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The interaction between the tire and the road is crucial for understanding the dynamic
behavior of a vehicle. The road-tire friction characteristics play a key role in the design of
braking, traction, and stability control systems. Thus, in order to have a good performance
of vehicle dynamic stability control, real-time estimation of the tire-road friction coefficient is
required. This paper presents a new development of an on-line tire-road friction parameters
estimation methodology and its implementation using both LuGre and Burckhardt tire-road
friction models. The proposed method provides the capability to observe the tire-road friction
coefficient directly using measurable signals in real-time. In the first step of our approach,
the recursive least squares is employed to identify the linear parameterisation (LP) form of
Burckhardt model. The identified parameters provide through a T-S fuzzy system the initial
values for the LuGre model. Then a new LuGre model-based nonlinear least squares (NLLS)
parameter estimation algorithm using the proposed static form of the LuGre to obtain the
parameters of LuGre model based on recursive nonlinear optimization of the curve fitting
errors, is presented. The effectiveness and performance of the algorithm are demonstrated
through the real time model simulations with different longitudinal speeds and different kinds
of tire on various road surface conditions in both Matlab/Carsim environments as well as
collected data from real experiments on a commercial trailer.

Keywords: Nonlinear least squares (NLLS) identification; recursive estimation;
Burckhradt & LuGre friction models; longitudinal vehicle dynamics

1. Introduction

Since the motion of a ground vehicle is primarily determined by the friction forces trans-
ferred from roads via tires, information about the tire/road friction is critical for many
active vehicle safety control systems, including longitudinal control, yaw stability control
and rollover prevention control systems. In particular friction formation, is a crucial tool
for Brake Assist Systems (BAS), Electronic Stability Control (ESC-ESP) and Adaptive
Cruise Control (ACC) systems that have recently become essential for active safety sys-
tems [1, 2]. For instance, in the case of adaptive cruise control, estimation of friction
coefficient (µ) enables the braking distances to be adjusted in real time (see e.g. [3]).
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Many research papers dealing with stability monitoring and control have also proposed
the explicit use of friction coefficient information in their various calculations [4]. It has
also been demonstrated that if this real-time information is automatically identified and
vehicle control and intelligent strategies are adjusted according to the identified results,
this can mainly enhance the vehicle safety performance undoubtedly.
With this description the real-time estimation of the tire-road friction characteristics

on roads with inhomogeneous friction properties (mixed-µ roads) is of fundamental im-
portance in each active safety system and thus this issue has been even more important
in recent years. Unlike other easily measurable parameters, such as the wheel angular
speeds, vehicle acceleration and wheel load, there is currently no economically feasible
sensor that can be installed in the vehicle to measure the friction parameters. Because
many factors affect road friction coefficient, such as road surface conditions, tire types,
vehicle and wheel velocity [5], the adaptive identification of maximum friction coefficient
is always a complicated and challenging issue in the automotive engineering. There are
different approaches and experimental studies to try to find the solution of this problem.
An excellent review can be found in [6].
There are already some interesting solutions on the topic of this problem. For example,

the physical sensor-oriented techniques measures the road surface friction conditions
directly or indirectly by using special sensors, such as tire noise sensor, optical sensor,
tire strain and pressure sensors. In [7, 8], the road surface condition is recognized on the
basis of image processing techniques and the image is taken using a carmounted camera.
This method is effective at measuring the road surface condition. However, this method
is extremely influenced by the direction and intensity of light and the clarity of the image
is often reduced. Eichhorn used acoustic sensors near the tire to detect the road condition
from tire-road sound [9]. These solutions may perform well, but are quite expensive. They
also have the principal and basic limitations due to the physically detected conditions.
Another available solution which is utilized in the present work for this identification

purpose, is the well-known slip-based approach, which uses the tire/road friction force
models based on the wheel slip [10]. Real-time and robust process in this case, have
recently become more important. An excellent review can be found in [4]. In [11] a sliding
mode control is used together with a Grey predictor to estimate the road conditions. Such
approaches are computationally demanding and difficult to implement in real-time and
also have a slow convergence.
In the present work, the friction coefficient is modeled with semi-empirical formulas,

which generate the steady-state wheels behavior. One of the widely-used models is The
Burckhardt Model [12], which is easy to linearize to apply recursive least squares (RLS)
estimator and allows a good correlation to be obtained with experimental results. Tanelli
et al. [13] have proposed a new real-time identification approach for the wheel slip cor-
responding to the peak of the tire-road friction curve using linearized form of simple
Burckhardt model, based on the widely-used recursive least squares (RLS) methods. In
addition to this important approach, maximum likelihood estimation method using Non-
linear Burckhardt model however, was not fast, accurate and recursive, but also has been
proposed. De Castro et al. [14] have improved this approach by proposing more accurate
linear parametrization (LP) for Burckhardt model and offering the constrained version of
RLS for the estimation case. Although this approach solves the problem of identification,
it also doesn’t have enough fitting with experimental data due to tire changes and has a
linearization issue and its own errors. In order to obtain more reliable detections, some
other prediction approaches have been proposed and the results have been presented
for different road surfaces [15–17]. Most of these methods have employed simple vehicle
dynamics because of estimation accuracy problem on a more complex vehicle dynamic
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model.
Based on the above discussion, it can be said that limited works have been reported for

a real-time and robust detection of tire/road conditions. Therefore, this work is focused
on implementing a computationally efficient algorithm for on-line identification of surface
conditions for different tire types and road surface conditions during braking. First, the
system is modeled and a new efficient real-time estimation approach is presented [18].
Furthermore in order to consider the friction coefficient dependence on velocity and
also to involve more properties of real friction behavior such as tire situation, LuGre
dynamic friction model, is used together with Burckhardt Model, which proposing an
improved version of the algorithm, which accurately fits curves and allows the adaptation
to different road conditions [19]. There is also a discussion about the possibility of the
presented approach to estimate the road conditions, see also [20].
In the proposed method, the LuGre model is a static one obtained from the LuGre dis-

tributed model. Then a new LuGre model-based nonlinear least squares (NLLS) param-
eter estimation algorithm (based on recursive nonlinear optimization of the curve fitting
errors) using the proposed static form of the LuGre to obtain its parameters is presented.
Optimization problem is solved by using an interior Trust-Region method. This method
is robust and gives faster convergence rates by proper initialization of the vector function
[21–23]. In order to initialize, the RLS identification is employed to identify the linear
parametrization (LP) form of Burckhardt model in real time. The identified parameters
provide through a fuzzy system the initial values for the LuGre model and so the fuzzy
rule base plays a key role as converter between two different structures. The advantage
of the proposed approach is that, although it uses a nonlinear identification system, it
still results relatively good as concerns convergence rate if it is compared with the results
of linear approach. This also involves more properties of real friction behavior especially
due to having nonlinear scheme. As was said, the presented approach has the advantage
of computational simplicity and also the parameters can be obtained simultaneously and
recursively not only for the linear estimation, but also for the general nonlinear system.
This work also presents the vehicle dynamics and tire-surface interaction model fol-

lowing which the method to identify surface characteristics. This mixed identification
strategy utilizes both presented ways using Takagi-Sugeno fuzzy method to convert Bur-
ckhardt road type characteristics to LuGre road-tire parameters. The organization of the
remaininig part of this paper is as follows. In Section 2 the four wheel vehicle model,
the Burckhardt and LuGre dynamic tire models, are presented, respectively. Different
simulation results and analysis based on a full-vehicle model and experimental data, are
discussed in Section 4. Conclusive remarks are presented in Section 5.

2. System description

A simple but effective four-wheel vehicle considering vehicle/tire/road dynamics is de-
scribed in this section [4, 24].The dynamic equations are the result of application of
Newton-Euler law for the vehicle and wheel.
The vehicle dynamic is given by summing the total forces applied to the vehicle with

braking operation. Ignoring the road gradient [25] and wind speed it is represented as

v̇v =
−1

Mv

[∑

Fxi +Bvvv +Dav
2
v

]

(1)
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Figure 1. Vehicle dynamics scheme during deceleration.

where vv[m/s] is the longitudinal velocity of the vehicle; Mv[kg] is the mass of the
vehicle at center of gravity (CG); Fxi[N ] denotes the tire/road friction force for the
wheel {i = fl, fr, rl, rr} , (f = front/r = rear, l = left/r = right); Bv is the vehicle
viscous friction; Da is the aerodynamic drag force coefficient so that

Da = 0.5ζCdA (2)

with ζ[kg/m3] being the air density, Cd the aerodynamic drag coefficient, and A[m2]
the frontal area of the vehicle. The tire/road friction force for the ith wheel, is given by

Fxi = µ(λ)FNi, {i = fl, fr, rl, rr} (3)

where the coefficient of friction µ is a function of the slip λ; and FNi[N ] denotes the
vertical wheel reaction force applied to the wheel.
As it has been previously discussed by the authors [26, 27], the weight is transferred

between the wheels during different car accelerations, thus FNi varies at the different
wheels. The model force, FNi for the four wheel forces can be expressed as follows

FNi =







Mv(lrg+hax)
l (12 + hay

dfg
) i = fl

Mv(lrg+hax)
l (12 −

hay

dfg
) i = fr

Mv(lfg−hax)
l (12 + hay

drg
) i = rl

Mv(lfg−hax)
l (12 −

hay

drg
) i = rr

(4)

where ax and ay (rightwards positive) are the longitudinal and lateral acceleration of
CG, respectively, hdenotes the height of CG, lr, lf are distance from CG to rear and front
axles with l = lr + lf as the wheelbase of the vehicle, see Fig. 1 and 2, and df , dr, are
the transversal distances between wheels on the front and rear axles, respectively [28].
The ith wheel dynamic by summing the rotational torque yields to

ω̇wi =
1

Jw
[−Tbisign(ωwi) +RwFxi + Te] , (5)

{i = fl, fr, rl, rr}
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Figure 2. Vehicle wheel with lumped friction (left), and distributed friction (right).

where ωwi[rad/s] is the angular velocity of the ith wheel, Jw[kg.m
2] denotes the rota-

tional inertia of the wheel, Tbi[N.m] is the braking torque on the ith wheel, Rw[m] is the
radius of the wheel, and Te[N.m] is main shaft torque on the wheel [29]. Longitudinal
Slip λ is defined as the difference between vehicle actual longitudinal velocity and wheel
circumferential velocity, i.e.

λ =
vv − vw

max {vv, vw}
(6)

with vw = Rwωw . According to the adopted definition λ ∈ [−1, 1], and λ is negative
in traction and positive during braking.
As experimentally investigated in [30], the friction coefficient can be modeled with

semi-empirical formulas, which generate the steady-state wheels behavior. One of the
most widely-used models is the Burckhardt Model, which is easy to linearize for applying
recursive least squares (RLS) identification method and allows a good correlation to be
obtained with experimental results. On the other hand, as shown in Fig. 3, with increasing
the vehicle speed, the friction coefficient for a given road condition reduces, which is a
fact that is generally not considered in these formulas [5].
Therefore in order to consider the friction coefficient dependence on velocity and also

to involve more properties of real friction behavior such as tire situation, LuGre dynamic
friction model [31], is chosen in addition to the Burckhardt Model, which is accurately
fitted curves that allows the adaptation to different road conditions while this last model
is identifying the road-tire friction parameters [32].
The Burckhardt friction model can be represented by the following equations:

µ(λ; cθ) = c1(1− e
−λc2)− λc3 (7)

where the Burckhardt elements vector is cθ = [c1 c2 c3]
T ; c1, c2 give the maximum

value of friction curve and the friction curve shape, respectively; c3 represents the friction
curve difference between the maximum value and the value at λ = 1.
Also the lumped LuGre model, as proposed in [5, 31] is given as,

ż = vr − θ
σ0|vr|
g(vr)

z

Fx = (σ0z + σ1ż + σ2vr)Nv

g(vr) = µc + (µs − µc)e
−
∣

∣

∣

vr
v0

∣

∣

∣

1/2
(8)
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Figure 3. Three-dimensional plots of the corresponding (µ, λ, v) for LuGre model.

θ is the road condition parameter that capturing the changes in the road characteristics,
σ0 is the rubber longitudinal lumped stiffness, σ1 is the rubber longitudinal lumped
damping, σ2 is the viscous relative damping, µc is the normalized Coulomb friction, µs is
the normalized static friction, v0 is the Stribeck relative velocity, z is the internal friction
state, and vr is a relative velocity defined as vr = (vv − Rwωw) . A three- dimensional
plot of the corresponding (µ, λ, vv) for this model is shown in Fig. 3.
Assuming that the wheel radius (Rw) remains constant during braking, according to

the λ definition in equation (6), a derivation of the longitudinal ith wheel slip dynamics
is obtained by taking the derivative of the longitudinal slip, as shown below.

λ̇i = −
Rw
vv
ω̇wi +

ωwiRw
v2v

v̇w (9)

Ignoring main shaft torque, substituting Rwωwi = vv(1−λ), the vehicle rotational and
dynamic model in equations (4), (5) and expression of Fxi in equation (3) into the above
equation, yields to

λ̇i =−
1

vv





(1− λi)
∑

i
FNi

Mv
+
Rw

2

Jw
FNi



µ(λi)

+
Rw
Jwvv

Tbisign(ωwi)−
1− λ

Mv
(Davv +Bv),

{i = fl, fr, rl, rr}

(10)
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3. IDENTIFICATION OF TIRE-ROAD FRICTION

CHARACTERISTICS

According to the equation (4), summing the total vertical wheel reaction forces applied
to the vehicle yields

∑

i

FNi =Mvg (11)

In order to obtain µ(λi) = µ(ωwi, Tbi, vv, λi), the result of the Equation (11) must be
applied to the inverted form of Equation (10), and so it can be written as follows

µ(λi) =
Rw

Jwvv
Tbisign(ωwi)− λ̇i −

1−λi

Mv
(Davv +Bv)

1
vv

[

(1− λi)g +
R2

w

Jw
FNi

] (12)

{i = fl, fr, rl, rr}

According to equation (12), in order to estimate (µ), the signals ωwi, vv, λi and Tbi are
required at each wheel {i = fl, fr, rl, rr} in real time. Angular velocity of each wheel
(ωwi) can be measured easily from the rotary encoders. The modern electromechanical
brakes (EMB) utilize numerous sensors installed on the EMB caliper and so the brake
torque can be directly measured using the measurements of the brake clamping force.
Hence the braking torque of ith wheel (Tbi(t)) is calculated by Tbi = kBFbi , where
the clamping force Fb(t) is the output of the servo-controlled EMB. In this study, the
electromechanical brake will be considered, and its closed-loop dynamics is described as
a first-order system transfer function with delay as follows [4]

Gcaliper =
wrot

s+ wrot
e−sτM (13)

Remark 1 Although the braking torque measurement was solved by Tbi = kBFbi [4], it is
important to note that the friction parameter between the brake pads and the brake disk
kB ∈ ℜ

+ is not constant and high temperature rise can even result in friction coefficient
variation between brake pads and brake disk in non-negligible range. For instance in [33]
it is explained how the temperature affects the friction coefficient on the brake torque
characteristic.

Therefore braking torque can be presumed to be measurable in real-time. When vv 6=
vw, the longitudinal speed vv is principally not measurable and needs to be estimated (see
[34]). Hence the parameter λi can easily calculated from λi = (vv − Rwωwi)/vv. Finally
µ(λi) can be obviously obtained by substituting vv = Rwωwi/(1− λi) and equations (4)
into the equation (12) as shown

µ(λi; i) =

Tbi(t)sign(ωwi(t))
Jw

− Φ1(t)λ̇i(t)−
Φ2(t)
Mv

gωwi(t)
RwΦ1(t)

+ RwMv

2Jwl
Ξ1i(t)(1 + Ξ2i(t))

, (14)

{i = fl, fr, rl, rr}
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





Ξ1fl(t)
Ξ1fr(t)
Ξ1rl(t)
Ξ1rr(t)







=







1 0
1 0
0 1
0 1







(
lrg + hax(t)
lfg − hax(t)

)











Ξ2fl(t)
Ξ2fr(t)
Ξ2rl(t)
Ξ2rr(t)
Φ1(t)
Φ2(t)











= diag(1, 1, 1, 1, ωwi(t), ωwi(t))













1 + 2hay(t)
dfg

1− 2hay(t)
dfg

1 + 2hay(t)
drg

1− 2hay(t)
drg

1
1−λi(t)

DaRwΦ1(t) +Bv













As seen from the friction coefficient estimation in equation (14) and according to
the equation µ = Fxi/FNi , the vertical wheel reaction force plays an important role
in determining the maximum force the tire can generate. For the same road surface
and tire type, a larger vertical force, results in a larger longitudinal force. According
to the equation (14) the mass of the vehicle is the main portion of the normal force,
and the vehicle longitudinal acceleration forces acting on the vehicle during longitudinal
maneuvers redistribute the vertical forces between the tires.

3.1. Setting the initial conditions

In equation (7), the Burckhardt model is nonlinear due to the exponential term in c2 .
If the linear form of µ Burckhardt model is determined, its unknown parameters will be
estimated by linear least-squares methods. Therefore the problem is finding an optimal
linear parameterization (LP) for the single nonlinear term f(λ, c2) = e−c2λ with the
approximating domain [0, λ̄]×D,

f̂(λ,w, β) = [g1(λ,w), · · · , gn(λ,w)]β

= G(λ,w)Tβ
(15)

where the principal functions for LP are

(1) Exponential: GE(λ,w) =
[
ew1λ ew2λ , · · · , ewmλ

]T

(2) Logistic sigmoid:

GE(λ,w) =
[

1
1+e−w1λ−w2

, · · · , 1
1+e−wm−1λ−wm

]T

with w = [w1 w2 , · · · , wm] ∈ ℜ
m

Even though both functions can produce a reasonable LP results, the number of the
parameters of exponential function is less than logistic sigmoid.

Remark 2 In [35, 36] the different values of optimum w were used in exponential function
to decrease the approximation error and to give the good LP with the number of the basis
n = 4. On the other hand, reducing the number of the exponential functions, can speed
up the estimation. Therefore, in this paper, the exponential functions were implemented
for the real-time estimation with the optimum w as G(λ) = [e−4.99λ e−18.43λ e−65.62λ]T
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[37]. This approximation reduces the number of exponential functions to n = 3 and it is
as accurate as the complex LP forms presented in [35].

As a result the LP is as follows

µ̂(λ; t) = a1 − a2λ+ a3e
−4.99λ + a4e

−18.43λ + a5e
−65.62λ (16)

It can be recognized as linear regression

µ̂(λ; t) = φ(λ)Ta

φ(λ; t) =
[
1 − λ e−4.99λ e−18.43λ e−65.62λ

]T

a = [a1 a2 , · · · , a5]
T

(17)

where a1 and a2 are equal to c1 and c3 in Burckhardt model (7). Therefore, the recursive
least squares (RLS) algorithm [38], can be used to update the unknown parameter vector
of a iteratively, using the past input-output data contained within the measured regressor
vector φ(t).

1: for k ← 0, 1, ... do Measure and calculate µk and φk.
2: calculate the estimation error, ek = µk − φk

T ck−1

3: Calculate Kk and Pk as

Kk =
Pkφk

ζ + φk
TPkφ̇k

; Pk =
1

ζ

[

Pk−1 −
Pk−1φkφk

TPk

ζ + φk
TPkφk

]

4: Update the estimated parameter as

ck = ck−1 +Kkek.

5: k = k + 1
6: end for

According to the algorithm 1, ek is the difference between the system actual output at
the present sample and the output predicted in previous sample, Kk is the update gain
vector and Pk is the covariance matrix. The parameter ζ is called the forgetting factor,
which is chosen between (0.9, 1) and adjusts the influence of old data. While the small
values of forgetting factor, tracking ability to time-varying parameters improve at the
expense of sensitivity to noises; its larger values will provide robustness to the noise but
its tracking ability will be poor.
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Figure 4. Proposed NLLS algorithm architecture.

The structure of the proposed algorithm is shown in Fig. 4. As shown in this structure,
in order to complete the identification steps Burckhardt road type characteristics should
be converted to LuGre road-tire parameters. The proposed formulation for this case is
an instance of the Takagi-Sugeno (TS) fuzzy system (see Fig. 5).

Figure 5. Fuzzy logic based parameter conversion.

Hence the rule base for this model can be written using the set of M rules [39], as
follows:

R =
{
R1
Bklg, R

2
Bklg, , · · · , R

M
Bklg

}
(18)

where the kth rule has the following format:

RkBklg : IF C1 is Ãk1 OR C2 is Ãk2 OR C3 is Ãk3, THEN

θup is B̃k
1 AND θ is B̃k

2 AND θlow is B̃k
3 , k = 1, ..M

where Ãkj are the classified inputs and B̃k
j are fuzzy sets defined by multivariate mem-

bership functions using experimental results of Burckhardt and LuGre models [4, 5].

3.2. NLLS estimation approach

Lemma 1 For any given road condition and tire types if v, ω are assumed to be constant
during each estimation period and conditions of braking case hold, then the following
static form can be used to identify LuGre tire-road friction parameters by fitting the
model to experimental data, i.e.,

µb(λ) =
g(λ)

θ

[

1 +
g(λ)(λ+ 1)

θσ0λL
(e

−
σ0λLθ

g(λ)(λ+1) − 1)

]

+ σ2λvv (19)
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where

g(λ) = µc + (µs − µc)e
−
∣

∣

∣

λv
v0

∣

∣

∣

1/2

Proof. See Appendix A for the derivation of the model. �

After collecting N samples of λi ∈ ℜ
N at the current time, nonlinear least squares

(NLLS) approach can be set up to the estimation method. Let µa ∈ ℜ
N to be the

vector of friction which is calculated from the equation (14) for different values of λi and
µ̂b(λi,Θ) ∈ ℜN be the vector of LuGre friction model (19) with unknown parameters
and the sample vector of λi.

fǫ(Θ) = |µa − µ̂b(λi,Θ)| (20)

Now the LuGre unknown parameters are available by minimizing the estimation error
fǫ(λi) [40]. Iterative methods for nonlinear optimization can be classified into line search
methods and trust region methods. Trust region methods are robust and give faster
convergence rate for minimizing vector-function with large number of elements. Thus in
order to solve subproblem (21) an interior Trust-Region method [21, 22], is utilized in
the present work.

minimize fǫ(Θ) subject to Θ ∈ [llo, lup] , (21)

Assuming that the first and second derivatives of fǫ are all continuous in a neighbor-
hood Df , the quadratic approximation can be defined by the first two terms of local
Taylor expansion of fǫ(Θ) at Θ , i.e.,

fǫ(Θ + s) ≈ fǫ(Θ) + sT∇fǫ(Θk) +
1

2
sT∇2fǫ(Θk)s

︸ ︷︷ ︸

ψk(s)

(22)

which yields to

min
s∈ℜN

sT gk +
1
2s
THks = ψk(s)

such that ‖s‖2 ≤ ∆k,
(23)

where gk = ∇fǫ(Θk) is the gradient at the current iteration, Hk = ∇2fǫ(Θk) is sym-
metric matrix denoting the Hessian of fǫ(Θ) and ∆k > 0 is a trust region radius. The
standard form ψk(s) is a scalar function which can be easily solved with computational
optimization methods [23, 41]. That is to say ψk(s) is a model of reduction in fǫ within
the neighborhood of iterate Θk. This suggests that it may be desirable to calculate
Trust-Region step sk which solves subproblem (23). Now Θk can be updated by 8.2 (see
algorithm 2).
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Remark 3 As it is pointed in step 8.3 (algorithm 2) if updating term Θk+1 = Θk + sk
produces a sufficient reduction in fǫ, then ∆k can be increased; else if it doesn’t satisfy
the acceptable range of reduction then ∆k should be decreased.

The convergent solution is achieved after only about 5 iterations. The proposed iden-
tification method is summarized in algorithm 2.

1: Initialisation of the Burckhardt parameter vector
2: repeat

3: Measure µa ∈ ℜ
N and calculate λi ∈ ℜ

N using (14)
4: Determine the Burckhardt parameter vector using Algorithm 1 RLS method
5: Calculate fǫ(Θ) = µa − µ̂b(λi,Θ)
6: Obtain Θ1, llo, lup ∈ ℜ

N using fuzzy (18)
7: Given ∆1 > 0 let k = 1,
8: while (Not converged) do
9: 8.1) Solve subproblem (23) giving sk

10: 8.2) Update Θk, i.e.

Θk+1 =

{
Θk if Θk + sk /∈ [llo, lup] or fǫ(Θk) ≤ fǫ(Θk + sk)
Θk + sk otherwise,

(24)

11: 8.3) Trust region radius update. Set

rk = (fǫ(Θk)− fǫ(Θk + sk)) /ψk(sk)

∆k+1 ∈

{
[τ3 ‖sk‖2 , τ4∆k] if rk < τ2,
[∆k, τ1∆k] otherwise;

12: 8.4) Update gk, Hk and k = k + 1
13: end while

14: Update inputs
15: until (there are no more input data available)

According to the algorithm 2, the typical values of constants τi(i = 1, ..., 4) in [41], are
τ1 = 2, τ2 = τ3 = .25, τ4 = 0.5. The following assumption will be made throughout the
paper.

Assumption 1 Let fǫ(Θk) : ℜ
n → ℜ is twice continuously differentiable and bounded

below on ℜn. Assume that there exists a bounded convex closed set Ω ⊂ ℜn such that Θk

are in Ω for all k. Also note that ∇2fǫ(Θ
∗
k) is assumed to be nonsingular where Θ∗

k is a
limit point of {Θk}.

Theorem 1 For the friction model with unknown parameters and algorithm in (8)
under assumption (1) if the conditions of algorithm (2) hold, then the asymptotic con-
vergence is guaranteed and the process is completely identifiable.

12



Proof. According to the problem conditions assume that fǫ(Θk) : ℜn → ℜ is twice
continuously differentiable and bounded below on ℜn. In order to prove the theorem
first is noted that ∇2fǫ(Θ

∗
k) is assumed to be nonsingular where Θ∗

k is a limit point of
{Θk}. Now by the conditional john-reigns lemma [42], it can be shown that ∇2fǫ(Θ

∗
k) is

positive definite. Choose δ > 0 so that ∇2fǫ(Θ
∗
k) is positive definite for ‖Θ−Θ∗‖ ≤ δ.

Hence there is an ǫ1 > 0 with ‖Θk −Θ∗‖ ≤ δ such that

ǫ1 ‖sk‖ ≤ ‖∇fǫ(Θk)‖ . (25)

By referring to [43], it can be proved that {∇fǫ(Θk)} converges to zero, and thus there
is an index k1 ≥ 0 such that

‖∇fǫ(Θk)‖ ≤
1

2
ǫ1δ, k ≥ k1. (26)

Since Θk+1 = Θk+ sk using (25) and (26), for k ≥ k1 implies that ‖Θk+1 −Θ∗‖ ≤ δ, if
and only if ‖Θk −Θ∗‖ ≤ δ/2. Now, since∇2fǫ(Θ

∗
k) is positive definite, since∇fǫ(Θ

∗
k) = 0,

and since Θ∗
k is a limit point of {Θk}, it is easy to show that there is an index k2 ≥ k1 with

‖Θk2 −Θ∗‖ ≤ δ/2, it follows that fǫ(Θ) ≤ fǫ(Θk2), ‖Θ−Θ∗‖ ≤ δ ⇒ ‖Θ−Θ∗‖ ≤ δ/2
which yields for k ≥ k2,

‖Θk −Θ∗‖ ≤ δ
︸ ︷︷ ︸

δ chosen

⇒ ‖Θk −Θ∗‖ ≤ δ/2. (27)

Hence δ = 0, is chosen to satisfy (27) and leads to {Θk} → Θ∗. Since fǫ(Θ
∗) =

|µa − µ̂b(λi,Θ
∗)| = 0 the parameter estimation error given by above equation consistently

converges to zero. Thus the theorem 2 is proven. �

4. SIMULATION RESULTS

The estimation of tire/road friction conditions is one of the applications that can benefit
most from the presented NLLS identification algorithm. To highlight this aspect, this
section presents simulation results to validate the proposed non-linear model in estimat-
ing the longitudinal friction curve and other friction characteristics with the presented
NLLS method. The simulation is performed under two different conditions (fixed-µ and
mixed-µ). Since the friction parameters results of vehicle different wheels do not show
considerable differences, average value of the four wheels is illustrated in the figures.
Since the estimation needs the stable value of the slip under varying friction conditions,

the slip control method presented in [44] has been used for this case (see Fig. 6). In order
to have more accurate identification results, the rubber stiffness σ0 is assumed to be
available, thus Θ = θ. The sampling time of the simulation was set to 5ms and In order
to consider more realistic settings, the prediction has been done on noisy simulation data.
Zero mean white noises have been added to the wheel speed with σ2ω = .01rad2/s2, to the
braking torque with σ2Tb = 10N2m2, and to the rubber stiffness with σ2σ0

= 151/m2, due
to the measurement noise by wheel encoder, EM-brakes and rubber stiffness uncertainty,
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Figure 6. Implementation of the proposed NLLS.

respectively. In the case of vv, the variances have been included in the velocity by the
range of σ2v ∈ [.15 .3] m2/s2 to indicate estimation errors on road with different roughness.
Hence the longitudinal velocity estimation results of [34] have been used in this case. The
main parameter values for the vehicle are listed in Table 1.

Table 1. Vehicle nominal parameters [4, 5]

Symbol Value Symbol Value

Rw .3 [m] L .2 [m]
Jw 1 [kg.m2] µc .8
lf 1.3 [m] µs 1.55 [m]
lr 1.4 [m] σ0 181.54 [1/m]
df , dr .9 [m] σ1 4.94 [s/m]
h .5 [m] σ2 .0018 [s/m]
Mv 900 [kg] v0 6.57 [m/s]
ωrot 70 [rad/s] τM 10 [ms]

4.1. Constant road/tire friction estimation

In order to benchmark the results, the first task is to compare the identification methods
for the constant friction conditions. Two different driving scenarios are considered during
braking for this case, where the desired vehicle longitudinal speed is changed from 25
m/s (90km/h) to 16 m/s (56 km/h) on dry asphalt during braking (see Fig. 8) and
deceleration/braking from 25 to 23 m/s on snow (Fig. 7), respectively.

Table 2. LuGre/Burckhardt curve fitting results in v = 25m/s

θ 1 1.5 2 2.5 3 4 5

c1 .962 .681 .528 .434 .369 .285 .234
c2 19.51 28.12 36.79 45.56 54.42 72.48 91
c3 .0891 .0874 .0801 .0724 .0660 .0560 .0401

Both Burckhardt based identification [3] and proposed identification results have been
illustrated for these scenarios. Figs. 8 and 7 clearly show that the combined NLLS method
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Figure 7. Friction parameters identification results on dry asphalt: (a) wheel slip and friction coefficient, (b)

vehicle angular and longitudinal velocities, (c) curve fitting results.

Figure 8. Friction parameters identification results on hard-packed snow: (a) wheel slip and friction coefficient,
(b) vehicle angular and longitudinal velocities, (c) curve fitting results.

using both Burckhardt and LuGre models gives better results for the different surfaces.
This can also be justified by noting that, combined NLLS method considers more realistic
features, such as changes of tire friction characteristics and vehicle longitudinal velocity.
Curve fitting based equalization of LuGre and Burckhardt friction models results, using
the experimental results of [5], where the desired vehicle longitudinal speed is 25 m/s
are listed in table 2.
In order to evaluate the performance of the proposed algorithm more objectively, it is

reimplemented in Matlab/Carsim environment. CarSim is a commercial software package
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Figure 9. Friction parameters identification results on 40% slippery surface: (a) wheel slip and friction coefficient,
(b) curve fitting results.

for simulating and analyzing the behavior of vehicles in response to steering, braking, and
acceleration inputs. The simulation is performed under three different road conditions
(40% , 55% and 70% slippery surfaces).

Figure 10. Friction parameters identification results on 55% slippery surface: (a) wheel slip and friction coefficient,

(b) curve fitting results.

The values listed in table 1 are also considered for this simulation and vehicle model
(see Fig. 6) is re-evaluated as Carsim output. The results shows the proximity between
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Simulink and Carsim outputs as well as accurate estimation results for the proposed
algorithm.

Figure 11. Friction parameters identification results on 70% slippery surface: (a) wheel slip and friction coefficient,
(b) curve fitting results.

In the following, the algorithm is also validated using data from experiments. The
experimental data have been collected during tire testing experiments on road conducted
using a trailer able to impose slip conditions to the tire during a braking maneuver and
to measure vertical and longitudinal forces. They have been acquired with a sampling
frequency of 100 Hz. According to the results in Figs. 12 and 13, the effectiveness of the
estimation of frictional behavior in real experiments shows the same accuracy was seen
in simulation results.

Figure 12. curve fitting experimental results of frictional characteristics for dry asphalt

As it is clear in the Figs. 12 and 13, the maximum point of the estimated friction,
which also corresponds to the optimal slip value, is indicated by a star symbol. The
tests have been conducted on the same surface in two different conditions (dry and wet)
using two identical tyres. By computing the estimated friction maximum point for both

dry (µ̂drymax = 1.2180) and wet conditions (µ̂wetmax = 1.0979) and comparing them with the

relative real values (µwetmax = 1.0983, µdrymax = 1.2181), it is observed that estimation results
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Figure 13. curve fitting experimental results of frictional characteristics for wet asphalt

are very accurate. In this case, the optimal values of the slip λ̂iopt can be obtained by
the estimated friction maximum point.

λ̂iopt = arg max
λ

{µ̂b(λi, vv,Θ)} (28)

thus gives λ̂wetopt = 7.35% and λ̂dryopt = 12.65%. Real values for the optimal slip are

λwetopt = 7.60% and λdryopt = 12.81%, this means the error rates are ǫwetλ % = 3.289% and

ǫdryλ % = 1.249% respectively. Therefore the estimation shows a very good agreement with
experimental data.

4.2. road/tire friction estimation in variable conditions

In order to validate the effectiveness of proposed friction estimator, a road with variable
conditions is simulated. Hence, the remaining work is passed on to the variable tire/road
monitoring.
Fig. 14 shows the result of road condition parameter estimation θ. The real θ value

first changes from 1 to 3 and then to 2 where the desired vehicle longitudinal speed is
changed from 25 m/s to 18 m/s during braking.

Figure 14. LuGre θ estimation on time-varying road friction condition.

The optimal value of the slip λ̂iopt is also obtained by equation (28) and thus the results
of peak friction coefficient and its own slip value can be computed (see Fig. 15).
Fig. 16 shows the friction forces between road surface and the vehicle tires during

the provided variable friction surfaces computed by the friction coefficient values using
equations (4) and (14) which can be helpful for control of vehicle suspension and wheels
disturbance estimation [45, 46]. Time history of normalized road-tire friction coefficient
estimation error is illustrated in Fig. 17.

18



Figure 15. λ̂iopt and µ̂max estimation results on time-varying road friction condition.

Figure 16. Time history of tire-road friction force estimation on time-varying road friction condition.

Figure 17. Time history of normalized road-tire friction coefficient estimation error on time-varying road friction

condition.

As shown in Fig. 15, it is indicated that both presented NLLS approach and RLS
friction estimator are available for the quick-changes of the road condition and have a
good convergence rate. However, with respect to the RLS method [35], from the above
results, it can be observed that the NLLS estimated values has a better fit to the real
data. This also can be justified by the fact that although the RLS is fast, it assumes
multiple linear regression model and has linearization error in this case. NLLS approach
doesn’t need to approximate the nonlinear models and is more robust to noise.
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5. Conclusions

In this work an on-line algorithm for the estimation of road surface friction conditions
considering various tire friction conditions and different vehicle speeds has been pre-
sented. In order to initialize and have a faster algorithm, the parameters of Burckhardt
LP form have been identified using RLS and then converted to the LuGre parameters
by using the fuzzy rules. The LuGre model is a static one obtained by the LuGre dis-
tributed model. A new LuGre model-based NLLS parameter estimation algorithm has
been presented based on recursive nonlinear optimization of the curve fitting errors. The
convergence of NLLS method has been proved and also the total algorithm performance
has been tested when it is used in different time-varying and constant road profiles.
The effectiveness of proposed algorithm is demonstrated through simulation as well as
experimental results and thus the proposed longitudinal road/tire frictional condition
estimation is valuable for advanced vehicle control and autonomous vehicle systems. Al-
though, this estimator used normal vehicle sensors, it still brought relatively good results
when compared with the values obtained from the real data. Future work will be devoted
to applying full extensions of the estimation to this test vehicle in real-time.
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Appendix A. Proof of Lemma 1

The LuGre distributed models (see Fig. 2) can be represented by the following partial
differential equation (PDE) and boundary conditions

{
dz
dt (ζ, t) = vr −

θσ0|vr|
g(vr)z

Fxi =
FNi

L

∫ L
0 (σ0z(ζ, t) + σ1ż(ζ, t) + σ2vr)dζ

(A1)

z(0, t) = z(L, t) = 0 ∀t ≥ 0,

Where z(ζ, t) denotes the corresponding friction state and the patch L represents the
projection of the part of the tire that is in contact with the road, with ζ-axis along the
length of the patch in the direction of the tire rotation.

dz

dt
(ζ, t) =

∂z

∂t
(ζ, t) +

∂z

∂ζ
ζ̇ (A2)

Assuming that vv and ωwi are constant, ζ̇ = |Rwωwi| and by setting within an small
enough interval of time ∂z

∂t (ζ, t) = 0 applying these conditions in equation A2 gives

dz

dζ
(ζ) =

1

Rwωwi

dz

dt
(ζ, t) (A3)

{
dz
dζ (ζ) =

vr
Rwωwi

− σ0|vr|
g(λ)Rwωwi

z, ζ ∈ [0, L]

z(ζ) = ζ = 0;
(A4)

Solving the equation A4, one obtains
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z(ζ) =







g(λ)
σ0

(

exp(− σ0λθ
(1+λ)g(λ)ζ)− 1

)

, 0 ≤ ζ ≤ L
2

g(λ)
σ0

(

exp(− σ0λθ
(1+λ)g(λ)(L− ζ))− 1

)

, L
2 ≤ ζ ≤ L

(A5)

Noticing that µ(λi) = Fxi/FNi and Calculating the Fxi by term using Equation A1,
one obtains

Fxi =σ0
FNi
L

∫ L

0
z(ζ)d(ζ) + σ1

FNi
L

∫ L

0
ż(ζ)d(ζ)

+ σ2vr
FNi
L

∫ L

0
d(ζ) (A6)

=⇒µ(λi)

=
σ0
L

[
Lg(λi)

θσ0

(

1 +
2g(λi)(1 + λi)

σ0λiLθ
(e

−
σ0λiLθ

2g(λi)(1+λi) − 1)

)]

+
σ1
L

[
2vvg(λi)

θσ0

(

1− e
−

σ0λiLθ

2g(λi)(λi+1)

)]

+ σ2vr

≈
g(λi)

θ̄

[

1 +
g(λi)(λi + 1)

θ̄σ0λiL

(

e
−

σ0λiLθ̄

g(λi)(λi+1) − 1

)]

+ σ2λivv

(A7)

where g(λi) = µc + (µs − µc)e
−
∣

∣

∣

λivv

v0

∣

∣

∣

1/2
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