
. If X1 ✓ X2, then VF(X⇤R1 ) ✓ VF(X⇤R2 )

and, consequently, X
⇤R
1 ✓ X

⇤R
2 .

Proposition 6.4 For any n � 0,

(i) Base(In) ✓ Base(In+1), and consequently In ✓ In+1,

(ii) Īn(a) ✓ Īn+1(a) for each a 2 A.

Proof :
By Proposition 6.3, if Base(In) ✓ Base(In+1), then In ✓ In+1. We prove (i)
and (ii) together, by mutual induction on n.

(Basis) Let n = 0.
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(i) Let w = a1 · · · ak 2 Base(I0) = Y , where ai 2 A, 1  i  k. Thus, by
definition, w = a1 · 1 · · · ak · 1 2 Base(I1). Therefore (i) holds for n = 0.

(ii) Suppose that w 2 Ī0(a) with a 2 A. By Definition 6.2, we have

w 2 �
�1
C (a)

�
({�C(a)} [ I0)

⇤R̄ \
�
�C(a)A

⇤ \ A+
�C(a)A

⇤��
.

By the above argument, I0 ✓ I1. Thus it is easy to see that Ī0(a) ✓
Ī1(a), once again by Proposition 6.3.

(Induction) Now we assume that (i) and (ii) are true for n � 0 and we
prove them for n+ 1.

(i) Assume w 2 Base(In). Then, by definition, w = a1w1a2w2 · · · akwk,
with a1 · · · ak 2 Y , and wi 2 Īn�1(ai) [ {1} for each i, 1  i  k.
By inductive hypothesis of (ii), if wi 6= 1, then wi 2 Īn(ai). Hence,
w = a1w1a2w2 · · · akwk 2 Base(In+1).

(ii) Let w 2 Īn(a) with a 2 A. By Definition 6.2,

w 2 �
�1
C (a)

�
({�C(a)} [ In)

⇤R̄ \
�
�C(a)A

⇤ \ A+
�C(a)A

⇤��
.

By the above argument, In ✓ In+1. Thus it is easy to see that Īn(a) ✓
Īn+1(a), once again by Proposition 6.3.

6.2. Insertion

Proposition 6.5 and Lemma 6.6 are needed for stating Proposition 6.7.

Proposition 6.5 Let a 2 A, w 2 A
⇤
. The word w is in Īn(a) if and only if

there is (�C(a), x1, . . . , xm) 2 VF(({�C(a)} [ In)⇤R̄) such that w = x1 · · · xm

and xj 2 In, 1  j  m. In this case, (a, x1, . . . , xm) 2 VF((a [ In)⇤R).

Proof :
We preliminary observe that In ✓ A

⇤ for any n. Therefore, for every x in
({�C(a)} [ In), either x = �C(a) or �C(a) 62 alph(w). Assume w 2 Īn(a).
By Definition 6.2, there is (x0, x1, . . . , xm) 2 VF(({�C(a)}[ In)⇤R̄) such that
x0x1 · · · xn 2 (�C(a)A⇤ \ A+

�C(ai)A⇤) and w = �
�1
C (a){x0x1 · · · xn}. By our

preliminary observation, x0 = �C(a), w = x1 · · · xm, and xj 2 In, 1  j  m.

19



Conversely, let (�C(a), x1, . . . , xm) 2 VF(({�C(a)}[ In)⇤R̄), with xj 2 In,
1  j  m. The word �C(a)x1 · · · xm is clearly in (�C(a)A⇤ \ A+

�C(ai)A⇤).
Hence, by Definition 6.2, w = x1 · · · xm 2 Īn(a). The second part of the
statement is clear.

Lemma 6.6 Let x1, . . . , xk 2 X. Let zh = x
0
htx
00
h, where x

0
h, x

00
h are nonempty

words such that x
0
hx
00
h = xh, t 2 A

⇤
, 1  j  k. If zh 2 X and (x1, . . . , xk) 2

VF(X⇤R), then (x1, . . . , xh�1, zh, xh+1, . . . , xk) 2 VF(X⇤R).

Proof :
We prove the statement by induction of k � 0. It is clearly true for k = 1.
Otherwise, by Definition 5.2, there are (y1, . . . , yk0) 2 VF(X⇤R), (v1, . . . , vt) 2
VF(X⇤R) such that (x1, . . . , xk) = (y1, . . . , yj, v1, . . . , vt, yj+1, . . . , yk0) and
yj+1 · · · yk0y1 · · · yj 2 A

⇤
a, v1 · · · vt 2 A

⇤
b, (a, b) 2 R. Then either xh = yh0 ,

with 1  h
0  k

0, or xh = vh0 , with 1  h
0  t. In both cases, by the

induction hypothesis and since x
0
h, x

00
h are nonempty, the conclusion holds.

Proposition 6.7 If uv, w 2 In, with vu 2 A
⇤
a, w 2 A

⇤
b and (a, b) 2 R,

then uwv 2 It, t � n. Moreover, if |u|  n and w 2 Y , then uwv 2 In.

Proof :
We preliminary observe that we may assume u 6= 1. Indeed, w 2 In, for
n � 0, and if u = 1, then uwv = wv is still in In, by definition (and by using
(b, a) 2 R). This show also the second part of the statement for n = 0.

Since uv 2 In there are y1, . . . , yk 2 Base(In), (y1, . . . , yk) 2 VF(In)
such that uv = y1 · · · yk. Since w 2 In there are z1, . . . , zh 2 Base(In),
(z1, . . . , zh) 2 VF(In) such that w = z1 · · · zh. If u = y1 · · · yj, v = yj+1 · · · yk,
then (y1, . . . , yj, z1, . . . , zh, yj+1, . . . , yk) 2 VF(In) and uwv = y1 · · · yjz1 · · · zh
yj+1 · · · yk 2 In.

Otherwise, u = y1 · · · y0j, v = y
00
j · · · yk, for nonempty words y

0
j, y
00
j such

that yj = y
0
jy
00
j . If we prove that y

0
jwy

00
j 2 Im, m � n, the first part of the

statement follows by Proposition 6.4 and Lemma 6.6. As for the second part,
we prove that if |y0j|  n and w 2 Y , then y

0
jwy

00
j 2 In, so, again by Lemma

6.6, uwv 2 In.
We prove that y

0
jwy

00
j 2 Im, m � n, by induction on n. For our con-

venience, we set y
0
j = u, y00j = v. Let n = 0. Thus, uv 2 Base(I0) = Y ,

then uv = a1 · · · ak 2 Y , where aj 2 A, 1  j  k. Moreover, w 2 I0,
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vu 2 A
⇤
a, w 2 I0 \ A

⇤
b, and (a, b) 2 R. Hence, there exists i, with

1  i  k such that u = a1 · · · ai and v = ai+1 · · · ak and (ai, b) 2 R.
It is clear that (ai, z1, . . . , zh) 2 VF((a [ I0)⇤R), i.e., (�C(ai), z1, . . . , zh) 2
VF((�C(ai) [ I0)⇤R̄). This implies, by Definition 6.2, w 2 Ī0(ai), thus
uwv = a1 · · · aiwai+1 · · · ak 2 Base(I1) ✓ I1. Regarding the basis for the
second part of the statement, if n = 0, then u = 1 and v 2 I0 = Y

⇤R . By
definition, uyv = yv 2 I0.

Suppose that the statement is true for n
0, 0  n

0
< n, let us prove

it for n. Let uv 2 Base(In), w 2 In. By Definition 6.2, we have uv =
a1w1a2w2 · · · akwk, with a1 · · · ak 2 Y , and, for each wi 6= 1, 1  i  k,
with wi 2 Īn�1(ai). Hence for some i, 1  i  k, u = a1 · · · aiw0i and
v = w

00
i ai+1 · · ·wk�1akwk where w

0
i, w

00
i are words such that w

0
iw
00
i = wi. By

Proposition 6.4, we also have wj 2 Īn(aj) for each wj 6= 1, 1  j  k.
If w

0
i = w

00
i = 1, then ai = a, w 2 In \ A

⇤
b with (ai, b) 2 R and

so, by definition, w 2 Īn(ai). Thus, uwv = a1w1a2 · · · aiw · · ·wk�1akwk 2
In+1. Of course, if w 2 Y \ A

⇤
b, then w 2 Īn�1(ai) and thus, uwv =

a1w1a2 · · · aiw · · ·wk�1akwk 2 In.
Otherwise, we distinguish two cases, depending on whether w0i = 1 or not.

If w0i = 1, then we know that wi = w
00
i 2 Īn(ai) and w 2 In\A⇤b, with (a, b) =

(ai, b) 2 R. Looking at Definition 6.2, we conclude that wwi = ww
00
i 2 Īn(ai)

and uwv = a1w1a2 · · · aiwwi · · ·wk�1akwk 2 In+1. Moreover, if w 2 Y , then
wwi = ww

00
i 2 Īn�1(ai), so uwv = a1w1a2 · · · aiwwi · · ·wk�1akwk 2 In.

Now, assume w
0
i 6= 1 and wi = x1 · · · xm with (�C(ai), x1, . . . , xm) 2

VF(({�C(ai)} [ In�1)⇤R̄). Hence, there exists 1  j  m such that w
0
i =

x1 · · · xj�1x
0
j, w

00
i = x

00
jxj+1 · · · xm and xj = x

0
jx
00
j . Let us consider the word

x
0
jwx

00
j . If x

0
j = 1, it is easy to see that (�C(ai), x1, . . . , xj�1, w, xj, xj+1, . . . , xm)

2 VF(({�C(ai)}[In�1)⇤R̄), thus w0iww00i 2 Īn�1(ai). A similar argument holds
if x00j = 1. In both cases, uwv = a1w1a2 · · · ai(w0iww00i ) · · ·wk�1akwk 2 In and
the two parts of the statement are proved.

Otherwise, x0j 6= 1, x0j 6= 1 and, by induction hypothesis, we have that
x
0
jwx

00
j 2 It0 with t

0 � n � 1. By Proposition 6.4 and by Lemma 6.6, we
also have (�C(ai), x1, . . . , xj�1, x

0
jwx

00
j , xj+1, . . . , xm) 2 VF(({�C(ai)}[It0)⇤R̄),

i.e., w0iww
00
i 2 Īt0(ai). Let t = max{t0, n}. Again by Proposition 6.4, wj 2

Īt(aj) for each wj 6= 1, 1  j  k, j 6= i, and w
0
iww

00
i 2 Īt(ai). Therefore

uwv 2 Base(It), with t � n and the proof of the first part of the statement
is ended. Regarding the second part of the statement, if |u|  n, then
|x0j|  |w0i|  n� 1 and, by the induction hypothesis, we have that x0jwx

00
j 2

In�1. Therefore, by the above argument, w
0
iww

00
i 2 Īn�1(ai) and uwv =
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a1w1a2 · · · ai(w0iww00i ) · · ·wk�1akwk 2 In.

6.3. Generation

We are now ready to prove that the collection of sets In is a splicing
language.

Lemma 6.8 If X ✓ Lin(L(S)), then X
⇤R ✓ Lin(L(S)).

Proof :
The conclusion follows directly by using induction on i such that w 2 X

i,R

and Definition 5.2.

Theorem 6.9 Let S = (A, I, R) be a (1, 3)-CSSH system and let Y =
Lin(I). Then Lin(L(S)) = ([n�0In) \ {1}.

Proof :
First, we prove that Lin(L(S)) ✓ ([n�0In)\{1}. Let w 2 Lin(L(S)). Clearly
w 6= 1. By Theorem 4.4, there is i, i > 0, such that w 2 Y

 i,R . We prove,
by induction on i, that w 2 ([n�0In) \ {1}. Of course, the conclusion holds
for i = 1, i.e., if w 2 Y . Now, assume that the statement holds for i � 1 and
let us prove it for i+ 1. Let w 2 Y

 i+1,R . Then, by definition, w = w1w
0
w2,

where w1w2 2 Y
 t,R , w2w1 2 A

⇤
a, w0 2 Y

 t0,R \A⇤b, (a, b) 2 R and t, t
0  i.

By induction hypothesis, there are n, n
0 2 N such that w1w2 2 In, w0 2 In0 .

Let m = max{n, n0}. By Proposition 6.4, we have that w1w2, w
0 2 Im.

Hence, in virtue of Proposition 6.7, we have that w 2 Il, l � m.
Next we demonstrate that ([n�0In) \ {1} ✓ Lin(L(S)). We show that

In \ {1} ✓ Lin(L(S)), by induction on n. Let w 2 In \ {1}. By Lemma
6.8, we may assume w 2 Base(In). If n = 0, then w 2 Y ✓ Lin(L(S)).
Otherwise, w = a1w1a2w2 · · · akwk, with a1 · · · ak 2 Y , and, wi 2 Īn(ai),
for each wi 6= 1, 1  i  k. As a preliminary remark, notice that if
zai 2 Lin(L(S)), then zaiwi is also in Lin(L(S)). This claim may be easily
obtained by considering that wi 2 Īn(ai) and by looking at Definition 6.2. It
immediately yields a2 · · · aka1w1 2 Lin(L(S)) and so, a1w1a2a3 · · · ak�1ak 2
Lin(L(S)). Moreover, if a1w1 · · · ai�1wi�1aiai+1 · · · ak 2 Lin(L(S)), then
ai+1 · · · aka1w1 · · · ai�1wi�1ai is also in Lin(L(S)) and, by the above claim,
ai+1 · · · aka1w1 · · · ai�1wi�1aiwi 2 Lin(L(S)). Of course, this implies a1w1 · · ·
ai�1wi�1aiwiai+1 · · · ak 2 Lin(L(S)). The above arguments demonstrate, by
induction on i, that a1w1 · · · ai�1wi�1aiwiai+1 · · · ak is in Lin(L(S)), for any
i, 1  i  k. For i = k, this implies w 2 Lin(L(S)).
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Proposition 6.10 will be used in Section 8.

Proposition 6.10 For any n � 1, if w 2 In \ (In�1 [ {1}), then |w| � n.

Proof :
The proof is by induction on n. It is clear that the conclusion holds for n = 1.
Suppose the statement true for each m, 0 < m < n, and let us prove it for
n. Let w 2 In \ (In�1 [ {1}).

By Definition 6.2, w = w1 · · ·wt, where wj 2 Base(In), t � 1, and
(w1, . . . , wt) 2 VF(In). Furthermore, there exists i, 0  i  t, such that
wi 62 Base(In�1) [ {1}, otherwise w 2 In�1. If we prove that |wi| � n, then
|w| � |wi| � n, which completes the proof.

Set wi = z. Then, by definition, z = a1z1a2z2 · · · akzk, with a1 · · · ak 2 Y ,
and, for each zi 6= 1, 1  i  k, with zi 2 (Īn�1(ai) [ {1}). Moreover
there exists t, 1  t  k, such that zt 6= 1, (otherwise z 2 Y = Base(I0) ✓
Base(In�1)) and zt 62 Īn�2(ai) (otherwise z 2 Base(In�1)). Thus, zt 2 In�1 \
(In�2 [ {1}) and, by induction hypothesis, |zt| � n� 1 which yields |z| � n.

6.4. Regularity and non-regularity of In

In this section we assume that Y ✓ A
+ is a finite set closed under the

conjugacy relation, and such that Y \A⇤a 6= ;, for any a 2 A. The following
statement is a direct consequence of Corollary 5.9.

Proposition 6.11 Let R be a symmetric relation over A. If G = (A,R) is
P4-free, then I0 = Y

⇤R is regular.

Proposition 6.12 Let R be a symmetric relation over A. Let A
0 = A[{ā},

where ā 62 A, a 2 A, and let R̄ = R[{(ā, c), (c, ā) | (a, c) 2 R}. If G = (A,R)
is P4-free, then G

0 = (A0, R̄) is also P4-free.

Proof :
On the contrary, assume that G = (A,R) is P4-free and G

0 = (A0, R̄) is
not P4-free. Therefore, there are four di↵erent letters a1, a2, a3, a4 2 A

0

such that the simple graph underlying G
0, which is induced by this set of

vertices of G
0, is P4, i.e., P4 = (V,E), where V = {a1, a2, a3, a4}, and

E = {(a1, a2), (a2, a3), (a3, a4)}. Of course, ā 2 V , otherwise G = (A,R)
would not be P4-free. For the same reason, a is a member of V since, oth-
erwise, we may substitute in V the vertex ā with a and the simple graph
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underlying G, which is induced by this new set of vertices of G, is still P4.
If (a, ā) 2 E, say (a, ā) = (a1, a2), then (a, a3) 2 R̄ \ E, and we obtain
a contradiction. The same argument applies when (a, ā) = (a2, a3) (since
(a, a4) 2 R̄ \ E) or when (a, ā) = (a3, a4) (since (ā, a2) 2 R̄ \ E). Finally,
if (a, ā) 62 E, there is j, 1  j  4, such that aj 6= a, aj 6= ā, and only
one between (a, aj) and (ā, aj) is in E, which contradicts the definition of R̄.
Thus, G0 = (A0, R̄) is P4-free.

Proposition 6.13 For any n � 0, if G = (A,R) is P4-free and In is regular,

then In+1 is regular.

Proof :
Let In be a regular set and G = (A,R) a P4-free graph. As a preliminary
step, we prove that regularity of In implies regularity of Īn(a), for any a 2 A.
Indeed, by Definition 6.2, Īn(a) = �

�1
C (a)(({�C(a)} [ In)⇤R̄ \ (�C(a)A⇤ \

A
+
�C(a)A⇤)). If In is regular, then the same holds for ({�C(a)} [ In) and,

by Corollary 5.9 and Proposition 6.12, for the language ({�C(a)}[In)⇤R̄ too.
Thus, regularity of Īn(a) follows by the known closure properties of regular
sets. Next, recall that Y is a finite set, and moreover

Base(In+1) =
[

a1···ak2Y

a1(Īn(a1) [ {1}) · · · ak(Īn(ak) [ {1})

Consequently, Base(In+1) is regular too. Finally, by Corollary 5.9, In+1 =
(Base(In+1))⇤R is regular.

The following statement is a direct consequence of Propositions 6.11, 6.13.

Proposition 6.14 If G = (A,R) is P4-free, then In is regular for any n � 0.

7. R-unavoidable and strong R-unavoidable sets

In this section we introduce our notions of R-unavoidable and strong
R-unavoidable sets.

Definition 7.1 Let A be an alphabet, let X, Y subsets of A
+
and let R be a

symmetric relation over A. Y is R-unavoidable in X if there exists k0 2 N

such that for any x in X, with |x| > k0, there exists y 2 Y which is a R-factor

of x, i.e., x = x1yx2, x2x1 2 A
⇤
a, y 2 A

⇤
b and (a, b) 2 R. The smallest k0

satisfying the above condition is called the avoidance bound for Y .
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Next proposition shows that R-unavoidability is a decidable property un-
der suitable hypotheses.

Proposition 7.2 Let A be an alphabet, let X, Y subsets of A
+
and let R be a

symmetric relation over A. If Y is a regular language and X is a context-free

language, then it is decidable whether Y is R-unavoidable in X.

Proof :
Let Y be a regular language and letX be a context-free language. For a letter
b, we set Yb = Y \A⇤b. Then, Y is R-unavoidable in X if and only if Z = X \
[(a,b)2R(A⇤aYbA

⇤[A⇤YbA
⇤
a) is a finite set. Indeed, if Z is finite, for any word

x in X, longer than any word in Z, we have x 2 [(a,b)2R(A⇤aYbA
⇤[A⇤YbA

⇤
a),

hence x has a R-factor in Y . Conversely, if Y is R-unavoidable in X and k0 is
a subword avoidance bound for Y , no word of length greater than or equal to
k0 belongs to Z. Since R is finite, the language [(a,b)2R(A⇤aYbA

⇤[A⇤YbA
⇤
a)

is regular. Therefore, Z = X \ [(a,b)2R(A⇤aYbA
⇤ [ A

⇤
YbA

⇤
a) is a context-

free language [16, 20]. Since there are algorithms to determine whether a
context-free language is finite [20], the conclusion holds.

By Theorem 2.1, if S is a (1, 3)-CSSH system, then Lin(L(S)) is context-
free. Moreover, it is known that if X is a context-free language and Y is a
regular set, then XY

�1 = {w 2 A
⇤ | wy 2 X for some y 2 Y } is context-free

[16]. Thus, the set of the prefixes of Lin(L(S)) is also context-free. Hence,
by Proposition 7.2, it is decidable whether Y = Lin(I) is R-unavoidable in
Lin(L(S)) and in the set of the prefixes of Lin(L(S)).

Definition 7.3 Let A be an alphabet, let X, Y subsets of A
+
and let R be a

symmetric relation over A. The set Y is strong R-unavoidable in X if there

exists k0 2 N, k0 > 0, such that for any word x 2 X of length at least k0,

there are y 2 Y and x1, x2 2 A
⇤
such that x1x2 2 X, x = x1yx2, |x1|  k0,

x2x1 2 A
⇤
a, y 2 A

⇤
b and (a, b) 2 R. The smallest k0 satisfying the above

condition is called the strong avoidance bound for Y .

Of course, if Y is strong R-unavoidable in X, then Y is R-unavoidable in
X. We do not know whether a converse of this statement holds, by eventually
adding supplementary hypotheses.

8. Su�cient conditions for regularity

Lemma 8.1 Let S = (A, I, R) be a (1, 3)-CSSH system and let Y = Lin(I).
If Y is strong R-unavoidable in Lin(L(S)) with strong avoidance bound k0,
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then Lin(L(S)) = ([n�0In) \ {1} = Ik0 \ {1}.

Proof :
By Theorem 6.9, Lin(L(S)) = ([n�0In) \ {1}. Hence it su�ces to show that
[n�0In = Ik0 . By contradiction, assume [n�0In \Ik0 6= ;. Let x be a shortest
word in [n�0In \ Ik0 . Hence, by Propositions 6.4, 6.10, |x| > k0 and, of
course, x 62 Y .

Since k0 is the strong avoidance bound for Y and x 2 ([n�0In) \ {1} =
Lin(L(S)), there are y 2 Y and x1, x2 2 A

⇤ such that x1x2 2 Lin(L(S)),
x = x1yx2, |x1|  k0, x2x1 2 A

⇤
a, y 2 A

⇤
b and (a, b) 2 R. Since x was of

minimal length, x1x2 2 Ik0 . If x1 = 1, then x = yx2 2 Ik0 , a contradiction
with the hypothesis. Otherwise, by Proposition 6.7, the word x is again in
Ik0 , contrary to hypothesis.

Theorem 8.2 Let S = (A, I, R) be a (1, 3)-CSSH system and let Y =
Lin(I), with A = alph(Y ). If Y is strong R-unavoidable in Lin(L(S)) and

G = (A,R) is P4-free, then Lin(L(S)) is regular.

Proof :
Let S = (A, I, R) and Y be as in the statement. By Lemma 8.1, if Y is
strong R-unavoidable in Lin(L(S)) with strong avoidance bound k0, then
Lin(L(S)) = ([n�0In) \ {1} = Ik0 \ {1}. Hence, the conclusion follows by
Proposition 6.14.

9. Future Perspectives

In this paper we have presented a su�cient condition for the regularity
of languages generated by (1, 3)-CSSH systems S = (A, I, R) (Theorem 8.2).
There are several issues that follows from this and the other results stated in
this paper. Undoubtedly, the main open question is whether we may decide
the strong R-unavoidability of Lin(I) in Lin(L(S)). The other main question
is whether a converse of Theorem 8.2 may be stated.

Regarding that, we recall that in [12], it has been proved that if Lin(L(S))
is regular, then Lin(I) is unavoidable in the set Pref(Lin(L(S))) of the pre-
fixes of Lin(L(S)). In particular, for the subclass of hybrid systems, defined
in the same paper by a condition on R, the regularity of the splicing lan-
guage implies that Lin(I) is unavoidable in A

⇤. We do not know whether
this result may be strengthened. More precisely, we do not know if, at least
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for hybrid systems, R-unavoidability of Lin(I) (in A
⇤ or in Pref(Lin(L(S)))

or in Lin(L(S))) is a part of a set of necessary and su�cient conditions for
the regularity of the splicing language.

Another question is the connection with wqo. Indeed, as already said in
[13], the authors proved that a language is regular if and only if it is upward
closed with respect to a monotone wqo. A quasi-order  on A

⇤ is monotone
if, for any words u, u

0
, v, v

0, u  v, u0  v
0 implies uu

0  vv
0. Thus the

problem of finding conditions under which Lin(L(S)) is upward closed with
respect to a monotone wqo arises.

Finally, we focused on (1, 3)-CSSH systems. The notions presented here
could be extended in order to eventually obtain more general results con-
cerning regularity of languages generated by CSSH systems.
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