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Abstract

We introduce domain decomposition methods of Schwarz waveform relaxation
(WR) type for fractional diffusion-wave equations. We show that the Dirichlet
transmission conditions among the subdomains lead to slow convergence. So,
we construct optimal transmission conditions at the artificial interfaces and
we prove that optimal Schwarz WR methods on N subdomains converge in N
iterations both on infinite spatial domains and on finite spatial domains. We also
propose optimal transmission conditions when the original problem is spatially
discretized and we prove the same result found in the continuous case.

Keywords: Schwarz Methods, Domain Decomposition, Fractional diffusion-
wave equations, Waveform relaxation, Optimized transmission conditions

1. Introduction

In this paper we are interested in solving a class of integro-partial differential
equations of the form

∂u

∂t
(x, t)− ν

Γ(β)

∫ t

0

(t− τ)β−1 ∂
2u

∂x2
(x, τ)dτ = f(x, t), β ∈ (−1, 1) (1.1)

for x ∈ Ω ⊆ R and t > 0, taken together with Dirichlet, Neumann or trans-
parent boundary conditions and with the initial condition u(x, 0) = u0(x) for
x ∈ Ω. Such equations describe anomalous diffusion processes and wave prop-
agations in viscoelastic materials and they have recently attracted increasing
interest in the physical, chemical and engineering literature, see [19, 22, 36] and
references therein. Numerical methods for the time discretization of (1.1) have
been proposed by various authors, see [7, 19–21, 35, 37, 39, 40]. In this paper
we introduce domain decomposition techniques, in order to solve the problem
(1.1) in parallel.
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WR methods have been originally proposed for large systems of ordinary dif-
ferential equations (see [3] and references therein), and then have been extended
to other kind of evolution equations such as Volterra integral equations (refer
for example to [4–6] and references therein). They are particularly convenient
to solve large systems of equations, as they are designed in order to decouple the
original large system in smaller subsystems: in this way, the iteration process
can be implemented in a parallel computational environment, since each sub-
system can be treated by a single processor/tread (see [13, 16] and references
therein). This iteration process realizes what is commonly known as parallelism
across the system, and so a massive parallelism. Other kinds of parallel methods
perform instead a parallelism across the method, as for example [10, 23] in the
context of multistage methods for ODEs and VIEs (see [9, 11, 12, 14, 15] and
references therein).

Schwarz Waveform Relaxation methods have been mainly developed and an-
alyzed for several kinds of PDEs (see [1, 2, 17, 18, 24–27, 31–34] and the related
bibliography), and consist in decomposing the spatial domain into subdomains
and solve iteratively time dependent problems on subdomains, exchanging in-
formation at the boundary. We will first analyze the convergence behaviour of
the overlapping Schwarz waveform relaxation method, showing that Dirichlet
boundary conditions at the artificial interfaces inhibit the information exchange
between the subdomains and therefore slow down the convergence of the meth-
ods. Using the ideas introduced in [28–30], we will derive optimal transmission
conditions for the convergence of the method. They lead to non-overlapping
Schwarz WR methods which converge in a finite number of steps, identical to
the number of subdomains.

By defining the operator

L(u) = ut − ν∂−βuxx, (1.2)

where ∂−β denotes the fractional integral of order β, the problem (1.1) can be
written as {

L(u) = f in Ω× R+

u = u0 x ∈ Ω, t = 0.
(1.3)

We will consider the problem (1.3) both on the infinite spatial domain Ω = R
with the asymptotic condition u(x, t) → 0 for x → ±∞, and on finite spatial
domains Ω = [a, b], a, b ∈ R, with Dirichlet, Neumann or transparent boundary
conditions.

The paper is organized as follows. In Section 2 we introduce the overlapping
classical Schwarz method on infinite spatial domain, proving linear convergence
rate on infinite time intervals and superlinear convergence rate on finite time
intervals if β ∈ (0, 1). In Sections 3 and 4 we construct the optimal Schwarz
WR methods on N = 2 and N > 2 subdomains respectively, by providing the
transmission conditions which assure convergence in N iterations. In Section 5
we derive the optimal transmission conditions for the spatially discretized equa-
tion and we prove the same results of convergence. We present the conclusions
in Section 6.
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2. Overlapping classical Schwarz WR method on infinite spatial do-
main

We decompose the spatial domain Ω = R into two overlapping subdomains
Ω1 = (−∞, L] and Ω2 = [0,∞), L > 0. The overlapping classical Schwarz
waveform relaxation consists then in solving iteratively subproblems on Ω1×R+

and Ω2 × R+ with Dirichlet transmission conditions at the interface, i.e. using
as boundary condition at the interfaces x = 0 and x = L the values obtained
from the previous iteration. Thus the method, for iteration index k = 0, 1, 2, ...,
assumes the form
L(uk+1

1 ) = f in Ω1 × R+

uk+1
1 (L, t) = uk2(L, t) t > 0

uk+1
1 (x, 0) = u0(x) x ∈ Ω1


L(uk+1

2 ) = f in Ω2 × R+

uk+1
2 (0, t) = uk1(0, t) t > 0

uk+1
2 (x, 0) = u0(x) x ∈ Ω2

(2.1)
where an initial guess u0

1(0, t) and u0
2(L, t), t ∈ R+, needs to be provided.

In order to analyze the convergence properties of the method (2.1), we ob-
serve that by linearity it is sufficient to analyze the method for homogeneous
problems with zero initial conditions{

L(u) = 0 in Ω× R+

u = 0 x ∈ Ω, t = 0,
(2.2)

i.e.,
L(uk+1

1 ) = 0 in Ω1 × R+

uk+1
1 (L, t) = uk2(L, t) t > 0

uk+1
1 (x, 0) = 0 x ∈ Ω1


L(uk+1

2 ) = 0 in Ω2 × R+

uk+1
2 (0, t) = uk1(0, t) t > 0

uk+1
2 (x, 0) = 0 x ∈ Ω2

(2.3)
and prove the convergence to zero.

We will apply in the following, in our proofs, the Laplace transform in time
with parameter s ∈ C, Re(s) > 0 to the operator (1.2), thus obtaining

L̂(û) := sû(x, s)− νs−β ûxx(x, s) = (λ2û(x, s)− ûxx(x, s))
ν

sβ
, (2.4)

where we have defined

λ = λ(s) :=
sγ√
ν
, (2.5)

γ =
β + 1

2
∈ (0, 1). (2.6)

Theorem 1. The Schwarz method (2.1) converges with linear rate on unbounded
time intervals.

Proof. Applying the Laplace transform in time with parameter s ∈ C, Re(s) >
0, to the equation (2.3) we get the equation

L̂
(
ûk+1
i

)
= 0, i = 1, 2,
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with L̂ given by (2.4), whose characteristic equation is

λ2 − y2 = 0,

with λ given by (2.5), having solution y = ±λ. Thus, by using the Dirichlet
transmission conditions, we get that the transformed solutions are

ûk+1
1 (x) = ûk2(L)eλ(x−L) (2.7)

and
ûk+1

2 (x) = ûk1(0)e−λx, (2.8)

where we have omitted the dependence on s for brevity of notation. By evalu-
ating (2.7) for x = 0 and (2.8) at the previous iteration for x = L, we obtain by
induction

û2k
1 (0) = rkclaû

0
1(0), û2k

2 (L) = rkclaû
0
2(L), (2.9)

where the convergence factor rcla = rcla(s, L, ν, γ) of the classical Schwarz
method is given by

rcla(s, L, ν, γ) = e−2sγL/
√
ν < 1 ∀Re(s) > 0. (2.10)

Thus the iterates converge to zero on the line x = 0 and x = L, respectively.
Since with zero boundary conditions the solution vanishes identically, we have
shown the convergence of the classical Schwarz method, with linear rate, for all
frequencies with Re(s) > 0.

Theorem 1 shows that the convergence factor (2.10) depends on the problem
parameters, ν and γ, on the size of the overlap L and on the frequency parameter
s. We observe that, the method is also well defined without overlap, i.e. L = 0,
but in this case it’s not convergent, differently from the optimized methods
proposed in next sections.

In the following we will use the notation

‖f‖p,T =

(∫ T

0

|f(t)|p dt

)1/p

, ‖f‖∞,T = sup
0<t<T

|f(t)| .

Theorem 2. For γ ∈ ( 1
2 , 1) the Schwarz method (2.1) has a superlinear asymp-

totic convergence rate on bounded time domains:∥∥u2k
i (0, ·)

∥∥
2,T
≤ e
√
Tρkγ erfc

(
kL√
νT

)∥∥u0
i (0, ·)

∥∥
2,T

, i = 1, 2, (2.11)

where

ργ = e
2LMγ√

ν , Mγ = max
θ∈[−π/2,π/2]

ψγ(θ), ψγ(θ) =

(
cos(θ/2)√
T cos(θ)

− cos(γθ)

(T cos(θ))
γ

)
.

(2.12)
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Proof. To obtain the convergence result for bounded time intervals, we rewrite
the first of (2.9) in the form

û2k
1 (0, s) = F̂ (s)Ĝ(s),

where
F̂ (s) = e−cs

γ+c
√
s, Ĝ(s) = e−c

√
sû0

1(0, s), (2.13)

with c = 2kL/
√
ν. By using Parseval formula we obtain, for σ = 1/T ,∥∥u2k

1 (0, t)
∥∥

2,T
≤ e

∥∥e−σtu2k
1 (0, t)

∥∥
2,T
≤ e max

Re(s)=σ

∣∣∣F̂ (s)
∣∣∣ ∥∥e−σtG(t)

∥∥
2,T

. (2.14)

As the inverse Laplace transform of K̂(s) = e−c
√
s is

K(t) =
c

2
√
πt3/2

e−
c2

4t ,

by inverting the second of (2.13), the function G is given by the convolution
G = K ∗ u0

1(0, ·). Hence, with σ = 1/T , we obtain∥∥e−σtG(t)
∥∥

2,T
≤
√
T ‖G‖2,T ≤

√
T ‖K‖1,T

∥∥u0
1(0, ·)

∥∥
2,T

, (2.15)

so, ∥∥e−σtG(t)
∥∥

2,T
≤
√
T erfc

(
kL√
νT

)∥∥u0
1(0, ·)

∥∥
2,T

. (2.16)

In order to calculate max
Re(s)=σ

∣∣∣F̂ (s)
∣∣∣ we observe that, for Re(s) = σ, we have

s = σ
cos θ e

ı̀θ, with θ ∈ [−π2 ,
π
2 ], and∣∣∣F̂ (s)

∣∣∣ = ecψγ(θ),

with ψγ(θ) defined in (2.12). For γ ∈ ( 1
2 , 1) we have

lim
θ→−π2

ψγ(θ) = lim
θ→π

2

ψγ(θ) = −∞,

and the function ψγ has maximum Mγ = max
θ∈[−π/2,π/2]

ψγ(θ). Then

max
Re(s)=σ

∣∣∣F̂ (s)
∣∣∣ = ρkγ ,

with ργ = e
2LMγ√

ν , which, together with (2.14) and (2.16), leads to (2.11).

3. The optimal Schwarz WR methods on two subdomains

Dirichlet boundary conditions at the interfaces are responsible for the slow
rate of convergence. In this section we analyze the case of two subdomains
and derive optimal trasmission conditions, which assure convergence in a finite
number of iterations, thus obtaining the optimal Schwarz WR methods (see also
[8]).
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3.1. Infinite spatial domain

Let us consider the method (2.3) with different transmission conditions:
L(uk+1

1 ) = 0 in Ω1 × R+

uk+1
1,x + Λ+(uk+1

1 ) = uk2,x + Λ+(uk2) x = L, t > 0

uk+1
1 = 0 x ∈ Ω1, t = 0

(3.1)


L(uk+1

2 ) = 0 in Ω2 × R+

uk+1
2,x + Λ−(uk+1

2 ) = uk1,x + Λ−(uk1) x = 0, t > 0

uk+1
2 = 0 x ∈ Ω2, t = 0

(3.2)

where Λ+ and Λ− are linear operators acting on the boundary in time.
Theorem 3. If the operators Λ+ and Λ− have corresponding symbols

λ+ = λ, λ− = −λ, (3.3)

with λ given by (2.5), then the method (3.1)-(3.2) converges in two iterations
independently of the initial guess, of the size of the overlap L and the problem
parameters ν > 0, γ ∈ (0, 1).

Proof. Applying the Laplace transform in time of equations (3.1)-(3.2), with
parameter s, Re(s) > 0, we find, for k ≥ 0,

L̂
(
ûk+1
i

)
= 0, i = 1, 2,

with L̂ given by (2.4), which, together with the conditions û1(x) → 0 for x →
−∞, û2(x)→ 0 for x→ +∞, lead to

ûk+1
1 (x) = ûk+1

1 (0)eλx, ûk+1
2 (x) = ûk+1

2 (0)e−λx, (3.4)

with partial derivatives satisfying

ûk+1
1,x (x) = λûk+1

1 (x), ûk+1
2 (x) = −λûk+1

2 (x). (3.5)

As λ+ and λ− are the symbols corresponding to Λ+ and Λ−, by considering the
Laplace transform of the transmission conditions in (3.1)-(3.2) and from (3.5),
we have (

λ+ + λ
)
ûk+2

1 (L) =
(
λ+ − λ

)
ûk+1

2 (L) (3.6)

and (
λ− − λ

)
ûk+2

2 (0) =
(
λ− + λ

)
ûk+1

1 (0). (3.7)

Then, by using (3.6)-(3.7) and (3.4) with x = L, we obtain, for k ≥ 0,

ûk+2
1 (L) =

λ+ − λ
λ+ + λ

e−λLûk+1
2 (0)

and

ûk+2
2 (0) =

λ− + λ

λ− − λ
e−λLûk+1

1 (L).
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Thus
û2k

1 (L) = rkoptû
0
1(L), û2k

2 (0) = rkoptû
0
2(0),

where the new convergence factor ropt is given by

ropt = ropt(s, L, ν, γ) =
λ+ − λ
λ+ + λ

λ− + λ

λ− − λ
e−2sγL/

√
ν ,

and differs from the one of the classical Schwarz method rcla given in (2.10)
only for the factor in front of the exponential. Then by choosing the sym-
bols as in (3.3), the new convergence factor vanishes identically ropt ≡ 0, and,
since with zero boundary conditions the solution vanishes identically, the thesis
immediately follows.

We note from the previous theorem that the exponential factor in the con-
vergence rate becomes irrelevant and thus the optimized Schwarz method is
convergent also without overlap, i.e. L = 0, in contrast to the classical Schwarz
method. In the next Section we will generalize the optimal convergence result
to N > 2 subdomains and convergence in N iterations.

3.2. Finite spatial domain

Let us consider the homogeneous problem (2.2) on a finite domain Ω = [a, b],
a, b ∈ R, together with zero boundary conditions of the form{

B−(u) = 0, x = a,
B+(u) = 0, x = b.

(3.8)

Namely we will consider
• transparent Boundary conditions

B−(u) = ux + Λ−(u), B+(u) = ux + Λ+ (u) , (3.9)

where operators Λ+ and Λ− have corresponding symbols (3.3);

• Dirichlet boundary conditions

B−(u) = B+(u) = u; (3.10)

• Neumann boundary conditions

B−(u) = B+(u) = ux. (3.11)

The problem (1.3) with transparent boundary conditions (3.8)-(3.9) permits
to reduce the computation of the solution of the problem from Ω = R to a finite
domain Ω = [a, b], for inhomogeneity f with support in [a, b], see [38].
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Let a = L1 < L2 < L3 = b, and decompose the spatial domain Ω = [a, b]
into two non-overlapping subdomains Ω1 = [a, L2] and Ω2 = [L2, b], with

σ1 := L2 − a and σ2 := b− L2. (3.12)

Let us consider the Schwarz method, as before for the homogeneous problem
(2.2) with zero initial condition and zero boundary conditions (3.8):

L(uk+1
1 ) = 0 in Ω1 × R+

B−(uk+1
1 ) = 0 x = a, t > 0

uk+1
1,x + Λ+(uk+1

1 ) = uk2,x + Λ+(uk2) x = L2

uk+1
1 = 0 x ∈ Ω1, t = 0

(3.13)


L(uk+1

2 ) = 0 in Ω2 × R+

uk+1
2,x + Λ−(uk+1

2 ) = uk1,x + Λ−(uk1) x = L2, t > 0

B+(uk+1
2 ) = 0 x = b, t > 0

uk+1
2 = 0 x ∈ Ω2, t = 0

(3.14)

Theorem 4. If the operators Λ+ and Λ− have corresponding symbols given by
(3.3)-(2.5), the method (3.13)-(3.14), applied to the problem (2.2) with trans-
parent boundary conditions (3.8)-(3.9), converges in 2 iterations.

Proof. Applying the Laplace transform in time of equations (3.13)-(3.14) and
by using the transparent boundary conditions, it is immediate to verify that
ûk+1
i , i = 1, 2, satisfy

ûk+1
1 (x) = ûk+1

1 (L2)eλ(x−L2), ûk+1
2 (x) = ûk+1

2 (L2)e−λ(x−L2),

with partial derivatives satisfying

ûk+1
1,x (x) = λûk+1

1 (x), ûk+1
2,x (x) = −λûk+1

2 (x). (3.15)

Then the proof proceeds as the proof of Theorem 3, i.e. from the Laplace
transform of the transmission conditions in (3.13)-(3.14) and from (3.15), we
have (

λ+ + λ
)
ûk+2

1 (L2) =
(
λ+ − λ

)
ûk+1

2 (L2) (3.16)

and (
λ− − λ

)
ûk+2

2 (L2) =
(
λ− + λ

)
ûk+1

1 (L2). (3.17)

Then, by using (3.16)-(3.17), we obtain, for k ≥ 0,

ûk+2
1 (L2) =

λ+ − λ
λ+ + λ

ûk+1
2 (L2)

and

ûk+2
2 (L2) =

λ− + λ

λ− − λ
ûk+1

1 (L2),

thus obtaining
û2k
i (L2) = rkoptû

0
i (L2), i = 1, 2,
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where the convergence factor ropt is given by

ropt = ropt(s) =
λ+ − λ
λ+ + λ

λ− + λ

λ− − λ
.

Then by choosing the symbols as in (3.3)-(2.5), the convergence factor vanishes
identically ropt ≡ 0, and, since with zero boundary conditions the solution
vanishes identically, the thesis immediately follows.

The following theorem shows that the transmission conditions in the method
(3.13)-(3.14) with the operators Λ+ and Λ− defined in Theorem (4) do not guar-
antee the convergence in 2 iterations when we solve the problem (2.2) together
with Dirichlet or Neumann boundary conditions.

Theorem 5. Let us consider the problem (2.2) with Dirichlet boundary con-
ditions (3.8)-(3.10) or Neumann boundary conditions (3.8)-(3.11). Then the
error of the method (3.13)-(3.14) with the operators Λ+ and Λ− having corre-
sponding symbols (3.3)-(2.5), exponentially decays with the length b− a.

Proof. Applying the Laplace transform in time to equations (3.13)-(3.14) and
by using the Dirichlet boundary conditions

ûk+1
1 (a) = 0, ûk+1

2 (b) = 0,

it is immediate to verify that ûk+1
i , i = 1, 2, satisfy

ûk+1
1 (x) =

ûk+1
1 (L2)

eλσ1 − e−λσ1

(
eλ(x−a) − e−λ(x−a)

)
, (3.18)

ûk+1
2 (x) =

ûk+1
2 (L2)

e−λσ2 − eλσ2

(
eλ(x−b) − e−λ(x−b)

)
,

with σ1 and σ2 given by (3.12) and from which we obtain

ûk+1
1,x (L2) = λ

1 + e−2λσ1

1− e−2λσ1
ûk+1

1 (L2), (3.19)

ûk+1
2,x (L2) = −λ1 + e−2λσ2

1− e−2λσ2
ûk+1

2 (L2).

Then, by substituting (3.19) in the Laplace transform of the transmission con-
ditions in (3.13)-(3.14), exploiting the fact that Λ+ and Λ− have corresponding
symbols given by (3.3), we obtain, for k ≥ 0

ûk+2
1 (L2) = −e−2λσ2

1− e−2λσ1

1− e−2λσ2
ûk+1

2 (L2),

ûk+2
2 (L2) = −e−2λσ1

1− e−2λσ2

1− e−2λσ1
ûk+1

1 (L2),

from which it follows

û2k
i (L2) = rkûki (L2), i = 1, 2, (3.20)
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with
r(s) = e−2λ(b−a). (3.21)

Analogously, by applying the Laplace transform in time to equations (3.13)-
(3.14) and by using the Neumann boundary conditions

ûk+1
1,x (a) = 0, ûk+1

2,x (b) = 0,

it is immediate to verify that ûk+1
i , i = 1, 2, satisfy

ûk+1
1 (x) =

ûk+1
1 (L2)

eλσ1 + e−λσ1

(
eλ(x−a) + e−λ(x−a)

)
,

ûk+1
2 (x) =

ûk+1
2 (L2)

e−λσ2 + eλσ2

(
eλ(x−b) − e−λ(x−b)

)
,

which differs from (3.18) only for the sign ”+” instead of the sign ”−” between
the two exponentials. The same argument as for Dirichlet boundary conditions
leads again to (3.20)-(3.21).

Theorems 6 and 7 show how to modify the transmission conditions in case
of Dirichlet or Neumann boundary conditions in order to guarantee the conver-
gence in 2 iterations.

Theorem 6. If the operators Λ+ and Λ− have corresponding symbols given by

λ+ = λ2, λ− = −λ1, (3.22)

where

λi = λ
1 + e−2λσi

1− e−2λσi
, i = 1, 2,

with λ given by (2.5) and σi, i = 1, 2 given by (3.12), then the method (3.13)-
(3.14), applied to the problem (2.2)-(3.8) with Dirichlet boundary conditions
(3.8),(3.10) converges in 2 iterations.

Proof. As in the proof of Theorem 5 we get that the derivatives of ûk+1
i , i = 1, 2,

satisfy (3.19). By substituting (3.19) in the Laplace transform of the transmis-
sion conditions in (3.13)-(3.14), and by (3.22), we get

ûk+2
1 (L2) =

λ+ − λ2

λ+ + λ1

ûk+1
2 (L2),

ûk+2
2 (L2) =

λ− + λ1

λ− − λ2

ûk+1
1 (L2),

thus obtaining
û2k
i (L2) = rkoptû

0
i (L2), i = 1, 2,

where the convergence factor ropt is given by

ropt = ropt(s) =
λ+ − λ2

λ+ + λ1

λ− + λ1

λ− − λ2

,

and the thesis immediately follows.
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Theorem 7. If the operators Λ+ and Λ− have corresponding symbols given by

λ+ = λ̃2, λ− = −λ̃1,

λ̃i = λ
1− e−2λσi

1 + e−2λσi
,

with λ given by (2.5), then the method (3.13)-(3.14), applied to the problem
(2.2)-(3.8) with Neumann boundary conditions (3.8),(3.11) converges in 2 iter-
ations.

Proof. The proof is analogous to that of Theorem 6.

In particular if we consider the limit for σi → ∞, we have λi, λ̃i → λ and
the optimal conditions coincide with that on infinite domain.

4. The optimal Schwarz WR methods on N subdomains

In this section we will generalize the optimal convergence results of the pre-
vious Section to N > 2 subdomains and convergence in N iterations. Let
us split the spatial domain Ω = [a, b] ⊆ R, with a < b and a ∈ R ∪ {−∞},
b ∈ R ∪ {+∞}, on N non-overlapping subdomains Ωi = [Li, Li+1], i = 1, ..., N ,
where a = L1 < L2 < ... < LN < LN+1 = b.

As before, let us consider the Schwarz WR method for the homogeneous
problem with zero initial condition (2.2) and zero boundary conditions (3.8),
where, for a finite domain, the boundary conditions B− and B+ are given by
(3.9), (3.10) or (3.11), while for an infinite domain, with a = −∞, b = +∞, the
asymptotic condition u(x, t) → 0 for x → ±∞ is obtained by using boundary
conditions B− and B+ given by (3.10).

By considering transmission conditions which depend on the domain Ωi, the
Schwarz WR method assumes the form

L(uk+1
i ) = 0 in Ωi × R+

S−i (uk+1
i ) = S−i (uki−1) x = Li, t > 0

S+
i (uk+1

i ) = S+
i (uki+1) x = Li+1, t > 0

uk+1
i = 0 x ∈ Ωi, t = 0

, i = 1, ..., N, (4.1)

where we set uk0 = ukN+1 ≡ 0 for k ≥ 0 and we define the transmission operators

S±i as

S−i (u) =

{
B−(u), i = 1

ux + Λ−i (u) , i = 2, ..., N
, (4.2)

S+
i (u) =

{
ux + Λ+

i (u) , i = 1, ..., N − 1
B+(u), i = N,

(4.3)

where Λ+
i and Λ−i are linear operators acting on the boundary in time.
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In order to find the optimal transmission conditions we apply the Laplace
transform in time to (4.1), obtaining

L̂(ûk+1
i ) = 0 in Ωi

Ŝ−i
(
ûk+1
i

)
= Ŝ−i

(
ûki−1

)
x = Li

Ŝ+
i

(
ûk+1
i

)
= Ŝ+

i

(
ûki+1

)
x = Li+1.

(4.4)

We denote the interface values which subdomain Ωi obtains from its neigh-
bors Ωi−1 and Ωi+1 as

gk+1,−
i := Ŝ−i (ûki−1)

∣∣∣
x=Li

(4.5)

and
gk+1,+
i := Ŝ+

i (ûki+1)
∣∣∣
x=Li+1

, (4.6)

for k ≥ 0. Then the method (4.4) takes the form
L̂(ûk+1

i ) = 0 in Ωi
Ŝ−i
(
ûk+1
i

)
= gk+1,−

i x = Li
Ŝ+
i

(
ûk+1
i

)
= gk+1,+

i x = Li+1.

(4.7)

In order to prove convergence in N iterations we will determine the operators
Λ+
i and Λ−i which assure that

gk+1,−
i = 0 =⇒ gk+2,−

i+1 = 0, i = 2, ..., N, (4.8)

gk+1,+
i = 0 =⇒ gk+2,+

i−1 = 0, i = 1, ..., N − 1, (4.9)

and
gk+2,−

2 = 0, gk+2,+
N−1 = 0,∀k ≥ 0, (4.10)

which will imply, at iteration N , gN,−i = 0, gN,+i = 0, i = 1, ..., N . Then from
(4.7) with k = N we get ûNi ≡ 0, i = 1, ..., N , as with zero boundary conditions
the solution identically vanishes, and then convergence in N iterations.

4.1. Infinite spatial domain

Let us consider the case a = −∞, b = +∞. The following theorem esta-
bilishes the convergence in a finite number of iterations, equal to the number
of subdomains, by using the same transmission conditions used in the case of 2
domains.

Theorem 8. The method (4.1) converges in N iterations, if the operators Λ+
i

and Λ−i are given by Λ+
i = Λ+, Λ−i = Λ−, i = 1, ..., N , with Λ+ and Λ− having

corresponding symbols given by (3.3).

12



Proof. In order to prove the conditions (4.8)-(4.10), we observe that, from (4.5)-
(4.6), and the hypothesis on Λ+

i and Λ−i , we have

gk+1,−
i = ûki−1,x(Li)− λûki−1(Li), for i ≥ 2,

and
gk+1,+
i = ûki+1,x(Li+1) + λûki+1(Li+1), for i ≤ N − 1.

Let us suppose gk+1,−
i = 0 for i ≥ 2. Then, from (4.7) and the hypothesis on the

operator Λ−i , ûk+1
i (x) is solution of L̂(ûk+1

i ) = 0 with ûk+1
i,x (Li)−λûk+1

i (Li) = 0,
from which it follows

ûk+1
i (x) = cie

λx + die
−λx (4.11)

and
ûk+1
i,x (Li) = λûk+1

i (Li). (4.12)

The condition (4.12) leads to di = 0 in (4.11) and then

ûk+1
i,x (x) = λûk+1

i (x) ∀x ∈ Ωi. (4.13)

By evaluating (4.13) for x = Li+1 we obtain gk+2,−
i+1 = 0, and so (4.8) is proved.

An analogous argument leads to (4.9).

The equations L̂(ûk+1
i ) = 0 for i = 1 and i = N , together with the conditions

ûk+1
1 → 0 for x → −∞ and ûk+1

N → 0 for x → +∞, lead to (4.10), which
completes the proof.

The previous result can be explained by observing that zero boundary con-
ditions require N iterations in order to be transmitted along the N subdomains
by means of the optimal transmission conditions.

4.2. Finite spatial domain

Let us consider the case a, b ∈ R and let us denote by σi = Li+1 − Li,
i = 1, ..., N , the length of the intervals Ωi. The following theorems provide the
conditions for having convergence in N iterations.

Theorem 9. If we consider the problem (2.2) with transparent boundary con-
ditions (3.8)-(3.9), the method (4.1) converges in N iterations, if the operators
Λ+
i and Λ−i are defined as in Theorem 8.

Proof. The proof is analogous to that of the Theorem 8 in the infinite case.

Theorem 10. If we consider the problem (2.2) with Dirichlet boundary condi-
tions (3.8)-(3.10), the method (4.1) converges in N iterations, if the operators
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Λ+
i and Λ−i have corresponding symbols given by

λ
−
i = −λ1 + e

−2λ
∑i−1
j=1σj

1− e−2λ
∑i−1
j=1σj

, i = 2, ..., N,

λ
+

i = λ
1 + e

−2λ
∑N
j=i+1σj

1− e−2λ
∑N
j=i+1σj

, i = 1, ..., N − 1,

with λ given by (2.5).

Proof. As in the proof of Theorem 8, we will prove the conditions (4.8)-(4.10).
From (4.5)-(4.6), we have

gk+1,−
i = ûki−1,x(Li) + λ

−
i û

k
i−1(Li), for i ≥ 2,

and
gk+1,+
i = ûki+1,x(Li+1) + λ

+

i û
k
i+1(Li+1), for i ≤ N − 1.

Let us suppose gk+1,−
i = 0 for i ≥ 2. Then, from (4.7) ûk+1

i (x) is solution of

L̂(ûk+1
i ) = 0 with ûk+1

i,x (Li) + λ
−
i û

k+1
i (Li) = 0, from which it follows

ûk+1
i (x) =

ûk+1
i (Li+1)e−λσi

1− e−2λ
∑i
j=1σj

(
eλ(x−Li) − e−2λ

∑i−1
j=1σje−λ(x−Li)

)
, i = 2, ..., N,

and then
ûk+1
i,x (Li+1) = −λ−i+1û

k+1
i (Li+1),

i.e. gk+2,−
i+1 = 0, and so (4.8) is proved. An analogous argument leads to (4.9).

The equations L̂(ûk+1
i ) = 0 for i = 1 and i = N , together with the boundary

conditions ûk+1
1 = 0 for x = L1 and ûk+1

N = 0 for x = LN+1, lead to

ûk+1
1 (x) =

ûk+1
1 (L2)e−λσ1

1− e−2λσ1

(
eλ(x−L1) − e−λ(x−L1)

)
and

ûk+1
N (x) =

ûk+1
N (LN )e−λσN

1− e−2λσN

(
eλ(x−LN+1) − e−λ(x−LN+1)

)
,

which then lead to (4.10), which completes the proof.

Theorem 11. If we consider the problem (2.2) with Neumann boundary condi-
tions (3.8)-(3.11), the method (4.1) converges in N iterations, if the operators
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Λ+
i and Λ−i have corresponding symbols given by

λ̃−i = −λ1− e−2λ
∑i−1
j=1σj

1 + e
−2λ
∑i−1
j=1σj

, i = 2, ..., N,

λ̃+
i = λ

1− e−2λ
∑N
j=i+1σj

1 + e
−2λ
∑N
j=i+1σj

, i = 1, ..., N − 1,

with λ given by (2.5).

Proof. The proof is analogous to that of Theorem 10.

Note that the optimal conditions λ
−
i , λ

+

i , λ̃−i and λ̃+
i tend to the optimal

conditions on infinite intervals when the dimension σ1 of the first interval and
σN of the last interval tend to infinite, respectively.

5. Optimal conditions for spatially discretized equation

In this section we construct optimal transmission conditions, which assure
the convergence in a finite number of iterations, when the original equation is
spatially discretized. We will consider an infinity spatial domain Ω = R which
will be reduced to a finite spatial domain [a, b] with a < b, a, b ∈ R, by a suitable
choice of transparent boundary conditions at x = a and x = b. By considering
the mesh

Ω̃ = {xj := a+ j∆x, j = 0, ...,M}, (5.1)

with xM = b and by replacing in the L operator (1.2) ∂2

∂x2 with

δxxu(xj , t) :=
u(xj+1, t)− 2u(xj , t) + u(xj−1, t)

∆x2
, j = 1, ...,M − 1, (5.2)

we define the operator

L∆x(u) := ut − ν∂−βδxxu. (5.3)

We consider the following discretization of the homogeneous problem (2.2):{
L∆x(u) = 0, in Ω̃× R+,

u = 0 xj ∈ Ω̃, t = 0,
(5.4)

with zero transparent boundary conditions of the form{
B−∆x(u) = Λ−(δxu) + u = 0, x = a,
B+

∆x(u) = Λ+(δxu) + u = 0, x = b,
(5.5)
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where δx represents a discretization of ∂
∂x given by

δxu(xj , t) :=

{
u(xj+1,t)−u(xj ,t)

∆x , j = 0, ...,M − 1,
u(xj ,t)−u(xj−1,t)

∆x , j = M,
(5.6)

and the operators Λ− and Λ+ have corresponding symbols

λ− = − ∆x(
λ∆x√

2

)2

+

√(
1 +

(
λ∆x√

2

)2
)2

− 1

, λ+ = −λ− (5.7)

with λ given by (2.5). The expression (5.7) for λ− and λ+ follows by imposing
the conditions

u(x, t)→ 0, x→ ±∞ (5.8)

in order to reduce the computation of the solution from Ω = R to Ω = [a, b]. The
computations on the function u which permitts to obtain (5.7) from conditions
(5.8) are analogous to the computations done on functions u1 and u2 in Remark
1 of next subsection.

5.1. Two subdomains

Let us consider the Schwarz WR method for the homogeneous problem (5.4)
with zero initial boundary conditions (5.5). Let a = L1 < L2 < L3 = b, and
decompose the spatial domain Ω=[a,b] into two non-overlapping subdomains
Ω1 = [a, L2] and Ω2 = [L2, b]. By considering suitable transmission conditions
at the interface, the Schwarz method assumes the following form

L∆x(uk+1
1 ) = 0, in Ω1 × R+,

Λ−1 (δxu
k+1
1 ) + uk+1

1 = 0, x = a, t > 0,

Λ+
1 (δxu

k+1
1 ) + uk+1

1 = Λ+
1 (δxu

k
2) + uk2 , x = L2, t > 0,

uk+1
1 = 0, x ∈ Ω1, t = 0,

(5.9)


L∆x(uk+1

2 ) = 0, in Ω2 × R+,

Λ−2 (δxu
k+1
2 ) + uk+1

2 = Λ−2 (δxu
k
1) + uk1 , x = L2, t > 0,

Λ+
2 (δxu

k+1
2 ) + uk+1

2 = 0, x = b, t > 0,

uk+1
2 = 0, x ∈ Ω2, t = 0,

(5.10)

where the operators Λ−1 and Λ+
2 have corresponding symbols respectively λ− and

λ+ given by (5.7), while the operators Λ+
1 and Λ−2 have corresponding symbols

λ+
1 = − ∆x(

λ∆x√
2

)2

−

√(
1 +

(
λ∆x√

2

)2
)2

− 1

, λ−2 = −λ+
1 (5.11)

with λ given by (2.5).
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Remark 1. We observe as the zero transparent boundary conditions

Λ−1 (δxu
k+1
1 ) + uk+1

1 = 0, x = a, (5.12)

Λ+
2 (δxu

k+1
2 ) + uk+1

2 = 0, x = b, (5.13)

in the method (5.9)-(5.10) replace the asymptotic conditions (5.8) when we re-
duce the computation of the solution from Ω = R to Ω = [a, b].
As a matter of fact, by applying the Laplace transform in time to equations (5.9)
and (5.10) we obtain the difference equations:

ûi(xj+1, s)− [2 + (∆xλ)2]ûi(xj , s) + ûi(xj−1, s) = 0, i = 1, 2 (5.14)

with general solution of form:

ûi(xj , s) = Cλj1 +Dλj2, C,D ∈ R,

where xj is given by (5.1), λ1 and λ2 are roots of the characteristic polynomial
associated with the equations (5.14), i.e.:

λ1,2 =

(
1 +

(
∆xλ√

2

)2
)
±

√√√√(1 +

(
∆xλ√

2

)2
)2

− 1. (5.15)

By considering the conditions (5.8), we impose that

limj→−∞ û
(k+1)
1 (xj , s) = 0, limj→+∞ û

(k+1)
2 (xj , s) = 0.

Since |λ1(s)| < 1 and |λ2(s)| > 1, we find

û
(k+1)
1 (xj , s) = C [λ1(s)]

j
, û

(k+1)
2 (xj , s) = D [λ2(s)]

j
. (5.16)

By computing

δxû
(k+1)
1 (x0, s) =

û
(k+1)
1 (x1, s)− û(k+1)

1 (x0, s)

∆x
=
C [λ1(s)]− C [λ1(s)]

0

∆x

= −C [1− λ1(s)]

∆x
,

we have

C = −δxû
(k+1)
1 (x0, s)

1− λ1(s)
∆x, (5.17)

and, by replacing the (5.17) in (5.16) we obtain

λ−1 δxû
(k+1)
1 (a, s) + û

(k+1)
1 (a, s) = 0, (5.18)

with λ−1 = λ− given by (5.7). A similar argument proves

λ+
2 δxû

(k+1)
2 (b, s) + û

(k+1)
2 (b, s) = 0, (5.19)

with λ+
2 = λ+ defined in (5.7). Applying the inverse Laplace transform to (5.18)

and (5.19) we have (5.12) and (5.13).
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Theorem 12. If the operators Λ−1 ,Λ+
1 ,Λ−2 and Λ+

2 have corresponding symbols
given by (5.7)-(5.11), the method (5.9) and (5.10) applied to the problem (5.4)
with transparent boundary conditions (5.12)-(5.13), converges in 2 iterations.

Proof. In order to prove convergence in 2 iterations we will derive the operators
Λ−2 and Λ+

1 in (5.9)-(5.10) which assure the following implications:

Λ−1 δxu
k+1
1 (a, s) + uk+1

1 (a, s) = 0⇒ Λ−2 δxu
k+1
1 (L2, s) + uk+1

1 (L2, s) = 0, (5.20)

Λ+
2 δxu

k+1
2 (b, s) + uk+1

2 (b, s) = 0⇒ Λ+
1 δxu

k+1
2 (L2, s) + uk+1

2 (L2, s) = 0. (5.21)

Then from (5.9)-(5.10) we will find that the solution identically vanishes in 2
iterations, i.e. uk+2

i ≡ 0, i = 1, 2 since it has to satisfy a system with all zero
boundary conditions.

Using the expression of û
(k+1)
1 (xj , s) in (5.16) we compute δxû

(k+1)
1 (L2, s) and

we find the constant

C =
∆xδxû

(k+1)
1 (L2, s)

1− λ2
, (5.22)

with λ2 defined in (5.15). By replacing (5.22) in (5.16) we obtain

λ−2 δxû
(k+1)
1 (L2, s) + û

(k+1)
1 (L2, s) = 0, (5.23)

with λ−2 = −λ+
1 given by (5.11). Inverse Laplace transform of (5.23) leads to

(5.20). An analogous argument proves (5.21).

5.2. N subdomains

In this subsection we will generalize the optimal convergence result of the
previous subsection to N > 2 subdomains and convergence in N iterations. We
consider the more general case in which the stepsize ∆x can be different in
every subdomain. We split the spatial finite domain Ω = [a, b] ⊆ R, a, b ∈ R in
N non-overlapping subdomains Ωi = [Li, Li+1], i=1,...N, where a = L1 < L2 <
... < LN < LN+1 = b and we discretize the problem (2.2) in each subdomain,
by considering the meshes

Ω̃i = {x(i)
j = Li + j∆ix, j = 0, ..., Ni}, (5.24)

with x
(i)
Ni

= Li+1 and by replacing ∂2

∂x2 with (5.2). So, in each subdomain Ω̃i,
for i=1,...,N, the Schwarz WR method assumes the form:

L∆ix(uk+1
i ) = 0, in Ω̃i × R+

S−i (uk+1
i ) = S−i (uki−1), x = Li, t > 0

S+
i (uk+1

i ) = S+
i (uki+1), x = Li+1, t > 0

uk+1
i = 0, x ∈ Ω̃i, t = 0

(5.25)
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where we set uk0 = ukN+1 ≡ 0, for k ≥ 0, L∆ix given by (5.3) with ∆x = ∆ix,

and the transmission operators S±i are defined by:

S−i (uk+1
i ) =

{
B−∆ix

(uk+1
i ), i = 1,

Λ−i (δxu
k+1
i ) + uk+1

i , i = 2, ..., N
(5.26)

S−i (uk+1
i ) =

{
Λ+
i (δxu

k+1
i ) + uk+1

i , i = 1, ..., N − 1,

B+
∆ix

(uk+1
i ), i = N

(5.27)

where Λ±i are linear operators acting on the boundary in time, and B±∆ix
are

given by (5.5) with ∆x = ∆ix. By considering the roots of characteristic poly-

nomial associated with the equations L̂∆ix(ûk+1
i ) = 0 i = 1, ..., N , i.e.

λ1,i =

(
1 +

(
λ∆ix√

2

)2
)

+

√√√√(1 +

(
λ∆ix√

2

)2
)2

− 1,

λ2,i =

(
1 +

(
λ∆ix√

2

)2
)
−

√√√√(1 +

(
λ∆ix√

2

)2
)2

− 1,

with λ given by (2.5), we can proceed as in Section 4 and prove the following
result:
Theorem 13. If we consider the problem (5.4) with transparent boundary con-
ditions (5.5) and if the operators Λ±i , for i=1,...,N, have corresponding symbols
respectively given by:

λ−i =


− ∆ix
λ1,i−1 , i = 1,

− ∆i−1x
1−λ2,i−1

, i = 2,

− ∆i−1x

1−
λ
Ni−1−1

1,i−1
−α−

i
λ
Ni−1−1

2,i−1

λ
Ni−1
1,i−1

−α−
i
λ
Ni−1
2,i−1

, i = 3, ..., N,
(5.28)

with

α−i =
λ−i−1(λ1,i−1 − 1) + ∆i−1x

λ−i−1(λ2,i−1 − 1) + ∆i−1x
, (5.29)

and

λ+
i =


− ∆jx

1−λ1,j
, j = N,

− ∆j+1x
λ2,j+1−1 , j = N − 1,

− ∆j+1x

λ1,j+1−α
+
j
λ2,j+1

1−α+
j

−1

j = N − 2, ..., 1,
(5.30)

with

α+
j =

λ+
j+1(λ

Nj+1

1,j+1 − λ
Nj+1−1
1,j+1 ) + λ

Nj+1

1,j+1∆j+1x

λ+
j+1(λ

Nj+1

2,j+1 − λ
Nj+1−1
2,j+1 ) + λ

Nj+1

2,j+1∆j+1x
, (5.31)

then the method (5.25) converges in N iterations.
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Proof. In order to prove the conditions (4.8)-(4.10) we use (4.5)-(4.6) and the
hypothesis (5.28,5.29,5.30,5.31). So, we have

gk+1,−
i = λ−i δxû

k
i−1(Li) + ûki−1(Li), for i ≥ 2, (5.32)

and

gk+1,+
i = λ+

i δxû
k
i+1(Li+1) + ûki+1(Li+1), for i ≤ N − 1. (5.33)

By supposing gk+1,−
i = 0 for i ≥ 2, we find

ûk+1
i (x

(i)
j ) = Cλj1,i +Dλj2,i (5.34)

and

δxû
k+1
i (Li) =

ûk+1
i (x

(i)
1 )− ûk+1

i (x
(i)
0 )

∆ix
=
Cλ1,i +Dλ2,i − C −D

∆ix

So, we have

D = −λ
−
i (λ1,i − 1) + ∆ix

λ−i (λ2,i − 1) + ∆ix
C (5.35)

and (5.34) becomes

ûk+1
i (x

(i)
j ) = C(λj1,i − α

−
i λ

j
2,i) (5.36)

with α−i given by (5.29). From (5.28,5.29,5.30,5.31) and (5.36) we obtain gk+2,−
i+1 =

0, and so (4.8) is proved. An analogous argument leads to (4.9). The equations

L̂(ûk+1
i ) = 0 for i = 1 and i = N , together with the conditions ûk+1

1 → 0 for
x → −∞ and ûk+1

N → 0 for x → +∞, lead to (4.10), which completes the
proof.

The previous result can be applied when the stepsize ∆x is the same on each
subdomain. In this case, the operators Λ−i and Λ+

i assume a more simple form.
For example, in the case of two subdomains, they have the symbols given by
(5.7) and (5.11).

In order to solve the system (4.1) with uk+1
i (x

(i)
j , 0) = u0(x

(i)
j ), by denoting

with η±i the inverse Laplace transform of λ±i , i.e.

η̂±i = λ±i ,

the system (4.1) can be written as follows:

∂uk+1
i

∂t (x, t)− ν
Γ(β)

∫ t
0
(t− τ)β−1δxxu

k+1
i (x, τ)dτ = 0,

δxu
k+1
i (Li, t) +

∫ t
0
η−i (t− τ)uk+1

i (Li, τ)dτ =

δxu
k
i−1(Li, t) +

∫ t
0
η−i (t− τ)uki−1(Li, τ)dτ,

δxu
k+1
i (Li+1, t) +

∫ t
0
η+
i (t− τ)uk+1

i (Li+1, τ)dτ =

δxu
k
i+1(Li+1, t) +

∫ t
0
η+
i (t− τ)uki+1(Li+1, τ)dτ,

uk+1
i (x, 0) = u0(x),

,

(5.37)

20



for i = 2, ..., N − 1 and where x ∈ Ω̃i, x 6= Li, x 6= Li+1 and t > 0. If we con-
sider for example the case of a finite spatial domain with transparent boundary

conditions, in which λ±i = ±λ = ± sγ√
ν
, then we have η±i (t) = ± t

−γ−1
√
ν

with

−γ − 1 ∈ (−2,−1) and then we can have problems in the convergence of the
integrals appearing in the boundary conditions of the method (5.37). For this
reason, by integrating with respect to time, we rewrite the method (5.37) as

uk+1
i (x, t)− ν

Γ(α)

∫ t
0
(t− τ)α−1δxxu

k+1
i (x, τ)dτ = 0∫ t

0
ξ−i (t− τ)δxu

k+1
i (Li, τ)dτ + uk+1

i (Li, t) =∫ t
0
ξ−i (t− τ)δxu

k
i−1(Li, τ)dτ + uki−1(Li, t)∫ t

0
ξ+
i (t− τ)δxu

k+1
i (Li+1, τ)dτ + uk+1

i (Li+1, t) =∫ t
0
ξ+
i (t− τ)δxu

k
i+1(Li+1, τ)dτ + uki+1(Li+1, t)

,

(5.38)
where x ∈ Ω̃i, x 6= Li, x 6= Li+1 and t > 0 and where now

ξ̂±i =
1

λ±i
,

and, in the particular case λ±i = ±λ = ± sγ√
ν

, we have ξ±i (t) = ± t
γ−1
√
ν

with

γ − 1 ∈ (−1, 0).
Then, by defining

µα(t) =
ν

Γ(α)
tα−1

we obtain the system of VIEs

Uk+1
i (t) =

∫ t

0

Ai(t− τ)Uk+1
i (τ)dτ +Gki (t), i = 2, ..., N − 1, (5.39)

where

Uk+1
i (t) =


uk+1
i (Li, t)

...

uk+1
i (x

(i)
j , t)

...

uk+1
i (Li+1, t)

 ,
for j=1,...,Ni − 1,

Gki (t) =


uki−1(Li, t) +

∫ t
0
ξ−i (t− τ)

uki−1(Li,τ)−uki−1(xNi−1,τ)

∆i−1x
dτ

0 j = 1, ..., Ni − 1

uki+1(Li+1, t) +
∫ t

0
ξ+
i (t− τ)

uki+1(x1,τ)−uki+1(Li+1,τ)

∆i+1x
dτ

 ,
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and

Ai(t) =



ξ−i (t)

∆ix
− ξ
−
i (t)

∆ix
0 ... ... 0

µα(t)
∆ix2

−2µα(t)
∆ix2

µα(t)
∆ix2 0 ... 0

0 ... ... ... ... ...
... ... ... ... ... 0

0 ... 0 µα(t)
∆ix2

−2µα(t)
∆ix2

µα(t)
∆ix2

0 ... ... 0
ξ+i (t)

∆ix
− ξ

+
i (t)

∆ix


.

If we consider a finite domain with non reflecting boundary conditions, then
we have to solve the system of VIEs (5.39) for i = 1, ..., N . If we consider
Dirichlet or Neumann boundary conditions then the system of VIEs for i = 1
and i = N has the form (5.39) but we have to change accordingly the matrices
A1(t), AN (t), and the vectors Gk1(t), GkN (t). The system of VIEs (5.39) can be
solved by using known methods for systems of weakly singular Volterra integral
equations (see for example [4–6, 16]).

6. Concluding remarks

We have introduced domain decomposition methods for fractional diffusion-
wave equations both on infinite spatial domains and on finite spatial domains.
The proofs of the slow convergence of the classical Schwarz waveform relaxation
method have been given on unbounded time intervals and on bounded time
domains. We have constructed the optimal transmission conditions at first on
2 subdomains and then on N > 2 subdomains, showing the convergence of the
methods in a finite number of iterations. In the case of finite spatial domain
we have considered the original problem together with transparent, Dirichlet or
Neumann boundary conditions, providing optimal transmission conditions for
each of these cases. We also proved analogous results of convergence when the
original problem is spatially discretized.

Acknowledgments

This work is supported by GNCS-INDAM. The authors would like also to
thank Christian Lubich for suggesting their many helpful ideas and for fruitful
discussions.

[1] Bennequin, D., Gander, M.J., Gouarin, L., Halpern, L., Optimized Schwarz
waveform relaxation for advection reaction diffusion equations in two dimen-
sions. Numer. Math., article in press.

[2] Blayo, E., Cherel, D., Rousseau, A., Towards Optimized Schwarz Methods
for the NavierStokes Equations. J. Sci. Comput. 66 (2016) 275-295.

[3] Burrage, K., Dyke, C., Pohl, B., On the performance of parallel waveform
relaxations for differential systems. Appl. Numer. Math. 20 (1996) 39-55.

22



[4] Capobianco, G., Cardone, A., A parallel algorithm for large systems of
Volterra integral equations of Abel type. J. Comput. Appl. Math. 220 (2008)
749-758.

[5] Capobianco, G., Conte, D., An efficient and fast parallel method for Volterra
integral equations of Abel type. J. Comput. Appl. Math. 189 (2006) 481-493.

[6] Capobianco, G., Conte, D., Del Prete, I., High performance parallel numeri-
cal methods for Volterra equations with weakly singular kernels. J. Comput.
Appl. Math. 228 (2009) 571-579.

[7] Cheng,C., Thomée, V., Wahlbin, L., Finite element approximation of a
parabolic integro-differential equation with a weakly singular kernel. Math.
Comp. 58 (1992) 587-602.

[8] Conte, D., Califano, G., Domain Decomposition Methods for a Class of
Integro-Partial Differential Equations. AIP Conf. Proc. 1776 (2016) 090050.

[9] Conte, D., Capobianco, G., Paternoster, B., Construction and implementa-
tion of two-step continuous methods for Volterra Integral Equations. Appl.
Numer. Math. 119 (2017) 239-247.

[10] Conte, D., D’Ambrosio, R., Paternoster, B., Two-step diagonally-implicit
collocation based methods for Volterra Integral Equations. Appl. Numer.
Math. 62 (2012) 1312-1324.

[11] Conte, D., D’Ambrosio, R., Jackiewicz, Z., Paternoster, B., A practical
approach for the derivation of two-step Runge-Kutta methods. Math. Model.
Anal. 17(1) (2012) 65-77.

[12] Conte, D., D’Ambrosio, R., Jackiewicz, Z., Paternoster, B., Numerical
search for algebrically stable two-step continuous Runge-Kutta methods.
J. Comput. Appl. Math. 239 (2013) 304-321.

[13] Conte, D., D’Ambrosio, R., Paternoster, B., GPU-acceleration of waveform
relaxation methods for large differential systems. Numer. Algor. 71 (2016)
293-310.

[14] Conte, D., Jackiewicz, Z., Paternoster, B., Two-step almost collocation
methods for Volterra integral equations. Appl. Math. Comp. 204 (2008) 839-
853.

[15] Conte, D., Paternoster, B., A Family of Multistep Collocation Methods for
Volterra Integral Equations. AIP Conf. Proc. 936 (2007) 128-131.

[16] Conte, D., Paternoster, B., Parallel methods for weakly singular Volterra
Integral Equations on GPUs. Appl. Numer. Math. 114 (2017) 30-37.

[17] Courvoisier, Y., Gander, M.J., Optimization of Schwarz waveform relax-
ation over short time windows. Numer. Algorithms 64 (2013) 221-243.

23



[18] Courvoisier, Y., Gander, M.J., Time Domain Maxwell Equations Solved
with Schwarz Waveform Relaxation Methods. Lect. Notes Comput. Sci. Eng.
91 (2013) 263-270.

[19] Cuesta, E., Lubich, Ch., Palencia, C., Convolution quadrature time dis-
cretization of fractional diffusion-wave equations. Math. Comp. 75 (2006)
673-696.

[20] Cuesta, E., Palencia, C., A fractional trapezoidal rule for integro-
differential equations of fractional order in Banach spaces. Appl. Numer.
Math. 45 (2003) 139-159.

[21] Cuesta, E., Palencia, C., A numerical method for an integro-differential
equation with memory in Banach spaces, Qualitative properties. SIAM J.
Numer. Anal. 41 (2003) 1232-1241.

[22] Cuesta, E., Kirane, M., Malik, S., Image structure preserving denoising
using generalized fractional time integrals. Signal process. 92 (2012) 553-
563.

[23] D’Ambrosio, R., Paternoster, B., Two-step modified collocation methods
with structured coefficient matrices for ordinary differential equations. Appl.
Numer. Math. 62 (2012) 1325-1334.

[24] Descombes, S., Dolean, V., Gander, M.J., Schwarz waveform relaxation
methods for systems of semi-linear reaction-diffusion equations. Lect. Notes
Comput. Sci. Eng. 78 (2010) 423-430.

[25] Gander, M.J., Schwarz methods over the course of time. Electron. Trans.
Numer. Anal. 33 (2008) 228-255.

[26] Gander, M.J., Halpern, L., Optimezed Schwarz waveform relaxation meth-
ods for advection reaction diffusion problems. SIAM J. Numer. Anal. 45
(2007) 666-697.

[27] Giladi, E., Keller, H.B., Space-time domain decomposition for parabolic
problems. Numer. Math. 93 (2002) 279-313.

[28] Gander, M.J., Optimized Schwarz methods. SIAM J. Numer. Anal. 44
(2006) 699-731.

[29] Gander, M.J., Halpern, L., Nataf, F., Optimal convergence for overlapping
and non-overlapping Schwarz waveform relaxation. In Proceedings of the
11th International Conference on Domain Decomposition (1999) 27-36.

[30] Gander, M.J., Halpern, L., Nataf, F., Optimal Schwarz waveform relax-
ation for the one dimensional wave equation. SIAM J. Numer. Anal. 41
(2003) 1643-1681.

24



[31] Gander, M.J., Rohde, Ch., Overlapping Schwarz waveform relaxation for
convection-dominated nonlinear conservation laws. SIAM J. Sci. Comput.
27 (2005) 415-439.

[32] Gander, M.J., Stuart, A., Space-time continuous analysis of waveform re-
laxation for the heat equation. SIAM J. Sci. Comput. 19 (1998) 2014-2031.

[33] Gander, M.J., Zhao, H., Overlapping Schwarz waveform relaxation for the
heat equation in n dimensions. BIT 42 (2002) 779-795.

[34] Halpern, L., Szeftel, J., Optimized and quasi-optimal Schwarz waveform
relaxation for the one-dimensional Schrdinger equation. Math. Mod. Meth.
Appl. S. 20 (2010) 2167-2199.
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