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a b s t r a c t

Despite the growing demand for orthodontic care, a framework to support sustainable orthodontic
decision-making is lacking, even if scientific literature offers several attempts to deal with this issue. As
well known, dentistry generates solid health residues that include heavy metals and biomedical waste,
that asks for a professional duty and a social responsibility of the orthodontist that should transform,
more and more, his daily practice to a sustainable one, by adopting environmental oriented measures
and, at the same time, cutting the overall costs of his professional performance while keeping the per-
formance standards high. This work aims at filling such a gap in knowledge by proposing a decision tree
algorithm that, besides increasing the level of agreement within and between orthodontists, allows for
the adoption of a framework of sustainable orthodontic best practices, using a dataset of 290 randomly
selected patients generated from 2011 medical records of patients of the orthodontic School at the
University of Napoli “Federico II”.

The best practices framework, provided as if-then rules which can be easily inspected by orthodontists,
represents a sustainable model in that it minimizes the time and resources employed for dentistry
decision-making, dramatically reduce the environmental impact in terms of waste and use of electric
equipment and tools, and increases patient satisfaction by delivering quick and appropriate treatment,
thus meeting the economic, environmental and social pillars of sustainability in health care.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Dental malocclusions are highly prevalent pathologies in the
population and the increasingly close attention to aesthetic and
functional problems has led to a larger demand of orthodontic
treatments in recent years (Lin et al., 2016). As shown by a survey of
the American Association of Orthodontists (AAO),1 in 2012 AAO
members treated a total of 5,876,000 patients, with a 20% increase
compared to 2010. Another survey shows how 75% of adult's sub-
jects surveyed reported an increased sense of self-confidence,
while 92% of the whole sample of respondents said they would
,” asked members of the AAO
atients they were treating in
definitely recommend orthodontic treatment to other adults.
However, despite the growing demand for orthodontic care, a

framework to support sustainable orthodontic decision-making is
lacking. As known, orthodontic diagnosis is highly energy and
resource demanding, with important environmental impact. In fact,
it asks for huge electricity demands of electronic dental equipment
and copiouswater requirements; there are environmental effects of
biomaterials before, during and after clinical use, the employment
of radiation and, last but not least, orthodontic diagnosis and
treatment cause the production of unsafe waste such as mercury
and other waste material. The column “How it is done” of Table A1,
in Appendix A, reports all tools (e.g., Nikon 1 J5 camera, use of
mechanical chair, Halogen light reflector, and so forth) and waste
material (battery, light, etc.) employed to perform an orthodontic
diagnosis that exploits the skeletal, clinical, radiographic, and per-
sonal data features. In order to reduce the effects of environmental
deterioration, many forces have been involved worldwide by
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employing sustainability concepts and green solutions in several
ways, with a real “call to arms” in order to convert orthodontics
from an unsafe to a sustainable practice, by adopting a “green
dentistry” (Mulimani, 2017). For instance, one attempts to imple-
ment sustainability in healthcare has been done by the United
Kingdom NHS that promoted advising papers, set up groups to
establish measures and carrying out practices through the Sus-
tainable Development Unit. On 2014 the Sustainable Healthcare
Strategy was established, a pan-European initiative aiming at
supplying solutions to the sustainability of healthcare: European
healthcare systems are more and more required to set down better
carewith reduced resources. Monash Health, a health service based
in Melbourne, Australia, sought to establish a program of disin-
vestment to improve patient outcomes by removing, reducing or
restricting health technologies and clinical practices that were
unsafe, ineffective or inefficient.

However, despite the institutional involvement cited above,
such sustainable frameworks are not yet applicable, particularly in
the orthodontics area. Moreover, scientific literature is still free
from studies in this field, except for the abundance of works that
are predominantly narrative (Pithon et al., 2017).

It is a shared view that, in order to address the problem of health
care efficiently and sustainably, it is necessary to study in detail the
processes concerning the treatment of patients in different medical
conditions, trying to identify the most satisficing possible organi-
zation, in terms of resources combination, for each diagnostic-
therapeutic pathway.

For instance, a number of authors claim that physicians should
exhibit a sustainable decision-making because of the scarcity of re-
sources. In this sense, Bodemer et al. (2015) suggest that a sus-
tainable decision mechanism should exhibit both high sensitivity
(i.e., correctly allocating patients requesting specialized care) and
low false positive rate (i.e., avoiding unnecessary allocation of pa-
tients in specialized department if specialized medical treatments
are not required).

Scientific literature concerning dental research and practice is
rich of studies that pursue the goal of identifying the clinical
reasoning of the specialist physician, which translates clinical re-
cords into coded choices, and shared actions/policies (Musen et al.,
2014).

The spread of ineffective and inappropriate treatments has
given rise to the development and dissemination of evidence-based
medicine. Straus and Sackett (1998) proposed a conceptualization of
Evidence-based-medicine according to decisions are the result of
the integration between the doctor's experience and the consci-
entious, explicit, and judicious use of the best available scientific
evidence, such as diagnostic tests, prognostic factors, effectiveness
and safety of preventative treatments, and so on, that, as a whole,
are mediated by the patient's preferences. Patient mediation and
participation in the decision helped to name this approach shared
decision-making to indicate that physicians and patients decide on
the basis of the best available evidence in a sustainable manner
(Stiggelbout et al., 2012), for instance they introduce sustainability
2 “Within agreement” is a jargon expression that indicates the level of agreement
that orthodontist O has with his treatment decisions over time, compared to the
same patient P. For example, in time t1, physician O might have decided on
extraction treatment (or non-extractive) relative to the tooth x of patient P, while in
t2 time it could opt for non-extractive (or extractive) treatment for the same tooth x
of patient P. In this case, the physician has a “within agreement” 0 for patient P. If
this fluctuation in the decisions of the same doctor occurs for several patients P1 …
Pn, it is said that the rate of “within agreement” is low for doctors O. A similar
argument applies to “between agreement”. Only for the latter, the x rated agree-
ment regarding patient P is no longer the same doctor over time but a team of
doctors, one with respect to the other at the same time t.
into a health system by bringing clinical, financial and operational
data together to analyze resource utilization and productivity.

Another relevant issue of orthodontic care is represented by the
difficulty to make orthodontic diagnosis, due to the subjective
interpretation of diagnostic records: Kravitz and Bowman (2016),
demonstrated that a minimal configuration of a record set for or-
thodontic diagnosis and treatment planning could not be defined (,
2016). Ribarevski et al. (1996), in their investigation, demonstrated
that the level of agreement for the extraction/not-extraction deci-
sion within2 orthodontists is moderate, and a poor agreement be-
tween the orthodontists does exist. More recent investigations
show that this trend concerning poor-moderate agreement within
and between orthodontists, still holds (Hu et al., 2015). These
findings show the subjective aspects of orthodontic diagnoses, the
lack of universality and unanimity in the interpretation of ortho-
dontic data and, consequently, in the choice of treatment as
claimed by Nouri et al. (2016), suggesting that treatment planning
is derived from weak levels of scientific evidence (Turpin and
Huang, 2016).

On the whole, the above evidence shows that a referencing
framework for a sustainable orthodontic decision-makingwould be
desirable and beneficial for a diagnostics treatment selection,
particularly as regards controversial cases, where subjective data
interpretation could generate unappropriate decisions (Nguyen
and Proffit, 2016). Such a framework would be particularly useful
to improve the sustainability of the care provided.

In this sense, innovation plays a chief role in enhancing sus-
tainability and represents a key area confronted by the sustainable
development discourse (Matos and Silvestre, 2013), through which
public and private organizations can accomplish change and, at the
same time, turn more sustainable (Silvestre, 2015). Patients, how-
ever, can benefit from innovation only if it is affordable now and
sustainable in the future.

This paper introduces a framework to identify best practice in
the form of rules, automatically generated by a decision tree algo-
rithm, that, besides increasing the level of agreement within and
between orthodontists, allows for the adoption of a sustainable
orthodontic practice. It integrates the three main pillars of sus-
tainability (economic, environmental and social), increasing effi-
ciency, minimizing pollution and improving quality and patient
satisfaction in the day-to-day practice.
2. Literature review

Decision tree is a classification scheme that generates a tree and a
set of rules from a given dataset (Witten and Frank, 2011). It has
been widely employed both to represent and run decision pro-
cesses (Anderson et al., 2015). Considering that medical decisions
are made for various purposes including screening, diagnosing, and
treatment prescription, the decision problem becomes difficult to
visualize and implement (Croskerry, 2015). A decision tree repre-
sents a useful graphical tool in such settings, as it allows for intu-
itive understanding about the problem and can aid decision-
making since it is interpretable through if-then rules by any
orthodontist, even if the physician is not trained in computer ap-
plications. For instance, Table 8 shows just a set of these kind of
rules generated by the decision tree in Fig. 4. Any orthodontist, even
trainee, could refer to such a kind of rule in order to take a treat-
ment decision on the basis of a very short ordered list of features
(i.e., attributes3).

The approach introduced in the following pages represents a
3 In the continuation you use indifferently attributes and features.
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further attempt, along with the others, towards the foundation of a
common framework aimed at reducing, as much as possible,
subjectivity in the interpretation of orthodontic data (Masías et al.,
2015). For instance, Sammut and Webb (2011) employ neural net-
works for teeth extractions decision-making. To this end, the au-
thors employed a dataset of 156 patients made of 12 cephalometric
features and 6 additional features. Extraction patterns, exploitable
for orthodontic treatment decisions, were obtained applying four
neural networks that make use of a back-propagation algorithm.
Experimental results show that success rates of the models
generated was 84% for the decision of extraction vs. not-extraction.
Xie et al. (2010) applied a neural networks for the orthodontic
treatment of patients aged 11e15 years old, in order to determine
extraction treatment. Experimental settings employed a dataset
made of 200 subjects, using 23 features. The experiments allowed
for estimating the contributions of the 23 input features to the final
output (i.e., extraction vs. not-extraction). For instance, “Anterior
teeth uncovered by incompetent lips” and “IMPA (L1-MP)” resulted
to be the two features that give the biggest contributions sequen-
tially. According to the authors, when clinicians are predicting
whether an orthodontic treatment requires extraction, the features
“anterior teeth uncovered by incompetent lips” and “IMPA (L1-
MP)” should be taken into consideration first. Martina et al. (2004)
developed a decision support system based on neural networks in
order to aid clinical decision-making for orthodontic extractions.
The employed neural network makes use of a feed-forward back-
propagation paradigm trained on a dataset made of 48 cases,
exploiting, overall, 32 cephalometric and orthodontic cast mea-
surements as features. As for the evaluation, the system output was
considered correct if its decision (i.e. extraction or not-extraction)
coincided with the decision for the patient at the moment of the
orthodontic treatment. In both cases, the performance of the sys-
tem achieved an accuracy level of 75%.

Although neural networks outperform decision trees for some
tasks, however, they need large amount of annotated data that are
not always available, just like in this work. Then, neural networks
result slower, both for training and classification, and are not suit-
able for real-time web services such as the one proposed in this
experimental framework. In addition, neural networks generate
unintelligible models that are not designed to be interpreted by
humans who can only see the output of the process without the
possibility of exploring it. Instead, orthodontists that employ deci-
sion trees have at their disposal models that can be inspected as
paths on trees as well as in the form if-then rules such as those re-
ported in Table 8; rules, or the corresponding paths on the tree, are
comparable with best practices that physicians adopt in their pro-
fessional activity. Moreover, rules generated by the trees can be
easily employed by trainees at the Orthodontic School that can
benefit by learning and employing objective sustainable best prac-
tices that have been preventively shared and validated by senior
physicians. Then, once the model has been validated, classification
performance can always be improved, for example by learning
multiple trees of different subsets of the training, by employing
AdaBoost algorithm, that can be applied concurrently with several
decision tree learning algorithms, with the former aiming at
improving individual performance of the latter. Another major
problem emerging from the scientific literature introduced above,
concerns evaluations proposed for the algorithm employed. In fact,
all the experiments performed have always employed evaluation
metrics that return an overall accuracy, without considering specific
performance (i.e., detailed accuracy) for individual classes, in which
case the performance of the algorithm would be expected to fall.
Moreover, the number of training examples used to train neural
networks introduced above is too small, since the practice suggests
having about 10 examples for each feature (Figueroa et al., 2012).
Otherwise, the learning algorithm, whatever it is (e.g., neural
network or decision tree), would suffer from overfitting; in other
words it turns to poor predictive performance because it reacts to
all, even minor, fluctuations in the training data and, since the
learning model depends on it, it is likely to have a higher error rate
for new unseen data. But even more important is the question of a
missing clinical evaluation for all works reported above, since all
the proposed approaches aim to support the physician in his clin-
ical decisions, on a daily basis.

Thanks to the methodology introduced in Section 3, physicians,
who first exhibited low within and between agreement, showed an
increase in the agreement levels when a set of candidate best
practiceswas given to them, as if-then rules automatically generated
by the decision tree, such as those in Table 8. This demonstrates the
benefit of employing the approach proposed in terms of quality of
clinical decisions, which impacts on the level of patient satisfaction,
thus corroborating the social pillar of sustainability.

3. Material and methods

From a database of 2011 medical records of patients, collected at
the University of Napoli “Federico II” in the last two years, it has
been generated a dataset of 290 randomly selected patients’ data
that are representative of the underlying population of interest.
Extracted patients aged 8 to 53 (with a mean of 15.59 years of age,
and a standard deviation of 5.99), in the permanent dentition,
without previous orthodontic intervention. The average age is that
of a young population, since in most cases a treatment is given to 12
years of age. The adult population, albeit increasing, is always a
minority, as evidenced by scientific literature reported in Section 1.
Fig. A2, in Appendix A, shows the frequency distribution of patients
by age.

Each scholar/practitioner at the Orthodontic School contributed
to builds his own subset of the whole dataset by detecting, for each
patient, 39 common features, that are adopted by all practitioners in
order to describe the case, including the class label, (teeth extraction
or not-extraction). Subject's features were divided according to
skeletal class, clinical, radiographic, and functional features. Table A1
in Appendix A reports a complete classification of the features
employed. The dataset counts 232 negative examples, that is med-
ical records of patients classified as not-extraction cases, and 58
positive examples, that is medical records of patients classified as
extraction cases. The dataset shows a situation of unbalanced data
distribution (i.e., skewed, in statistical terms) with respect to the
class label/target value (i.e. teeth extraction or not-extraction) that
needs to be modeled. This situation will require certain steps dur-
ing the training of the algorithm, in order to take account of the
lower weight played by the positive examples, within the entire
economy of the dataset. The experimentation, and the testing,
delivered through the web service, as already said, is designed to
support treatment options for Class I malocclusion.

Experiments introduced below, and the corresponding web
service prototype based on them (available at www.coltho.org),
employ J48 decision tree, a WEKA implementation of C4.5 decision
tree algorithm, developed by Quinlan (1993). C4.5 decision tree
classifies instances, i.e., orthodontic medical records, by sorting
them down from the root to some leaf nodes, providing the clas-
sification of the instances (i.e., extraction ¼ 1 vs. not-extraction¼ 0).
Nodes of the decision trees specify tests of some features describing
the instances, such as goGnLi at the root node of the decision tree in
Fig. 4. Branches descending from nodes correspond to one of the
possible values the attribute may assume; for instance, goGnLi in
Fig. 4 may assume two sets of possible values, those < ¼ -104.2 and
those > -104.2. The same process is repeated for the sub-tree rooted
at the new node. Looking at Fig. 4, after testing goGnLi at the root

http://www.coltho.org


E. D'Avanzo et al. / Journal of Cleaner Production 176 (2018) 813e826816
node, J48 jumps on the right and left branches, based on the two
sets of value the root feature may assume, and tests, respectively,
apgB1 and snpg. The process is repeated until a leaf node is reached,
where the class label is present (1or 0).

The feature selection, i.e., which feature is to be tested at each
node of the tree, plays a chief role for decision tree construction. In
the experiments introduced below, two feature selection methods
have been employed, Information Gain and GainRatio, asmasterfully
reported in Mitchell (1997). InfoGain is strictly related to Entropy
(Mitchell, 1997), an index of the purity of a dataset, since it just
represents the expected reduction in entropy that results from the
partition of the examples according to this attribute. For instance,
for the orthodontic dataset, Entropy is about 0.22, a value that in-
dicates an unbalanced distribution towards the not-extraction
target/class label (i.e., 0). A drawback of InfoGain, however, is that it
tends to prefer attributes with many values. GainRatio is a possible
remedy to this issue, since it levels the playing field by penalizing
the multiple-valued attributes (Mitchell, 1997). Fig. B2 in Appendix
B reports the ranked list of features, obtained from the orthodontic
dataset, after employing the InfoGain and GainRatiomechanisms for
experiment one described in Section 3. Fig C1 and D2, respectively
in Appendix C and D, show a comparison between the two feature
selection strategies for experiments two and three, also detailed in
Section 3.

Experiments performed have been tested using different eval-
uation metrics (Fawcett, 2006). As first evaluation metric, accuracy
has been employed. It measures how often decision tree makes the
correct prediction, calculating the ratio between the number of
correct predictions and the total number of predictions. However, this
metrics presents an important drawback since it does not make
distinction between classes; correct answers for each class are
treated equally. As mentioned in Section 2, this drawback is present
in many scientific works, such as those outlined above, which,
though apparently having higher accuracy values, actually treat
classes equally, even when they are not equivalent. For instance,
how many examples failed for each class? This is the case for the
skewed distribution for the orthodontic dataset. Furthermore, it
does not distinguish those cases inwhich the patient underwent an
extraction when, instead, should not have (i.e., false positive), or
other cases where a necessary extraction was not performed (i.e., a
false negative). For such a kind of evaluation the confusion matrix
was employed, showing a detailed breakdown of correct and
incorrect classifications for each class; such type of information
would otherwise be lost just looking at the overall accuracy.

Precision score estimates howmany cases are actually needed so
that the decision tree assigns an extraction target, while recall al-
lows for determining how many cases are found to be true by the
decision tree, out of all the cases that are true. Precision and recall
can be read in the light of their harmonic mean, F1, which, unlike the
arithmetic mean, tends toward the smaller of the two elements,
resulting small if either precision or recall is small.

In machine learning terms a learning curve represents the
generalization performance of the model as a function of the size of
the training set (Sammut and Webb, 2011); in other words, it de-
picts improvement in performance on the vertical axis when there
are changes in another parameter (on the horizontal axis), i.e. the
training set size.

Clinical validation plays a chief role in this experimentation and
has a twofold objective. First, it aims to measure decisions within
and between orthodontists where, as demonstrated by the previous
work reported in Section 1, the former seems to be poor/moderate,
whereas the latter resulted to be poor. Second, the clinical control
aims at validating the automatically generated models. Since or-
thodontists’ decisions, as mentioned before, suffer from lack of
objectivity, decision trees aim to support them with trees/rules that
must be shared as much as possible among physicians who have a
low rate of agreement, with themselves (i.e., within) and between
them (i.e., between).

This motivates more strongly our choice to adopt decision trees
that, as said before, in Section 1, are able to produce inspectable
models, unlike other classifiers such as support vector machines or
neural networks. Last but not least, rules allow for a reduction in
the cost of the treatment and in the waste material.

4. Experiments, results and discussion

Three runs of experiments were performed, in order to generate
different decision trees to be submitted to medical validation and,
therefore, to test their efficiency from a clinical point of view. All
details about the results of the experiments are reported, respec-
tively, in Appendix B, Appendix C and Appendix D. Each Appendix,
apart from the first one, contains the decision tree generated for the
experiment and a table reporting the attribute ranked list that
compares attributes selected through InfoGain and GainRatio. The
attribute ranked list, by itself, already allows clinicians to have all the
features available, as proposed by the work of Xie et al. (2010) re-
ported in Section 1 that, however, has only two features and no
order of importance among them, as the neural network return an
output without ranking. The approach proposed in our paper,
instead, in addition to returning a ranking of all features, also offers a
way to read them, either through a path on the tree or the corre-
sponding if-then rule, representing, as a whole, an added value
compared towhat has been proposed in the literature. Furthermore
with respect to all approaches reviewed in Section 1, the decision
tree outperforms them also in terms of classical metrics, as shown
in the following pages.

To build the decision tree model out of the orthodontic dataset,
for all the experiments performed, J48 has been run employing
Leave-One-Out Cross-Validation (LOOCV), in order to estimate the
generalization capability of models created by the tree, rather than
of the model itself (Mitchell, 1997). LOOCV estimates the general-
ization performance of a model trained on n-1 samples of data,
which is a pessimistic estimate of the performance of a model
trained on n samples. In other words, to train the tree, and avoid the
over-fitting problems mentioned above, the most unfavorable
condition was preferred: it is less dependent on the fluctuations of
training data, and this represents another advantage of ourmethod.

Using this setting for the first run, J48 generated the decision tree
shown on Fig. B1 (Appendix B), performing with an overall accuracy
of 71.37%, as reported in Table 1. To get a better overview for both
extraction (i.e., 1) and not-extraction (i.e., 0) class labels, Table 2
shows a detailed accuracy, for each class, in terms of precision,
recall and F1. Even if these results could appear satisficing with
respect to the basic setting, since they outperform the performance
of the baseline (i.e., a trivial acceptor whose precision, recall and F1
were, respectively, 20%, 100% and 33%), two “singularities” were
noted on the learning curve, as can be seen in Fig.1. In fact, although
it showed an increasing trend, two local falls were visible, in terms
of performance, towards 50% and 75% of the model training. This
behavior prompted us to employ a new experimental setting.
However, before doing this, J48 was tested for its capability to
address the skewed distribution of the orthodontic dataset towards
the not-extraction class. This is a non-trivial task from a clinical
point of view, for two reasons. First of all because in recent years a
common trend has emerged: treating patients with orthodontic
appliances, rather than resorting to extraction. So, as new medical
records are collected to update decision trees models, a greater
number of not-extraction compared to extraction cases is expected.
Secondly, extraction treatment planning is a decisive and critical
moment for the clinician, since it is a non-reversible procedure, and



Table 1
Overall accuracy for the first experiment expressed in %.

Classification Summary

Correctly Classified Instances 207 71.34
Incorrectly Classified Instances 83 28.62
Total Number of Instances xx

Table 2
Detailed accuracy for the first experiment expressed in %.

Precision Recall F1

Weighted Average 70.8 71.4 71.1
Class: 0 81.7 82.8 82.2
Class: 1 27.3 25.9 26.5

Fig. 1. Graph of the learning curve for the first experiment.

Fig. 2. Graph of the learning curve for the second experiment.

Table 3
Detailed accuracy for the first experiment, but with SMOTE, expressed in %.

Precision Recall F1

Weighted Average 72.8 73.1 72.9
Class: 0 82.9 83.6 83.3
Class: 1 32.1 31.0 31.6
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it is most of the time based on the practitioner's experience. For
these reasons, it is critical to provide J48 with a mechanism capable
of balancing the distribution towards the extraction cases and give
them a greater characterization. To this end, we preferred to choose
the first configuration of J48, so as to get in the most unfavorable
situation. In order to resample the dataset, we employed the
SMOTE4 methodology (Chawla et al., 2002; Weiss, 2004). Results of
the experiments are reported in Table 3. As you can see, there is a
general and noticeable improvement, both in terms of weighted
average and for the individual classes, demonstrating the feasibility
of the approach also for better settings of J48.

As for the second experiment, we requested J48 to return all
“difficult cases”, i.e. those that could be difficult or impossible to
4 SMOTE is the acronym of Synthetic Minority Over-sampling Technique.
classify. J48 returned a list of 15 medical records. Among the re-
ported records, 5 cases fell under the not-extraction class, while 10
under the extraction class. With this new configuration, J48 showed
an overall improvement of all its performance. As reported in
Table 4, the overall accuracy increased from 71.34% of the first
setting to 85.45% of the new one. The detailed accuracy, per class,
also confirms the improvement, as shown in Table 5. This table
shows a general increase in terms of the weighted average F1, from
71.1% of the previous configuration to 84.8% of the new one.
Looking at the individual classes, J48 exhibits an improvement of
the same order of magnitude: F1 for the extraction class (i.e., 1)
increases from 26.5% of the previous setting to 53.5% of the new
one, whereas for the not-extraction (i.e., 0) class F1 increased from
82.2 to 91.4%. As for the learning curves, Fig. 2 clearly shows how
the singularities emerged in the previous configuration, have dis-
appeared, showing an increasing linearity of the learning curve that
suggests a certain reliability in improving the model, and in
generalization, when new medical records appear. All metrics re-
ported above show how decision tree outperform models alterna-
tive methods.

This setting represents the first intersection point between the
automatic evaluation of the generated decision trees and the clinical
evaluation introduced shortly after. In fact, the decision tree
generated at this step, showed in Fig. C1, has been dispensed to the
members of the Orthodontics School in order to evaluate its
soundness and efficiency. Another intersection point between this
configuration setting and clinical evaluation is provided by the
“difficult cases” that were submitted to the physicians in order to
test their difficulties to classify them. This second trial allows also
for evaluating orthodontist within and between agreements. How-
ever, before introducing the clinical evaluation, it is interesting to
watch at the last configuration setting of J48. The third configura-
tion was set exploiting C4.5 inner capability of post-pruning
(Mitchell, 1997). The technique allows for reducing the size of the
tree. As for the orthodontic decision-making problem, it allows to
provide clinicians with a different visualization of the tree, as well
as with little change in the rules generated, and the same perfor-
mance. The third tree generated after the pruning step is showed in
Fig. D1. As can be noted, unlike the tree generated in the second
configuration, this one comes in a “lean” and “elongated” shape.
The performance of the new tree does not change; at least it does
not change in terms of overall and detailed accuracy, as demon-
strated by the results reported in Tables 6 and 7. Only a slight
decrease in the learning curve is to recorded, however, it continues
to grow with linearity and no drop points, as detailed in Fig. 3.

As for the first experiment of clinical evaluation, in order to
obtain the classification of the 15 “difficult cases”, 20 orthodontists
were given a blinded excel table with all 15 medical records, i.e.
where record IDs had been removed as well as the earlier classifi-
cation (i.e., extracted or not-extracted). During the administration of
the test, physicians were told to classify the records, generated
randomly from a decision tree, looking only at 38 out of the 39
features that describe the case (class labels were removed). In the
first round, a group of 10 orthodontists annotated 15 medical re-
cords. In the second round, when the annotation was blind, only 4
records registered the same annotation of the first round, spread on
4 different physicians from the first round. On the whole, these
results show a within moderate/poor agreement (i.e., about 26%), in
line with the scientific literature mentioned in section 1 (Hu et al.,
2015). Later, the agreement between annotation/physicians was
tested looking at how other physicians shared the decision that
their colleague made in the first round. For a patient belonging to
not-extraction class, the decision was shared by 19 colleagues; for
another patient, always belonging to not-extraction, the decision
was shared by 18 colleagues; for one patient belonging to class 1



Table 4
Overall accuracy of the second experiment expressed in %.

Classification Summary

Correctly Classified Instances 235 85.45
Incorrectly Classified Instances 40 14.54
Total Number of Instances 275

Table 5
Detailed accuracy of the second experiment expressed in %.

Precision Recall F1

Weighted Average 84.4 85.5 84.8
Class: 0 89.5 93.4 91.4
Class: 1 60.5 47.9 53.5

Table 6
Overall accuracy of the third experiment expressed in %.

Correctly Classified Instances 235 85.4545

Incorrectly Classified Instances 40 14.5455
Total Number of Instances 275

Table 7
Detailed accuracy of the third experiment expressed in %.

Precision Recall F1

Weighted Average 84.4 85.5 84.8
Class: 0 89.5 93.4 91.4
Class: 1 60.5 47.9 53.5

Fig. 3. Graph of the learning curve for the third experiment.
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(i.e., extraction), the decision was shared by 18 physicians. Seven
cases were shared by less than 3 physicians, demonstrating an
overall moderate between agreement, in linewith the previous body
of knowledge.

As for the second clinical experiment, decision trees generated by
J48 in the second and third experimental setting, and showed in
Figs. 4 and 5, were submitted to clinicians in order to test their aid
in supporting their decisions. During the administration of the test,
physicians were required to trace, on the printed tree, all possible
paths (i.e., best practices) that were considered useful and plausible
to make a positive decision (i.e., extraction), even if the path ended
in a leaf node with 0 (i.e., not-extraction), so as to avoid any false
negative.

Results for the tree reported in Fig. 4 show that only eight rules
have been traced. Rule 2 is the most frequently suggested by phy-
sicians. It gets to the leaf node employing only 4 features on the
upper part of the tree. Also rule 1, shared by 9 physicians, employs
only 4 features out of 38 to make a decision. Five physicians share
rules 3 and 4. Whereas the former uses 4 features, the latter takes
only 2 features to make a decision. Only one path (i.e., rule 6)
employedmore than 6 features but only one physician suggested it.

Turning to the decision tree generated with the third setting, and
shown in Fig. 5, three main rules were considered plausible by
physicians. Rule 1, in red, is the most frequent (12 clinicians sug-
gested it) and employs only 3 features located in the upper side of
the tree. Rule 2 is suggested by 10 physicians and takes a longer path
(5 features). Finally, rule 3 is suggested by 2 physicians and employs
7 features. The good news is that all the rules chosen by the clini-
cians, with the exception of a particular case, ended in the positive
class label (extraction) The two clinical evaluations, that earlier
appeared to be unrelated to each other, indeed converge towards a
common rationale: physicians, that in the first clinical evaluation
exhibited low within and between agreement, when given a set of
candidate “best practices” in the form of if-then rules show an in-
crease in the level of agreement, demonstrating the benefit of
employing such a model to support a sustainable orthodontic
decision-making. Almost all the rules chosen reported in Fig. 4,
except one, are located in the upper side of the decision tree and
employ a small number of features with respect to the initial list of
38 features.

As just mentioned above, orthodontists, by preferring the
simplest hypothesis that fits the data, behave just like any other
scientist. This disconfirms what is argued by Turpin and Huang
(2016), and cited in Section 1, regarding the lack of scientific evi-
dence for orthodontic job, and, most interestingly, the lack of sus-
tainability. The most important result is that all the rules identified
and reported in Table 8 show a significant reduction both in terms
of cost of the treatment and in terms of solid waste produced. The
format could represent the privileged toolbox of the physician to
choose the rules to use in his practice without resorting to any
computer support. The orthodontists may observe the sustain-
ability of the best practice/rule chosen both in terms of cost and
waste reduction (see Table A1 for a full description of waste
material).

5. Conclusion

Further improvements are to be carried out.
A more structured annotation will be requested to physicians,

using a Likert scale for each extraction decision. The results of this
annotation scheme will be processed by a SEM model (Novo-Corti
et al., 2015) that will help to identify the role of specific features
with respect to a final model of constructs that is conjectured to
exist in the orthodontic practice.

Furthermore, the platform will be enriched in order to include
data on costs, measured on the basis of Activity-Based-Costing
principles, so as to allow for an economic evaluation of the sav-
ings produced by the proposed algorithm in economic and envi-
ronmental term.

Finally, an instructional framework will be developed, through
which the elicitedmodel could be taught to novice orthodontists by
means of role playing (i.e. active learning), simulating exercises,
gaming, e-learning and chatbox, which will make studying easier
and more time-efficient, by instantly delivering feedback back to
students in response to work-related questions (Wals, 2014).

In the light of all the peculiarities outlined, the proposed
collaborative web service represents a significant contribution to
the sustainability of healthcare, defined as a balance of economic
concerns the needs of patients and environmental costs (Jameton
and McGuire, 2002).

First of all, the proposed methodology allows for defining the
minimal configuration of a record set of features for orthodontic
diagnosis and treatment planning, thus allowing for a reduction of
costs for both diagnostic and clinical trials. By incorporating data on



Fig. 4. Decision tree generated with the second experimental setting and validated with the rules annotated from physicians.
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the costs measured according to activity-based criteria, it may
allow to choose the paths which are more sustainable, coeteris
paribus, thus leading to a decrease of the overall cost of clinical
treatments and an improvement of organizational efficiency. In
different organizational contexts, the same recommended
evidence-based pathmay imply different levels of sustainability. So,
the proposed algorithm not only reduces the number of attributes
needed to make a medical decision, but also allows for evaluating
their costs, thus contextualizing clinical practice in the specific
organizational setting.

Because of its capacity to take into account not only the pre-
vailing scientific references but also the local variables and orga-
nizational factors, the proposed methodology can be successfully
adopted on large scale by the healthcare systems in a large range of
medical procedures. If we adopt a global perspective of sustainable
development, it allows transferring knowledge as part of devel-
opment cooperation with low-income countries.

Furthermore, the reduction of trials allows for containing waste
material (water, battery, light, and so on) and the use of equipment
and tools (mechanical chair, Nikon 1J5 camera, and so forth),
employed to perform an orthodontic diagnosis that exploits the
skeletal, clinical, radiographic, and personal data. It allows also for a
reduction of the risks linked to the use of radiation and to unsafe
waste such as mercury. Ultimately, the ecological impact, another
pillar of sustainability, is significantly improved.

Indeed, also the social pillar of sustainability is positively
affected. The approach goes beyond the simplification of the or-
thodontic decision-making process, since the models extracted can
guarantee greater “objectivity” of the medical decisions in the
interpretation of the orthodontic data, and thus allows for the se-
lection of the most appropriate therapy, based on the collective
model, previously validated by experts and senior scholars
(Hammond et al., 2015). The decision mechanism shows a high
level of accuracy, exhibiting both high sensitivity, namely low false
negative (i.e., correctly allocating in specialized departments pa-
tients requesting specialized care) and high specificity, namely low
false positive rate (i.e., reducing unnecessary allocation of patients in
specialized departments if specialized medical treatments are not
required). As a consequence, patients needs are better served and
some aspects which positively impact on patient overall assess-
ment of the performance of a health service and therefore their
satisfaction (Faezipour and Ferreira, 2013) are improved, such as
treatment length, appropriateness and quality of diagnoses and
treatments, perceived competence of physicians, clarity of physi-
cians’ communication to patients.

Moreover, the platform is able to deliver its sustainable rules, in
terms of costs, patient satisfaction and impact on the environment,
to scholar and practitioners, providing refresher courses and
training for Orthodontic Schools, thus establishing a collaboration
among orthodontists and generating learning value (Lozano et al.,
2013). This further contributes to the sustainability of healthcare,
if we agree with that the sustainable healthcare model should also
include the needs of healthcare personnel.

Another peculiar characteristic of the proposed algorithm,
which distinguishes it from other methods such as neural net-
works, is that it allows to trace adherence to the extrapolatedmodel
and, by incorporating activity-based costing data, can provide real-
time feedback on deviations and possible alternatives: thank to
this, a deviation might reveal to be an innovation which improves
the sustainability. Besides, unlike neural networks which are slow,
unintelligible and require a large number of annotated data (not
always available), the proposed procedure can be easily inspected,
by means of friendly visualization tools, as paths on trees or if-then
rules which are comparable with best practices adopted by physi-
cians in their professional activity. In linewith the concept of shared
decision, the platform is able to benefit from the contribution of its
users, who can update the dataset and, as a consequence, refine the
model or generate new models. According to sustainable health-
care systems will depend fundamentally on learning mechanisms
built into the system to enable continual improvement and adap-
tation through time. As Heinrichs and Laws (2014) observe “if this
goal were to be achieved, a sustainable health care system could be
an important step toward a “sustainability state” on a more general
level”.



Fig. 5. Decision tree generated with the third experimental setting and validated with the rules annotated from physicians.

Table 8
The rules generated by C4.5, readable in the form of if-then rules.

Rule n. goGnLi snpg goGnLi intercanine diameter difference apgB1 Ans-Pnŝ Go-Gn dentobasal Discrepancy Class % of waste reduction (cost/waste)

1 >104,2 >75 >104,9 <¼5,28 1 �30/-65
2 <¼104,2 >5.3 <¼28,8 <¼5,5 1 �30/-65
3 <¼104,2 >3,61 >5.3 >28,8 1 �30/-65
4 >104,2 <¼75 1 �50/75
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Appendix A
Table A1
Feature set with names, values and category division of the features (skeletal, clinical, radi
ion Battery, Battery Life (shots per charge) 250 shots (CIPA), Movies: Approx. 60 min (
(available separately).

ID Feature
category

Feature full name Feature name/
acronym

Feature v

1 Personal data Age Age Years
2 Personal data Sex Sex Binary (M

Female ¼
3 Clinical Dentobasal discrepancy Dentobasal

discrepancy
(DBD)

Millimet

4 Clinical
(assessment
models cass)

Intercanine diameter difference Intercanine
diameter
difference (3
diameter)

Milimetr

5 Clinical
(assessment
models cass)

Intermolar diameter difference Intermolar
diameter
difference (6
diameter)

Millimet

6 Clinical Palate rotation of upper molars Molars rotation Binary (a
presence

7 Clinical Canine class malocclusion right Canine class
malocclusion
right

first ¼ 0;
third ¼ 2

8 Clinical Canine class malocclusion left Canine class
malocclusion left

first ¼ 0;
third ¼ 2

9 Clinical Molar class malocclusion right Molar class
malocclusion
right

first ¼ 0;
third ¼ 2

10 Clinical Molar class malocclusion left Molar class
malocclusion left

first ¼ 0;
third ¼ 2

11 Radiographic,
skeletal

SellaenasioneA point angle SNA Degree

12 Radiographic,
skeletal

SellaenasioneB point angle SNPg Degree

13 Radiographic,
skeletal

Angle formed by the NA floor with
NPG plane. Sagittal intermaxillary
relationship

ANPg Degree

14 Radiographic,
skeletal

Angle formed by sellar plane with
the palatal plane ANS-PNS

SN ^Ans-Pns Degree

15 Radiographic,
skeletal

Angle formed by the saddle plan
SN with mandibular plan Go- Gn

SN^Go-Gn Degree

16 Radiographic,
skeletal

Angle formed by the palatine plan
ANS e PNS with mandibular plan
Go- Gn

Ans-Pnsfn^̂ Go-
Gn

Degree

17 Radiographic,
skeletal

Angle formed by the palatine plan
ANS e PNS with the incisor upper
axis Is

Ans-Pnŝ Is Degree

18 Radiographic,
skeletal

Angle formed by the mandibular
plan Go- Gn with the lower
incisor axis Ii.

Go-Gn L̂i Degree

19 Radiographic,
skeletal

Distance between the dental plan
Apg and lower incisor edge B1

Apg-B1 Millimet
ographic, and personal data) - Nikon J5 camera: Battery / Batteries EN-EL24 Lithium-
1080/30p), AC Adapter EH-5b AC Adapter Requires EP-5F Power Supply Connector

alue How it is done (tools and material employed)

Nothing
ale ¼ 1,
0)

Nothing

ers Digital Caliper (0e150mm/0e600 Large LCD Digital Display Vernier
Caliper)

es Digital Caliper (0e150mm/0e600 Large LCD Digital Display Vernier
Caliper)

ers Digital Caliper (0e150mm/0e600 Large LCD Digital Display Vernier
Caliper)

bsence ¼ 0;
¼ 1)

Intraoral photographs (Nikon 1 J5 camera), clinical evaluation and
evaluation of the upper and lower dental casts (use of mechanical
chair, Halogen light reflector)

second ¼ 1; Intraoral photographs (Nikon 1 J5 camera), clinical evaluation and
evaluation of the upper and lower dental casts (use of mechanical
chair, Halogen light reflector)

second ¼ 1; Intraoral photographs (Nikon 1 J5 camera), clinical evaluation and
evaluation of the upper and lower dental casts (use of mechanical
chair, Halogen light reflector)

second ¼ 1; Intraoral photographs (Nikon 1 J5 camera), clinical evaluation and
evaluation of the upper and lower dental casts (use of mechanical
chair, Halogen light reflector)

second ¼ 1; Intraoral photographs (Nikon 1 J5 camera), clinical evaluation and
evaluation of the upper and lower dental casts (use of mechanical
chair, Halogen light reflector)
lateral cephalometric radiographs and cephalometric analysis (Use
of the imaging system Orthopos XG 3Dready Ceph with a CCD line
sensor (Sirona Dental Systems, Bensheim, Germany) and the
computer)
lateral cephalometric radiographs and cephalometric analysis (Use
of the imaging system Orthopos XG 3Dready Ceph with a CCD line
sensor (Sirona Dental Systems, Bensheim, Germany and the
computer)
lateral cephalometric radiographs and cephalometric analysis (Use
of the imaging system Orthopos XG 3Dready Ceph with a CCD line
sensor (Sirona Dental Systems, Bensheim, Germany) and the
computer)
lateral cephalometric radiographs and cephalometric analysis (Use
of the imaging system Orthopos XG 3Dready Ceph with a CCD line
sensor (Sirona Dental Systems, Bensheim, Germany) and the
computer)
lateral cephalometric radiographs and cephalometric analysis (Use
of the imaging system Orthopos XG 3Dready Ceph with a CCD line
sensor (Sirona Dental Systems, Bensheim, Germany) and the
computer)
lateral cephalometric radiographs and cephalometric analysis (Use
of the imaging system Orthopos XG 3Dready Ceph with a CCD line
sensor (Sirona Dental Systems, Bensheim, Germany) and the
computer)
lateral cephalometric radiographs and cephalometric analysis (Use
of the imaging system Orthopos XG 3Dready Ceph with a CCD line
sensor (Sirona Dental Systems, Bensheim, Germany) and the
computer)
lateral cephalometric radiographs and cephalometric analysis (Use
of the imaging system Orthopos XG 3Dready Ceph with a CCD line
sensor (Sirona Dental Systems, Bensheim, Germany) and the
computer)

ers lateral cephalometric radiographs and cephalometric analysis (Use
of the imaging system Orthopos XG 3Dready Ceph with a CCD line
sensor (Sirona Dental Systems, Bensheim, Germany) and the
computer)

(continued on next page)



Table A1 (continued )

ID Feature
category

Feature full name Feature name/
acronym

Feature value How it is done (tools and material employed)

20 Radiographic,
skeletal

Lower Incisor position LIP Millimeters lateral cephalometric radiographs and cephalometric analysis (Use
of the imaging system Orthopos XG 3Dready Ceph with a CCD line
sensor (Sirona Dental Systems, Bensheim, Germany) and the
computer)

21 Radiographic,
skeletal

Upper Incisor position UIP Millimeters lateral cephalometric radiographs and cephalometric analysis (Use
of the imaging system Orthopos XG 3Dready Ceph with a CCD line
sensor (Sirona Dental Systems, Bensheim, Germany) and the
computer)

22 Clinical Overjet OVJ Millimeters Intraoral photographs (Nikon 1 J5 camera), clinical evaluation and
evaluation of the upper and lower dental casts (use of mechanical
chair, Halogen light reflector)

23 Clinical Overbite OVB Millimeters Intraoral photographs (Nikon 1 J5 camera), clinical evaluation and
evaluation of the upper and lower dental casts (use of mechanical
chair, Halogen light reflector)

24 Radiographic,
skeletal

Interincisal Angle Iŝ Ii Iŝ Ii Degree lateral cephalometric radiographs and cephalometric analysis (Use
of the imaging system Orthopos XG 3Dready Ceph with a CCD line
sensor (Sirona Dental Systems, Bensheim, Germany) and the
computer)

25 Radiographic,
skeletal

Protrusion lower lip PLI Millimeters lateral cephalometric radiographs and cephalometric analysis (Use
of the imaging system Orthopos XG 3Dready Ceph with a CCD line
sensor (Sirona Dental Systems, Bensheim, Germany) and the
computer)

26 Radiographic,
skeletal

Co-Go-Me angle Co-Go-Me Degree lateral cephalometric radiographs and cephalometric analysis (Use
of the imaging system Orthopos XG 3Dready Ceph with a CCD line
sensor (Sirona Dental Systems, Bensheim, Germany) and the
computer)

27 Clinical
(assessment
models cass)

Anterior bolton index Anterior Bolton
index

(normal ¼ 0;
increased ¼ 1;
decreased ¼ 2)

Evaluation of the upper and lower dental casts

28 Clinical Kind of gingival Gingival tipology
(Geng Tip)

Binary (thick ¼ 0;
thin ¼ 1)

clinical evaluation (use of mechanical chair, Halogen light reflector)

29 Clinical Gingival recessions Gingival
recessions'
presence (Rec)

Binary (absence ¼ 0;
presence ¼ 1)

clinical evaluation (use of mechanical chair, Halogen light reflector)

30 Clinical Labial incompetence Labial
incompetence
(Lab incomp)

(absence¼ 0;mild¼ 1;
severe ¼ 2)

clinical evaluation and extraoral photographs (Nikon 1 J5 camera,
use of mechanical chair, Halogen light reflector)

31 Clinical Aesthetic line Aesthetic line (orthognathic ¼ 0;
retrusive ¼ 1;
protruded ¼ 2)

clinical evaluation and extraoral photographs (Nikon 1 J5 camera,
use of mechanical chair, Halogen light reflector)

32 Clinical Smile teeth exposure Smile teeth
exposure

(Good ¼ 0; scarce ¼ 1) clinical evaluation and extraoral photographs (Nikon 1 J5 camera,
use of mechanical chair, Halogen light reflector)

33 Clinical Coincidence of the facial midline
with the dental midline

Midline
coincidence

(Coinciding ¼ 0; not
coinciding ¼ 1)

clinical evaluation and extraoral photographs (Nikon 1 J5 camera,
use of mechanical chair, Halogen light reflector)

34 Clinical Angle formed by a tangent line to
the point subnasal and one
tangent to labial filter

Nasolabial angle (normal ¼ 0;
closed ¼ 1; open:2)

clinical evaluation and extraoral photographs (Nikon 1 J5 camera,
use of mechanical chair, Halogen light reflector)

35 Clinical Trend of the profile that can be
normal, concave or convex

Facial profile (normal ¼ 0,
concave ¼ 1;
convex ¼ 2)

clinical evaluation and extraoral photographs (Nikon 1 J5 camera,
use of mechanical chair, Halogen light reflector)

36 Clinical Distance between the chin and
neck

Chin-neck
distance

(Normal ¼ 0;
increased ¼ 1;
decreased ¼ 2)

clinical evaluation and extraoral photographs (Nikon 1 J5 camera,
use of mechanical chair, Halogen light reflector)

37 Clinical Fixed, functional and fixed lingual Treatment of
orthodontic with
extractions

(no ¼ 0; yes D ¼ 1, yes
P ¼ 2)

clinical evaluation, intraoral and extraoral photographs (Nikon 1 J5
camera, use of mechanical chair, Halogen light reflector)

38 Clinical (class
label)

Teeth extracted Teeth extracted yes ¼ 1, no ¼ 0 clinical evaluation, intraoral and extraoral photographs (Nikon 1 J5
camera, use of mechanical chair, Halogen light reflector

39 Clinical Fixed, functional, clear aligner and
fixed lingual

Kind of treatment
of orthodontic

(fixed ¼ 0; aligner ¼ 1;
functional ¼ 2; fixed
lingual ¼ 3)

clinical evaluation, intraoral and extraoral photographs (Nikon 1 J5
camera, use of mechanical chair, Halogen light reflector

Fig. A2. Patient‘s age distribution. Ages are on the x-axis while their frequency is on the y-axis.
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Appendix B
Fig. B1. Decision tree of the first experimental setting.
Fig. B2. Attribute ranking comparison
 for the first experimental setting.
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Appendix C
Fig. C1. Decision tree of the second experimental setting.
Fig. C2. Attribute ranking for the
 second experimental setting.
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Appendix D
Fig. D1. Decision tree of the th
ird experimental setting.



Fig. D2. Attribute ranking comparison for the third experimental setting.
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