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a b s t r a c t 

The weighted possibilistic c-means algorithm is an important soft clustering technique for

big data analytics with cloud computing. However, the private data will be disclosed when

the raw data is directly uploaded to cloud for efficient clustering. In this paper, a secure

weighted possibilistic c-means algorithm based on the BGV encryption scheme is proposed

for big data clustering on cloud. Specially, BGV is used to encrypt the raw data for the

privacy preservation on cloud. Furthermore, the Taylor theorem is used to approximate the

functions for calculating the weight value of each object and updating the membership

matrix and the cluster centers as the polynomial functions which only include addition

and multiplication operations such that the weighed possibilistic c-means algorithm can

be securely and correctly performed on the encrypted data in cloud. Finally, the presented

scheme is estimated on two big datasets, i.e., eGSAD and sWSN, by comparing with the

traditional weighted possibilistic c-means method in terms of effectiveness, efficiency and

scalability. The results show that the presented scheme performs more efficiently than the

traditional weighted possiblistic c-means algorithm and it achieves a good scalability on

cloud for big data clustering.

 

 

 

 

 

 

 

1. Introduction

Recent years have witnessed a considerable development in Internet of Things with the rapid proliferation of mobile

devices and sensing techniques [1,6,26] . Specially, Internet of Things are being widely used in smart cities, intelligent trans-

portation and industrial manufacture [7] . A typical Internet of Things system usually consists of three layers from bottom to

top, i.e., physical layer, network layer and application layer, as presented in Fig. 1 . 

In the Internet of Things systems, the physical layer uses sensing devices such as sensors, RFID and two-dimensional

codes to collect data and then the collected data is transmitted to the application layer through the network layer. In Internet

of Things, a dedicated network is usually combined with the Internet to achieve the real-time and dependable transmission

for the collected data. In the application layer, the collected data is analyzed typically using the cloud computing techniques
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Fig. 1. Architecture of Internet of Things.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to provide predictive services and intelligent decisions [4] . Therefore, data analytic is playing an important role for Internet

of Things to offer various services [10,20,21] . 

Clustering, as a crucial and challenging technique for data analytics, partitions objects into different groups based on

some similarity metrics so that the objects in the same group share more similarity than others in different groups [25] . In

the past few decades, many clustering algorithms have been developed, which can be roughly grouped by two categories,

i.e., hard clustering and soft clustering [9,12] . Typical hard clustering algorithms include k -means and affinity propagation

while representative soft clustering algorithms include the fuzzy c-means algorithm and the possibilistic c-means algorithm.

In hard clustering, each object is assigned to only one cluster while each object is assigned to multiple clusters with dif-

ferent memberships in soft clustering. As a representative soft clustering algorithm, possibilistic c-means (PCM) has been

successfully utilized in fault diagnosis, nonlinear system identification and incomplete data clustering [11] . Specially, PCM

is viewed as a potential technique for big data anaytics. However, the traditional PCM algorithm cannot obtain the desir-

able clustering results for the datasets including some noisy objects. To tackle this problem, Schneider proposed a weighted

possibilistic c-means algorithm (WPCM) to minimize the negative effect of noisy objects by assigning a small weight to

each noisy object [16] . Generally, WPCM could yield significantly more accurate clustering results than PCM for the datasets

including noisy objects. 

Currently, big data collected from Internet of Things is posing a novel challenge on WPCM [17] . Big data is typically

defined by four characteristics, i.e., large volume, large variety, large value and large velocity. Large volume is the dominated

characteristic of big data, implying that there are a large number of objects in a big data set. Large variety indicates the

different types of data including structured, semi-structured and unstructured data which the third characteristic refers

to the hidden valuable information in big data. Moreover, big data is continually generated quickly and it requires to be

processed in real time. It is difficult for WPCM to cluster big data with a large number of objects efficiently since WPCM

has a high computational complexity [22] . Furthermore, WPCM needs to load all the objects into the memory for big data

clustering. In some cases, the memory space of the computing devices is limited, leading to the failure of WPCM for big data

clustering. Although some improved WPCM algorithms such as online WPCM and incremental WPCM have been proposed

for big data clustering [9] , they always produce lower clustering accuracy than the conventional WPCM algorithm. Cloud

computing, as an emerging computing paradigm, is offering a scalable and cost-efficient solution for big data analytics by

providing tremendous memory space and strong computing power [2] . Cloud computing has enjoyed its success in mobile

crowdsourcing, scientific computing and machine learning [13,14,23] . Based on cloud computing, a distributed weighted

possibilisic c-means algorithm was developed for big data clustering efficiently by uploading objects on cloud [22] . However,

the private data will be disclosed when uploading the raw data to cloud directly, posing serious threat to human security.

Specially, big data usually includes some private information such as personal medical records and bank counts. Once they

are leaked, personal life and property will be threaten. 

In this paper, a secure weighted possibilistic c-means algorithm (SWPCM) on cloud is presented for efficient big data

clustering. To prevent the disclosure of the private data, BGV is utilized to encrypt the raw objects before uploading them



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on cloud. BGV is one of the most efficient fully homomorphic encryption schemes and it has obtained the successful appli-

cation in cloud computing and deep computation models [5] . However, BGV does not support the exponential and division

operations that are included in the functions of the WPCM algorithm for calculating the weighted values and updating the

membership matrix and the clustering centers. Therefore, the Taylor theorem is employed to approximate the functions as

the polynomial functions which only include addition and multiplication operations such that the proposed SWPCM algo-

rithm can yield the correct clustering result on the encrypted data based on BGV. Finally, the proposed algorithm is eval-

uated on two representative datasets, i.e., eGSAD and sWSN [22] , by comparing with the traditional weighted possibilistic

c-means algorithm in terms of effectiveness, efficiency and scalability.

So, the presented scheme includes there contributions, as listed below.

• A secure weighted possibilistic c-means algorithm based on BGV is presented for big data clustering on cloud. To pro-

tected the private data, the BGV encryption technique is employed to encrypt the data and thus the weighted possibilistic

c-means algorithm is run on the encrypted data to prevent the disclosure of the raw data on cloud.

• BGV cannot support division and exponential operations on the encrypted data directly. To obtain correct clustering re-

sults on the encrypted data, the Taylor theorem is employed to approximate the functions for computing the weighted

values and updating the membership matrix and the clustering centers as the polynomial functions to remove the divi-

sion and exponential operations.

• Extensive experiments are conducted to evaluate the presented SWPMC algorithm by comparing the traditional WPCM

algorithm in terms of efficiency, effectiveness and scalibility. The results show that the presented scheme performs more

efficiently than the traditional weighted possiblistic c-means algorithm and it achieves a good scalability on cloud for big

data clustering.

The paper is organized as follows. The possibilistic c-means algorithm and the related work are reviewed in Section 2 and

the proposed algorithm is illustrated in Section 3 . The experimental results are shown in Section 4 and the paper is con-

cluded in the last section. 

2. Related works

2.1. Possibilistic c-means clustering algorithm 

The possibilistic c-means algorithm (PCM) is a typical soft clustering technique that was developed by Krishnapuram and

Keller [11] . Given a dataset X = { x 1 , x 2 , . . . , x n } with n objects, each object with m attributes, PCM is defined by a c × n mem-

bership matrix U = { u i j | 1 ≤ i ≤ c; 1 ≤ j ≤ n } in which u ij denotes the membership of x j towards the i th clustering center and

c denotes the number of clustering centers denoted by V = { v 1 , v 2 , . . . , v c } . Therefore, PCM aims to calculate the membership

matrix U and the clustering centers V by minimizing the following objective function: 

J m 

(U, V ) = 

c ∑ 

i =1

n ∑ 

j=1

um 

i j 
|| x j − v i | | 2

+
c ∑

i =1

ηi 

n ∑ 

j=1

(1 − u i j ) 
m 

,

(1)

where m and ηi denote are two constants pre-defined in the initialization step [3] . 

The functions for updating the membership matrix and the clustering centers can be obtained by minimizing Eq. (1) : 

u i j = 

1 

1 + (d 2 
i j 
/ ηi ) 

1 / (m −1)
, ∀ i, j, (2)

v i =
∑ n

j=1 um 

i j 
x j ∑ n

j=1 um
i j

, (3)

where d ij denotes the distance between x j and v i . Specially, PCM is outlined in Algorithm 1 . 

PCM assigns the same weight to each object and thus is cannot distinguish the importance of different objects. Fur-

thermore, PCM cannot yield the desirable clustering results for the datasets including noisy objects or outliers. To tackle

this problem, Schneider presented a weighted possibilistic c-means algorithm (WPCM) by assigning a weight value to each

object, which leads to an objective function of WPCM [16] : 

J m 

(U, V ) = 

c ∑ 

i =1

n ∑ 

j=1

um 

i j 
|| x j − v i | | 2

+
c ∑

i =1 

ηi 

n ∑ 

j=1

( w j − u i j ) 
m 

,

(4)

where w j is the weight value of x j and it can typically be calculated via: 

w j = 

c ∑ 

i =1

exp {−α|| x j − v i | | 2 } . (5)



Algorithm 1: The standard posssibilistic c-means algorithm. 

Input : X = { x 1 , x 2 , . . . , x n } , maxiter

Output : U = { u i j } , V = { v i }
1 Initialize c, m , v i , u i j and η j ; 

2 for iteration = 1 , 2 , . . . , maxiter do 

3 for i = 1 , 2 , . . . , c do 

4 v i = 

∑ n
j=1 u m 

i j 
x j ∑ n

j=1 u m 
i j

; 

5 for i = 1 , 2 , . . . , c do 

6 for j = 1 , 2 , . . . , n do 

7 u i j = 

1 

1+ (d 2 
i j 

/ ηi ) 
1 / (m −1) ; 

 

 

 

 

 

 

 

 

 

By minimizing the objective function of WPCM, the membership matrix can be updated via: 

u i j = 

w j 

1 + (d 2 
i j 
/ ηi ) 

1 / (m −1)
. (6) 

WPCM has the same function for updating the clustering centers as PCM. 

Obviously, the weight values are used to distinguish the importance of different objects, so WPCM reduces the negative

effect of noisy data by assigning a lower weight to each noisy object. Specially, WPCM is outlined by Algorithm 2 . 

Algorithm 2: The weighted posssibilistic c-means algorithm. 

Input : X = { x 1 , x 2 , . . . , x n } , maxiter

Output : U = { u i j } , V = { v i }
1 Initialize c, m , v i , u i j and η j ; 

2 for iteration = 1 , 2 , . . . , maxiter do 

3 for i = 1 , 2 , . . . , c do 

4 v i = 

∑ n
j=1 u m 

i j 
x j ∑ n

j=1 u m 
i j

; 

5 for j = 1 , 2 , . . . , n do 

6 w j = 

c ∑ 

i =1

exp {−α|| x j − v i | | 2 } ;
7 for i = 1 , 2 , . . . , c do 

8 for j = 1 , 2 , . . . , n do 

9 u i j = 

w j 

1+ (d 2 
i j 

/ ηi ) 
1 / (m −1) ; 

From Algorithm 2 , the computational complexity of WPCM is dominated by the step for updating the membership ma-

trix. Specially, this step has a computational complexity of O ( cn ), resulting in a total computational complexity of O ( lcn )

where l denotes the number of the iterations. 

2.2. Improved possibilistic c-means algorithms 

Some other improved possibilistic c-means algorithms have been presented since PCM was proposed. PCM is effective

and efficient to cluster small datasets in most cases. However, PCM is very sensitive to the initialization. Speically, PCM will

yield a coincident result if it is not initialized appropriately. To address this problem, two variants, i.e., fuzzy possibilistic

c-means algorithm and possibilistic fuzzy c-means algorithm, were developed by combining fuzzy clustering and possibilis-

tic clustering [15] . Besides, an enhanced possibilistic c-means method was presented to avoid the coincident clustering by

partitioning the objects into one major subset and one assistant subset [19] .

Kernel possibilistic c-means methods (KPCM) were presented for non-spherical data clustering [8] . KPCM maps the data

objects to the high-dimensional space in which the similarity of each object and the clustering centers can be measured



Fig. 2. Architecture of the high-oder PCM algorithm.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

more effectively. Specially, given a kernel function such as the Gaussian kernel, KPCM defines the objective function as: 

J m 

(U, V ; k ) = 

c ∑ 

i =1

n ∑ 

j=1

um 

i j
�2

i j

+
c ∑

i =1 

ηi 

n ∑ 

j=1

( w j − u i j ) 
m 

,

(7)

where �ij denotes the kernel-based distance between x j and v i in the kernel space. KPCM is outlined in Algorithm 3 . 

Algorithm 3: The Kernel posssibilistic c-means algorithm. 

Input : X = { x 1 , x 2 , . . . , x n } , maxiter

Output : U = { u i j } , V = { v i }
1 Initialize c, m , v i , u i j and η j ; 

2 for iteration = 1 , 2 , . . . , maxiter do 

3 for i = 1 , 2 , . . . , c do 

4 v i = 

∑ n
j=1 u m 

i j 
K( x j , v i ) x j ∑ n

j=1 u m 
i j 

K( x j , v i ) 
;

5 for i = 1 , 2 , . . . , c do 

6 for j = 1 , 2 , . . . , n do 

7 u i j = 

1 

1+ (2(1 −K( x j , v i )) / ηi ) 
1 / (m −1) ; 

In addition, two sparse possibilistic c-means algorithms were proposed to address the closely located clusters by impos-

ing a regularization item on the objective function of PCM [18] . 

More recently, a high-order possibilistic c-means algorithm was presented for heterogenous data clustering based on

deep learning [24] . This algorithm first uses stacked auto-encoders to learn the features of each modality and then con-

catenates the learned features as a joint representation of each heterogeneous object. Finally, PCM is performed on the

joint representations to obtain the clustering result. Fig. 2 presents the architecture of the high-order possibilistic c-means

algorithm [24] . 

Furthermore, some variants have been presented to improve the clustering efficiency for the possibilistic c-means al-

gorithm on big data. For example, an online possibilistic c-means algorithm was presented by clustering large datasets in

an incremental way. This algorithm performs particularly well for streaming data and large datasets that cannot be loaded

into the memory [9] . To improve the clustering efficiency of the high-order possibilistic c-means algorithm (HOPCM), two

tensor decomposition schemes including the canonical polyadic decomposition and the tensor-train network were applied

to HOPCM by compressing the raw data [20] . In addition, Zhang et al. [22] presented a distributed possibilistic c-means

algorithm based on MapReduce to cluster large datasets, which can be performed efficiently on cloud. 

Generally, cloud computing is the most efficient for the possibilistic c-means algorithm and its variants to cluster big

data. However, the private data is disclosed when uploading the raw data to the cloud directly, posing serious threat to

human security. Specially, security is a crucial and challenging issue to Internet of Things since there are a large number of



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

private objects in Internet of Things such as personal diagnosing records in smart medicine and government core data in

smart cities. The disclosure of the private data may result in a terrible catastrophe. Therefore, a secure weighted possibilistic

c-means algorithm based on BGV is proposed in this paper for big data clustering on cloud.

3. Secure weighted possibilistic c-means algorithm

This section illustrates the proposed secure weighted possibilistic c-means algorithm based on BGV for big data clustering

on cloud. BGV is a fully homomorphic encryption scheme which can perform addition and multiplication operations on

the encrypted data securely and correctly. As one of the most efficient fully homomorphic encryption schemes, BGV has

successfully employed in cloud computing and deep computation models. However, BGV does not directly support division

and exponential operations that are included in the functions for calculating weight values and updating the membership

matrix and the clustering centers on encrypted data. Thus, directly applying BGV to the weighted possibilistic c-means

algorithm on encrypted data on cloud cannot obtain the correct clustering result. Therefore, the Taylor theorem is used

to approximate the functions as the polynomial functions to remove the division and exponential operations and then the

overall scheme of the proposed algorithm is described in this section. As the important part in the proposed scheme, the

BGV encryption scheme is presented first in this section. 

3.1. BGV encryption scheme 

BGV is a LWE/RLWE-based leveled full homomorphic encryption scheme introduced by Brakerski, Gentry and Vaikun-

tanathan [5] . The BGV scheme begins with a Setup procedure that is used to choose a μ-bit modulus q and the following

parameters: the dimension n = n (λ, μ) , the degree d = d(λ, μ) , the distribution χ = χ(λ, μ) , and N = � (2 n + 1) log q � . Fur-

thermore, two additional procedures, i.e., key Switching and modulus Switching, are designed to ensure correct result on the

encrypted data. The goal of the key Switching step is decreasing the ciphertext’s dimension while the task of the modulus

Switching step is minimizing the effect of the noise. 

Except for the encryption and decryption operations, there are two major components for secure computation on the

encrypted data, i.e, the BGV addition and the BGV multiplication. Let m 1 and m 2 denote two plaintexts and their corre-

sponding ciphertexts are c 1 and c 2 , respectively. The BGV addition computes the sum c 4 of c 1 and c 2 in two steps: (1)

c 3 ← ( c 1 + c 2 )% q j and (2) c 4 ← Re f resh ( c 3 , τ ( s j 
′ → s j−1 ) , q j , q j−1 ) . Also, the BGV multiplication computes the product c 6 of

c 1 and c 2 using the following two steps: (1) c 5 ← c 1 �c 2 % q j and (2) c 6 ← Re f resh ( c 5 , τ ( s j 
′ → s j−1 ) , q j , q j−1 ) . Furthermore,

the sum and product of m 1 and m 2 can be obtained by decrypting c 4 and c 6 , respectively. More details can be found in [5] .

3.2. Function approximation 

From Algorithm 1 , the weighted possiblistic c-means algorithm has three key functions for calculating weight values and

updating the membership matrix and the clustering centers, respectively. Specially, the first key function, Eq. (3) , is used

to update the clustering centers. However, Eq. (3) involves a division operation that cannot be supported by BGV. So, we

approximate Eq. (3) as a polynomial function according to multivariate Taylor formula by viewing Eq. (3) as a function with

regard to ( u i 1 , u i 2 , . . . , u in ) [22] : 

v i = f ( u i 1 , u i 2 , . . . , u in )

≈ ϕ + 

n ∑ 

j=1

δ j ( u i j − γ j ) ,
(8) 

where γ1 , γ2 , . . . , γn ∈ (0 , 1) denote the expansion points, ϕ = 

∑ n 
j=1 γ

m 

j 
x j / 

∑ n 
j=1 γ

m 

j 
and δk = mγ m −1 

k 
( x k 

∑ n 
j=1 γ

m 

j 
−∑ n 

j=1 γ
m 

j 
x j ) / ( 

∑ n 
j=1 γ

m 

j 
) 2 (1 ≤ k ≤ n ) . Once the expansion points are fixed, ϕ and δk (1 ≤ k ≤ n ) are the determined constants

during the clustering process. Thus, Eq. (8) includes only addition and multiplication operations for updating the clustering

centers, which can be securely computed by Algorithm 4 . 

Algorithm 4: Secure calculation for v i on cloud. 

Input : C (ϕ) , C ( δ j (1 ≤ j ≤ n )) and C( u i j ) 

Output : C( v i ) 
1 for j = 1 , 2 , . . . , n do 

2 Calculate C( ϕ j ) according to the BGV multiplication: ; 

3 C( ϕ j ) = C( δ j ) × C( u i j − γi ) ; 

4 for i = 1 , 2 , . . . , c do 

5 Calculate C( v i ) according to the BGV addition: ; 

6 C( v i ) = C(ϕ) + 

∑ n 
j=1 C( ϕ j ) ; 

7 return C( v i ) ; 



 

 

 

 

 

 

 

 

 

 

 

The second key function, Eq. (5) , aims to calculate the weight value w j for x j , which includes an exponential opera-

tion. Therefore, we approximate Eq. (5) as a polynomial function to remove the exponential operation. It is apparent from

Eq. (5) that w j is an exponential function with regard to d 2 
i j 

. Let q i = d 2 
i j 

with q i ∈ [0 , + ∞ ) , the function for computing w j

can be rewritten as: 

w j = 

c ∑ 

i =1

exp {−αq i } . (9)

Depending on the Maclaurin formula, Eq. (9) can be approximated as: 

w j = 

+ ∞ ∑ 

l=0

(−α) 
l 1 

l! 
p i 

l 

≈ 1 − αp i + 0 . 5 α2 p i 
2 , 

(10)

where α is an appropriate constant. 

Eq. (10) shows that the approximated function for computing w j includes only addition and multiplication operations.

Therefore, w j (1 ≤ j ≤ n ) can also be securely computed by BGV according to Algorithm 5 . 

Algorithm 5: Secure calculation for C ( w j ) on Cloud. 

Input : C (α) , C (d 2 
i j 
) 

Output : C( w j ) 

1 Calculate C 1 according to the BGV multiplication: ; 

2 C 1 = C(α) × C(d 2 
i j 
) ; 

3 Calculate C 2 according to the BGV addition: ; 

4 C 2 = 0 . 5 × C 1 × C 1 ; 

5 Calculate C 2 according to the BGV addition: C( w j ) = 1 − C 1 + C 2 ; 

6 return C( w j ) ; 

The task of the last key function, Eq. (6) , is to update the membership matrix u ij , which also includes a division operation.

So, this paper approximates it as a polynomial function based on the Taylor theorem to remove the division operation. From

Eq. (6) , u ij can be rewritten as a function of p = d i j [22] : 

u i j = w j f (p) = 

w j 

1 + (p/ ηi ) 
b 
. (11)

Let r = 1 / (1 + (a/ ηi ) 
b ) , s = bη2 b 

i 
a b−1 / (ηb 

i 
+ a b ) 2 and t = (b(b − 1) η3 b 

i 
a b−2 − b(b + 1) η2 b 

i 
a 3 b−2 − 2 bη3 b 

i 
a 2 b−2 ) / 2 (ηb 

i 
+ a b ) 4 ,

u ij can be approximated by:

u i j ≈ w j f (p) 
≈ w j (r + s (p − a ) + t (p − a ) 2 ) . 

(12)

Apparently, Eq. (12) includes only addition and multiplication operations so u ij can be securely calculated by Algorithm 6 .

Algorithm 6: Secure calculation for C ( u ij ) on Cloud. 

Input : C (α) , C (d 2 
i j 
) , C (r) and C( w j ) 

Output : C( u i j ) 

1 Calculate C 1 according to the BGV multiplication: ; 

2 C 1 = C(s ) × C(d 2 
i j 

− α) ; 

3 Calculate C 2 according to the BGV multiplication: ; 

4 C 2 = C(t) × C(d 2 
i j 

− α) × C(d 2 
i j 

− α) ; 

5 Calculate C 3 according to the BGV addition: C 3 = C(r) + C 1 + C 2 ; 

6 Calculate u i j according to the BGV multiplication: C( u i j ) = C( w j ) C 3 ; 

7 return C( u i j ) ; 

3.3. Secure weighted possibilistic c-means algorithm on cloud 

Given a dataset X = { x 1 , x 2 , . . . , x n } , the goal of the proposed scheme is to yield a correct weighted possiblistic c-means

clustering result including a membership matrix U = { u i j } and a center set V = { v 1 , v 2 , . . . , v c } on cloud for X without the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

disclosure of the private data efficiently. To achieve this goal, the overall scheme includes two major components: (1) the

client encrypts and decrypts the raw data and (2) the cloud performs the secure weighted possibilistic c-means algorithm on

the encrypted data to calculate the membership matrix and the clustering centers. Specially, the secure weighed possibilistic

c-means algorithm based on the BGV encryption scheme on cloud is presented in Algorithm 7 .

Algorithm 7: Secure weighted posssibilistic c-means scheme. 

Input : X = { x 1 , x 2 , . . . , x n }
Output : U and V 

1 On client: ; 

2 Parameters initialization; 

3 Use BGV to encrypt all the parameters and the data objects; 

4 Upload encrypted parameters and objects on cloud; 

5 for iteration = 1 , 2 , . . . , maxiter do 

6 Use BGV to encrypt the membership matrix and the clustering centers; 

7 Upload encrypted membership matrix and centers on cloud; 

8 On cloud: ; 

9 for i = 1 , 2 , . . . , c do 

10 Use Secure Algorithm 2 to compute C( v i ) ; 

11 for j = 1 , 2 , . . . , n do 

12 Use Secure Algorithm 3 to compute C( w j ) ; 

13 for i = 1 , 2 , . . . , c do 

14 for j = 1 , 2 , . . . , n do 

15 Use Secure Algorithm 4 to compute C( u i j ) ; 

16 Send the encrypted membership matrix and centers to client; 

17 On client: ; 

18 Decrypt the immediate results to update U and V ; 

In the weighted possibilistic c-means algorithm, the major parameters include m, c, ηi and α. Therefore, before perform-

ing the secure weighted possibilistic c-means algorithm, the cloud initializes the parameters, as well as U and V . Afterwards,

the client runs the BGV encryption operation to encrypt all the parameters and the data objects on line 3 in Algorithm 7 and

then uploads the encrypted data on cloud. During each iteration, the client encrypts U and V on line 6 in Algorithm 7 while

the cloud runs secure Algorithm 4 , secure Algorithm 5 and secure Algorithm 6 to compute the weight values, the member-

ship matrix and the clustering centers, respectively, on lines 9–15 in Algorithm 5 . Afterwards, the cloud sends the encrypted

membership matrix and the encrypted clustering centers that denote the ciphertexts of the immediate results to the client.

The client updates the membership matrix and the clustering centers by decrypting the immediate results. 

From Algorithm 5 , the client only needs to perform encryption and decryption and all clustering operations are per-

formed on cloud, so the proposed scheme is highly efficient. More importantly, since the cloud performs all clustering

operations on the encrypted data, the raw data will not be disclosed, ensuring the security for the private data. 

3.4. Complexity analysis 

We analyze the complexity of the presented secure weighted possibilistic c-means algorithm in terms of computation

cost and communication cost in this paper. Specially, we use ADD, MUL and MOD to denote the computation cost of one

addition operation, one multiplication operation and one modulus operation on Ring R , respectively. 

Computation Cost. In the presented algorithm, the client encrypts the raw objects only once before uploading the en-

crypted data on cloud. During each iteration, the client encrypts the membership matrix and the clustering centers once

while the cloud performs Algorithms 4–6 once. For each object with m attributes in the dataset X = { x 1 , x 2 , . . . , x k } with c

clustering centers, the client encrypts the dataset with km (n + 1) N (ADD + MUL) using the BGV encryption operation with

the parameter set { μ, q, d, n, N, χ}. Furthermore, the client encrypts the membership matrix and the clustering centers with

kc(n + 1) N (ADD + MUL) and cm (n + 1) N (ADD + MUL), respectively, and decrypts the immediate results with c(m + k )(n + 1)

MUL, c(m + k ) n ADD and 2 c(m + k ) MOD in each iteration. Moreover, the cloud performs (n + 1)(4 k (c + 1)(2 N + n ) + 8 N +
1) MUL, (n + 2)(2 k (c + 1) + 4 k + 1) N ADD and (n + 1)(((6 k (c + 1) + c)(n + 2)) + 4 n ) MOD for calculating the weight values

and updating the membership matrix and the clustering centers on the encrypted data during each iteration.

Communication cost. At the beginning, the client uploads km messages with km (n + 1) μ bits to cloud. During each itera-

tion, the client exchanges 2 c(k + m ) messages with 2c(k + m) (n + 1) μ bits with the cloud. 



Table 1

Result in terms of C ∗ on eGSAD. 

Algorithm/dataset 1 2 3 4 5 6 7 8 Average Whole

WPCM 14.06 12.66 13.83 10.98 11.79 12.96 11.81 13.82 12.68 12.16

SWPCM 14.06 14.79 13.71 10.98 12.01 12.96 11.81 13.91 13.02 12.16

Table 2

Result in terms of C ∗ on sWSN. 

Algorithm/dataset 1 2 3 4 5 6 7 8 Average Whole

WPCM 0.53 0.39 0.47 0.66 0.51 0.48 0.71 0.64 0.55 0.48

SWPCM 0.56 0.39 0.47 0.71 0.52 0.52 0.69 0.64 0.56 0.51

Table 3

Result in terms of ARI(U,U ∗) on eGSAD. 

Algorithm/dataset 1 2 3 4 5 6 7 8 Average Whole

WPCM 0.90 0.87 0.91 0.93 0.88 0.92 0.89 0.84 0.89 0.92

SWPCM 0.89 0.84 0.91 0.91 0.84 0.92 0.87 0.85 0.88 0.91

Table 4

Result in terms of ARI(U,U ∗) on sWSN. 

Algorithm/dataset 1 2 3 4 5 6 7 8 Average Whole

WPCM 0.88 0.91 0.82 0.88 0.92 0.89 0.84 0.91 0.88 0.89

SWPCM 0.87 0.88 0.83 0.83 0.90 0.84 0.86 0.91 0.86 0.87

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Experiments

In the experiments, the performance of the presented secure weighted possibilistic c-means scheme (SWPCM) based on

the BGV encryption is evaluated in a cloud platform which includes 20 personal computers, each with 3.2 GHz Core i7 CPU

and 4 GB memory. Specially, the SWPCM scheme is compared with the traditional weighted possibilistic c-means method

(WPCM) from three aspects, i.e., efficiency, effectiveness and scalability. In this paper, C ∗ and ARI(U,U 

∗) are used to compare

the clustering accuracy between SWPCM and WPCM. C ∗ denotes the error between the actual clustering centers and the

clustering ones yielded by the specific clustering method, which can be computed via [24] : 

C∗ = 

√
c ∑ 

i =1

|| v∗
i
− v i | | 2 , (13)

where v ∗
i 

and v i denote the i th clustering center yielded by the clustering method and the actual clustering center, respec-

tively. 

ARI(U,U 

∗) is a most widely used metric to evaluate the performance of soft clustering techniques. U denotes the actual

membership matrix while U 

∗ denotes the produced membership matrix. 

A smaller C ∗ and a bigger ARI(U,U 

∗) imply that the clustering method produces a more accuracy result. 

Furthermore, two representative big datasets, namely eGSAD and sWSN [24] , are employed to estimate the effectiveness

and efficiency of two clustering algorithms. 

4.1. Results on clustering effectiveness 

To estimate the robustness of SWPCM and WPCM, each dataset is averaged to 8 subsets and each algorithm is performed

for clustering each subset and the whole dataset. The clustering results in terms of C ∗ are listed in Tables 1 and 2 . 

We can make two important observations from the results shown in Tables 1 and 2 . First, in most cases, SWPCM yields

the slightly bigger C ∗ values than WPCM since the approximation of the functions for calculating the weight values and

updating the membership matrix and the clustering centers results in the drop of the clustering accuracy. For example,

SWPCM yields the C ∗ value of 0.51 on the whole sWSN dataset while WPCM obtains the C ∗ value of 0.48. Second, in some

cases, SWPCM obtains the same C ∗ values as WPCM. For instance, the C ∗ value produced by both SWPCM and WPCM on

the whole eGSAD dataset is the same, namely 12.16. Such observations imply that SWPCM yields the considerably accurate

clustering centers with WPCM. 

Tables 3 and 4 show the clustering results in terms of ARI(U,U 

∗) . 

According to the results presented in Tables 3 and 4 , SWPCM produces smaller ARI(U,U 

∗) than WPCM in most cases. For

example, SWPCM and WPCM yield the ARI(U,U 

∗) values of 0.92 and 0.91, respectively, on the whole eGSAD dataset. However,



Fig. 3. Running time on eGSAD.

Fig. 4. Running time on sWSN.

Fig. 5. Result on speedup.

 

 

 

 

 

 

the difference of ARI(U,U 

∗) produced by SWPCM and WPCM is very low, demonstrating a low drop of clustering accuracy by

SWPCM. 

4.2. Results on clustering efficiency 

To estimate the efficiency of two algorithms, SWPCM is run on cloud with 10 personal computers and WPCM is run on

a single computer. The running time is shown in Figs. 3 and 4 . 

From Figs. 3 and 4 , with the increasing of the data size, the running time of WPCM and SWPCM grows. For example,

when the proportion of eGSAD increases from 1/5 to 4/5, the running time of WPCM and SWPCM grows from 1 to 7.2 h

and from 0.6 to 2.8 h, respectively. Such observation demonstrates that the data size has an important influence on the

running time for the clustering algorithms. However, SWPCM took significantly shorter than WPCM to cluster two datasets.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For instance, the running time of SWPCM is 5.2 h while that of WPCM is 19.6 h on sWSN. This result indicates that SWPCM

achieves a great improvement for clustering efficiency. 

4.3. Results on scalability 

Speedup is employed to estimate the scalability of the presented SWPCM scheme by running SWPCM in the cloud plat-

form with different number of computers in this section. The result is presented in Fig. 5 . 

Fig. 5 shows that the running time of SWPCM decreases with the growth of the number of the computers on cloud for

clustering two datasets. For example, when the number of the computers grows from 5 to 15, the running time decreases

from 8.8 to 3.1 h on the eGSAD dataset. Such results demonstrate that SWPCM achieves a good scalability. 

5. Conclusion

In this paper, a secure weighted possibilistic c-means algorithm based on the BGV encryption scheme is presented for

big data clustering on cloud. One property of the presented scheme is the combination of the fully homomorphic encryption

scheme and the cloud computing to improve the clustering efficiency for big data without the disclosure of the private data.

The key idea is to approximate the functions for calculating the weight values and updating the membership matrix and

the clustering centers as three polynomial functions to remove the division and exponential operations such that the pre-

sented scheme can obtain the correct clustering result on the encrypted data. Experimental results clearly demonstrate three

points. First, the presented algorithm produces a considerable clustering accuracy with the traditional weighted possibilistic

c-means algorithm in terms of C ∗ and ARI(U,U 

∗) on the experimental datasets. Second, the presented algorithm performs

significantly more efficiently than the traditional weighted possibilistic c-means algorithm. Last but not least, the presented

algorithm achieves a good scalability, implying that the performance of the presented algorithm could be further improved

by adding more computers on cloud. In the future work, other encryption schemes such as somewhat homomorphic en-

cryption schemes and garbled circuit will be investigated to implement the secure weighted possibilistic c-means algorithm,

which is expected to further improve the clustering efficiency without the disclosure the private data on cloud. 
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