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A B S T R A C T

This is the second paper of the series of papers dealing with access control problems in cloud computing by
adopting quantum techniques. In this paper we study the application of quantum encryption and quantum key
distribution in the access control problem. We formalize our encryption scheme and protocol for key
distribution in the setting of categorical quantum mechanics (CQM). The graphical language of CQM is used
in this paper. The quantum scheme/protocol we propose possesses several advantages over existing schemes/
protocols proposed in the state of the art for the same purpose. They are informationally secure and
implementable by the current technology.

1. Introduction

This is the second paper of the series of papers dealing with access
control problems in cloud computing by adopting quantum technique
(Sun et al., submitted for publication). A simple model for the access
control problem in cloud computing is shown in Fig. 1. Such a model
has three components: data owner, cloud and data user. The data
owner places on the cloud the encrypted data (bit or qubits) which the
user wants to access. Upon receiving a data access request from the
user, the data owner employs an access control policy to decide
whether the user should be granted the access. Afterwards, if the
access control policy says that the access should be granted to the user,
then the data owner sends the corresponding key and a certificate to
the user. Finally, the user sends the certificate to the cloud and gets the
encrypted data, upon the successful verification of the certificate by the
cloud.

In the first paper of this series (Sun et al., submitted for publica-
tion), we developed quantum imperative logic as a formal language for
the specification of access control policies, which helps the owner in
deciding whether to grant access to the user or not. But how to grant
certain access to a user? Cryptography offers a convenient tool for
solving this problem. Many cryptographic solutions to the access-
granting problem have been proposed (Akl and Taylor, 1983;
Castiglione et al., 2016a, 2016b, 2017; Liu et al., 2017a, 2017b). The

basic idea is: first encrypt all resource, then assign keys for decryption
to those users who are permitted to access. More precisely, suppose we
have resources data data{ , …, }n1 . We first use key key, …, n1 to encrypt
those data. So we have Enc data( ), …,key 11

Enc data( )key nn
. Then we assign

keyi to a user iff the user is permitted to access datai. Therefore,
encryption and key distribution plays a pivotal role in granting access.
In this paper, we develop quantum techniques for encryption and key
distribution, using the framework of categorical quantum mechanics
(CQM).

The structure of the rest of this paper is as follows: we provide some
background knowledge on categorical quantum mechanics in Section 2.
Then we introduce encryption by complementary observables in
Section 3. We present our quantum protocol for key distribution in
Section 4. We discuss related works in Section 5 and conclude this
paper in Section 6.

2. Categorical quantum mechanics

Categorical quantum mechanics (Abramsky and Coecke, 2004;
Coecke and Perdrix, 2010; Coecke et al., 2011, 2016; Coecke and
Duncan, 2011; Bian and Wang, 2015; Coecke and Kissinger, 2017)
concerns the study of quantum computation and quantum foundations
using category theory, as well as the graphical language closely related
to category theory. Composition of quantum systems in CQM is treated
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as a primitive connective, which is conveniently described by dagger
symmetric monoidal category (†-SMC).

2.1. Category theory

Definition 1 (category). A category consists of:

1. a collection ob( ) of objects,
2. for every pair of objects A B, , a set A B( , ) of morphisms,
3. for every object A, a special identity morphism: A A1 ∈ ( , )A ,
4. sequential composition operation for morphisms:

B C A B A C○: ( , ) × ( , ) → ( , ),

satisfying the following conditions:

(1) ○ is associative on morphisms: h g f h g f( ○ )○ = ○( ○ ),
(2) ○ is unital on morphisms: f f f1 ○ = = ○1B A, for all f A B∈ ( , ).

We can graphically represent objects as wires and morphisms as
nodes attached with an input wire and an output wire. Those graphs
are read from bottom to top. In this graphical language the conditions
of sequential composition, associativity and unitality become trivial.

Example 1. In FinHilb, which is the category of finite dimensional
Hilbert spaces, objects are finite dimensional Hilbert spaces over
complex numbers, morphisms are linear maps. Identities are the
identity function on every Hilbert space. Sequential composition is
the composition of linear maps.

Definition 2 (functor). Let and be categories. A functor
F: → is defined by

• for each object A ob∈ ( ) an object F A ob( ) ∈ ( ).
• for every morphism f A B∈ ( , ) a morphism F f F A F B( ) ∈ ( ( ), ( ))

such that

F f g F f F g F( ○ ) = ( )○ ( ) and (1 ) = 1 .A F A( )

Definition 3 (natural isomorphism). Let F G, : → be functors. A
natural transformation τ F G: → is a family of morphisms in ,
τ F A G A∈ ( ( ), ( ))A , indexed by the objects of , such that the

following square commutes:

for all morphisms f A B∈ ( , ). A natural isomorphism is a natural
transformation where each of the τA is an isomorphism. That is, there
exists a morphism τA

−1 such that τ τ○A A
−1 and τ τ○A A

−1 are identities.

Definition 4 (monoidal category (Coecke and Duncan, 2011)). A
monoidal category consists of the following data:

• a category ,

• a unit object I ob∈ ( ),
• a bifunctor − ⊗ − : × → such that

1. ⊗ is a parallel composition operation for objects:

ob ob ob⊗: ( ) × ( ) → ( )

2. ⊗ is a parallel composition operation for morphisms:

A B C D A C B D⊗: ( , ) × ( , ) → ( ⊗ , ⊗ )

3. ⊗ and ○ satisfy the interchange law:

g g f f g f g f( ⊗ )○( ⊗ ) = ( ○ ) ⊗ ( ○ )1 2 1 2 1 1 2 2

4. 1 ⊗ 1 = 1A B A B⊗

• two natural unit isomorphisms

λ A I A ρ A A I: ≃ ⊗ and : ≃ ⊗ ,A A

and a natural associativity isomorphism

α A B C A B C: ⊗ ( ⊗ ) ≃ ( ⊗ ) ⊗ ,A B C, ,

which are subject to the pentagon and triangle coherence equations,
which can be found in Coecke and Paquette (), p.209.
The bifunctor ⊗ is also called tensor product, which serves as

parallel composition. It is graphically represented as horizontally
putting two morphisms (objects) together. The unit object is repre-
sented as an empty graph. It can be easily verified that all the
conditions of monoidal category trivially hold in the graphical repre-
sentation.

Fig. 1. Data access in cloud computing.
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Example 2. FinHilb is a monoidal category. In FinHilb, parallel
composition is the tensor product of Hilbert spaces. I is the field of
complex numbers , which is a 1-dimensional Hilbert space. The left-
and right-unit natural isomorphisms are respectively

 λ A A a a ρ A A a a: → ⊗ :: ↦ 1 ⊗ and ≔ → ⊗ :: ↦ ⊗ 1.A A

The associativity natural isomorphism is

α A B C A B C a b c a b c≔ ⊗ ( ⊗ ) → ( ⊗ ) ⊗ :: ⊗ ( ⊗ ) ↦ ( ⊗ ) ⊗ .A B C, ,

Definition 5 (symmetric monoidal category (Lane, 1998)). A
monoidal category is symmetric if it is equipped with a natural
isomorphism called swap:

σ A B B A: ⊗ → ⊗A B,

defined for all objects A B, , satisfying:

• σ σ○ = 1B A A B A B, , ⊗ ,

• λ σ ρ○ =A A I A
−1

,
−1,

• σ α σ α σ α( ⊗ 1 )○ ○ = ○(1 ⊗ )○C A B C A B A B C A C B A B C A B C, , , ⊗ , , , , , ,
−1 .

The swap morphism is graphically represented as the following:

Definition 6 (dagger functor † (Coecke and Kissinger, 2017;
Selinger, 2007)). A dagger functor for a symmetric monoidal
category is an operation † that satisfies the following:

• is unaltering on objects and identity morphisms: A A= , 1 = 1A A
† † ,

• reserves morphisms: f A B f B A( : → ) ≔ : →† † ,

• is involutive: f f( ) =† † ,

• and respects the symmetric monoidal category structure:

g f f g f g f g
σ σ α α λ λ
( ○ ) = ○ ( ⊗ ) = ⊗

= = = .A B B A A B C A B C A A

† † † † † †

,
†

, , ,
†

, ,
−1 † −1

In the graphical language, if we apply the dagger functor to a graph,
then the graph reflects vertically.

Definition 7 (dagger symmetric monoidal category (Coecke and
Kissinger, 2017)). A dagger symmetric monoidal category (†-SMC) is a
symmetric monoidal category equipped with a dagger functor.

Example 3. FinHilb is a †-SMC. In FinHilb, the swap for every
Hilbert space A B, is the natural isomorphism

σ A B B A a b b a≔ ⊗ → ⊗ :: ⊗ ↦ ⊗ .A B,

† is the adjoin (transpose conjugate) operator.

Definition 8 (self-dual dagger compact category (Coecke and
Kissinger, 2017)). A self-dual dagger compact category is a †-SMC in
which for each object A there is a morphism η I A A: → ( ⊗ )A :

1. η η( ⊗ 1 )○(1 ⊗ ) = 1A A A A A
†

2. σ η η○ =A A A A,

Graphically, the compact structure ηA and its adjoin ηA
† are respec-

tively represented by a cup and a cap:

The compactness graphically means that the following is satisfied:

In every monoidal category , a morphism s I I∈ ( , ) is called a
scalar, which is understood as a number. Graphically, we represent

scalars as diamonds:

Example 4. In FinHilb, scalars form the field of complex numbers .

2.2. Frobenius algebra and observable

Definition 9 (Frobenius algebra (Coecke et al., 2013)). Let be a
monoidal category. A Frobenius algebra on is an object A together
with (multiply, unit, copy, and delete) morphisms

m A A A u I A c A A A d A I: ⊗ → : → : → ⊗ : → .

satisfying the following equations:

• associativity: m m m m○( ⊗ 1 ) = ○(1 ⊗ )A A . Graphically, associativity
is visualized as the following:

• coassociativity: c c c c( ⊗ 1 )○ = (1 ⊗ )○A A . Graphically,

• unitality: m u m u○( ⊗ 1 ) = 1 = ○(1 ⊗ )A A A . Graphically,

• counitality: d c d c( ⊗ 1 )○ = 1 = (1 ⊗ )○A A A . Graphically,

• Frobenius condition:

L. Zhou et al.



m c c m m c(1 ⊗ )○( ⊗ 1 ) = ○ = ( ⊗ 1 )○(1 ⊗ )A A A A .

Graphically,

Definition 10 (commutative Frobenius algebra (Coecke et al.,
2013)). A Frobenius algebra is commutative when the following
equations hold:

σ c c m σ m○ = ○ = .A A A A, ,

Definition 11 (dagger commutative Frobenius algebra (Coecke
et al., 2013)). A dagger commutative Frobenius algebra on a dagger
symmetric monoidal category is a commutative Frobenius algebra that
additionally satisfies the following equations: c m= †, d u= †.

To describe a dagger commutative Frobenius algebra, we only need
to describe the multiply and the unit, and define copy and delete by the
dagger functor.

Example 5. Consider the †-SMC FinHilb, n is an object of FinHilb.
Consider the orthonormal basis n{|0〉, …, | − 1〉}. Note that to specify a
linear map between Hilbert spaces, we only need to specify the
functionality of the map on an orthonormal basis. Now we let

1.   

⎧⎨⎩M i j
i i j

i j
: ⊗ → ::| 〉 ⊗ | 〉 ↦

| 〉 =
0 ≠

n n nn

2.  U i: → :: 1 ↦ ∑ | 〉n
i
n
=0
−1

n

3.   C i i i: → ⊗ ::| 〉 ↦ | 〉 ⊗ | 〉n n nn

4.  D i: → ::| 〉 ↦ 1nn

Then     FroA M U C D= ( , , , , )nn n n n n is a dagger commutative
Frobenius algebra.

3. Encryption by complementary observables

Definition 12 (observable structure (Coecke and Duncan, 2011)). An
observable structure in a †-SMC is a dagger commutative Frobenius

algebra A m u( , , ) such that m m○ = 1A
† . Graphically,

An observable structure A m u( , , ) induce a self-dual when setting

η m u= ○A
† .

Example 6. Consider the object 2 in FinHilb, let

1.   
⎧⎨⎩m : → ⊗ ::

|0〉 ↦ |00〉
|1〉 ↦ |11〉z

† 2 2 2

2.  u : → :: 1 ↦ |0〉 + |1〉z
2

Then O m u= ( , , )z z z
2 is an observable structure.

Example 7. For 2 in FinHilb, let

1.   
⎧⎨⎩m : → ⊗ ::

| + 〉 ↦ |++〉
| − 〉 ↦ | − − 〉x

† 2 2 2

2.  u : → :: 1 ↦ | + 〉 + | − 〉x
2

Then O m u= ( , , )x x x
2 is an observable structure.

Example 8. For 2 in FinHilb, let ii| 〉 = (|0〉 + |1〉)1
2

and

ii| 〉 = (|0〉 − |1〉)1
2

1.   
⎧⎨⎩m

i ii
i ii

: → ⊗ ::
| 〉 ↦ | 〉
| 〉 ↦ | 〉y

† 2 2 2

2.  u i i: → :: 1 ↦ | 〉 + | 〉y
2

Then O m u= ( , , )y y y
2 is an observable structure.

Definition 13 (copyable point (Coecke and Duncan, 2011)). Let be
a †-SMC and A m u( , , ) be a Frobenius algebra on . A copyable point of
a A m u( , , ) is a point p I A: → such that c p p p○ = ⊗ .

Definition 14 (conjugate (Coecke and Duncan, 2011)). Let f A B: →
be a morphism. Its conjugate f A B*: → is defined as

f η f B η*≔(1 ⊗ )○(1 ⊗ ⊗ )○( ⊗ 1 ).B B A A B
†

A morphism f is self-conjugate if f f= *. Graphically, the conjugate
of f is the horizontal reflection of f. Therefore, a self conjugate
morphism is invariant under horizontal reflection.

Example 9. Numbers/scalars are morphisms from I to I. In FinHilb,
a number is self-conjugate iff it is a real number.

Definition 15 (classical points (Coecke and Duncan, 2011)). Given
an observable structure A m u( , , ), a point p I A: → is classical in this
structure if it is self-conjugate, copyable and u p○ = 1† .

Example 10. For the observable structure Oz, |0〉 and |1〉 are classical
points. For Ox, | + 〉 and | − 〉 are classical points. More generally, every
diameter in Bloch sphere is an observable structure and the two
endpoints of the diameter are the classical points of the
corresponding observable structure.

Definition 16 (unbiased points (Coecke and Duncan, 2011)). Given
an observable structure A m u( , , ), a point p I A: → is unbiased for this
structure if there is a scaler s I I: → such that s m p p p⊗ ( ○( ⊗ )) = , i.e.

Example 11. For the observable structure Oz, i| + 〉, | − 〉, | 〉 and i| 〉 are
unbiased points. More generally, every point that lies on the equator of
the Bloch sphere is an unbiased point for Oz. The collection of all
unbiased points of an observable structure forms a circle that passes
the center of the ball and is perpendicular to the diameter
corresponding to the observable structure.

L. Zhou et al.



3.1. Complementary observable

Definition 17 (complementary observable (Coecke and Duncan,
2011)). Two observables A m u( , , )1 1 and A m u( , , )2 2 in a †-SMC is
complementary if the following are satisfied:

• COMP1: whenever k I A: → is classical for m u( , )1 1 , it is unbiased for
m u( , )2 2 .

• COMP2: whenever k I A: → is classical for m u( , )2 2 , it is unbiased for
m u( , )1 1 .
Every observable of qubits  m u( , , )2 has two classical points. We

denote them by u and u¬ respectively.

Example 12. In FinHilb, for the object 2, Ox, Oy and Oz are pairwise
complementary. More generally, every two perpendicular diameters in
the Bloch sphere represent two complementary observables.

3.2. Encryption by phase shift over complementary observables

Coecke and Duncan (2011) showed that a phase shift of an
observable of qubits  m u( , , )2 is isomorphic to a matrix
u u e u u| 〉〈 | + | 〉〈 |iα ¬ ¬ , in which α π∈ [0, 2 ). We use S α( ) to represent the
phase shift which is isomorphic to u u e u u| 〉〈 | + | 〉〈 |iα ¬ ¬ .

For two complementary observables of qubits ( ,2 m u, )1 1 and
m u( , , )2

2 2 , there is a unique observable of qubits ( 2, m u, )3 3 which
is complementary to both ( ,2 m u, )1 1 and m u( , , )2

2 2 . The phase shift
S ( )π

3 2 of ( ,2 m u, )3 3 maps u1 to u2, u2 to u1
¬, u1

¬ to u2
¬ and u2

¬ to u1. The

result of applying S ( )π
3 2 to u u u u{ , , , }1 2 1

¬
2
¬ is summarized in Table 1.

Remark 1. The phase shift S( )π
2 is a generalization of the NOT

operator in quantum computational logic (Cattaneo et al., 2004; Ledda
et al., 2006; Giuntini et al., 2007; Ledda and Sergioli, 2010; Chiara
et al., 2016). Indeed, the matrix representation of NOT is

⎡
⎣⎢

⎤
⎦⎥

i i
i i

1 − 1 +
1 + 1 −

1
2 , which is exactly e| + 〉〈 + | + | − 〉〈 − |iπ

2 , the phase

shift S ( )x
π
2 of the observable Ox.

Definition 18 (key space). For two complementary observables of
qubits ( ,2 m u, )1 1 and m u( , , )2

2 2 , the key space they induce is

S S S π S{ (0), ( ), ( ), ( )}π π
3 3 2 3 3

3
2 .

Definition 19 (encryption by complementary observables). For two
complementary observables of qubits ( 2, m u, )1 1 and  m u( , , )2

2 2 , we

let Key S S= { (0), ( )π
3 3 2 , S π S( ), ( )}π

3 3
3
2 . An encryption by complementary

observables is a function  Enc Key: × ↦2 2 which maps a qubit α| 〉 to
S α| 〉, where S Key∈ .

We will also use Enc α(| 〉)S to denote Enc S α( , | 〉).

Definition 20 (informationally secure). An encryption scheme is
informationally secure if for every qubit α| 〉, if we encrypt it by taking
keys according to a uniform probability distribution over the key space
key key{ , …, }n1 , then the result is a totally mixed state, i.e., the uniform
probability distribution of Enc α Enc α{ (| 〉), …, (| 〉)}key keyn1

is a totally mixed
state.

We remind the readers that the totally mixed state of a qubit is

represented by the density matrix
⎡
⎣⎢

⎤
⎦⎥

1 0
0 1

1
2 . In the Bloch ball, the totally

mixed state is represented by the center of the ball. For two
complementary observables of qubits m u( , , )2

1 1 and m u( , , )2
2 2 , a

probability distribution ϕ over u u u u{ , , , }1 1
¬

2 2
¬ such that ϕ u ϕ u( ) = ( )1 1

¬

and ϕ u ϕ u( ) = ( )2 2
¬ is always a totally mixed state.

Theorem 1. Encryption by complementary observables of qubits is
informationally secure.

Proof. Let ( 2, m u, )1 1 and  m u( , , )2
2 2 be an arbitrary pair of

complementary observables of qubits. Let Key S S= { (0), ( )π
3 3 2 ,

S π S( ), ( )}π
3 3

3
2 be the key space induced by this pair of complementary

observables.
For the qubit u1, after encryption by complementary observables we

get a uniform probability distribution over u u u u{ , , , }1 1
¬

2 2
¬ , which is a

totally mixed state. Similarly, for the qubit u1
¬, after encryption by

complementary observables we also get a uniform probability distribu-
tion over u u u u{ , , , }1 1

¬
2 2

¬ .
Now, take u1 and u1

¬ as the basis of qubits. Then every qubit
α au bu| 〉 = +1 1

¬ for some a b, ∈ such that a b| | + | | = 12 2 . If we encrypt
α| 〉 by complementary observables we get a uniform probability
distribution over au bu au bu bu au bu au{ + , + , + , + }1 1

¬
2 2

¬
1 1

¬
2 2

¬ , which
is still a totally mixed state. □

4. Key distribution: generalized quantum three-pass
protocol

A three-pass protocol in cryptography (Massey, 1988) is a protocol
which enables one party to securely send a message to a second party
by exchanging three encrypted messages. The essential idea of the
three-pass protocol is that each party has private keys for encryption
and decryption and they use their keys independently, first to encrypt
the message, and then to decrypt the message.

Informally, the three-pass protocol for Alice to secretly send an
object to Bob works as follows

1. Alice puts the object into a box, locks the box and mails it to Bob.
2. Bob adds his own lock to the box and sends it back to Alice.

Table 1
Encryption by phase shift.

Morphism S (0)3 ⎛
⎝⎜

⎞
⎠⎟S π

3 2

S π( )3 ⎛
⎝⎜

⎞
⎠⎟S π

3
3
2

State

u1 u1 u2 u1
¬ u2

¬

u2 u2 u1
¬ u2

¬ u1

u1
¬ u1

¬ u2
¬ u1 u2

u2
¬ u2

¬ u1 u2 u1
¬

L. Zhou et al.



3. Alice removes her lock and sends the box back to Bob.

This protocol can be implemented by using the exclusive-OR
operation ⊕ in classical cryptography:

1. For a bit x, Alice encrypts it with her key ka and then sends the
encrypted bit (x k⊕ a) to Bob.

2. Bob encrypts the encrypted bit with his key kb and sends
x k k( ⊕ ) ⊕a b to Alice.

3. Alice decrypts what she received by ka and obtains
x k k k x k(( ⊕ ) ⊕ ) ⊕ = ⊕a b a b. She then sends x k⊕ b to Bob.

The weakness of the above implementation is that if an eaves-
dropper copies the three messages x k⊕ a, x k k( ⊕ ) ⊕a b and x k⊕ b,
then he can deduce x from those messages because
x k x k k x k x( ⊕ ) ⊕ (( ⊕ ) ⊕ ) ⊕ ( ⊕ ) =a a b b . To overcome this weakness,
Kanamori and Yoo (2009) propose a quantum implementation of the
three-pass protocol. Thanks to the quantum no-cloning theorem
(Yanofsky and Mannucci, 2008; Nielsen and Chuang, 2011), the
quantum three-pass protocol is resistant to eavesdroppers. A disad-
vantage of Kanamori and Yoo's quantum three-pass protocol is that the
key space of their encryption is an infinite set. Recently, Qiu et al.
(2017) developed another quantum three-pass protocol in the frame-
work of CQM such that the size of the key space is significantly smaller.
In this paper, we further generalize the protocol proposed in Qiu et al.
(2017).

Given two complementary observables of qubits ( ,2 m u, )1 1 and
 m u( , , )2

2 2 , we use a pair of classical points from an observable
structure, say u1 and u1

¬, to encode 0 and 1, respectively. Our key space

for encryption and decryption is Key S S= { (0), ( )π
3 3 2 , S π S( ), ( )}π

3 3
3
2 . We

let k k( , )† be a pair of encryption/decryption keys, where
k S π= (2 − )iπ†

3 2 for k S= ( )iπ
3 2 .

Our quantum three-pass protocol for Alice to send a qubit α| 〉 to Bob
is composed of the following steps:

1. Alice randomly generates her private key k Key∈a . Bob randomly
generates his private key k Key∈b .

2. Alice encrypts α| 〉 by ka and sends Enc k α k α( , | 〉) = | 〉a a to Bob.
3. Bob encrypts the received ciphertext k α| 〉a by kb and sends k k α| 〉b a to

Alice.
4. Alice decrypts k k α| 〉b a by ka

† and sends k k k α| 〉a b a
† to Bob.

5. Bob decrypts k k k α| 〉a b a
† by kb and obtains k k k k α| 〉b a b a

† † .

This protocol can be used by the data owner to send his key and
certificate to the user, as shown by the Step 4 depicted in Fig. 1. The
correctness of our protocol is guaranteed by commutativity of phase
shift over complementary observables.

Theorem 2. The quantum three-pass protocol is correct.

Proof. Suppose Alice chooses u as her key and Bob chooses v as his
key, then we have the following graphical derivation:

which means that the sequential composition of the operations of the 2
parties applied in the protocol is equivalent to an identity operator.
Therefore, the qubit is correctly transferred. □

The security of most existing protocols of key distribution for access
control in cloud environments relies on the computational complexity
of problems like prime factorization. Therefore once a quantum
computer is built, their protocol may be compromised in polynomial
time (Shor, 1994). Conversely, our protocol is secure with respect to
quantum computers, since it provides informational security, due to

the complementarity of observables. Here a key distribution protocol is
informationally secure if the data

Theorem 3. The quantum three-pass protocol is informationally
secure in the sense that the qubit being transmitted at every stage of
the protocol is a totally mixed state.

Proof. This is a simple consequence of Theorem 1 and 2. □

5. Related work

The quantum one-time pad encryption scheme (Boykin and
Roychowdhury, 2003) is probably the most well-known encryption
scheme in quantum cryptography. The key space for quantum one-time
pad is I X Z XZ{ , , , }. While this key space is much like a result of trial
and error, our encryption scheme is more systematic and has a deeper
theoretic background, besides ensuring the same security as quantum
one-time pad.

The first and yet most influential protocol for quantum key
distribution is developed by Bennetta and Brassard (1984), known as
the BB84 protocol. In the BB84 protocol, more than a half of the
transmitted qubits has to be disregarded. The quantum three-pass
protocol is more efficient in the sense that no transmitted qubit has to
be disregarded. Moreover, the quantum three-pass protocol can be
used to secretly send quantum data, while BB84 cannot. The quantum
three-pass protocol introduced in Qiu et al. (2017) makes use of phase
shift over two specific complementary observables, namely, the Ox and
Oz observable. The three-pass protocol introduced in this paper is more
general, in the sense that the two complementary observables do not
have to be the Ox and Oz observable.

6. Conclusion

In this paper we study the application of quantum encryption and
quantum key distribution in the access control problem. The quantum
scheme/protocol we propose in this paper has various advantages over
existing schemes/protocols proposed for the same purpose. They are
informationally secure and implementable by the current technology.
We remark that implementing quantum cryptographic protocols is
much easier than building quantum computers. Many quantum
cryptographic protocols have been realized in laboratories tens of years
ago. Moreover, nowadays there are commercial companies selling
devices for quantum key distribution and the technologies needed to
implement the protocols in the paper are the same as the technologies
needed for quantum key distribution that has been realized by
commercial companies.
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