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I. INTRODUCTION

Material systems with characteristic sizes of the order of nanometers exhibit interesting

optical, magnetic, electrical, and/or photoelectrical properties. In the last years several re-

search groups are intensifying their attention on the contribution of collective hydrodynamic-

like phonon behavior on two-dimensional (2D) nanosystems [9, 14, 15, 30]. Silicon nanolay-

ers, boron nitride nanolayers [2, 5, 40], and graphene [3, 4, 18] have especially attracted the

attention. In particular, it has been recently argued that in suspended graphene [30] and

other 2D systems [9] Poiseuille phonon flow could be observed at higher temperatures and

in wider temperature ranges than in three-dimensional (3D) systems, because in 2D systems

the normal (momentum conserving) phonon-phonon collisions are two orders of magnitude

higher than those in 3D systems. Thus, analysis of this regime in 2D situations has become

a topic of current interest.

Phonons, which are the main heat carriers in non-metallic nanosystems, can undergo not

only a diffusive regime, but also a hydrodynamic regime (Poiseuille-like) and a ballistic one.

In the first case, the heat transfer can be described by means of the Fourier law. In the latter

cases, instead, Fourier law breaks down [11, 12, 26, 28, 30, 38, 41, 46], and more general

constitutive equations for the local heat flux are needed [13, 27].

Different theories and/or approaches can be found in literature to face with the breakdown

of Fourier law at nanoscale and to describe thermal transport in nanosystems [7, 11, 14, 22,

29, 37, 39, 42, 46]. Here we focus our attention on phonon hydrodynamics [1, 26, 30], since

it connects mesoscopic and microscopic approaches.

It seems worth noticing that the term phonon hydrodynamics may be interpreted in two

different ways:

a) as a particular regime of phonon flow wherein normal phonon collisions and collective

effects are dominant thus leading to a Poiseuille-like flow,

b) as a more general thermodynamic model of heat transfer, wherein non-local effects

play a relevant role [1, 16, 23, 24, 26, 33–35, 45] in such a way that, for very small

systems, the form of the constitutive equation for the local heat flux is analogous to

that for the velocity of a viscous fluid in classical hydrodynamic.

The usual starting point of phonon hydrodynamics (in the second meaning) is the so-

2



called Guyer-Krumhansl equation [23, 24], which is characterized by the inclusion of second-

order non-local effects in the evolution equation for the heat flux. One version of that

equation is

τRq̇ + q = −λ∇T + a2 (T ) `2
(
∇2q + 2∇∇ · q

)
, (1)

wherein τR is the relaxation time related to resistive (i.e., momentum non-conserving) col-

lisions between phonons, T the temperature, λ the usual Ziman limit for the bulk thermal

conductivity [47], ` an average phonon mean-free path, and a (T ) means a dimensionless

scalar function [8].

In the hydrodynamic regime (i.e., when in Eq. (1) the contribution of the heat flux may be

neglected with respect to its spatial derivatives [1, 34, 35]), the phonons exhibit a macroscopic

drift motion [30] which is the main difference between that regime and the more well-known

diffusive and ballistic regimes. Due to that drift motion, in phonon-hydrodynamic regime

the heat-flux profile is not uniform everywhere and may exhibit a parabolic profile analogous

to that of Poiseuille hydrodynamic flow.

In steady states, in Refs. [1, 34, 35] Eq. (1) has been used to describe the size-dependency

of the effective thermal conductivity in nanosystems of different sizes and shapes. In doing

that, it was assumed that the local heat flux is the sum of two different contributions: the

bulk contribution qb, arising from the solution of Eq. (1) with vanishing boundary conditions,

and a wall contribution qw, which may be related to qb by a constitutive equation of the

form

qw = Ca`
∂qb

∂ξ

∣∣∣∣
γ

, (2)

up to the first order in ` [8]. In Eq. (2) ξ means the normal direction to the wall cross

section (pointing towards the flow), and γ is the curve accounting for the outer surface of

the transversal section of the system. Moreover, C is a positive constant related to the

properties of the walls, namely, to the combination of diffusive and specular phonon-wall

scattering [1, 10, 19, 35, 36] as

C = 2

(
1 + p

1− p

)
with p being the relative number of phonon-wall specular collisions as compared to the total

number of specular and diffusive collisions. This is well-known for gases and for electron
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collisions [47] and it can be also adopted for the phonons [8]. Since p may only vary in the

range [0; 1], the parameter C should be larger than 2. Small values of C mean that diffusive

phonon-wall collisions are predominant over specular ones. Conversely, large values of C

mean that the specular phonon-wall scattering dominates over the diffusive one. The relation

between the parameters a, C and ` in the boundary condition (2) has been investigated in

Ref. [8]. In Refs. [1, 34, 35] Eqs. (1) and (2) were used to provide a phenomenological way

to explicitly describe the effects of phonon-wall collisions [2, 31, 32] through a formalism

which is parallel to that of rarefied fluid dynamics [10, 19, 36].

In principle, the wall contribution qw is restricted to a thin region near the walls, the so-

called Knudsen layer, whose thickness is of the order of mean-free path of the heat carriers.

Far from the walls, qw is vanishingly small [1, 34, 35]. The use of Eq. (2) allows to account

for the boundary scattering, which is the main cause of the non-uniform heat-flux profile in

the hydrodynamic regime. We note that from the theoretical point of view, the approach

used in Refs. [1, 34, 35] prescribes that only the bulk contribution qb is considered as a

state-space variable.

An alternative way to account for the boundary scattering by means of a slip heat flux is

to assume that the local heat flux q, instead of qb, is the solution of Eq. (1) together with

the following Robin-type boundary condition

q|γ = Ca`
∂q

∂ξ

∣∣∣∣
γ

. (3)

In this way, one can assume that q (and not its partial contribution qb) belongs to the

state spaces as it is usual in Extended Thermodynamics [12, 26, 28]. In the present paper

we principally investigate the alternative way above.

As a brief summary, we say that the paper runs as follows.

In Sec. II we use Eq. (1), complemented with Eq. (3), to show how phonon hydrodynamics

may be used to investigate heat transfer in 2D narrow strips in a wide temperature range

(or Knudsen-number range). Therein we also derive the effective thermal conductivity and

compare the theoretical expression with that obtained in Refs. [1, 35].

In Sec. III we derive the theoretical behavior both of the local heat flux, and of the

effective thermal conductivity by means of an approach closer to the original proposal by

Guyer and Krumhansl [23, 24], which directly introduces the phonon-wall interactions in the

differential equation (1) and assumes q = 0 on the walls. In other words, in this section we
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FIG. 1: Sketch of a 2D strip (or a very thin layer). The height of that system (i.e., the characteristic

size along the z axis) is very small and negligible with respect to its length L and width w (that is,

the characteristic sizes along the x and y axes, respectively). The arrow stands for the direction of

the local heat flux along the x axis. By means of a dashed line, in figure we also indicate a generic

cross section yz which, in the case of 2D strip, reduces to a line along the y axis. In figure x spans

in [0;L], and y spans [−w/2;w/2].

assume that in Eq. (1) λ is a size-dependent resistive thermal conductivity, and the quantity

a` in the non-local term is related to normal phonon-phonon collisions, the dynamical role

of which has been recently stressed out in a microscopic kinetic-collective model of heat

transport in Refs. [14, 15].

In Sec. IV the main results are finally summarized.

II. PHONON HYDRODYNAMICS IN 2D NARROW STRIPS

In the present section we apply Eqs. (1) and (3) to study the thermal transport in a 2D

strip (or a very thin layer). In particular, we assume that the thickness of the layer is much

smaller than its other two characteristic sizes. This is the case, for example, of graphene,

which is a flat monolayer of carbon atoms tightly packed into a 2D honeycomb lattice [18].

For the sake of illustration, in Fig. 1 a sketch of the system we are analyzing in the present

paper can be seen. Therein the dashed lines indicate a generical cross section yz which, in

the case of 2D nanosystems, reduces to a line along the y axis.

In particular we assume steady states in such a way that, from the local balance of internal
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energy per unit volume u in the absence of heat source, namely,

u̇+∇ · q = 0, (4)

with u̇ being the material time derivative of u, one has ∇ · q = 0 and, consequently, Eq. (1)

reduces to

q = −λ∇T + a2 (T ) `2∇2q. (5)

If we assume that q may only flow along the x axis, and that the temperature gradient

is constant along the layer, the general solution of Eq. (5) is

q (y) = λ
∆T

L
+ A exp

(y
`

)
+B

(
−y
`

)
, (6)

wherein ∆T/L = −∇T , and A and B are two arbitrary integration constants. Moreover, in

this case the boundary condition (3) becomes

q
(w

2

)
= −C1`

∂q

∂y

∣∣∣∣
y=w/2

, (7)

wherein C1 ≡ a (T )C, and w is the width of the strip in such a way that −w/2 ≤ y ≤ w/2.

For symmetry reasons, if we use the further boundary condition

∂q

∂y

∣∣∣∣
y=0

= 0, (8)

which ensures that the heat-flux profile attains an extremum in the center line of the strip

(in any yz plane), then the coupling of Eqs. (6)–(8) yields

q (y) = λ

{
1−

[
1

1 + C1 tanh
(

1
2 Kn

)] cosh
(
y
`

)
cosh

(
1

2 Kn

)} ∆T

L
, (9)

wherein Kn = `/w is the Knudsen number.

A. Results for the local heat-flux profile

In Fig. 2 we plot the behavior of the nondimensional heat flux q∗ = q/ (λ∆T/L) for

different values of the Knudsen number (namely, Kn = 0.01 corresponding to the line with

the right-pointing triangle markers, Kn = 0.1 corresponding to the line with the square

markers, Kn = 0.5 corresponding to the line with the circle markers, Kn = 1 corresponding
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to the line with the upward-pointing triangle markers, and Kn = 10 corresponding to the line

with plus-sign markers), and for different values of the nondimensional product C1 ≡ a (T )C

(i.e., C1 = 0.05, C1 = 0.5, C1 = 2 and C1 = 10). The results in that figure have been obtained

from Eq. (9).

In the vertical axis of each subfigure the dimensionless quantity y∗ ≡ y/w spans in the

range [−0.5; 0.5]. In other words, the total width of the strip is taken as the reference length

with respect to which the other lengths are referred to. This allows that changes in Kn

may be due to changes in w at a constant `, or to changes in ` at a constant w. Since the

phonon mean-free path ` depends on temperature (in general, the smaller T , the larger `),

we may therefore equivalently claim that q∗ in Fig. 2 is plotted as a function of the average

temperature of the system, for a given w. Thus, the approach based on Eqs. (1)-(3) also

allows us to investigate the behavior of the heat flux in a wide temperature range.

Depending on Kn, the different characteristic behaviors of the local heat flux can be seen

in Fig. 2. Their main features are commented below.

1. Law values of Kn (Fourier diffusive regime)

When the Knudsen number is small, the regime of heat transfer is diffusive. As it can be

seen from Fig. 2, in such a case (see, for example, the curves corresponding to Kn = 0.01)

the heat-flux profile has a shape which is almost uniform across the strip, whatever the

values of C1 is. In particular, if Kn → 0, then the heat-flux profile tends to the following

(diffusive) limit behavior

qdiff,lim = λ
∆T

L
. (10)

The uniform profile, which is that predicted by the classical Fourier law, characterizes

the diffusive regime. In diffusive regime the phonons undergo multiple scattering inside the

strip, since their mean-free path is much smaller than the characteristic size, but they do not

have a macroscopic drift motion [30]. The heat-flux profile is uniform because the umklapp

phonon-phonon collisions, as well as the phonon-impurity and the phonon-defect collisions

(which are felt everywhere in the bulk of the system) are prevalent over the phonon-boundary

scattering (which, instead, mainly occurs near the boundary of the system, that is, in the

so called Knudsen layer [1, 35]).
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FIG. 2: Profile of the nondimensional heat flux q∗ = q/ (∆T/L) across the strip for different values

of the Knudsen number (Kn = 0.01 corresponding to the line with the right-pointing triangle

markers, Kn = 0.1 corresponding to the line with the square markers, Kn = 0.5 corresponding to

the line with the circle markers, Kn = 1 corresponding to the line with the upward-pointing triangle

markers, and Kn = 10 corresponding to the line with plus-sign markers), and of the nondimensional

product C1 ≡ a (T )C (i.e., C1 = 0.05, C1 = 0.5, C1 = 2 and C1 = 10). The results arise from

Eq. (9). In each subfigure the dimensionless variable y∗ = y/w on the vertical axis spans in the

range [−0.5; 0.5].

We explicitly note that for law values of Kn, from Fig. 2 it is possible to see a slight

discrepancy between the results predicted by Eq. (9) and those arising from the strict use

of a Fourier-like equation. The latter equation, in fact, predicts a completely flat profile

whereas we have, instead, a flat profile except for a very narrow zone near the walls, where

there is a steep increase of the heat-flux profile from a low value to the flat value. This

mathematical discrepancy is not a truly physical discrepancy, because in strict terms the
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Fourier law is only valid for special scales larger than the phonon mean-free path. Thus,

since for small values of Kn the phonon mean-free path is much smaller than the width of

the strip, the discrepancy is not only quantitatively negligible in reference to the total heat

flux, but it is also conceptually admissible because it is found out of the range of validity of

Fourier law. Anyway, it is an interesting question which should be explored in deeper detail

in computer simulations. In fact, such a steep increase of the heat flow near the walls has

been modeled on other grounds than here (i.e., without incorporating the Laplacian term in

Eq. (1)) by assuming that the thermal resistance is higher than that predicted by Fourier law

near the walls, in a factor [1− exp (−D/`)]−1, D being the diameter of the channel [43, 44].

The subtle details of this simplified, but efficient, model and our model should be considered

in a deeper way.

2. Moderate values of Kn (Poiseuille phonon flow)

For moderate values of the Knudsen number, the heat-transfer regime is in transition

from the diffusive regime to the ballistic one. In particular, for increasing values of Kn (i.e.,

whenever ` becomes comparable to, or larger than, the width w of the strip), the phonon

bulk scattering gradually reduces, and the phonon-wall scattering increases. Moreover, the

phonons show a macroscopic drift motion. In this case, the boundary-phonon scattering

becomes prevalent among the other scattering mechanisms. The heat flux is smaller near

the walls because the boundary-phonon scattering is mainly felt in their neighborhood. This

explains the parabolic profile of the local heat flux we can see, for example, in Fig. 2 when

Kn = 0.1, Kn = 0.5 and Kn = 1. Since in this case the higher Kn, the smaller the maximum

value of q, then we may infer that phonon-boundary collisions are the main mechanism of

momentum loss and resistance to the heat flow, especially for small values of C1 (i.e., for

diffusive phonon-wall collisions predominating over specular ones). Instead, for higher values

of C1, the parabolic profile is not so evident, as the slip flow makes them closer to a flat

profile.
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3. Large values of Kn (ballistic regime)

When Kn gets large values (for example when Kn ≈ 10 in the case of study of the present

paper), the regime of heat transfer becomes ballistic. In this regime the phonons suffer only

scant internal (i.e., in the bulk of the system) scattering. As it can be seen from Fig. 2, in

this case the heat flux attains again a uniform profile, similar to that observed in diffusive

regime. In particular, if Kn → ∞, the heat-flux profile tends to the following (ballistic)

limit behavior

qball,lim = λC1 tanh

(
1

2 Kn

)
∆T

L
≈ λ

(
C1

2 Kn

)
∆T

L
. (11)

It seems worth noticing that in contrast to the flat heat-flux profile we recover for very

low values of the Knudsen number (i.e., when Eq. (10) holds), the flat heat-flux profile

arising from Eq. (11) depends both on the width of the strip, for a given ` (i.e., for a given

temperature) through the Knudsen number, and on C1 as it is logical to expect.

From the physical point of view, Eq. (11) can be explained in the following way. When Kn

reaches high enough values, the Knudsen layer pervades the main part of the cross section.

In this case, the frequency of phonon-boundary interactions is so high that phonon-boundary

scattering is the main event, and the consequent reduction of the local heat-flux amplitude

due to the momentum loss becomes again homogeneous in the whole transversal section. It

seems worth observing that in Refs. [1, 34, 35] the authors draw the same conclusion, but

with an alternative way of accounting for the boundary conditions (namely, by using Eq. (2)

instead of Eq. (3)). Let us also observe that the higher C1, the smaller the values of Kn at

which this second limit behavior occurs.

As interpreted from the point of view of the width w the three regime mentioned above

are as follows: diffusive (Fourier transport) is found for w > `R, with `R the mean-free path

of resistive collisions, the Poiseuille phonon flow for `N < w < `R, with `N the mean-free

path of normal collisions, and the ballistic flow for w < `N , `R.

B. Results for the effective thermal conductivity

The effective thermal conductivity (ETC) of narrow strips is much reduced with respect

to that of wide strips of the same material [6]. Since the thermal conductivity of solid
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thin layers is important for the design of field-effect transistors in electronic circuits, coated

lenses in laser systems, and microfabricated superconducting radiation detectors [20, 21],

then theoretical model predicting it may be useful in practical applications.

Starting from the results obtained in Sec. II A, here we derive a theoretical model for the

ETC in thin layers, defined as

λeff ≡
(
Qtot

A

)
L

∆T
=

[
1

w

∫ +0.5

−0.5

q (y∗) dy∗

]
L

∆T
, (12)

where A is the area of its cross section, and Qtot is the total heat per unit of time flowing in

the system. Indeed, in the 2D case, instead of a cross section A, only the width w must be

used in the denominator of Eq. (12).

Combining Eqs. (9) and (12) one is lead to the following expression for the ETC in narrow

strips (or very thin layers):

λeff (Kn) = λ

[
1−

2 Kn tanh
(

1
2 Kn

)
1 + C1 tanh

(
1

2 Kn

)] . (13)

The theoretical prediction in Eq. (13) differs from the expression

λeff (Kn) = λ

{
1− 2 Kn tanh

(
1

2 Kn

)[
1− C1 tanh

(
1

2 Kn

)]}
, (14)

obtained in Ref. [35]. The discrepancy between Eq. (13) and Eq. (14) is due to the different

way the boundary conditions have been used to study the thermal transport in nanosystems

(namely, in the form of Eq. (3) for the theoretical model (13), and in the form of Eq. (2)

for the theoretical model (14)). However, for large values of Kn, Eqs. (13) and (14) predict

that the ETC behaves as

λeff,ball (Kn) = λ

(
C1

2 Kn

)
, (15)

in agreement with the experimental observations showing that the ETC in nanosystems

decreases as Kn−1 for increasing Knudsen number in the ballistic regime [1, 2, 35], i.e., when

Kn � 1. Similarly, for very low values of Kn (i.e., in the Fourier diffusive regime), both

Eq. (13) and (14) turn out λeff = λeff,diff ≡ λ.

By means of Eq. (13), in Fig. 3 we plot the behavior of the nondimensional ETC λ∗ =

λeff/λ in a 2D strip as a function of the Knudsen number Kn = `/w for different values of

the nondimensional product C1 ≡ a (T )C (i.e., C1 = 0.05, C1 = 0.5, C1 = 2 and C1 = 10)

accounting for the diffusive and specular phonon-wall interactions.
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FIG. 3: Nondimensional ETC λ∗ = λeff/λ versus the Knudsen number for different values of the

nondimensional product C1 ≡ a (T )C: theoretical behavior arising from Eq. (13). In figure the x

axis is in a logarithmic length scale.

As it can be seen from Fig. 3, in the ballistic regime (i.e., when Kn � 1) the ETC is

much reduced with respect to that characterizing the diffusive regime (i.e., when Kn� 1).

III. COMPARISON WITH THE GUYER-KRUMHANSL FORMALISM

Though we previously referred to Eq. (1) as the Guyer-Krumhansl (GK) equation, it has

in fact important differences with respect to the original proposal of those authors [23, 24],

especially regarding the way as the phonon-wall collisions are included in the model. In the

approach used in Sec. II (as well as in that of Refs. [1, 35]), in the differential equation (1) it

has been used the usual bulk thermal conductivity obtained as the usual Ziman limit [47],

that is, λ = cvv
2τR0/3, wherein cv is the specific heat at constant volume per unit volume,

v the average phonon speed and τR0 the characteristic time of resistive phonon collisions in

the bulk, given by

τ−1
R0 = τ−1

u + τ−1
i + τ−1

d , (16)

being τu the relaxation time of umklapp phonon-phonon collisions, τi the relaxation time

of phonon-impurity collisions, and τd the relaxation time of phonon-defect collisions. The
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phonon-wall interactions have been then accounted for suitable boundary conditions [1, 29,

35], which in the present case are given by Eq. (3).

Indeed, in Ref. [24] the authors considered a boundary relaxation-time τb that they

combined with the usual relaxation time τR0 due to bulk resistive mechanisms by means of

Matthiessen rule as

τ−1
R = τ−1

u + τ−1
i + τ−1

d + τ−1
b ≡ τ−1

R0 + τ−1
b , (17)

with τb = wb (T ) /v, with b (T ) being a suitable nondimensional temperature function de-

pending on the form of the cross section of the system and on the relative abundance of

specular and diffusive phonon-wall collisions.

Once the combined resistive-boundary (phonon-wall) collision time has been obtained, the

thermal conductivity λGK (depending on the size of the system through τb) was calculated,

and used in the first term of the right-hand side of Eq. (1). In particular, it is obtained

λGK =
1

3
cvv

2

(
τR0τb

τR0 + τb

)
= λ

(
1 +

τR0

τb

)−1

= λ

[
1 + b (T )

`

w

]−1

=
λ

1 + b (T ) Kn
, (18)

wherein ` = τR0v. To this contribution one adds, in some regime, the hydrodynamic con-

tribution due to the normal (momentum-conserving) phonon-phonon collisions, which is

described by the non-local term in the right-hand side of Eq. (1) and whose microscopic

effects have been explored in much detail in Refs. [14, 15].

It is also important to note that in Eq. (1) ` means the average phonon mean-

free path obtained from the Ziman expression for the bulk thermal conductivity, i.e.,

` = λ [(1/3) cvv]−1 ≡ vτR0, whereas in the original version of the GK equation one has,

instead of a2`2, `2
GK = v2τNτR/5, where τN is the characteristic collision time of normal (mo-

mentum conserving), phonon-phonon collisions. In terms of a2`2, the coefficient a2 could be

obtained by equating a2`2 = `2
GK, namely, a2 (T ) = τN (T ) /5τR (T ).

A further observation is that in GK approach, the non-slip boundary condition for q

is considered, namely, q|γ = 0, and the effects of the boundary collisions are considered

in the form (18) of the ETC. The term in ∇2q is supposed to describe only an additional

contribution of the walls restricted to the case when phonon display a collective behaviors

when normal collisions are dominating with respect to resistive ones [14, 15].

This alternative approach, in steady states, yields the following behavior for the local
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heat flux across any cross section of the strip:

q (y) =
λ

1 + 2bKn

[
1−

cosh
(
y
a`

)
cosh

(
1

2aKn

)] ∆T

L
. (19)

When a→ 0, Eq. (19) becomes a flat heat profile

q (y) =

(
λ

1 + 2bKn

)
∆T

L
. (20)

For small Kn this is the Fourier’s result in Eq. (10), whereas for high Kn it is analogous

to Eq. (11) if b (T ) is identified as b (T ) = [a (T )C]−1 (for a different geometry, the relation

between b (T ) and a (T )C would also have a form-dependent numerical factor). When

a→∞, instead, Eq. (19) tends to the Poiseuille profile

q (y) =

(
λ

1 + 2bKn

)(
1

2`2

)[(w
2

)2

− y2

]
∆T

L
. (21)

Finally, by the definition of ETC in Eq. (12) in this case we have

λeff (Kn) =
λ

1 + 2bKn

[
1− 2aKn tanh

(
1

2aKn

)]
. (22)

In Fig. 4 we compare the results arising from our phonon-hydrodynamic approach with

those arising from the GK formalism. The comparison involves both the heat-flux profile

(upper subplot in figure), and the ETC (lower subplot in figure). To compare the heat-flux

profile we used Eqs. (9) and (19) in the case of Kn = 0.2. To compare the ETC we used,

instead, Eq. (13) and Eq. (22). For the sake of computation, we assumed a = 1, C = 5, and

b = C−1 ≡ 0.2.

As it can be seen from Fig. 4, both for q∗, and for λ∗ the phonon-hydrodynamic approach

predicts larger values than the GK formalism.

In closing the present section it is important to stress that both the theoretical heat-flux

profile in Eq. (9), and the theoretical ETC in Eq. (13) are strictly related to the non-

dimensional parameter a (T ) and C. Although in Refs. [1, 8, 34], for example, deeper

investigations on their physical interpretations can be found, the very important role those

parameters play requires further studies. To this end, it would be useful to infer informa-

tion about them from the comparison of our theoretical model with other existing models,

experimental data or simulation results.
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FIG. 4: Phonon-hydrodynamic approach versus GK formalism: qualitative comparison. In the

upper subplot the nondimensional heat-flux profiles q∗ = q/ (∆T/L) across the strip arising from

Eqs. (9) and (19) when Kn = 0.2 are compared. In the lower subplot, instead, as a function of

Kn we compare the nondimensional ETC λ∗ = λeff/λ arising from Eq. (13) with that arising from

Eq. (22). In this subfigure the x axis is in a logarithmic length scale.

IV. CONCLUSIONS

In the present paper we have examined the heat-flux profile across a narrow 2D strip

as a function of the Knudsen number Kn ≡ `/w using two different forms of a generalized

heat-transport equation containing second-order non-local terms. From the model based on

Eqs. (1)-(3), we have found that the heat-flux profile in a generic transversal section is given

by Eqs. (9). In particular, that profile has a flat shape given by Eq. (10) for Kn � 1 (i.e.,

in the Fourier regime), a parabolic one at intermediate Kn (between 0.1 and 1, for instance,

depending on the values of the slip coefficient C), and again a practically flat profile as in

Eq. (11) for high Kn (i.e., in the ballistic regime). Thus, the Poiseuille flow with a parabolic
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profile is found only in a given temperature range, or a given size range for the strip width.

In the original Guyer-Krumhansl model based on Eqs. (1) and (18), the parabolic heat

profile is also found in some restricted temperature (or size) range. Conceptually, both

formalisms of non-local heat transport agree on this specific range for hydrodynamic phonon

flow.

The most interesting difference between both models rests on the boundary conditions

used for q on the walls, and on the way of accounting for the phonon-wall collisions. In the

model based on Eqs. (1) and (3), the nonvanishing boundary conditions imply a slip heat

flow along the walls, whereas in the model based on Eqs. (1) and (18) non-slip conditions

are imposed on the heat flux. Furthermore, in the approach based on Eqs. (1) and (18), the

size-dependent thermal conductivity (18) describes the phonon-wall collisions, whereas in

the description based on Eqs. (1) and (3) the role of the shape of the system is more explicit

(through the use of Eq. (3), and of the relative role of specular or diffusive collisions). In this

case, the presence of a slip flow also connects in a smooth way the hydrodynamic phonon

regime to the ballistic regime.

In summary, a possible way of checking how phonon-wall effects should be more faith-

fully included into a generalized heat-transport equation with non-local terms, would be to

check whether the heat flux exhibits some slip effects along the walls, especially in strip of

suspended graphene, where the hydrodynamic regime is expected to show at a relatively

wide range of temperatures around 100 K, in contrast to bulk materials, were it is shown at

low temperatures (1 K−2 K) in a narrow temperature range [30]. If there is such a slip flow,

the dependence of the effective thermal conductivity on the width w of the layer would not

be on w2, as in Poiseuille flow analogy, but slightly different because of the profile would be

slightly flatter. This would not mean, however, that collective hydrodynamic effects are not

present, but that their manifestation is somewhat obscured by the effects of the slip flux.

At the very end, it seems wort noticing that here we have considered narrow but long

strips, in such a way that only boundary effects on the lateral walls have been taken into

account. In the case of short strips, instead, the effects on the entrance and exit boundaries

have to be also taken into account. The physical mechanism for these boundary effects

is different from that on the lateral walls [17, 25], as it is manifested, for instance, in the

anisotropy in-plane and cross-plane thermal conductivity in narrow films [17]. Therefore, in

the future it would be interesting to consider both this aspect, and the so-called entrance
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effects which are found in the hydrodynamic analyses of short channels.
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