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Abstract

The main purpose of video-based event recognition is to interpret activities or

behaviors within video sequences, in order to detect and isolate specific events,

which have to be readily recognized and prompted to the people responsible for

their monitoring. In this paper, we present a knowledge representation frame-

work and a system for automatic video surveillance, which analyzes record scenes

in order to detect the occurrence of specific events defined as targets. The frame-

work, named Elements and Descriptors of Context and Action Representations

(EDCAR), enables the representation of relevant elements, general descriptors

of the context, and actions that have to be captured, including the definition of

action compositions and sequences, in order to monitor and recognize abnormal

situations. EDCAR and the associated system also support video summariza-

tion of relevant scenes, providing an inference engine to handle complex queries.

They have been used experimentally on several video surveillance scenarios,

which enabled us to prove their effectiveness with respect to similar solutions

described in the literature.
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Composition, Event Recognition, Video Surveillance.

1. Introduction

Video-based Event Recognition is an important research field of Artificial

Intelligence, which concerns the automatic analysis of video files, in order to

recognize and classify events (Hongeng et al., 2004). There can be simple events,

involving single entities, like for example a person walking, and/or complex5

events, characterized by more entities that may or may not interact among

them to achieve common goals. Complex events might be compositions of single

events or sequences of unrelated events across groups of entities that may not

be related, completely disjoint, and/or included in the scene at different times.

In many practical applications, ranging from video surveillance in airports10

or other critical environments, to real-time monitoring of patients in hospitals,

or even children in a nursery school, it is necessary to recognize and interpret

complex events occurring in a video sequence. This is mainly due to the fact

that it is difficult to keep surveillance personnel highly concentrated, especially

when they have to simultaneously watch several videos on different monitors.15

Thus, it is necessary to devise a system capable of recognizing complex scenar-

ios on the basis of semantic models representing the monitored situations. To

this end, among the proposals provided in the literature, there are knowledge-

based approaches (Nevatia et al., 2003; Ghanem et al., 2004; Castro et al., 2011;

Tani et al., 2014), and model specific approaches (Fine et al., 1998; Pavlovic20

et al., 1999; Joo & Chellappa, 2006; Guo et al., 2016), which are based on

mathematical, statistical, or grammar-based models. Among the formers we

can find approaches enabling the definition of either sequences or compositions

of actions, but not the modeling of the context, and vice versa. Concerning

model-based approaches, they are efficient for some specific scenarios, but not25

for general-purpose ones, since some of them might not be suitably modeled

through the primitives of the model underlying the given approach.

To tackle these limitations, in this paper we propose a knowledge repre-
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sentation framework, named Elements and Descriptors of Context and Action

Representations (EDCAR), which enhances the capabilities of existing video30

surveillance approaches and current knowledge representation methods, by en-

abling the representation of a context, and the potential events that might occur

in it in terms of sequences and/or composition of actions, making it possible to

progressively understand situations occurring in a video sequence. In particu-

lar, EDCAR permits to: (1) define elements of the context that are relevant to35

a specific monitored environment; (2) define general descriptors of the context

characterizing additional information that could be useful in the monitoring of

a specific environment; (3) define actions that have to be captured; and, (4)

define action compositions and sequences, in order to observe and recognize ab-

normal situations. In this way, it is possible to precisely describe events that40

can occur, and to make predictions on what might be the consequences, by per-

forming inferences on the actions, the instantiated elements, and the descriptors

of context.

Based on EDCAR, we have implemented IVIST (Intelligent VIdeo Surveil-

lanT), a system prototype providing automated support for the specification of45

knowledge with EDCAR, and implementing the associated inference procedures,

including the triggering of alarms. IVIST relies on some external modules, such

as a tracker and an object detector (Redmon et al., 2016; Kalal et al., 2012).

We have performed several experiments on public datasets, particularly fo-

cusing on video sequences containing typical video surveillance scenarios. A50

comparative evaluation with respect to similar solutions proposed in the litera-

ture proved the effectiveness of IVIST and the underlying framework EDCAR.

The paper is organized as follows: Section 2 surveys the related work, and

presents the improvements offered by the EDCAR approach. Section 3 describes

the proposed framework by illustrating the Element of Context Representation55

(ECR) (Section 3.1), the Action Representation (AR) (Section 3.2), the General

Context Descriptors (GCD) (Section 3.3), and the modeling of scenarios (Sec-

tion 3.4). Some application scenarios modeled through the EDCAR framework

are presented in Section 4. The IVIST system is presented in Section 5, whereas
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experimental results are discussed in Section 6. Finally, Section 7 provides the60

conclusions and discusses future developments.

2. Related Work

In the literature there are several approaches focusing on human activity

recognition (Afsar et al., 2015; Zhang et al., 2017, 2018). Based on their struc-

ture, they can be divided into two categories: single-layer and hierarchical ap-65

proaches (Aggarwal & Ryoo, 2011). Those in the first category are mainly tar-

geted at simple movement and action recognition, whereas those in the second

category are characterized by multiple layers of processing, and can potentially

recognize interactions and group activities.

Single-layer approaches mainly employ mathematical models with a single-70

layer structure, which directly acts on the video frames. These approaches

deem an activity as a particular class of images, and the recognition is carried

out through the association of a sequence of unknown images to a known class

(Sheikh et al., 2005; Rodriguez et al., 2008; Jiang et al., 2006). Recent advances

on hardware technologies have been exploited to improve some algorithms of75

human behavior recognition. As an example, by exploiting advances in 3D

sensors, algorithms exploiting deep information have been proposed for human

joint estimation and behavior recognition (Kim et al., 2016).

Since the target of our framework is the recognition of complex video surveil-

lance scenarios, we analyze hierarchical approaches in more details, with partic-80

ular emphasis on knowledge-based ones.

Hierarchical approaches deal with the recognition of complex actions through

the identification and the correlation of simple actions. In this category we find

statistical or syntactical approaches. The formers define systems composed of

more than one elaboration layer to enable the recognition of more complex ac-85

tions. System layers are implemented by means of state-based models as a basis

for the activity recognition (Brand et al., 1997; Fine et al., 1998). Syntactical

approaches model human activities as strings of symbols, each representing an
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atomic action. These techniques have been initially used mainly for pattern

recognition within static images, whereas recently they have also been used for90

human behavior recognition (Joo & Chellappa, 2006).

Recently, many deep learning-based approaches have been developed in the

context of visual understanding applications (see Wang & Sng (2015); Guo et al.

(2016) for surveys). As an example, in Xue et al. (2016) a convolutional neural

network (CNN) is used to classify and recognize people in RGBD videos. The95

authors combine motion information with the CNN classifier into a probabilis-

tic tracking algorithm, in order to train the classifier offline, and then run the

tracking procedure online, yielding a semi-automated approach for surveillance.

Moreover, in Park et al. (2016) different sources of knowledge are combined

in deep learning, in order to recognize actions in a video sequence. Other ap-100

proaches propose specific classification models in order to recognize events or

correctly distinguish wide sets of human-activities (Zhang et al., 2017; Wang

et al., 2018; Sultani et al., 2018).

The class of approaches more similar to our proposal is represented by

knowledge-based approaches. They exploit repositories in which the human ac-105

tivities to be detected are explicitly described. The recognition activity consists

of matching what the system detects and what is described in the knowledge

base. The hierarchy existing among specific actions of the application context

is directly modeled within the knowledge base. Thus, the analysis process is

simplified and more understandable.110

The first proposal in this category is the one from Ghanem et al. (2004),

who have developed a system for event recognition using Petri Nets (Peterson,

1981) as a knowledge representation method. The system provides a graphical

user interface (GUI) to formulate requests, which are automatically associated

to a set of Petri Nets representing the instance components. The system also115

uses some video management modules in order to extract the tracks identifying

primitive events. Such scenes are properly filtered by the Petri Nets in order to

recognize composite events matching the formulated requests.

Other proposals in this category rely on Ontologies. For instance, Nevatia
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et al. (2003) use an event ontology to represent high-level events as compositions120

of single events linked by means of spatial, temporal, and logic relationships,

possibly involving more than one actor. The ontology-based approach proposed

in (Tani et al., 2014) aims to detect single/multiple object events through a

set of Semantic Web Rule Language (SWRL) rules (O’connor et al., 2005).The

latter are used to classify the different bounding boxes based on their semantics125

(Group Of Person/ Person), and to associate an appropriate video event class

concerning the behavior of its objects. Moreover, the approach introduced in

(SanMiguel et al., 2009) integrates two types of knowledge: the scene and the

system, where the former describes simple or complex events in terms of objects,

their relations (events), spatial context, and so on, whereas system knowledge is130

processed in order to determine the best configuration of the processing schemas.

In particular, system knowledge helps detecting the object/event capabilities,

their reactions to specific events, and different analysis schemas. Finally, Castro

et al. (2011) have developed a system that permits to customize the intrusion

detection scenario according to the specific contexts to which it is applied. The135

system collects multi-sensor data and integrates them through a generic ontology

in a homogeneous way.

A knowledge-based video surveillance system using first-order logic in defined

in (Tran & Davis, 2008). It consists of a network of grounded atoms (atomic

assertions) describing event occurrences in a video stream. Event detection is140

accomplished by associating a confidence value, based on the goodness of the

detection. The detected ground atoms are involved in an inference process, aim-

ing to deduce new logic formulas for describing events or behaviors. Elhamod

& Levine (2012) introduced a semantic behaviour-based approach, which relies

on object and inter-object motion features. The approach provides a mathe-145

matical and logical description of certain common behaviours, through which

it detects behaviours based on the features of recently recorded objects. Such

features describe the motion and the spatial relations among objects involved

in the scene.

Finally, Lim et al. (2014) proposed an intelligent framework for the detection150
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of multiple events. The authors modularize the surveillance problems into a

set of variables comprising regions-of-interest, classes (i.e. human, vehicle),

attributes (i.e. speed, locality), and a set of notions (i.e. rules) associated to

each of the attributes, in order to derive knowledge concerning the environment.

Among the approaches surveyed above, the ones more directly comparable155

with EDCAR are those using a knowledge base to automatically analyze the

recorded scenes. With respect to them, EDCAR enables the definition of se-

mantic models that are based on both events (simple or complex actions) and

the surrounding context (elements and general information), which permit the

sequencing of actions and/or their composition, enhancing the capability to in-160

terpret different scenarios based on the context in which they occur. To this end,

most of the surveyed knowledge-based approaches have some limitations, since

some of them enable the composition of actions but neither their sequencing,

nor the modeling of the context. On the other hand, those enabling the model-

ing of the context do not allow to define sequences or compositions of actions.165

The only knowledge-based approach that allows to define sequences of actions is

the one from (Ghanem et al., 2004), but it does not allow to compose them, nor

to define the context. In addition, EDCAR permits to simultaneously analyze

multiple scenarios, enabling the identification of the current scenario based on

the occurred events.170

3. The Knowledge Representation Framework EDCAR

Video event understanding is the translation process of low-level video con-

tents into high-level semantic concepts (Lavee et al., 2009). In this context, the

concept of video sequence represents the key point for classifying low-level con-

tents into their semantic interpretation. Indeed, it might happen that contents175

appearing in different video sequences yield different semantic interpretations.

Moreover, the definition of action in the context of human activity recognition

provides the second key point in the event recognition process. Such a definition

considers an action as a set of gestures, where the term “set” does not impose
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particular restrictions on how the action is interpreted, how its gestures are180

related, or how actions depend on each other.

A fundamental challenge in the real-time contexts is the capability to recog-

nize actions when they occur. Moreover, in order to support the recognition in

complex scenarios, contextualized into specific environments, there is the need of

customizing what has to be detected. One way to do this is to enable the model-185

ing of knowledge concerning target scenarios. However, general-purpose knowl-

edge representation frameworks provide too basic mechanisms, which make it

difficult to model complex target scenarios through simple rules. This led us

to define a new knowledge representation framework, named EDCAR, which

enables the modeling of objects or actors, context, and actions of the scenario190

to be detected by means of ECR (Elements of Context Representations), GCD

(General Context Descriptors) , and AR (Action Representations), respectively.

In particular, in order to define such scenarios, it has been necessary to address

the concept of an action composed of more elementary ones, and the definition of

action sequences. A scene instance is described by relevant elements of context,195

which collect data about the points of interest in the recorded scene, including

their correlations. GCDs can be related to ECRs and describe the whole envi-

ronment, such as geographical, historical, emotional or biological information.

By defining target scenarios through the EDCAR framework it is possible

to (1) understand current events through the stored knowledge, by reducing200

events to simple ones, and by instantiating elements, descriptors of context,

and actions, with actual data (filling the slots); and (2) reason about events

and supply missing information in occurred events by making inferences on the

instantiated data.

The EDCAR framework is shown in Figure 1. It is composed of seven layers205

as described in the following.

• Enviromental Layer, collects data from a set of video surveillance devices,

such as cameras, microphones, thermal sensors, and so forth;

• Frame Layer, analyzes frame sequences in order to identify elements within
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Figure 1: The EDCAR framework.

them, and to extract useful information instantiating ECR, GCD, and AR210

forms.

• ECR Layer, collects all the relevant elements of context generated through

the analysis on frames in the previous layer and the ECRs.

• AR Layer, collects all the actions involving ECRs, generated according to

the scene interpretation and the ARs.215

• GCD Layer, collects all the contextual information according to the GCDs.

Such information is generated by the analysis of both frames in the frame

layer, which can also involve ECRs, and the data collected through the

Information Layer, described next.

• Information Layer, collects all the useful information to characterize the220

environment, such as statistical, geographical, and/or historical data, by
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using external information sources in terms of Open Data, statistics, or

sensor data.

• Current Scenario Layer, relates information concerning ARs and GCDs

instantiated in the previous layers, and determines a current scenario in-225

stance. In particular, the information is interpreted according to their

sequentiality and composition.

By summarizing, the whole information flow is based on several internal

and/or external information sources, and on the frame-based models defined

within target scenarios, in terms of ECR, AR, or GCD. In particular, the first230

two layers characterize peculiarities that are common to other existing video

analysis approaches. The last five layers enable the interpretation of the occur-

ring scenario by only focusing on relevant events, in terms of elements, actions,

and context information. This represents the strength point of the EDCAR

framework, since it permits to define complex scenarios to be monitored by235

composing and sequencing actions, elements of context, and contextual infor-

mation.

In the following subsections the ECR, AR, and GCD forms are described in

details (3.1, 3.2, 3.3, respectively). In 3.4 it is described how to define target

scenarios to be detected, in terms of action sequences.240

3.1. Elements of Context Representation

The representation of elements of context (ECR) is a significant part of the

proposed knowledge representation framework. In fact, such a representation

enables the definition of knowledge concerning specific elements that have to

be caught and monitored in order to derive a correct interpretation of a video245

sequence. In particular, an element of context can be formally described through

the following features that must occur in order for the element to be recognized:

• Type. A scene may contain different kinds of elements. Each element of

context may assume as value of the type feature one of the basic types

Actor or Object, or a specialization of them. A specialization hierarchy250
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can be constructed for both basic types. As an example, in a railway

station environment, a TRAVELER can be defined as a specialization of

PERSON (which is itself a specialization of ACTOR). This is done by

specifying PERSON as type of TRAVELER. Moreover, it is possible to

add some constraints to the Type specification, by detailing specifications255

such as .CONSTANT, which expresses the fact that an element will always

participate to the scene and that its properties (defined below) will never

change. As an example, we can consider the GROUND constant as an

element of context, and can define it by adding .CONSTANT to its type

specification.260

• Properties. An element holds specific properties. The specification of

properties in the model refers to technical information that can be caught

through devices and/or feature extraction algorithms (Laptev, 2005; Hon-

geng & Nevatia, 2001). An example of property is location, which is com-

posed of the spatial coordinates (XValue and YValue) of a specific point265

of the element (e.g. its centre). Moreover, additional properties can be

determined by means of rules defining relationships between pairs of ele-

ments in the scene. As an example, in the railway station environment a

ownership property between the BAGGAGE and its owner can be defined.

• Entry condition. Some elements have to satisfy an Entry condition in270

order to be considered relevant in the scene, and/or to be distinguished

from others. The Entry condition can be specified in terms of both rules

and actions. As an example, a TRAVELER specification can be distin-

guished from the specification of a generic PERSON if it presents an entry

condition specifying a “baggage holding” property.275

It is worth to notice that for the definition of a target scenario it is necessary

to characterize all and only the elements of context that appear to be relevant

in the situations to be described. As an example, in the context of a railway

station the recognition of a timetable is not as relevant as the recognition of

travelers, baggages, and so forth.280
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TRAVELER

Features Description

Type PERSON

Properties
Location: XValue, YValue

Area: dim

Entry Condition (HAS, baggage)

Table 1: An ECR describing the concept of TRAVELER.

An example of ECR representation is shown in Table 1, which describes

the features of a TRAVELER. This element of context has been specified as a

specialization of PERSON ; it holds location and area Properties in the scene,

and it has to satisfy the Entry Condition concerning the baggage holding.

3.2. Action Representation285

In order to recognize and interpret a scene, it is important to recognize single

actions occurring in the scene that can altogether be interpreted as an event.

Moreover, an action can produce a side effect, since it might yield a change of

context.

Action representation (AR) models define knowledge concerning the correct290

recognition of an action. In particular, an AR model allows us to define the

features that an action should exhibit in order to be interpreted as a given one.

It can be described through the following features that must occur in order for

the action to be recognized:

• Type. An action can be simple or composite. A simple action represents295

individual events that can be detected by analyzing the properties of ele-

ments occurring in it. As an example, an action determining a change of

position (CHANGE LOC ) of an actor or an object can be considered as

simple, because it can be recognized by analyzing the location property.

Instead, a composite action depends on the recognition of other actions.300

As an example, the getting close action (GET CLOSE ) performed by a
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person with respect to another element depends on the recognition of sim-

pler actions, such as the CHANGE LOC action.

• Elements. An action involves one o more elements of context. For this rea-

son, through the elements specification it is possible to define the elements305

on which the action applies. They can be Actor, Object, a specialized type

(such as PERSON, TRAVELER, and so forth), or ActorObject. The lat-

ter is specified when the action does not depend on the specific type of

element on which it is applied. As an example, the CHANGE LOC action

could involve an actor or an object. In this case, the value of the feature310

Elements is ActorObject.

• Rule. Independently from its type, the recognition of an action depends

on the rules characterizing it. A rule can represent (i) an arithmetic/logic

formula on elements properties (simple action), (ii) composition of ac-

tions (composite action), (iii) a call to a function/module dedicated to315

the recognition of the action, or (iv) a combination of (i)-(iii). Some ex-

amples of AR rules are shown in Table 2. For instance, the rule for the

CHANGE LOC action expresses the condition of the property location

change by the elements of context to which it is applied.

• Effect. An action can produce an effect on the context. The effect yields320

the context update that must be carried out when the action occurs. In

other words, through this definition it is possible to express the context

update deriving from an occurring action. As an example, the effect of the

CHANGE LOC action is to modify the location property of the involved

element.325

It is worth to notice that for the scenario specification it is necessary to char-

acterize all and only the actions defining the target situation. As an example,

in a railway station the action of a person that looks up a timetable will not

be as relevant as the movements of travelers around the railway station, their

mutual interactions, their actions on baggages, and so forth.330

An example of AR representation is shown in Table 3, which describes the
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Action Rule

CHANGE LOC ActorObject.Location ! = (GET LOC, ActorObject)

DIFF LOC |(GET LOC, ActorObject1 ) - (GET LOC, ActorObject2 )|

FALL DOWN (DIFF LOC, ActorObject, Ground) < thr1

PICK UP (DIFF LOC, Actor, Object) < thr1 ∧ (DIFF LOC, Object, Ground) > thr2

SET DOWN (DIFF LOC, Actor, Object) < thr1 ∧ (DIFF LOC, Object, Ground) < thr2

GRASP (PICK UP, Actor, Object) ∧ !(CHECK OWNER, Actor, Object)

LEAVE OBJECT (CHANGE LOC, Actor) ∧ (DIFF LOC, Actor, Object) > thr

CHECK OWNER Object.Owner == Actor? true : false

RUN AWAY (CHANGE LOC, Actor) ∧ Time.rapid

Table 2: Examples of AR rules.

CHANGE LOC

Features Description

Type Simple

Elements ActorObject

Rule ActorObject.Location ! = (GET LOC, ActorObject)

Effect (SET LOC, ActorObject)

Table 3: An example of AR.

features of the CHANGE LOC action. In particular, this action is of Type

Simple; the Elements feature is ActorObject, since the action does not depend

on the specific type of element to which it is applied; it will be recognized under

the Rule ActorObject.Location ! = (GET LOC, ActorObject), which verifies335

whether the ActorObject location is different from the previously stored one;

the Effect feature yields the update of the ActorObject location property.

3.3. General Descriptors of Context

The General Context Descriptor (GCD) models permit to better characterize

one or more elements identified in the scene, or to provide generic information340

on the environment. This allows to precisely understand what is occurring in a
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scene, since the interpretation could refer not only to elements and actions, but

also to general information related to the context.

A GCD model allows us to define general context information that can be

integrated with actions in order to interpret a scenario. It can be described345

through the following features that must occur in order for the context to be

recognized:

• Type. Several context information can be collected according to sources

managed in the information layer. For this reason, it is possible to col-

lect several kinds of data, such as biometric, geographic, or statistic data.350

Thus, the feature Type refers to the type of data that the GCD man-

ages. As an example, information on expressions of an actor (e.g., a

FACIAL EXPRESSION GCD) could manage data classified as biometric

ones.

• Properties. A context information holds specific properties. The specifica-355

tion of properties in the model refers to data that can be caught through

tools or modules working on external sources and/or on the identified

ECR. An example of property could be a confidence indicator, whose

value indicates the reliability degree of the collected information.

• Tool/Module. Independently from its type, context information depends360

on tools or modules to extract it. As an example, the module extracting

FACIAL EXPRESSION information could be the “FE Learning”, which

classifies facial expressions of persons detected in a video sequence (Cohen

et al., 2003; Zeng et al., 2009; Shan et al., 2009).

• ECR Index. A context information can be connected to at most one ECR.365

Such feature indicates a specific class of ECRs, whereas a NULL value

indicates that the information concerns the general environment. As an

example, a FACIAL EXPRESSION GCD can be related to ECRs, which

are actors in the scene.

It is worth to notice that for the scenario specification it is necessary to char-370

acterize all and only the general context information useful to better interpret
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FACIAL EXPRESSION

Features Description

Type Biometric emotions

Properties
Classification: {Anxiety, Anger, Tranquility, Relaxation}

Confidence: value

Tool/Module FE Learning

ECR Index Actor

Table 4: An example of GCD.

the situation.

An example of GCD representation is shown in Table 4, which describes the

features of the FACIAL EXPRESSION information. In particular, this infor-

mation has been specified to be of Type Biometric data; it holds the classification375

of expression and the confidence degree as properties, which can be extracted

through the external module FE Learning, and it has to be connected to an

ECR of type Actor through the ECR Index.

3.4. Event Modeling

In order to define target events, an implementation can be used in which the380

target scenario is represented through the definition of (1) the context, and (2)

the composition and sequencing of actions that should yield an alarm raise.

In other words, the EDCAR framework allows us to define the structure

of the knowledge useful to represent the elements and descriptors of context,

and the actions that can be involved in a specific scenario. However, a scenario385

represents a sequence/composition of actions on the relevant elements of context.

In particular, the sequence of actions can be defined with a different occurrence

type. The possible occurrence types that can be specified are:

• Mandatory. A scenario cannot be recognized if a mandatory action does

not occur. Thus, it is strictly required.390
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• Optional. Some actions can be optional. They strengthen the recognition

of a scenario, but they are not strictly required.

• One of. An action could be optional if one among a set of other actions

occurs.

• Repeatable. An action can be repeated one or more times.395

More than one occurrence type specification can define a single action.

3.4.1. Visual Representation

The definition of action composition/sequence can be accomplished by using

the visual language Pinco, which depicts actions as circles, whereas relations

between actions as directed links. The way in which these links connect action400

circles represents the instantiation modality of an action in the scenario. The

instantiation modality of an action can be accomplished by using the icons

shown in Figure 2.

A mandatory action is represented in Pinco by a circle linked through a

solid directed arrow; whereas an optional action is represented by a circle linked405

through a dashed directed arrow. An action included in a One of set is repre-

sented by including the action circles in a rectangle shape. Moreover, repeatable

actions are modeled by double circles.

A composite action is automatically retrieved when an action is added to the

visual representation of a scenario. It is represented by an action circle linked410

through a directed arrow ending with a tiny circle.

A target scenario can be modeled in Pinco by composing its graphical icons.

Some examples of complete representations for analyzed scenarios are presented

in the next Section.

4. Usage Scenarios415

In this section we present some target scenarios modeled through the ED-

CAR framework. In particular, in the following subsections we present the

scenarios “Steal of Baggage”, “Crowd Activity”, “Unattended Baggage”, and
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(a) Mandatory (b) Optional (c) One of

(d) Repeatable (e) Composite

Figure 2: Visual representation types of sequence occurrence and action composition.

“Fighting”. Since EDCAR can also be used without contextual information, we

have provided both examples using and not using GCDs.420

4.1. Steal of Baggage

This scenario describes a possible situation in which a thief steals the baggage

of a traveler. In particular, it is composed of the following five main actions:

SET DOWN, APPEAR ACTOR, GET CLOSE, GRASP, RUN AWAY, on a

context composed of the following three relevant elements: TRAVELER, BAG-425

GAGE, and GROUND. The main actions define the target situation in terms

of the top-level sequence of actions; other defined actions represent those com-

posing the main ones. The visual representation of the model of this scenario is

shown in Figure 3.

The scenario starts with the detection of a TRAVELER with his/her BAG-430

GAGE, that sets the latter down on the GROUND (SET DOWN). Succes-

sively, another PERSON appears in the scene (APPEAR ACTOR), approaches

the baggage (GET CLOSE), and grasps it (GRASP) by raising it from the

ground (PICK UP); then, the second actor flees from the scene with the bag-

gage (RUN AWAY).435

4.2. Crowd Activity

This example models the scenario “Crowd Activity” that is important to

detect panic situations. In particular, the scenario describes many actors that
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Figure 3: Visual representation of the model for the “Steal of Baggage” scenario.

Figure 4: Visual representation of the model for the“Crowd Activity” scenario.

suddenly run away. It is composed of three main actions, two of which are op-

tional, namely APPEAR ACTOR and DISAPPEAR ACTOR, and one manda-440

tory, namely GENERAL RUN AWAY. The context is composed of one relevant

element, namely PERSON, which can be instantiated several times. The visual

representation of the model of this scenario is shown in Figure 4.

The scenario starts with a set of PERSONS that could be modified ac-

cording to the occurrence of the actions APPEAR ACTOR and/or DISAP-445

PEAR ACTOR, whereas the alarm activation depends on the percentage of

persons for which the action RUN AWAY occurs.

19



SET_DOWN LEAVING_ 
OBJECT 

DISAPPEAR 
_ACTOR 

CHANGE_ 
LOC DIFF_LOC CHANGE_ 

LOC DIFF_LOC 

Time.long / Danger_level

FACIAL_EX 
PRESSION 

Danger_level

Figure 5: Visual representation of the model for the “Unattended Baggage” scenario.

4.3. Unattended Baggage

This scenario describes a traveler setting down his/her baggage in a rail-

way station and running away. It shows how it is possible to distinguish an450

involuntary abandonment of baggage from a possible terrorist attack, also by

using GCDs. In particular, the scenario is composed of three main actions:

SET DOWN, LEAVING OBJECT, and DISAPPEAR ACTOR, in a context

composed of three relevant elements: TRAVELER, BAGGAGE, and GROUND,

and to which the FACIAL EXPRESSION descriptor is associated, in order to455

collect emotional data connected to the traveler (Ekman & Friesen, 1978; Pantic

& Rothkrantz, 2000). The visual representation of the model of this scenario is

shown in Figure 5.

The scenario starts with a TRAVELER that sets his/her BAGGAGE on

the GROUND (SET DOWN), leaves it there (LEAVING OBJECT), and dis-460

appears from the scene (DISAPPEAR ACTOR). Associated to this scenario

there is also a GCD producing a Danger level indicator, according to the fa-

cial expression of the traveler (FACIAL EXPRESSION), which will be used to

distinguish the above mentioned two cases:

• Involuntary baggage abandonment, in which the traveler has not assumed465

any expression related to the anxiety and/or anger. In this case, a warning
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of baggage abandonment will be raised.

• Possible terrorist attack, in which the traveler has assumed a facial ex-

pression related to anxiety and/or anger. In this case, a possible terrorist

attack alarm will be raised.470

In other words, in order to activate the alarm/warning, it is necessary that

the actor leaves the scene. Our assumption here is that in case of terrorist

attack the terrorist runs away, because in case of suicide attacks the terrorist

usually does not abandon the baggage. Thus, the alarm/warning is triggered

upon an actor leaving the scene for a given time interval that is tuned based on475

the recognized facial expression.

4.4. Fighting

This example models the “Fighting” target scenario, that is, the possibility

of recognizing a situation in which persons are fighting. Through this example

it is possible to understand how to model more complex scenarios in terms of480

composition of elements of context, actions, and general context descriptors.

In particular, the scenario is composed of four main actions: APP ACTOR,

GET CLOSE, HITTING PERSON, and ANOMALOUS BEHAVIOR, on a con-

text composed of only one type of relevant elements: PERSON, and to which

the FACIAL EXPRESSION and the DANG EVENTS descriptors are associ-485

ated. The visual representation of the model of this scenario is shown in Figure

6.

The scenario starts with a PERSON, and another one that appears on the

scene (APPEAR ACTOR). Then, they get close (GET CLOSE), start hitting

each other (HITTING PERSON), and having an abnormal behavior (ANOMA-490

LOUS BEHAVIOR), described as a number of dodges by the person receiv-

ing shots. However, associated to this scenario there are also two GCDs pro-

ducing a Danger level indicator, according to the facial expression of the per-

sons (FACIAL EXPRESSION), and the known likelihood that dangerous events
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Figure 6: Visual representation of the model for the “Fighting” scenario.

(DANG EVENTS) occur in that area. Such descriptors will be used to distin-495

guish two cases:

• Possible joke between friends, in which persons have not assumed any

expression related to anxiety and/or anger, and/or the environment is not

signaled as a dangerous one. In this case, no alarm will be raised.

• Fighting, in which the persons have assumed facial expressions related to500

anxiety and/or anger, and/or the environment is signaled as a dangerous

one. In this case, an alarm will be raised.

5. The IVIST System

The EDCAR knowledge representation framework described above can be

used in the real-time video event understanding system IVIST, which enables505

the recognition of target events modeled with EDCAR, raising specific alarms.

In order to detect target events, IVIST tries to interpret scenes based on

its knowledge of “abnormal” situations. It accomplishes this by using Elements

of Context Representations (ECR), Action Representations (AR), and Gen-

eral Context Descriptors (GCD) to describe individual elements, actions, and510

22



Figure 7: IVIST architecture.

context information, including their compositions and sequential definitions to

recognize complex situations.

In Section 5.1 we describe the architecture of the IVIST system, whereas in

Section 5.2 we provide implementation details.

5.1. System Architecture515

The architecture of the IVIST system is shown in Figure 7. The input module

shown on the top represents a set of cameras and sensors, which can be used for

transmitting input information through a network. The core of the system is

composed of three main modules: Detection, Tracking, and Understanding. The

latter is the highest level task in computer vision. It needs efficient solutions to520

handle many lower-level tasks, such as edge detection, optical flow estimation,

object recognition, object classification, and tracking. The maturity of many

solutions to these low-level problems has spurred additional interest in utilizing

them for higher level video understanding tasks (Lavee et al., 2009).

• Detection. The goal of the detection module is to acquire the data, to525
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detect “atomic” events, and to identify elements of context.

• Tracking. Object tracking is the process of tracking an object over time by

locating its position in every frame of the system (Joshi & Thakore, 2012).

Thus, through the tracking module the system tracks moving elements of

context in the images produced by the Detection module. The information530

on the tracked objects are synthesized by means of simple actions, which

are given in output to the Understanding module.

• Understanding. The use of sequences/compositions of actions representing

relevant situations allows us to effectively analyze different video scenes,

and to derive logic consequences to correlate them, also determining whether535

they contain target events. In particular, this module concerns the un-

derstanding at semantic level of the findings from the previous module,

involving the elements of the context, through the instance modeling of

the current scenario.

The above described modules interact with the following four modules: i)540

Information, which collects information provided by external sources, in order

to enrich the current scenario with contextual information; ii) Scenario modeling

interface, which permits the visual modeling of target scenarios through a Web-

based interface; iii) Rules engine, which classifies the current scenario as a target

one; iv) Alarm, which raises specific alarms.545

More details on the implementation of IVIST modules are provided in the

next Section.

5.2. Implementation Details

IVIST has been implemented in Python2, since it permits to produce pro-

totypical systems in a short time, and it permits to exploit powerful Machine550

Learning3 and Computer Vision4 libraries.

2www.python.org
3As an example, scikit-learn: http://scikit-learn.org/
4As an example, OpenCV: http://opencv.org/
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In what follows, we provide a detailed description of the IVIST modules.

Detection. The detection module exploits a recent approach to object detection:

You Only Look Once (YOLO) (Redmon et al., 2016), which permits to predict

bounding boxes and class probabilities directly from full images in a one-step555

evaluation. The methodology underlying YOLO models the object detection

problem as a regression one, and implements the model through a convolutional

neural network. After partitioning a frame in an S × S grid, YOLO verifies

whether the center of an object falls into a grid cell, in which case the grid cell

becomes responsible for detecting that object and its bounding box. For each560

bounding box that a cell predicts, a confidence score is computed to quantify

how confident the model is that the box contains an object and how accurate

is the box. Moreover, a set of class probabilities is predicted for the grid cell

containing an object, regardless of the number of boxes that the cell predicts.

Thus, an S×S grid in which each cell predicts B bounding boxes and is assigned565

C class probabilities is encoded through an S × S × (B ∗ 5 + C) convolutional

neural network. The initial convolutional layers of the neural network extract

features from the image, while the fully connected layers predict the output

probabilities and coordinates.

Tracking. The aim of the tracking module is to track moving elements that570

have been detected in the detection module. More specifically, the main task

of the tracking module is to assign an ID to each element in the scene, and to

ensure that elements will remain correctly identified upon their movements in

the scene.

The current implementation of IVIST is based on the tracker Tracking-575

Learning-Detection (TLD) (Kalal et al., 2012). TLD is a framework that de-

composes the tracking task into three phases: tracking, learning, and detection.

During the tracking phase an object is monitored from frame to frame, whereas

during the detection phase TLD treats every frame as independent, and scans

the image to localize all the appearances that have been observed and learned580

in the past. Successively, TLD performs the learning phase, whose aim is to
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detect possible ID assignment errors of the previous phases, trying to correct

them. The learning phase represents the main novelty of TLD, since it is based

on a new learning methodology named P-N learning. The latter identifies er-

rors through two types of “experts”: the P-expert that identifies false negatives,585

and the N-expert that identifies false positives. Both the experts make errors

themselves, which are mutually compensated thanks to their independence.

Understanding. This is the core module of the IVIST system. It exploits the

EDCAR framework to understand what is occurring in the scene. In particular,

for each identified and tracked element, and for each additional information on590

the context extracted from the Information module, the Understanding module

instantiates the defined ECR and GCD models. Moreover, whenever elements

interact with each other and/or with the environment, the Understanding mod-

ule cooperates with the Rules engine module in order to instantiate the defined

AR models. Finally, it performs inferences in order to construct the current595

scenario and to decide if an alarm has to be raised, according to the defined

target scenarios.

Information. The Information module collects data from the Open Data databa-

ses included in the system, and/or from external Geographic Information Sys-

tems (GIS). In particular, the module uses several tools to parse and clean the600

collected data, so that they can be used by specific algorithms synthesizing them

in terms of GCD models.

Rules Engine. This module collects instances of ECR and GCD (provided by

the understanding module), and triggers several threads to interpret the action

that is occurring, according to the defined target scenarios. The interpretation605

is made by using simple rules or dedicated modules.

Alarm. When a target scenario is detected, the Understanding module will

notify the Alarm module that an alarm has to be raised. However, according

to the simultaneous control of several scenarios carried out by the Rules engine

module, there is the possibility that more than one alarm should be raised at610
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the same time. For this reason, the Alarm module will decide to whom send the

specific alarm signal, by using a binding table. Moreover, the Alarm module

also maintains a system log storying all the occurred target scenarios.

Scenario Modeling Interface. This module enables domain experts to define a

target scenario that IVIST has to check. The module implements both a textual615

and a visual (Pinco) interface.

6. Experimental Results

We have experimentally evaluated the IVIST system and its underlying ED-

CAR framework on a set of video sequences concerning the four target scenarios

described in Section 4.620

The experiments were performed on a computer equipped with an Intel

i6700HQ CPU, 16 GB DDR4 RAM, and a NVIDIA GeForce GTX 970M vid

card.

6.1. The Datasets

In recent years, many datasets dedicated to human action and activity625

recognition have been created (Chaquet et al., 2013). Generally, they refer

to different kinds of scenarios, and are useful for the recognition of different

actions/activities. Thus, we evaluated the IVIST system and its underlying

EDCAR framework on several datasets provided in the literature, and whose

characteristics are shown in Table 5. In particular, given the focus of the pa-630

per, we selected datasets from the literature that contained video surveillance

scenarios.

Figure 8 shows several characteristics of the datasets used in our experiments.

We selected datasets containing videos lasting from few minutes (e.g. UCF-

Crime) up to some hours (e.g. Behave), focusing on videos instantiating the635

usage scenarios described in Section 4.
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Figure 8: Number of analyzed videos per dataset and their incidence on the scenarios.
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Name Scenes No. views References

Behave Outdoors 2 (Fisher, 2007)

Caviar In/Outdoors 1,2 (Fisher et al., 2005)

UMN-Crowd In/Outdoors 1 (UMN-Crowd, 2009)

iLids Indoors 1 (Valenzise et al., 2007)

Pets2006 Outdoors 1 (PETS2006, 2006)

Pets2012 Outdoors 4 (PETS2012, 2012)

UT-Interaction Outdoors 1 (Ryoo & Aggarwal, 2010)

UCF-Crime In/Outdoors 1 (Sultani et al., 2018)

Table 5: Characteristics of datasets used for the evaluation of IVIST effectiveness.

6.2. Evaluation metrics

We analyzed experimental results by means of the following metrics: the

Positive Predictive Value (PPV), the Detection Rate, the Accuracy, and the

F1-score. All of them consider true positives (TP), true negatives (TN), false640

positives (FP), and false negatives (FN). In our context, true positives and

true negatives represent correctly raised and not-raised alarms, respectively,

false positives represent raised alarms for non-dangerous scenarios, and false

negatives represent non-raised alarms for dangerous scenarios.

Positive Predictive Value (PPV). PPV denotes the fraction of correctly645

raised alarms. In other words, this value permits to evaluate how precise IVIST

is in raising alarms with respect to the total number of raised alarms.

PPV =
TP

TP + FP
(1)

Detection Rate. The detection rate denotes the fraction of correctly raised

alarms over the number of alarms to be raised. In other words, it permits to

evaluate the completeness of IVIST in raising alarms.650

Detection Rate =
TP

TP + FN
(2)
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Accuracy. The accuracy denotes the ability of the system to correctly raise

or not raise alarms over the total number of tested videos.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1-score. The F1-score measures the balance between PPV and the De-

tection Rate.

Accuracy = 2× PPV ∗ Detection Rate

PPV + Detection Rate
(4)

6.3. Analysis of results655

As said above, we have experimentally evaluated the IVIST system and

its underlying EDCAR framework on a set of video sequences instantiating the

four target scenarios described in Section 4, namely “Steal of Baggage”, “Crowd

Activity”, “Unattended Baggage”, and “Fighting”.

Steal of Baggage. As said in Section 4, the “Steal of Baggage” scenario660

involves two people, and one baggage. Initially, a man, named Person1, appears

in the scene; he is pulling his baggage, named Bag2 (Figure 9(a)). Eventually,

Person1 leaves Bag2 and goes away (Figure 9(b)-9(c)). Then, another man,

named Person2, grasps Bag2 (Figure 9(e)) and runs away (Figure 9(f)).

Notice that, the detection module detects the elements appearing in the665

scene, and classifies persons and baggages (Figure 9(a)-9(e)). Moreover, the

tracking module has been capable of tracking the elements (Figure 9(a)-9(e))

by detecting the movements of the persons w.r.t. the objects within the scene.

Finally, the understanding module has been able to recognize the suspicious

scenario, and to correctly trigger the alarm (Figure9(f)).670

The recognition of the Steal of Baggage scenario has been evaluated by

using the UCF-Crime dataset. As shown in Figure 10, IVIST obtained the best

results in terms of PPV. This is due to the fact that no false positives have

been produced. However, even though several false negatives occurred, causing

a reduced detection rate, IVIST obtained an accuracy and a F1-score over 70%.675

Such results can be considered good w.r.t. quality of test videos, since they

30



have a low-resolution, which deteriorates performances of the external module

used for tracking.

Crowd Activity. The “Crowd Activity” scenario involves many people

that could initially appear and/or disappear in/from the scene (Figure 11(a)),680

and then suddenly run away (Figure 11(b)).

Figure 11 shows two frames from a video on which the detection has detected

people in the scene, and the tracking module has tracked elements of the context

(Figure 11(a)). Finally, the understanding module has been able to recognize

(a) (b)

(c) (d)

(e) (f)

Figure 9: Selected frames from the IVIST execution on the “Steal of Baggage” scenario.
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Figure 10: Results on the Steal of Baggage scenario.

(a) (b)

Figure 11: Selected frames from the IVIST execution on the “Crowd Activity” scenario.
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the anomalous scenario, and to correctly trigger the alarm (Figure11(b)).685

The recognition of the Crowd Activity scenario has been evaluated by using

three datasets: Pets2012, UMN-Crowd, and Caviar. As shown in Figure 12,

IVIST obtained the best results on the Caviar dataset. This is due to the fact

that neither false positives nor false negatives were produced. The performances

are good also on the other two datasets. In fact, a maximum detection rate is690

obtained on the datasets UMN-Crowd and Caviar. With respect to Pets2012,

IVIST obtained slightly worse results, since for some videos the framing made

the recognition of people particularly complex for the detection and tracking

modules. As an example, in one video people walking on a street were framed

from behind and from long distance, which tricked the detection module when695

they suddenly escaped.
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Figure 12: Results on the Crowd Activity scenario.

Unattended Baggage. The “Unattended Baggage” scenario involves one

person, and one baggage. Initially, a man, named Person1, appears in the scene;

he is pulling his baggage, named Bag2 (Figure 13(c)). Then, Person1 leaves700

Bag2 and goes away (Figure 13(d)-13(e)). Afterwards, an alarm or warning is

raised according to a timer setting, which is based on the danger level (Figure

13(f)).

The understanding module is able to distinguish between the two follow-
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Selected frames from the IVIST execution on the “Unattended Baggage” scenario.
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ing specific scenarios: (1) involuntary baggage abandonment, and (2) possible705

terrorist attack, by analyzing facial expressions.

It is worth to notice that the module for facial recognition is external to our

architecture. It has turned out to be useful in disambiguating scenarios with

few persons, whose face happens to be focused in some video frames. The level

of confidence has been achieved by performing a pre-processing phase, during710

which a sampling of video frames has been accomplished, and then computing

the ratio of frames in which a given facial expression is recognized.

The recognition of the Unattended Baggage scenario has been evaluated by

using three datasets: Pets2006, iLids, and Caviar. As shown in Figure 14,

IVIST obtained the best results on the Pets2006 and iLids datasets. This is715

due to the fact that neither false positives nor false negatives are produced.

Since the dataset contains only four videos, even one false negative reduced the

performances in terms of detection rate by 33% for the Caviar dataset.
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Figure 14: Results on the Unattended Baggage scenario .

Fighting. As said in Section 4, the “Fighting” scenario involves two persons,

named Person1 and Person2. They approach each other (Figure 15(a)), and720

then start hitting and behaving anomalously (Figure 15(b)-15(e)). Also in this

case, an alarm will be raised according to the danger level setting (Figure 15(f)).

The understanding module is able to distinguish between the two following
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Selected frames from the IVIST execution on the “Fighting” scenario.

specific scenarios: (1) possible joke between friends, and (2) fighting, by analyzing

facial expressions and the possible presence of dangerous events. Only in the725

second case an alarm is raised.

The Unattended Baggage is the scenario that has been evaluated with the

greatest number of datasets: Behave, UT-Interaction, UCF-Crime, and Caviar.

As shown in Figure 16, IVIST obtained the best results with the Behave and

UT-Interaction datasets, even if some false negatives were produced on them.730

Moreover, also for this scenario the UCF-Crime dataset resulted the most critical
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one. In general, results show that IVIST achieved good performances in terms of

accuracy and F1-score with respect to the scenario complexity, due to necessity

to recognize many human-interactions.
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Figure 16: Results on the Fighting scenario.

6.4. Comparison with state-of-the-art solutions735

Table 6 compares IVIST and the underlying EDCAR framework with anal-

ogous solutions defined in the literature, based on the analyzed scenarios. In

particular, in order to prove the effectiveness of our proposal, we considered ap-

proaches evaluated on at least one of the datasets we analyzed in our evaluation.

In general, it can be observed that the most frequently analyzed scenario is the740

“Unattended Baggage”. Moreover, we can notice that none of the compared

solutions have been evaluated against the “Steal of Baggage” scenario.

Experimental results described in the previous section show that IVIST

achieves good performances in terms of accuracy and balanced value (F1-score).

However, the comparisons with the approaches recalled in Table 6 were each ac-745

complished based on one of these two performance metrics, since none of the

compared approaches was evaluated against both metrics. Moreover, from what

said above, no comparison was possible on the “Steal of Baggage” scenario. No-

tice that, although Elhamod & Levine (2012) analyzed this scenario (they called

it “Theft of Luggage”), achieving a F1-score of 1, they evaluated their solution750
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Methodology
Steal of Crowd Unattended

Fighting
Baggage Activity Baggage

SanMiguel et al. (2009) 7 7 3 7

Elhamod & Levine (2012) 7 7 3 3

Lim et al. (2014) 7 3 3 7

Wang et al. (2018) 7 3 7 7

IVIST 3 3 3 3

Table 6: A comparison between our methodology and other related works according to the

analyzed video surveillance scenarios.

only on the Caviar dataset, which does not contain positive videos. Even achiev-

ing the same result with IVIST, we thought that such a comparison would not

provide valuable insights.

Results of comparison are shown in Figure 17. They show an improvement

of IVIST with respect to other approaches. In particular, they show better755

performances on the “Unattended Baggage” scenario with respect to SanMiguel

et al. (2009) (Figure 17(a)), Lim et al. (2014) (Figure 17(c)), and Elhamod &

Levine (2012) (Figure 17(b)). With respect to the latter, IVIST achieved better

performances also on the “Fighting” scenario (Figure 17(b)). Finally, for the

“Crowd Activity” scenario IVIST achieved better performances with respect to760

Lim et al. (2014) (Figure 17(c)), and similar performances with respect to Wang

et al. (2018) (Figure 17(d)).

It is worth noting that we have compared with the approaches shown in Table

6, since the first three are similar to our proposal (e.g they are knowledge-based),

whereas although the fourth one faces the event recognition as a classification765

problem, we could somehow compare with it, because it shared the “Crowd

Activity” scenario and the UMN-Crowd dataset with respect to our evaluation.

In the literature, there are many recent approaches facing the event recognition

as a classification problem Zhang et al. (2017). However, they typically stress

their evaluations on the recognition of one among a predefined set of actions770

within each test video, after a training session performed on a big training
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Figure 17: A comparative results based on the F1-score or the Accuracy metrics.

dataset. This kind of evaluation is out of the scope of our proposal that is

scenario-based and it prescribes the specification of knowledge concerning target

scenarios rather than a training step, which would not be suitable for video-

surveillance and other complex scenarios.775

6.5. Discussion

As analyzed in the previous section, IVIST generally outperforms other an-

alyzed approaches on the considered scenarios. Such results have been achieved

despite the limits of current detection and tracking technologies. In fact, al-

though deep learning is contributing to make detection technologies more pre-780

cise, they might still miss to immediately detect some objects when they appear
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in the scene. To this end, the EDCAR framework has turned out to be robust

with respect to this problem, since it provides a scenario modeling paradigm

that acts at more an abstract level, making it tolerant with respect to delayed

object detections. Moreover, trackers tend to lose person/object IDs in certain785

situations, such as when subjects temporarily overlap or disappear from the

scene. To this end, the modeling mechanisms of EDCAR can limit the impact

of tracking failures, though entailing an increased modeling effort.

In conclusion, we can affirm that contextual information can enhance the

automatic interpretation of complex video surveillance scenarios, and that the790

EDCAR framework is able to represent and characterize several types of infor-

mation in terms of ECR, AR, and GCD, in order to achieve good performances,

also in presence of some detection or tracking errors. To this end, since the

detection and tracking modules are external to the proposed framework, future

improvements to their underlying technologies from the research community can795

contribute to reduce the complexity of the scenario modeling phase.

7. Conclusions

We have presented EDCAR, a knowledge representation framework capable

of describing patterns of knowledge in a video sequence. Based on the proposed

framework, we have devised a hierarchical approach that allows to summarize800

complex video surveillance scenarios. Moreover, we have described the IVIST

system, which implements the framework and its underlying approach, by also

interacting with some external modules, such as an object detector, a tracker,

and a facial expression analyzer.

EDCAR and IVIST have been evaluated on public video datasets, which en-805

abled us to prove their effectiveness with respect to similar solutions presented

in the literature. Such results have been achieved also thanks to an additional

modeling effort to handle possible errors from external modules for object de-

tection and tracking (YOLO and TLD). To reduce such modeling complexity,

in the future we plan to simplify the action rules modeling activity by exploiting810
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visual interfaces, such as gesture-based interfaces (Deufemia et al., 2011), policy

specification interfaces (Giordano & Polese, 2013), and user intent understand-

ing techniques (Caruccio et al., 2015).

As a further future development, we would like to apply the EDCAR frame-

work and the IVIST system to new application domains. As an example, we815

are currently using EDCAR and IVIST experimentally on the medical domain,

and in particular in the monitoring of actions of patients in emergency rooms of

hospitals, in order to match the results of video interpretation mechanisms with

those of other clinic tests, and promptly detect possible dangerous cases, which

might possibly be underrated, especially in busy emergency settings. Another820

interesting application domain is sport analytics, where proper video summa-

rization mechanisms can support coaches in the detection of gaming strategies,

and in the evaluation of errors in the application of gaming strategies.

References

Afsar, P., Cortez, P., & Santos, H. (2015). Automatic visual detection of human825

behavior: A review from 2000 to 2014. Expert Systems with Applications, 42 ,

6935–6956.

Aggarwal, J. K., & Ryoo, M. S. (2011). Human activity analysis: A review.

ACM Computing Surveys (CSUR), 43 , 16.

Brand, M., Oliver, N., & Pentland, A. (1997). Coupled hidden markov models830

for complex action recognition. In Proceedings of the 1997 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, (CVPR)

(pp. 994–999). IEEE.

Caruccio, L., Deufemia, V., & Polese, G. (2015). Understanding user intent on

the web through interaction mining. Journal of Visual Languages & Comput-835

ing , 31 , 230–236.

Castro, J., Delgado, M., Medina, J., & Ruiz-Lozano, M. (2011). Intelligent

41



surveillance system with integration of heterogeneous information for intru-

sion detection. Expert Systems with Applications, 38 , 11182–11192.

Chaquet, J. M., Carmona, E. J., & Fernández-Caballero, A. (2013). A survey of840

video datasets for human action and activity recognition. Computer Vision

and Image Understanding , 117 , 633–659.

Cohen, I., Sebe, N., Garg, A., Chen, L. S., & Huang, T. S. (2003). Facial

expression recognition from video sequences: temporal and static modeling.

Computer Vision and image understanding , 91 , 160–187.845

Deufemia, V., Giordano, M., Polese, G., & Tortora, G. (2011). Dialogue-driven

search in surveillance videos. In Proceedings of the 17th International Con-

ference on Distributed Multimedia Systems, (DMS) (pp. 134–139).

D’Souza, C., Deufemia, V., Ginige, A., & Polese, G. (2018). Enabling the gener-

ation of web applications from mockups. Software: Practice and Experience,850

48 , 945–973.

Ekman, P., & Friesen, W. V. (1978). Facial action coding system: Investigator’s

guide. Consulting Psychologists Press.

Elhamod, M., & Levine, M. D. (2012). Real-time semantics-based detection of

suspicious activities in public spaces. In 2012 Ninth Conference on Computer855

and Robot Vision (pp. 268–275). IEEE.

Fine, S., Singer, Y., & Tishby, N. (1998). The hierarchical hidden markov model:

Analysis and applications. Machine learning , 32 , 41–62.

Fisher, R. (2007). BEHAVE: Computer-assisted prescreening of video streams

for unusual activities. The EPSRC project GR S , 98146 . URL: http://860

homepages.inf.ed.ac.uk/rbf/BEHAVE/.

Fisher, R., Santos-Victor, J., & Crowley, J. (2005). CAVIAR: Context aware

vision using image-based active recognition. URL: http://homepages.inf.

ed.ac.uk/rbf/CAVIAR/caviar.htm.

42

http://homepages.inf.ed.ac.uk/rbf/BEHAVE/
http://homepages.inf.ed.ac.uk/rbf/BEHAVE/
http://homepages.inf.ed.ac.uk/rbf/BEHAVE/
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm


Ghanem, N., DeMenthon, D., Doermann, D., & Davis, L. (2004). Representa-865

tion and recognition of events in surveillance video using petri nets. In Con-

ference on Computer Vision and Pattern Recognition Workshop, (CVPRW)

(pp. 112–112). IEEE.

Giordano, M., & Polese, G. (2013). Visual computer-managed security: A

framework for developing access control in enterprise applications. IEEE870

Software, 30 , 62–69.

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep

learning for visual understanding: A review. Neurocomputing , 187 , 27–48.

Hongeng, S., & Nevatia, R. (2001). Multi-agent event recognition. In Proceedings

of the 8th IEEE International Conference on Computer Vision (ICCV) (pp.875

84–91). IEEE volume 2.

Hongeng, S., Nevatia, R., & Bremond, F. (2004). Video-based event recogni-

tion: activity representation and probabilistic recognition methods. Computer

Vision and Image Understanding , 96 , 129–162.

Jiang, H., Drew, M. S., & Li, Z. (2006). Successive convex matching for action880

detection. In Computer Society Conference on Computer Vision and Pattern

Recognition, (CVPR) (pp. 1646–1653). IEEE.

Joo, S.-W., & Chellappa, R. (2006). Attribute grammar-based event recogni-

tion and anomaly detection. In Conference on Computer Vision and Pattern

Recognition Workshop, (CVPRW) (pp. 107–107). IEEE.885

Joshi, K. A., & Thakore, D. G. (2012). A survey on moving object detec-

tion and tracking in video surveillance system. International Journal of Soft

Computing and Engineering , 2 , 44–48.

Kalal, Z., Mikolajczyk, K., Matas, J. et al. (2012). Tracking-learning-detection.

IEEE transactions on pattern analysis and machine intelligence, 34 , 1409.890

43



Kim, H., Lee, S., Kim, Y., Lee, S., Lee, D., Ju, J., & Myung, H. (2016).

Weighted joint-based human behavior recognition algorithm using only depth

information for low-cost intelligent video-surveillance system. Expert Systems

with Applications, 45 , 131–141.

Laptev, I. (2005). On space-time interest points. International Journal of Com-895

puter Vision, 64 , 107–123.

Lavee, G., Rivlin, E., & Rudzsky, M. (2009). Understanding video events: a

survey of methods for automatic interpretation of semantic occurrences in

video. Systems, Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on, 39 , 489–504.900

Lim, M. K., Tang, S., & Chan, C. S. (2014). iSurveillance: Intelligent frame-

work for multiple events detection in surveillance videos. Expert Systems with

Applications, 41 , 4704–4715.

Nevatia, R., Zhao, T., & Hongeng, S. (2003). Hierarchical language-based rep-

resentation of events in video streams. In Conference on Computer Vision905

and Pattern Recognition Workshop, CVPRW (pp. 39–39). IEEE volume 4.

O’connor, M., Knublauch, H., Tu, S., Grosof, B., Dean, M., Grosso, W., &

Musen, M. (2005). Supporting rule system interoperability on the semantic

web with swrl. In International Semantic Web Conference (pp. 974–986).

Springer.910

Pantic, M., & Rothkrantz, L. J. M. (2000). Automatic analysis of facial ex-

pressions: The state of the art. IEEE Transactions on pattern analysis and

machine intelligence, 22 , 1424–1445.

Park, E., Han, X., Berg, T. L., & Berg, A. C. (2016). Combining multiple

sources of knowledge in deep cnns for action recognition. In 2016 IEEE915

Winter Conference on Applications of Computer Vision, (WACV) (pp. 1–8).

IEEE.

44



Pavlovic, V., Rehg, J. M., Cham, T.-J., & Murphy, K. P. (1999). A dynamic

bayesian network approach to figure tracking using learned dynamic models.

In Proceedings of the 7th IEEE International Conference on Computer Vision,920

(ICCV) (pp. 94–101). IEEE volume 1.

Peterson, J. L. (1981). Petri net theory and the modeling of systems. Prentice

Hall PTR.

PETS2006 (2006). Pets2006 challenge. In Proceedings of the 9th IEEE In-

ternational Workshop on Performance Evaluation of Tracking and Surveil-925

lance (PETS 2006) (pp. 47–50). URL: http://www.cvg.reading.ac.uk/

PETS2006/data.html.

PETS2012 (2012). Pets2012 challenge. URL: http://www.cvg.reading.ac.

uk/PETS2012/a.html.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:930

Unified, real-time object detection. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 779–788).

Rodriguez, M. D., Ahmed, J., & Shah, M. (2008). Action MACH a spatio-

temporal maximum average correlation height filter for action recognition. In

2008 Computer Society Conference on Computer Vision and Pattern Recog-935

nition (CVPR). IEEE.

Ryoo, M. S., & Aggarwal, J. K. (2010). UT-Interaction Dataset, ICPR contest

on Semantic Description of Human Activities (SDHA). http://cvrc.ece.

utexas.edu/SDHA2010/Human_Interaction.html. Last accessed: 2018-08-

23.940

SanMiguel, J. C., Martinez, J. M., & Garcia, Á. (2009). An ontology for event
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