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Abstract

We introduce domain decomposition methods of Schwarz waveform relaxation
(WR) type for fractional diffusion-wave equations. We show that the Dirichlet
transmission conditions among the subdomains lead to slow convergence. So,
we construct optimal transmission conditions at the artificial interfaces and
we prove that optimal Schwarz WR methods on N subdomains converge in N
iterations both on infinite spatial domains and on finite spatial domains. We also
propose optimal transmission conditions when the original problem is spatially
discretized and we prove the same result found in the continuous case.
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1. Introduction

In this paper we are interested in solving a class of integro-partial differential
equations of the form

u v t 2u
%(x,t) “TO /0 (t— T)ﬁil%(zﬂ')dT = f(z,t), Be(-1,1) (1.1)
for x € Q C R and t > 0, taken together with Dirichlet, Neumann or trans-
parent boundary conditions and with the initial condition u(x,0) = ug(z) for
x € . Such equations describe anomalous diffusion processes and wave prop-
agations in viscoelastic materials and they have recently attracted increasing
interest in the physical, chemical and engineering literature, see [19, 22, 36] and
references therein. Numerical methods for the time discretization of (1.1) have
been proposed by various authors, see [7, 19-21, 35, 37, 39, 40]. In this paper
we introduce domain decomposition techniques, in order to solve the problem
(1.1) in parallel.

*Corresponding author
Email addresses: gcalifano@unisa.it (Giovanna Califano), dajconteQunisa.it
(Dajana Conte)

Preprint submitted to Elsevier December 30, 2017


This is the author’s version of a work that was accepted for publication in the following source:
Giovanna Califano, Dajana Conte, Optimal Schwarz waveform relaxation for fractional diffusion-wave equations,
Applied Numerical Mathematics,Volume 127,2018,Pages 125-141,ISSN 0168-9274,
https://doi.org/10.1016/j.apnum.2018.01.002.


WR methods have been originally proposed for large systems of ordinary dif-
ferential equations (see [3] and references therein), and then have been extended
to other kind of evolution equations such as Volterra integral equations (refer
for example to [4-6] and references therein). They are particularly convenient
to solve large systems of equations, as they are designed in order to decouple the
original large system in smaller subsystems: in this way, the iteration process
can be implemented in a parallel computational environment, since each sub-
system can be treated by a single processor/tread (see [13, 16] and references
therein). This iteration process realizes what is commonly known as parallelism
across the system, and so a massive parallelism. Other kinds of parallel methods
perform instead a parallelism across the method, as for example [10, 23] in the
context of multistage methods for ODEs and VIEs (see [9, 11, 12, 14, 15] and
references therein).

Schwarz Waveform Relaxation methods have been mainly developed and an-
alyzed for several kinds of PDEs (see [1, 2, 17, 18, 24-27, 31-34] and the related
bibliography), and consist in decomposing the spatial domain into subdomains
and solve iteratively time dependent problems on subdomains, exchanging in-
formation at the boundary. We will first analyze the convergence behaviour of
the overlapping Schwarz waveform relaxation method, showing that Dirichlet
boundary conditions at the artificial interfaces inhibit the information exchange
between the subdomains and therefore slow down the convergence of the meth-
ods. Using the ideas introduced in [28-30], we will derive optimal transmission
conditions for the convergence of the method. They lead to non-overlapping
Schwarz WR, methods which converge in a finite number of steps, identical to
the number of subdomains.

By defining the operator

£u) =y — v Py, (1.2)
where =7 denotes the fractional integral of order 3, the problem (1.1) can be

written as L) = f 0
u) = m x Ry
{uzuo rze, t=0. (1.3)

We will consider the problem (1.3) both on the infinite spatial domain Q@ = R
with the asymptotic condition u(x,t) — 0 for x — +o0, and on finite spatial
domains Q = [a, b], a,b € R, with Dirichlet, Neumann or transparent boundary
conditions.

The paper is organized as follows. In Section 2 we introduce the overlapping
classical Schwarz method on infinite spatial domain, proving linear convergence
rate on infinite time intervals and superlinear convergence rate on finite time
intervals if 8 € (0,1). In Sections 3 and 4 we construct the optimal Schwarz
WR methods on N = 2 and N > 2 subdomains respectively, by providing the
transmission conditions which assure convergence in N iterations. In Section 5
we derive the optimal transmission conditions for the spatially discretized equa-
tion and we prove the same results of convergence. We present the conclusions
in Section 6.



2. Overlapping classical Schwarz WR method on infinite spatial do-
main

We decompose the spatial domain 2 = R into two overlapping subdomains
Q1 = (—o0,L] and Q5 = [0,00), L > 0. The overlapping classical Schwarz
waveform relaxation consists then in solving iteratively subproblems on 21 x R
and Q9 x Ry with Dirichlet transmission conditions at the interface, i.e. using
as boundary condition at the interfaces x = 0 and x = L the values obtained
from the previous iteration. Thus the method, for iteration index &k = 0,1,2, ...,
assumes the form

Lu Yy =f in  x Ry Lkt = f in Qs x Ry
uM (L) = ub(L,t) t>0 ubt1(0,8) = Wk (0,8) t>0
ulf+1(3370) = up() T € ué“(m,()) =ug(x) x€Qy

(2.1)
where an initial guess u9(0,t) and u$(L,t), t € Ry, needs to be provided.
In order to analyze the convergence properties of the method (2.1), we ob-
serve that by linearity it is sufficient to analyze the method for homogeneous
problems with zero initial conditions

Lw)=0 in Q xRy
{uzO re, t=0, (22)
ie.,
L) =0 in ) x Ry Lub™) =0 in Qo X Ry
ub TN (L, t) = ub(L,t) t>0 ubTH(0,t) = uf(0,8) t>0
uf ™ (2,0) =0 z €Y ubt(2,0) =0 z € Qo
(2.3)

and prove the convergence to zero.
We will apply in the following, in our proofs, the Laplace transform in time
with parameter s € C, Re(s) > 0 to the operator (1.2), thus obtaining

L(0) = sti(x, s) — vs Plga(x, s) = (A20(z, 5) — Uga(x, s))s%, (2.4)

where we have defined

A=) = (2.5)
v = % € (0,1). (2.6)

Theorem 1. The Schwarz method (2.1) converges with linear rate on unbounded
time intervals.

Proof. Applying the Laplace transform in time with parameter s € C, Re(s) >
0, to the equation (2.3) we get the equation

L@ =o0, i=12,

?



with £ given by (2.4), whose characteristic equation is
A —y? =0,

with A given by (2.5), having solution y = £A. Thus, by using the Dirichlet
transmission conditions, we get that the transformed solutions are

a (2) = (L) (2.7)

and
us T (x) = ay(0)e N, (2.8)

where we have omitted the dependence on s for brevity of notation. By evalu-
ating (2.7) for = 0 and (2.8) at the previous iteration for x = L, we obtain by
induction

3" (0) = ri,u3 (0), w3 (L) = rig,us(L), (2.9)

where the convergence factor r.q = 7ea(s,L,v,7y) of the classical Schwarz
method is given by

Teta(s, Lv,y) = e 2 H/VY < 1 WRe(s) > 0. (2.10)

Thus the iterates converge to zero on the line x = 0 and x = L, respectively.
Since with zero boundary conditions the solution vanishes identically, we have
shown the convergence of the classical Schwarz method, with linear rate, for all
frequencies with Re(s) > 0. O

Theorem 1 shows that the convergence factor (2.10) depends on the problem
parameters, v and -y, on the size of the overlap L and on the frequency parameter
s. We observe that, the method is also well defined without overlap, i.e. L =0,
but in this case it’s not convergent, differently from the optimized methods
proposed in next sections.

In the following we will use the notation

T 1/p
|f||,,,T=</O If(t)l”dt> - Wi = sup [£(0).

Theorem 2. For v € (3,1) the Schwarz method (2.1) has a superlinear asymp-
totic convergence rate on bounded time domains:

kL
2k k 0 -
[0, )|, 0 < VT erfe (\/ﬁ> w7 0,y 7s =12, (2.11)
where
2L M~ COS(Q/Q) COS(’}/G)
=e Vv, M,= max 9), 0) = - .
Py K ee[—w/z,w/z]wv( ) () ( Tcos(d) (Tcos(6))”

(2.12)



Proof. To obtain the convergence result for bounded time intervals, we rewrite
the first of (2.9) in the form

a3k (0,5) = F(s)G(s),

where R R
F(s)=e Vs G(s) = e V*0%(0, s), (2.13)

with ¢ = 2kL/+/v. By using Parseval formula we obtain, for o = 1/T,

Hu%k(Oﬂf)HQ,T <e He_”tu%k(o,t)uzj < e max (2.14)

" Re(s)=0c

F(s)| e G0)] -

As the inverse Laplace transform of K (s) = V5 is

N[
= v

& _
K@) =5 7mmme ™
by inverting the second of (2.13), the function G is given by the convolution
G = K *u9(0,-). Hence, with ¢ = 1/T, we obtain

e~ G(t)||, 7 < VTIIGllyr < VT K|y 7 ||ul (0, (2.15)

)||2,T ')HQ,T7

S0,

||67crtg(t)||27T < VTerfc <\ZLT) (|9 (0, .)||2)T. (2.16)

In order to calculate max
Re(s)=0c

s = ﬁew, with 0 € [-7, 5], and

ﬁ(s)‘ we observe that, for Re(s) = o, we have

B(s)| = e,
with 1, (6) defined in (2.12). For v € (3,1) we have

i 15(0) = lim 15,(9) = —oo,

d the functi has i M, = 0). Th
and the function 1, has maximum M, 06[71;1/&2)f7r/2]w’y( ) en
P ‘: k.
Ri?s%}io (S) p’y

2L M~

with p, = e V¥, which, together with (2.14) and (2.16), leads to (2.11). O

3. The optimal Schwarz WR methods on two subdomains

Dirichlet boundary conditions at the interfaces are responsible for the slow
rate of convergence. In this section we analyze the case of two subdomains
and derive optimal trasmission conditions, which assure convergence in a finite
number of iterations, thus obtaining the optimal Schwarz WR methods (see also

[8])-



8.1. Infinite spatial domain
Let us consider the method (2.3) with different transmission conditions:

L)y =0 in Q) x R,

ui P AT =+ AT(uE) 2 =L, t>0 (3.1)
u]f‘H:O r€e€N, t=0

LusT™)y =0 in Qg x Ry

ust A (usT ) = b, + A (uf) 2=0,t>0 (3.2)
ubtt =0 x €y, t=0

where AT and A~ are linear operators acting on the boundary in time.
Theorem 3. If the operators AT and A~ have corresponding symbols

AP =X A7 =-) (3.3)

with X given by (2.5), then the method (3.1)-(3.2) converges in two iterations
independently of the initial guess, of the size of the overlap L and the problem
parameters v > 0,7y € (0,1).

Proof. Applying the Laplace transform in time of equations (3.1)-(3.2), with
parameter s, Re(s) > 0, we find, for k > 0,

L@ =o0, i=12,

with £ given by (2.4), which, together with the conditions @y (z) — 0 for 2 —
—00, Us(z) — 0 for x — 400, lead to

ut (@) = ayt(0)er,  apt(z) = a3t (0)e N, (34)
with partial derivatives satisfying
a @) =t (@), apt(e) = —aast (). (3.5)

As AT and A\~ are the symbols corresponding to A* and A™, by considering the
Laplace transform of the transmission conditions in (3.1)-(3.2) and from (3.5),
we have

(\F + ) T2AL) = (V- ) B () (56)

and
(A" =X a5 (0) = (A~ + ) ay o). (3.7)

Then, by using (3.6)-(3.7) and (3.4) with = L, we obtain, for k > 0,

~k+42 L) = A+ - A —AL~k+1 0
Uy ( )_ >\++)\€ Uy ( )

and
AT+

Ak+20
uy " (0) — — .\

e AL,



Thus
utt (L) = rhaf(L), 5" (0) = rh,u5(0),

where the new convergence factor r,,; is given by

P ~
+)‘6725 LIV,
AT+ A=A

Topt = TOPt(vaa v,y) =

and differs from the one of the classical Schwarz method 7., given in (2.10)
only for the factor in front of the exponential. Then by choosing the sym-
bols as in (3.3), the new convergence factor vanishes identically 7,,; = 0, and,
since with zero boundary conditions the solution vanishes identically, the thesis
immediately follows. O

We note from the previous theorem that the exponential factor in the con-
vergence rate becomes irrelevant and thus the optimized Schwarz method is
convergent also without overlap, i.e. L = 0, in contrast to the classical Schwarz
method. In the next Section we will generalize the optimal convergence result
to N > 2 subdomains and convergence in N iterations.

3.2. Finite spatial domain

Let us consider the homogeneous problem (2.2) on a finite domain Q = [a, b],
a,b € R, together with zero boundary conditions of the form

B~ (u) =0, z=a,
{ 0 . (3.8)

Namely we will consider
e transparent Boundary conditions

B~ (u) = u, + A (u), B (u) =wu, +A" (u), (3.9)
where operators A* and A~ have corresponding symbols (3.3);
e Dirichlet boundary conditions
B~ (u) = B"(u) = u; (3.10)
e Neumann boundary conditions
B~ (u) = Bt (u) = u,. (3.11)
The problem (1.3) with transparent boundary conditions (3.8)-(3.9) permits

to reduce the computation of the solution of the problem from 2 = R to a finite
domain Q = [a, b], for inhomogeneity f with support in [a, b], see [38].



Let a = Ly < Ly < L3 = b, and decompose the spatial domain Q = [a, b]
into two non-overlapping subdomains Q; = [a, L] and Qs = [Ls, b], with

01 ::Lg—a and ()] S:bfLQ. (312)

Let us consider the Schwarz method, as before for the homogeneous problem
(2.2) with zero initial condition and zero boundary conditions (3.8):

Lty =0 in Q) x Ry

B~ (uft)y =0 r=a, t>0 313
w4 A () = b, + AT W) 2= Lo (313
ubtt =0 re, t=0

Lubthy =0 in Qy x Ry

u’;;l + A (ubth) = uf, + A" (uf) =1Ly, t>0 (3.14)
Bt(ukt) =0 r=0t>0 ‘
ukt =0 x€Qy, t=0

Theorem 4. If the operators At and A~ have corresponding symbols given by
(3.8)-(2.5), the method (3.13)-(3.14), applied to the problem (2.2) with trans-
parent boundary conditions (3.8)-(3.9), converges in 2 iterations.

Proof. Applying the Laplace transform in time of equations (3.13)-(3.14) and
by using the transparent boundary conditions, it is immediate to verify that
it i =1,2, satisfy

u;

A () = B (Lo)Ne ), G (@) = B (Ly)e N k),
with partial derivatives satisfying
uy st (@) = Nay (@), Al (e) = —Aapt (). (3.15)

Then the proof proceeds as the proof of Theorem 3, i.e. from the Laplace
transform of the transmission conditions in (3.13)-(3.14) and from (3.15), we
have

(AT +N) @2 (Lo) = (AT = N) @b (L) (3.16)
and
(AT =N @2 (Lo) = (A~ + N) @y (Lo). (3.17)
Then, by using (3.16)-(3.17), we obtain, for k& > 0,
. AT
vt (Ly) = P )\u’2f+1(L2)
and \ \
~ T AL
U]2C+2(L2) = A_ _ Aulf—i_l(Lz)’

thus obtaining

afk(LQ) = Tgpta?(LQ)’ i=1,2,



where the convergence factor r,,; is given by

AT AT+
AT AN =N

Topt = 7"opt(s)

Then by choosing the symbols as in (3.3)-(2.5), the convergence factor vanishes
identically 7,,; = 0, and, since with zero boundary conditions the solution
vanishes identically, the thesis immediately follows. O

The following theorem shows that the transmission conditions in the method
(3.13)-(3.14) with the operators A and A~ defined in Theorem (4) do not guar-
antee the convergence in 2 iterations when we solve the problem (2.2) together
with Dirichlet or Neumann boundary conditions.

Theorem 5. Let us consider the problem (2.2) with Dirichlet boundary con-
ditions (3.8)-(3.10) or Neumann boundary conditions (3.8)-(3.11). Then the
error of the method (3.13)-(3.14) with the operators AT and A~ having corre-
sponding symbols (3.3)-(2.5), exponentially decays with the length b — a.

Proof. Applying the Laplace transform in time to equations (3.13)-(3.14) and
by using the Dirichlet boundary conditions

artt(a) =0, azti(b) =0,

it is immediate to verify that ﬂf‘H, 1 =1,2, satisfy
~k+1
~k+1 _u (L2) Az—a) —Xz—a)
Uq (Z‘)—m e r—a — € r-a 5 (318)
~k+1
~k uy (L) Az—b —Az—b
i (1) = = (X =),

with o7 and o2 given by (3.12) and from which we obtain

~ 14 e 221
W3 (Le) = Mgy (La), (3.19)

N 1+ 672>\02 R

B (L) = A L),
Then, by substituting (3.19) in the Laplace transform of the transmission con-
ditions in (3.13)-(3.14), exploiting the fact that A* and A~ have corresponding
symbols given by (3.3), we obtain, for k > 0

ak+2(L ) _ _,—2Xo2 ﬂ/\k-{-l L
1 2) = —¢€ 1 — ¢—2Xo2 Ug ( Q)a
~k+2 Lo LT
Uy (L2) = —e mul (L2),
from which it follows
U (L) = r*uf(Ly), i=1,2, (3.20)



with
r(s) = e 2=, (3.21)

Analogously, by applying the Laplace transform in time to equations (3.13)-
(3.14) and by using the Neumann boundary conditions

ayy'(a) =0, asi'(b) =0,

it is immediate to verify that ﬂiﬁl, 1 =1,2, satisfy
~k41
~k+1 _ Uy (LQ) Az—a) —A(z—a)
L =T G |
~k+1
A () = Uy (L2) (e/\(a:—b) _ e—/\(x—b))
2 67)\0-2 + 6)\0’2 )

which differs from (3.18) only for the sign "+ instead of the sign ”—" between
the two exponentials. The same argument as for Dirichlet boundary conditions
leads again to (3.20)-(3.21). O

Theorems 6 and 7 show how to modify the transmission conditions in case
of Dirichlet or Neumann boundary conditions in order to guarantee the conver-
gence in 2 iterations.

Theorem 6. If the operators At and A~ have corresponding symbols given by

AT =D, AT =)y, (3.22)
where
1+ 672)\01-
1 _ 6—2)\0'1, ’
with X given by (2.5) and 0,1 = 1,2 given by (3.12), then the method (3.13)-
(3.14), applied to the problem (2.2)-(3.8) with Dirichlet boundary conditions
(3.8),(3.10) converges in 2 iterations.

X=X i=1,2,

Proof. As in the proof of Theorem 5 we get that the derivatives of ﬂf“, 1=1,2,
satisfy (3.19). By substituting (3.19) in the Laplace transform of the transmis-
sion conditions in (3.13)-(3.14), and by (3.22), we get

AT — o
e

) = s

(LQ)v

. AT+ Ay
5T (Ly) = e Xl aht(Ly),
— A2
thus obtaining

agk(LQ) = rlcfpta?(LQ)v i=1,2,

where the convergence factor r,,; is given by
_ AT =D AT+
AT + Xl AT — XQ ’

and the thesis immediately follows. O

Topt = Topt (S)

10



Theorem 7. If the operators AT and A~ have corresponding symbols given by

PR VAR S

)

with A\ given by (2.5), then the method (3.13)-(3.14), applied to the problem
(2.2)-(3.8) with Neumann boundary conditions (3.8),(3.11) converges in 2 iter-
ations.

Proof. The proof is analogous to that of Theorem 6. O

In particular if we consider the limit for o; — oo, we have \;, XZ — A and
the optimal conditions coincide with that on infinite domain.

4. The optimal Schwarz WR methods on N subdomains

In this section we will generalize the optimal convergence results of the pre-
vious Section to N > 2 subdomains and convergence in N iterations. Let
us split the spatial domain Q = [a,b] C R, with a < b and a € RU {—o0},
b € RU{+oc0}, on N non-overlapping subdomains Q; = [L;, Li11], i = 1,..., N,
where a = L1 < Ly < ... < Ly < Ly41 =D.

As before, let us consider the Schwarz WR method for the homogeneous
problem with zero initial condition (2.2) and zero boundary conditions (3.8),
where, for a finite domain, the boundary conditions B~ and BT are given by
(3.9), (3.10) or (3.11), while for an infinite domain, with a = —oo, b = 400, the
asymptotic condition u(z,t) — 0 for # — oo is obtained by using boundary
conditions B~ and BT given by (3.10).

By considering transmission conditions which depend on the domain €2;, the
Schwarz WR method assumes the form

LuFthy =0 in Q; x Ry

S () =87 (uk ) z=1L; t>0 ‘

i\ i i & =1,..,N 4.1
S i) =Swky) w=Log t>0 0 b (D
uftt = zeQy, t=0

where we set uf = uf;,; =0 for k > 0 and we define the transmission operators
St as

_ B~ (u), i=1
Si (u) :{ Up + A7 (u), i=2,.,N (4.2)

(u):{ wp + A (), i=1,..,N—1 0

Bt(u), i=N,

where A" and A; are linear operators acting on the boundary in time.

11



In order to find the optimal transmission conditions we apply the Laplace
transform in time to (4.1), obtaining

L@+t =0 in
S (@t =8 (at,) z=1L (4.4)
§F (@) = 8 (ik,)) == Lo

We denote the interface values which subdomain €2; obtains from its neigh-
bors ;1 and ;4 as

g =S )| (4.5)
and i
1, TP
9¢+ Ti= S §+1) ) (4.6)
r=L;q1
for k > 0. Then the method (4.4) takes the form
L+t = in €
St@at) = ng " @ =Lin

In order to prove convergence in N iterations we will determine the operators
A and A; which assure that

gt = 0= g7 =0, i=2..N, (4.8)
gt 0= gF*2t —0, i=1,.,N-1, (4.9)
and
g =0, gj’cvtﬁ* =0,Vk >0, (4.10)
which will imply, at iteration N, gl =0, gN + = =0,i=1,...,N. Then from

(4.7) with k = N we get u¥ =0, i = 1,..., N, as with zero boundary conditions
the solution identically vanishes, and then convergence in N iterations.

4.1. Infinite spatial domain

Let us consider the case a = —oo0, b = 400. The following theorem esta-
bilishes the convergence in a finite number of iterations, equal to the number
of subdomains, by using the same transmission conditions used in the case of 2
domains.

Theorem 8. The method (4.1) converges in N iterations, if the operators A;-"

and A] are given by A} = A, A; =A~,i=1,..,N, with A* and A~ having
corresponding symbols given by (3.3).

12



Proof. In order to prove the conditions (4.8)-(4.10), we observe that, from (4.5)-
(4.6), and the hypothesis on A and A;, we have
T = (L) AL, for i32,

and
gf+1’+ = ﬂ§+17r(Li+1) -+ )\ﬂf+1(Li+1), fOT' 7 S N — 1.

Let us suppose gf“’* = 0 for ¢ > 2. Then, from (4.7) and the hypothesis on the
operator A;, U5 (x) is solution of L(@ ™) = 0 with @} 1! (L;) — Maf ™ (L;) = 0,

from which it flollows

() = e + die™ (4.11)

(3

and
At (L) = Mt (L), (4.12)

1,T

The condition (4.12) leads to d; = 0 in (4.11) and then

il (x) = xaft(x) Vo e Q. (4.13)
By evaluating (4.13) for = L;1 we obtain gﬁf’_ =0, and so (4.8) is proved.

An analogous argument leads to (4.9).

The equations E(ﬂfﬂ) = 0for i =1andi = N, together with the conditions
aftt — 0 for + — —oo0 and @5 — 0 for + — oo, lead to (4.10), which
completes the proof. O

The previous result can be explained by observing that zero boundary con-
ditions require N iterations in order to be transmitted along the N subdomains
by means of the optimal transmission conditions.

4.2. Finite spatial domain

Let us consider the case a,b € R and let us denote by o; = L;y1 — L,
1=1,...,N, the length of the intervals ;. The following theorems provide the
conditions for having convergence in N iterations.

Theorem 9. If we consider the problem (2.2) with transparent boundary con-
ditions (3.8)-(3.9), the method (4.1) converges in N iterations, if the operators
AZT" and A; are defined as in Theorem 8.

Proof. The proof is analogous to that of the Theorem 8 in the infinite case. [

Theorem 10. If we consider the problem (2.2) with Dirichlet boundary condi-
tions (3.8)-(3.10), the method (4.1) converges in N iterations, if the operators

13



At and A; have corresponding symbols given by

B 72)\21-4;10
e —)\— i=2,....N,
1_ —QAZJ 10

— 1+ 6—2/\2j:z‘+1%‘

N
1 _ 6_2A2j2i+1aj
with A given by (2.5).

Proof. As in the proof of Theorem 8, we will prove the conditions (4.8)-(4.10).
From (4.5)-(4.6), we have

g = (L) AN A (L), for 2,

i—1,x
and .
ng "= ai€+1 T(Li+1) + A a?—&-l(Li-&-l), for i< N -1
Let us suppose ng =0 for i > 2. Then, from (4.7) @*(z) is solution of

E(Afﬂ) =0 with ukH(Li) +\; (L) = 0, from which it follows

~k+1 ) — Ao
,/u\i_chl(x) _ W (Lz+1)¢ (e)\(x—Li) 72AZ 10] —A(x—L,-)> . i=2,...N,

7
1_ e—”\Zj:ﬁfj

and then o
U (Lia) = =N (Lisa),
ie. gf:f =0, and so (4.8) is proved. An analogous argument leads to (4.9).

The equations E(Akﬂ) =0for¢=1andi= N, together with the boundary
conditions uk+1 =0 for x = L; and uk‘H =0 for x = Ly41, lead to

k+1 —Xo
() = T (Ly)e o (e)\(szl) _ efA(mel))

1 1 _ 672)\01
and o \
Ly)e?7n
)~ B s o)
which then lead to (4.10), which completes the proof. O

Theorem 11. If we consider the problem (2.2) with Neumann boundary condi-
tions (3.8)-(3.11), the method (4.1) converges in N iterations, if the operators

14



A;r and A; have corresponding symbols given by

TS
1- J=1"
P

K2

i=2,...,N,

i—1 ?
1+ 6_2)‘Zj:10.i

N
- 1 o E_QXZJ-:'L.JFlUj
A=A < . i=1,..,N -1,

with A given by (2.5).

Proof. The proof is analogous to that of Theorem 10. O

Note that the optimal conditions J; , X: , X; and Xj' tend to the optimal
conditions on infinite intervals when the dimension o; of the first interval and
oy of the last interval tend to infinite, respectively.

5. Optimal conditions for spatially discretized equation

In this section we construct optimal transmission conditions, which assure
the convergence in a finite number of iterations, when the original equation is
spatially discretized. We will consider an infinity spatial domain 2 = R which
will be reduced to a finite spatial domain [a, b] with a < b,a,b € R, by a suitable
choice of transparent boundary conditions at z = a and x = b. By considering
the mesh

Q={z;:=a+jAz, j=0,., M}, (5.1)

with s = b and by replacing in the £ operator (1.2) g—; with

) — 2u(ag,t ot
Sati(zy,t) = w1, t) UXE;Q’ Jrulwint) oy (5.2)

we define the operator
Laz(uw) =1 — v P u. (5.3)

We consider the following discretization of the homogeneous problem (2.2):

Laz(u)=0, in QxRy,
~ A4
{U_O ﬂijQ,t:07 (5 )
with zero transparent boundary conditions of the form
Br,(u) =A"(0;u) +u=0, z=a, (5.5)
B, () =AT(6,u) +u=0, z=0b, '

15



. . . 8 .
where d, represents a discretization of g given by

u(@jt1,t)—u(w;,t) =0 M—1
. I Az ) J=Y. )
(qu(l'j7t) = { u(zj,t)—um(xj_l,t)’ ] _ M, (56)
and the operators A~ and A* have corresponding symbols
A
A= ’ AT = AT (5.7)

(m)%r 1+(m>2 S
V2 V2
with A given by (2.5). The expression (5.7) for A~ and A" follows by imposing

the conditions
u(z,t) =0, x— +oo (5.8)

in order to reduce the computation of the solution from Q = R to Q = [a, b]. The
computations on the function «w which permitts to obtain (5.7) from conditions
(5.8) are analogous to the computations done on functions u; and us in Remark
1 of next subsection.

5.1. Two subdomains

Let us consider the Schwarz WR method for the homogeneous problem (5.4)
with zero initial boundary conditions (5.5). Let a = Ly < Ly < L3z = b, and
decompose the spatial domain Q=[a,b] into two non-overlapping subdomains
Oy = [a, Ly] and Q5 = [Ls,b]. By considering suitable transmission conditions
at the interface, the Schwarz method assumes the following form

Laz(ut™) =0, in Q1 xR,
AT Gpuf T +uf T =0, z=a,t>0, 5.9
A (0 uf ) bt = AT (5,ub) + ub, = Lot >0, (5:9)
u’f‘H:O, r € Q,t=0,
Laz(ub™) =0, in Qy x Ry,
Ay (Guz ™) +us™t = A (Opu) +uf, @=Lyt >0, S 10
A;‘(éxug"'l) + u§+1 =0, z=">01t>0, (5.10)
ubtt =0, z €Nyt =0,

where the operators A] and A;r have corresponding symbols respectively A\~ and
AT given by (5.7), while the operators Al+ and A; have corresponding symbols

A =— Ay = =2 (5.11)

with A given by (2.5).
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Remark 1. We observe as the zero transparent boundary conditions
A7 (Gput™h) +ub T =0, x = a, (5.12)
AS (S ub™) +ubt =0, =D, (5.13)

in the method (5.9)-(5.10) replace the asymptotic conditions (5.8) when we re-
duce the computation of the solution from =R to Q = [a, b)].

As a matter of fact, by applying the Laplace transform in time to equations (5.9)
and (5.10) we obtain the difference equations:

ﬁi(mjﬂ, S) — [2 + (A.T)\)Z]ai(l'j7 S) + ai(xj,l, S) =0, =12 (514)
with general solution of form:
Ui(z;,8) =CX +DX,,  C,DeR,

where x; is given by (5.1), A1 and Ay are roots of the characteristic polynomial
associated with the equations (5.14), i.e.:

. ( <A;;)2) N ( <A;;)2)2 L G

By considering the conditions (5.8), we impose that

limj_>_oc ﬂgkﬂ) (l‘j, S) = O7 limj_,+oo 77(2k+1)(£ﬂj, 5) =0.

Since |A1(s)] <1 and |Az2(s)] > 1, we find

D (@g,8) = C ), Ay (@,s) = D [a(s)) . (5.16)
By computing
5,5 (g 5) = B @18) — @ (@o,8) _ Cu) — CuE)]
et 0 Ax Az
_ CL=M()
Az ’
we have (1)
Oy (20, 8)
= = A -1
C T 0s) x, (5.17)
and, by replacing the (5.17) in (5.16) we obtain
A6, (0, 8) + 2™ (a, 5) = 0, (5.18)
with A\T = A~ given by (5.7). A similar argument proves
A 6,a ™ (b, 5) + @ (b, 5) =0, (5.19)

with \] = \T defined in (5.7). Applying the inverse Laplace transform to (5.18)
and (5.19) we have (5.12) and (5.13).
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Theorem 12. If the operators Ay ,AT,A; and A have corresponding symbols
given by (5.7)-(5.11), the method (5.9) and (5.10) applied to the problem (5.4)
with transparent boundary conditions (5.12)-(5.13), converges in 2 iterations.

Proof. In order to prove convergence in 2 iterations we will derive the operators
A5 and Af in (5.9)-(5.10) which assure the following implications:

AT 6 ub T (a, s) + ub T (a, 5) = 0 = AS 6,ul T (L, s) + ub T (Lo, 5) = 0, (5.20)

A6, ub (b, s) +ub (b, s) = 0= A ub (Lo, s) + ub T (L, s) = 0. (5.21)

Then from (5.9)-(5.10) we will find that the solution identically vanishes in 2
iterations, i.e. uf” = 0,7 = 1,2 since it has to satisfy a system with all zero
boundary conditions.
Using the expression of ﬁgkﬂ)(xj, s) in (5.16) we compute 5Eﬂ§k+1)(L2, s) and
we find the constant

Az, @ (L, 8)

C= 5.22
i), (522

with A2 defined in (5.15). By replacing (5.22) in (5.16) we obtain
Xy 6,0 (Ly, 5) + @™ (L, 8) = 0, (5.23)
with \; = —A] given by (5.11). Inverse Laplace transform of (5.23) leads to
(5.20). An analogous argument proves (5.21). O

5.2. N subdomains

In this subsection we will generalize the optimal convergence result of the
previous subsection to N > 2 subdomains and convergence in N iterations. We
consider the more general case in which the stepsize Ax can be different in
every subdomain. We split the spatial finite domain Q = [a,b] C R,a,b € R in
N non-overlapping subdomains Q; = [L;, L;11], i=1,...N, where a = L; < Ly <
.. < Ly < Lyy1 = b and we discretize the problem (2.2) in each subdomain,
by considering the meshes

with x%) = L;y1 and by replacing 6‘9722 with (5.2). So, in each subdomain €,

for i=1,...,N, the Schwarz WR method assumes the form:

L, (uft) =0, in Q; x Ry

Si_(u§+1) = i_(ui'il)’ €T = Li7t > 0 5.25
Si*'(ufﬂ):sj(ufﬂ), x=1Li11,0 >0 (5.25)
uf‘H:O7 T € Qi,t=0

18



where we set uf = uf_,, =0, for k > 0, La,, given by (5.3) with Az = Az,
and the transmission operators SZ-lL are defined by:

_ By (uFth), i=1
k+1\ Az \ % ) )
Si(w™) = { A7 (Spuf Ty bt =2, N (5.26)
A (Gpuf ™y 4t =1, N -1
- k—‘,—l — i A i 9 PREXY) ) 92
st = { O g ke, 520

where Ali are linear operators acting on the boundary in time, and BXM are
given by (5.5) with Az = A;x. By considering the roots of characteristic poly-
nomial associated with the equations La,,(af™) =0 i=1,.., N, ie.

Ay = (1+ (A\%@)z) + <1+ (Aj;;x>2)2—1,
e )T

with A given by (2.5), we can proceed as in Section 4 and prove the following
result:
Theorem 13. If we consider the problem (5.4) with transparent boundary con-

ditions (5.5) and if the operators Aii, fori=1,...,N, have corresponding symbols
respectively given by:

3T =1,
— S i=2
A\ = 1220 7 5.28
i _ JAVISE. i =3 N ( . )
N,_1-1 — N;_1-1> 1= 9,..., 1V,
1 Mol 7% oo
- N1  _ . N1
A1 Ag i

with
A (A =D+ A1z
Oéi_: 1__1( 1,5—1 ) i—1 : (529)
/\z 1()\2 i—1 — 1) + A1_1LE
and A
. .
- 1A,§\1,]. ) Jj=N,
j+1 .
)\j_ = 7)‘A2,;+1—1’ J=N-1, (530)
— b j=N-2..,1,
Mog+17G X241
l—a;
with N N1 N
LA OE N ) AR A e
4G = At N ANl ANitt A ’ (5.31)
T — Ay ) H A A

then the method (5.25) converges in N iterations.
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Proof. In order to prove the conditions (4.8)-(4.10) we use (4.5)-(4.6) and the
hypothesis (5.28,5.29,5.30,5.31). So, we have

gt T = NG (L) + A (Li),  for i>2, (5.32)
and
g7t = AP AE (Liga) + Ty (Lig),  for i< N -1 (5.33)

By supposing ng’_ =0 for ¢ > 2, we find

Ak+1( ) C)\{ A+ D)\ (5.34)
and
(L @t (@17) — A (2f)) _ CAig+ Dhoi—C =D
ozu; " (Li) = Az - Ax
So, we have
A (A=) + A
p—_tui-D+da, (5.35)
A (Ao — 1)+ A
and (5.34) becomes
Gt El) = OO - ai M) (5.36)

with o] given by (5.29). From (5.28,5.29,5.30,5.31) and (5.36) we obtain ng'2 =
0, and so (4.8) is proved. An analogous argument leads to (4.9). The equations
E(Akﬂ) =0 for i =1 and i = N, together with the conditions a}™* — 0 for
x — —oo and ukJr1 — 0 for © — 400, lead to (4.10), which completes the
proof. O

The previous result can be applied when the stepsize Az is the same on each
subdomain. In this case, the operators A; and Aj assume a more simple form.
For example, in the case of two subdomains, they have the symbols given by
(5.7) and (5.11).

k+1(x( DI
J )
with ni the inverse Laplace transform of )\jt, ie.

+
:)\7;7

In order to solve the system (4.1) with ) = up(x ;z)) by denoting

the system (4.1) can be written as follows:

k41
2 (@, t) — 1y Jo(t = 1) bugu (2, 7)dT = 0,
unfH(LZ,t +f0 n; (t—7)u f+ (Li, 7)dT =
el (L )+ fong (= T)ully (L, ),
unf"‘l(Li_,_l, t) + fo n;"(t - T)uf+1(Li+1, T)dT =

Spuf  (Liv1,t) + IJ n (t = T)uky (Liy1, 7)dr,

uf (2, 0) = ug(x),
(5.37)
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fori =2,..,N — 1 and where z € Q;,z # L;,x # L;y1 and t > 0. If we con-
sider for example the case of a finite spatial domain with transparent boundary
—y—1
conditions, in which \f = +\ = i%, then we have n(t) = +t jﬁ with
—v—1 € (—2,-1) and then we can have problems in the convergence of the
integrals appearing in the boundary conditions of the method (5.37). For this

reason, by integrating with respect to time, we rewrite the method (5.37) as

uf M (@, ) = g fo (= 1) el T (@, T)dr = 0
[y &t = T)dpul T (Ly, 7)dr + ubf (L, t) =
fo (t — 7)6zulf_ | (Li,7)d7 +ul_|(L;,t) )
Jo & (t = 7)0puf T (Lisy, T)dr + uz+1(Ll+17t) =
fot fj(t - T>6wui‘c+1(Li+17 T)dT + uf+1(Li+17 t)

- (5.38)
where x € Q;,x # L;,x # L;;1 and t > 0 and where now
A 1
+
gi = Fv

and, in the particular case )\f = )\ = :l:\sf, we have Eii(t) = :l:t:;1 with

v—1€(-1,0).
Then, by defining

pall) = T

a—1

we obtain the system of VIEs
UEL (1) / At = U () dr + GEE), =2 N =1, (5.39)

where it
U; * (le t)
1

UR @ = | u @l |

ui ™ (Liga, )

¥ i) —uk TN, —1,T
(L“t —‘,—f() t_,r) u;_q (Li, )A:;;( N;—1, )dT

GF(t) = 0 j=1,..,N;—1 ,
x1,T 7uf Liyq,T
ub  (Liga,t -l-fo &t ”1( . )Ai+1;r31( 07 gy
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and

[ & ® & @ i
Ba(t) —2pa () B (t) 0
Aimz Aiib2 A,;Q?z
0
A= 0
oL 0 sl e e
0! 0

If we consider a finite domain with non reflecting boundary conditions, then
we have to solve the system of VIEs (5.39) for ¢« = 1,...,N. If we consider
Dirichlet or Neumann boundary conditions then the system of VIEs for ¢ = 1
and i = N has the form (5.39) but we have to change accordingly the matrices
A1(t), An(t), and the vectors G¥(t), G% (). The system of VIEs (5.39) can be
solved by using known methods for systems of weakly singular Volterra integral
equations (see for example [4-6, 16]).

6. Concluding remarks

We have introduced domain decomposition methods for fractional diffusion-
wave equations both on infinite spatial domains and on finite spatial domains.
The proofs of the slow convergence of the classical Schwarz waveform relaxation
method have been given on unbounded time intervals and on bounded time
domains. We have constructed the optimal transmission conditions at first on
2 subdomains and then on N > 2 subdomains, showing the convergence of the
methods in a finite number of iterations. In the case of finite spatial domain
we have considered the original problem together with transparent, Dirichlet or
Neumann boundary conditions, providing optimal transmission conditions for
each of these cases. We also proved analogous results of convergence when the
original problem is spatially discretized.

Acknowledgments

This work is supported by GNCS-INDAM. The authors would like also to
thank Christian Lubich for suggesting their many helpful ideas and for fruitful
discussions.

[1] Bennequin, D., Gander, M.J., Gouarin, L., Halpern, L., Optimized Schwarz
waveform relaxation for advection reaction diffusion equations in two dimen-
sions. Numer. Math., article in press.

[2] Blayo, E., Cherel, D., Rousseau, A., Towards Optimized Schwarz Methods
for the NavierStokes Equations. J. Sci. Comput. 66 (2016) 275-295.

[3] Burrage, K., Dyke, C., Pohl, B., On the performance of parallel waveform
relaxations for differential systems. Appl. Numer. Math. 20 (1996) 39-55.

22



[4] Capobianco, G., Cardone, A., A parallel algorithm for large systems of
Volterra integral equations of Abel type. J. Comput. Appl. Math. 220 (2008)
749-758.

[5] Capobianco, G., Conte, D., An efficient and fast parallel method for Volterra
integral equations of Abel type. J. Comput. Appl. Math. 189 (2006) 481-493.

[6] Capobianco, G., Conte, D., Del Prete, 1., High performance parallel numeri-
cal methods for Volterra equations with weakly singular kernels. J. Comput.
Appl. Math. 228 (2009) 571-579.

[7] Cheng,C., Thomée, V., Wahlbin, L., Finite element approximation of a
parabolic integro-differential equation with a weakly singular kernel. Math.
Comp. 58 (1992) 587-602.

[8] Conte, D., Califano, G., Domain Decomposition Methods for a Class of
Integro-Partial Differential Equations. AIP Conf. Proc. 1776 (2016) 090050.

[9] Conte, D., Capobianco, G., Paternoster, B., Construction and implementa-
tion of two-step continuous methods for Volterra Integral Equations. Appl.
Numer. Math. 119 (2017) 239-247.

[10] Conte, D., D’Ambrosio, R., Paternoster, B., Two-step diagonally-implicit
collocation based methods for Volterra Integral Equations. Appl. Numer.
Math. 62 (2012) 1312-1324.

[11] Conte, D., D’Ambrosio, R., Jackiewicz, Z., Paternoster, B., A practical
approach for the derivation of two-step Runge-Kutta methods. Math. Model.
Anal. 17(1) (2012) 65-77.

[12] Conte, D., D’Ambrosio, R., Jackiewicz, Z., Paternoster, B., Numerical
search for algebrically stable two-step continuous Runge-Kutta methods.
J. Comput. Appl. Math. 239 (2013) 304-321.

[13] Conte, D., D’Ambrosio, R., Paternoster, B., GPU-acceleration of waveform
relaxation methods for large differential systems. Numer. Algor. 71 (2016)
293-310.

[14] Conte, D., Jackiewicz, Z., Paternoster, B., Two-step almost collocation
methods for Volterra integral equations. Appl. Math. Comp. 204 (2008) 839-
853.

[15] Conte, D., Paternoster, B.; A Family of Multistep Collocation Methods for
Volterra Integral Equations. AIP Conf. Proc. 936 (2007) 128-131.

[16] Conte, D., Paternoster, B., Parallel methods for weakly singular Volterra
Integral Equations on GPUs. Appl. Numer. Math. 114 (2017) 30-37.

[17] Courvoisier, Y., Gander, M.J., Optimization of Schwarz waveform relax-
ation over short time windows. Numer. Algorithms 64 (2013) 221-243.

23



[18] Courvoisier, Y., Gander, M.J., Time Domain Maxwell Equations Solved
with Schwarz Waveform Relaxation Methods. Lect. Notes Comput. Sci. Eng.
91 (2013) 263-270.

[19] Cuesta, E., Lubich, Ch., Palencia, C., Convolution quadrature time dis-
cretization of fractional diffusion-wave equations. Math. Comp. 75 (2006)
673-696.

[20] Cuesta, E., Palencia, C., A fractional trapezoidal rule for integro-
differential equations of fractional order in Banach spaces. Appl. Numer.
Math. 45 (2003) 139-159.

[21] Cuesta, E., Palencia, C., A numerical method for an integro-differential
equation with memory in Banach spaces, Qualitative properties. SIAM J.
Numer. Anal. 41 (2003) 1232-1241.

[22] Cuesta, E., Kirane, M., Malik, S., Image structure preserving denoising
using generalized fractional time integrals. Signal process. 92 (2012) 553-
563.

[23] D’Ambrosio, R., Paternoster, B., Two-step modified collocation methods
with structured coefficient matrices for ordinary differential equations. Appl.
Numer. Math. 62 (2012) 1325-1334.

[24] Descombes, S., Dolean, V., Gander, M.J., Schwarz waveform relaxation
methods for systems of semi-linear reaction-diffusion equations. Lect. Notes
Comput. Sci. Eng. 78 (2010) 423-430.

[25] Gander, M.J., Schwarz methods over the course of time. Electron. Trans.
Numer. Anal. 33 (2008) 228-255.

[26] Gander, M.J., Halpern, L., Optimezed Schwarz waveform relaxation meth-
ods for advection reaction diffusion problems. STAM J. Numer. Anal. 45
(2007) 666-697.

[27] Giladi, E., Keller, H.B., Space-time domain decomposition for parabolic
problems. Numer. Math. 93 (2002) 279-313.

[28] Gander, M.J., Optimized Schwarz methods. STAM J. Numer. Anal. 44
(2006) 699-731.

[29] Gander, M.J., Halpern, L., Nataf, F., Optimal convergence for overlapping
and non-overlapping Schwarz waveform relaxation. In Proceedings of the
11th International Conference on Domain Decomposition (1999) 27-36.

[30] Gander, M.J., Halpern, L., Nataf, F., Optimal Schwarz waveform relax-
ation for the one dimensional wave equation. STAM J. Numer. Anal. 41
(2003) 1643-1681.

24



[31] Gander, M.J., Rohde, Ch., Overlapping Schwarz waveform relaxation for
convection-dominated nonlinear conservation laws. STAM J. Sci. Comput.
27 (2005) 415-439.

[32] Gander, M.J., Stuart, A., Space-time continuous analysis of waveform re-
laxation for the heat equation. STAM J. Sci. Comput. 19 (1998) 2014-2031.

[33] Gander, M.J., Zhao, H., Overlapping Schwarz waveform relaxation for the
heat equation in n dimensions. BIT 42 (2002) 779-795.

[34] Halpern, L., Szeftel, J., Optimized and quasi-optimal Schwarz waveform
relaxation for the one-dimensional Schrdinger equation. Math. Mod. Meth.
Appl. S. 20 (2010) 2167-2199.

[35] Lépez-Marcos, J.C., A difference scheme for a nonlinear partial integrodif-
ferential equation. STAM J. Numer. Anal. 27 (1990) 20-31.

[36] Quintano, C., Cuesta, E., Improving satellite image classification by using
fractional type convolution filtering. Int. J. Appl. Earth Obs. 12 (2010) 298-
301.

[37] Sanz-Serna, J.M., A numerical method for a partial integro-differential
equation. STAM J. Numer. Anal. 25 (1988) 319-327.

[38] Schédle, A., Lépez-Ferndndez, L., Lubich, Ch., Fast and oblivious convo-
lution quadrature. SIAM J. Sci. Comput. 28 (2006) 421-438.

[39] Tang, T., A finite difference scheme for partial integro-differential equations
with a weakly singular kernel. Appl. Numer. Math. 11 (1993) 309-319.

[40] Tang, T., A note on collocation methods for Volterra integro-differential
equations with weakly singular kernels. SIMA J. Numer. Anal. 13 (1993)
93-99.

25





