
Active Influence Spreading in Social Networks∗

Gennaro Cordasco

Department of Psychology

University of Campania “L.Vanvitelli”, Italy.

Luisa Gargano

Department of Computer Science

University of Salerno, Italy.

Adele A. Rescigno

Department of Computer Science

University of Salerno, Italy.

December 11, 2017

Abstract

Identifying the most influential spreaders is an important issue for the study of the
dynamics of information diffusion in complex networks. In this paper we analyze the
following spreading model. Initially, a few nodes know a piece of information and are
active spreaders of it. At subsequent rounds, spreaders communicate the information to
their neighbors. Upon receiving the information, a node becomes aware of it but does not
necessarily become a spreader; it starts spreading only if it gets the information from a
sufficiently large number of its neighbors. A set of initial spreaders that guarantees that
all the nodes become aware of the information is called a perfect seed set. We study the
problem of choosing a perfect seed set of minimum size. We provide hardness results and
show that the problem becomes tractable on trees. In case of general graphs, we provide an
efficient algorithm and validate its effectiveness (in terms of the solution size) on real-life
networks. We also study perfect seed sets in dense graphs and derive a bound on the size
of a dominating set in Ore graphs.

∗An extended abstract of this paper was presented at the 17th Italian Conference on Theoretical Computer
Science (ICTCS 2016), [15]

1

https://doi.org/10.1016/j.tcs.2018.02.024

1 Introduction

During the past decade the study of spreading processes in complex networks have experienced

a particular surge of interest. A large part of the research activity in the area deals with the

analysis of influence spreading in social networks. There are many situations where members

of a network may influence their neighbors’ behavior and decisions: By swaying their opinions,

by suggesting what products to buy, or simply by passing on a misinformation [8, 33, 40]. A

key research question, related to understand and control the spreading dynamics, is how to

efficiently identify a set of users that can diffuse information within the network. This is

the problem addressed in this paper. Our scenario posits a population consisting of a set of

individuals that, with respect to the information, are subdivided into ignorant, aware, and

spreader. Initially, all individuals are ignorant. Then an initial set of spreaders is selected.

When a spreader informs an ignorant node v, the node v becomes aware; as soon as the

individual v is informed by a number of spreaders equal or greater than a threshold t(v), the

node v starts spreading the information.

The motivations that lead to consider such a scenario come from experimental studies of how

information spreads in social networks. Indeed, information doesn’t flow freely in the network

but it requires active sharing which, in turn, depends on individual conviction to pass it on.

We refer to [3] for a study of how exposure to social signals affects diffusion.

Such a spreading model can be also seen as an idealization of the diffusion processes of memes.

A meme [21] is a unit of cultural information, such as a cognitive or behavioral pattern, that

can be transmitted from one individual to another one. Experimental observation about how

memes evolve and spread within Facebook [2] suggests that our model makes a reasonable

hypothesis on the meme spreading mechanism: An individual acquires a meme when it has

been heard of from a friend, but people start spreading a meme only when it appears to be

popular or important, i.e., when it has been heard of from several friends.

We model the network as an undirected graph G = (V,E), where V is the set of individuals

and the set of edges E represents the relationships among network members, i.e., (u, v) ∈ E

if individuals u and v can directly communicate. We denote by NG(v) the neighborhood of

v ∈ V in G.

Given a threshold function t : V → {0, 1, 2, . . .}, an active diffusion process starting at S ⊆ V

is a sequence of node subsets: SpreaderG[S, τ], τ = 0, 1, . . . , such that

SpreaderG[S, 0] = S,

SpreaderG[S, τ] = SpreaderG[S, τ − 1] ∪
{

u :
∣

∣N(u) ∩ SpreaderG[S, τ − 1]
∣

∣ ≥ t(u)
}

, τ ≥ 1.

1

In words, at each round τ ≥ 1, the set of spreaders is augmented with all the nodes u for which

the number of neighbors that are already spreaders is at least equal to u’s threshold t(u). The

process terminates when SpreaderG[S, ρ] = SpreaderG[S, ρ − 1] for some ρ > 1. Hence, when

the process stops, the sets of spreaders and of aware nodes are, respectively,

SpreaderG[S] = SpreaderG[S, ρ]

AwareG[S] = SpreaderG[S] ∪
{

u : N(u) ∩ SpreaderG[S] 6= ∅
}

.

We aim to identify a small node set S such that AwareG[S] = V .1

Definition 1 Given a graph G = (V,E), a set S ⊆ V such that Aware[S] = V is called a

perfect seed set for G. The nodes in S are denoted as seeds.

Summarizing, we consider the following problem,

Perfect Awareness (PA).

Instance: A graph G = (V,E), node thresholds t : V −→ N0.

Question: Find a perfect seed set S ⊆ V of minimum size.

1.1 Related Work and Our Results

The problem of finding a perfect seed set of minimum size has its roots in the area of the spread

of influence in Social Networks. Maximizing the spread of viral information across a network

naturally suggests many interesting optimization problems (see [8, 23] and references quoted

therein). The first authors to study spread of influence in networks from an algorithmic point

of view were Kempe et al. [29, 30, 31]. Chen [7] studied the following minimization problem:

given a graph G and fixed thresholds t(v), for each node v in G, find a set of minimum size

that eventually influences all (or a fixed fraction of) the nodes of G. This problem is usually

referred as the Target Set Selection Problem (TSS). Chen proved a strong inapproximability

result that makes unlikely the existence of an algorithm with approximation factor better

than O(2log
1−ǫ |V |). Chen’s result stimulated a series of papers that isolated interesting cases

in which the problem (and variants thereof) become tractable [1, 4, 6, 9, 10, 11, 12, 13, 17, 18,

19, 24, 37, 38]. Moreover, heuristics for the TSS problem that work for general graphs have

been proposed in the literature [14, 22, 39].

However, the papers appeared in the scientific literature considered the basic model in

which a node, as soon as it has enough influenced neighbors, immediately starts influencing its

neighbors. The more refined model, considered in this paper, differentiates among spreaders

1In the rest of the paper we omit the subscript G whenever the graph is clear from the contex.

2

and plain aware nodes. It has been first considered in [16], where the authors studied the

Awareness Maximization Problem which, having in input a graph G and a bound β, asks for

a set of size at most β that achieves the maximum awareness in the network.

We first study the computational complexity of the Perfect Awareness problem and

extend the TSS problem hardness result to the PA problem. In Section 5, we give an algo-

rithm that outputs a perfect seed set for any input graph. Experimental evaluation of the

proposed algorithm is given in Section 6; it shows that the proposed algorithm outperforms

some heuristics developed for related problems. We would like to remark that if the threshold

t(v) is equal to the node degree d(v), for each v ∈ V , then a perfect target set for G is, indeed,

a dominating set for G. Hence, the proposed algorithm outputs a dominating set for G and

computational experiments suggest that it performs very well in practice.

We also show, in Section 4, that the Perfect Awareness problem becomes tractable if the

graph is a tree. Moreover, in Section 3 we study perfect seed sets in dense graphs; in this

context, we derive a bound on the size of a dominating set in Ore graphs that can be of

interest by its own.

2 Complexity

We prove the hardness of the PA problem by constructing a gap-preserving reduction from

the TSS problem. We recall that the TSS problems, given G = (V,E) with threshold function

t : V → N0, asks to identify a minimum size S ⊆ V such that Spreader[S] = V . Our Theorem

1 follows from the inapproximability results for the TSS problem given in [7].

Theorem 1 The PA problem can not be approximated within a ratio of O(2log
1−ǫn), for any

ǫ > 0, unless NP⊆DTIME(npolylog(n)).

Proof. We give a reduction from the Target Set Selection problem. Consider an instance

of the TSS problem consisting in a graph G = (V,E) with threshold function t(·). Let V =

{v1, . . . , vn}, we build a graph G′ = (V ′, E′) as follows:

• Replace each vi ∈ V by the gadget Λvi (cfr. Fig. 1) in which the node set is V ′
i =

{vi,0, vi,1, vi,2}. Formally,

−V ′ =
⋃n

i=1 V
′
i = {vi,j | 1 ≤ i ≤ n, 0 ≤ j ≤ 2}

−E′ = {(vi,0, vℓ,0)| 1≤i<ℓ≤n, (vi, vℓ) ∈ E}
⋃

{(vi,j , vi,ℓ)|i = 1, . . . , n, 0≤j<ℓ≤2};

• the thresholds are t′(vi,0) = t(vi) and t′(vi,1) = t′(vi,2) = 2, for i = 1, . . . , n.

Notice that G corresponds to the subgraph of G′ induced by the set {vi,0|1 ≤ i ≤ n}. We

show that there exists a target set S ⊆ V for G iff there exists a perfect seed set S′ ⊆ V ′ for

3

G G
0

vi;0

vi;2

vi;1
Λvi

vi

t(vi)

2

2

t(vi)

Figure 1: (a) A vertex vi ∈ V having threshold t(vi) in G. (b) The gadget Λvi associated to vi
in G′: It consists of a triangle where the node vi,0 plays the role of vi. The value inside each
node represents the threshold of the node.

G′ such that |S′| = |S|.

Assume first that S ⊆ V is a target set for G. Since SpreaderG[S] = V , then all the nodes

vi,0 ∈ V ′
i will become spreaders in G′ when the seed set is S′ = {vi,0 ∈ V ′|vi ∈ S}. Once a

node vi,0 becomes a spreader the nodes vi,1, vi,2 are aware in the next round. Hence, S′ is a

perfect seed set for G′, that is AwareG′ [S′] = V ′.

Assume now that S′ ⊆ V ′ is a perfect seed set for G′. Let S′′ = {vi,0 ∈ V ′ | S′ ∩ V ′
i 6= ∅}. It

is easy to observe that AwareG′ [S′′] = AwareG′ [S′] = V ′. Let V ′
0 = {vi,0 | 1 ≤ i ≤ n}. A node

in V ′
0 can make aware only 2 nodes in V ′ − V ′

0—the other nodes of the triangle its belongs to.

Hence, in order to make all the nodes in V ′−V ′
0 aware, all the nodes in V ′

0 must be spreaders,

that is, SpreaderG′ [S′′] = V ′
0 . As a consequence, recalling that G is isomorphic to the subgraph

of G′ induced by V ′
0 , we get SpreaderG[{vi | S

′ ∩ V ′
i 6= ∅}] = V .

The Target Set Selection problem remains hard to approximate even when each node has

threshold upper bounded by a constant; in particular, it was proved in [7] that approximating

the problem when each node has threshold at most 2 is as hard as approximating it in the

general setting, even for constant degree graphs. Our reduction allows to extend this result as

well, namely one has that the PA problem remains hard to approximate even if all nodes have

threshold at most 2.

Corollary 1 Given any graph G = (V,E), where t(v) = 2 (or t(v) ≤ 2) for any node v ∈ V ,

the PA problem can not be approximated within the ratio of O(2log
1−ǫn), for any ǫ > 0, unless

NP⊆DTIME(npolylog(n)).

We also notice that if the threshold of each node is equal to the node degree then the problem

becomes the dominating set problem, which is well-known to be hard to approximate [28].

4

Corollary 2 Given any graph G = (V,E), where t(v) = d(v) for any node v ∈ V , the PA

problem can not be approximated within the ratio of (1 + o(1)) ln∆ (where ∆ is the maximum

degree of G), unless NP⊆DTIME(npolylog(n)).

3 Dense Graphs.

In this section we study the problem of computing a perfect seed set for some graphs char-

acterized by high edge density. We notice that real life social networks are characterized by

the existence of highly connected communities and it was observed that in real networks, hav-

ing high modularity [35], it is often difficult for information to flow from one community to

another. This suggests that one should consider each (dense) community separately.

From the results in [16] and [25], we know that it is possible to relate the minimum graph

degree to the size of a perfect seed set. Such results are summarized in the following theorems.

Theorem 2 [16] Let G = (V,E) be a graph with t(v) ≤ t and d(v) ≥ |V |+t−3
2 , for each v ∈ V .

Any independent set which is either maximal or has size at least 2t− 2 is a perfect seed set.

Theorem 3 [25] For any t ≥ 4, let G = (V,E) be a graph with t(v) ≤ t and d(v) ≥ ⌊|V |/2⌋+

(t− 3), for each v ∈ V . There exists a perfect seed set for G of size t.

Here, we concentrate on the problem of computing small perfect seed sets for a class of dense

graphs known as Ore graphs.

Definition 2 A graph G is an Ore graph if the sum of the degrees of any two independent

nodes is at least |V |, that is, |N(u)|+ |N(v)| ≥ |V | for all u, v ∈ V , such that (v, u) 6∈ E.

We first give some results on dominating sets in Ore graphs and then we use such results

to get perfect seed sets. We notice that any dominating set of a graph trivially is a perfect

seed set for it (since it assures that any node becomes aware in one round). Moreover, in case

all the nodes has threshold t (or d(v), whichever is the smallest), then any perfect seed set of

size less than t needs to be a dominating set of the graph (since no node outside the seed set

can contribute to the spreading process).

The next property will be useful in the following.

Fact 1 Any Ore graph has diameter two.

Proof. Let u and v be any two independent nodes in the Ore graph G = (V,E). By using

Definition 2, we get

|N(u)|+ |N(v)| ≥ |V | ≥ |N(u) ∪N(v) ∪ {u, v}| = 2 + |N(u)|+ |N(v)| − |N(u) ∩N(v)|

5

that leads to N(u) ∩N(v) 6= ∅ and the fact follows.

Some results are known about the size of a dominating set of a graph of diameter two. In

particular, it is easy to see that the neighborhood of any node dominates G, if G has diameter

two. Hence the next upper bound is immediate.

Fact 2 [26] Let G = (V,E) be a graph of minimum degree δ. If G has diameter two, then it

has a dominating set of size at most δ.

Hellwig and Volkmann [27] established an upper bound on the domination number of graphs

of diameter two in terms of their order.

Theorem 4 [27] If G = (V,E) has diameter two, then it admits a dominating set of size at

most ⌊|V |/4⌋+ 1.

In the next theorem we present an upper bound on the size of dominating sets in Ore graphs.

Theorem 5 (Dominating Sets in Ore Graphs) Let G = (V,E) be an Ore graph and let δ

be the minimum degree of G. There exists a dominating set for G of size at most 3+
⌊

δ2−5δ+6
|V |−δ

⌋

.

Proof. Let v be a node with d(v) = δ. For any u 6∈ {v} ∪N(v), by using Definition 2, we get

that

d(u) ≥ |V | − d(v) = |V | − δ.

Fix then any node u 6∈ {v}∪N(v) and let Au denote the set of nodes that are neither neighbors

of u nor of v, that is, Au = V − ({v, u}∪N(u)∪N(v)). It is obvious that {v, u} dominates all

the nodes in V except for those in Au. Hence, if Au = ∅ then {u, v} is a dominating set for

G. Assume then that Au 6= ∅. In the following we show how to augment the set {u, v} so that

also the nodes in Au are dominated. In particular, we will prove that:

There is w ∈ V − (Au ∪ {u, v}) that has at least |Au| −
⌊

δ2−5δ+6
|V |−δ

⌋

neighbors in Au. (1)

This implies that the set Su,w = Au−N(w) has size |Su,w| ≤
⌊

δ2−5δ+6
|V |−δ

⌋

and S = {u, v, w}∪Su,w

is a dominating set for G.

We are then left to prove (1). To this aim, we first make some preliminary considerations.

The number of nodes which are not neighbors of u are at most

|V | − 1− d(u) ≤ |V | − 1− |V |+ δ = δ − 1.

Since these δ − 1 nodes include v, that is not a neighbor of u, we have |Au| ≤ δ − 2.

Let σ(Au, V − Au) be the number of edges connecting nodes in Au with nodes in V − Au.

6

Since the sum of the degrees of the nodes in the subgraph of G induced by Au is at most

|Au|(|Au| − 1) and since each x ∈ Au has d(x) ≥ |V | − δ, we get

σ(Au, V −Au) ≥ |Au|(|V | − δ)− |Au|(|Au| − 1). (2)

Furthermore, among the nodes in V − Au we know that both v and u are not neighbors of

nodes in Au. This implies that the neighbors of the nodes in Au are at most |V | − 2 − |Au|

(that is those in V − (Au ∪ {u, v})).

We prove now (1) by contradiction. Let k =
⌊

δ2−5δ+6
|V |−δ

⌋

and assume that each node in

V − (Au ∪ {u, v}) has at most |Au| − k − 1 neighbors in Au. This assumption implies that

σ(Au, V −Au) ≤ (|Au| − k − 1)(|V | − 2− |Au|). As a consequence, by (2) we get

|Au|(|V | − δ)− |Au|(|Au| − 1) ≤ (|Au| − k − 1)(|V | − 2− |Au|).

Therefore,

(k + 1)(|V | − 2) ≤ |Au|(k + δ − 2).

Noticing that k = ⌊ δ
2−5δ+6
|V |−δ

⌋ > δ2−5δ+6
|V |−δ

− 1, we get

δ − 2 <
1

2

(

−k +
√

k2 + 4(k + 1)(|V | − 2)
)

.

Recalling that |Au| ≤ δ − 2, we then get

(k + 1)(|V | − 2) ≤ |Au|(k + δ − 2) ≤ (δ − 2)(k + δ − 2) = (δ − 2)2 + k(δ − 2)

<

(

−
k

2
+

1

2

√

k2 + 4(k + 1)(|V | − 2)

)2

+k

(

−
k

2
+

1

2

√

k2 + 4(k + 1)(|V | − 2)

)

= (k + 1)(|V | − 2),

leading to a contradiction.

We notice that the size of the dominating set obtained in the proof of Theorem 5 is smaller than

the bound δ in Fact 2 whenever G has minimum degree δ ≤ |V |/2. Moreover, if δ ≤ ⌊|V |/4⌋+1

our bound strongly improves on the one in Theorem 4.

The above results allow to state the following upper bound on the perfect seed size of any

Ore graph for any threshold function.

Corollary 3 Let G = (V,E) be an Ore graph and let δ be the minimum degree of G. For

any threshold function t : V −→ N0, there exists a perfect seed set for G of size at most

min
{

3 +
⌊

δ2−5δ+6
|V |−δ

⌋

,
⌊

|V |
4

⌋

+ 1, δ
}

.

7

4 Trees.

In this section we give an algorithm that optimally solves the PA problem on trees.

Let T = (V,E) be a tree rooted at any node r. The algorithm essentially computes the seed

set while performing a visit (in BFS reverse order) of the tree, trying to procrastinate, as much

as possible, the addition of nodes to the seed set. Once a node is elaborated, it is virtually

pruned from the tree and the threshold of its parent is updated according to the choice made

by the algorithm. Furthermore, in Case III (see Algorithm 1), in order to guarantee that the

diffusion process will make all the nodes aware, the parent of the considered node must become

a spreader. This information is maintained by adding the parent node to the set R.

Algorithm 1: TREE-PA(T , t), T = (V,E) is a tree with thresholds t(v) for v ∈ V

1 S = ∅; A = ∅; R = ∅;
2 foreach v ∈ V in a BFS reverse order do
3 if v 6= r then // v is not the root node

4 if t(v) = 0 then // Case I

5 t(fv) = t(fv)− 1; // fv denotes v’s father

6 A = A ∪ {fv}

7 else
8 if v ∈ R AND t(v) ≥ 2 then // Case II

9 S = S ∪ {v};
10 t(fv) = t(fv)− 1;
11 A = A ∪ {fv}

12 else // Case III

13 if v /∈ A OR (v ∈ R AND t(v) = 1) then
14 R = R ∪ {fv} // fv must spread

15 else // v is the root node

16 if t(v) > 0 AND v /∈ A−R then S = S ∪ {v}

17 return S

Let T is the tree in Fig. 2. One can see that the algorithm TREE-PA(T, t) returns a

optimal perfect seed set consisting of the three double-circled nodes in the figure.

8

Figure 2: The integers inside circles are the node thresholds, double–lines denote seeds, dashed–
lines denote aware nodes, solid–lines denote spreaders.

In order to show the optimality of the TREE-PA algorithm, in the following, we introduce

a generalization of the PA problem.

Perfect Awareness with Required Spreaders (PARS).

Instance: A graph G = (V,E), node thresholds t : V −→ N0 and required

spreaders R ⊆ V .

Question: Find a seed set S ⊆ V of minimum size such that Aware[S] = V and

R ⊆ Spreader[S].

We are going to show in Theorem 6 that the algorithm TREE-PA(T, t) is an optimal algorithm

for the PARS problem. The optimality of TREE-PA(T, t) implies the optimality of the PA

problem since at the beginning the set of required nodes is R = ∅.

We use the following notation. We denote by n = |V | the number of nodes in T and by fv

the parent of node v with respect to the rooted tree T , for each v ∈ V . Moreover we denote:

• by vi the node that is selected during the i-th iteration of the foreach in line 2 of Algorithm

1, for i = 1, . . . , n;

• by T (i) the tree induced by Vi = {vn, vn−1, . . . , vi};

• by ti(vi) the value of t(vi) as updated at the beginning of the ith iteration;

• by Ai the set of nodes aware thanks to the contribution of their children in T ;

• by Ri ⊆ Vi the set of nodes that during the diffusion process must become spreader.

We start with a technical Lemma.

Lemma 1 Given a tree T = (V,E), consider two instances of the PARS problem:

• I = (T, t, R), consisting of T , a threshold function t, and a set R ⊆ V and

9

• I ′ = (T, t′, R′) where R′ = R∪{v} and t′ corresponds to t except for t′(v) = t(v)+ 1, for

some v ∈ V .

Let S and S′ be two optimal solution for I and I ′, respectively. We have that |S′| ≤ |S ∪ {v}|.

Proof. It is easy to see that starting with S we can build a solution S ∪ {v} for I ′.

Theorem 6 PA(T, t) returns an optimal perfect seed set for any tree T in linear time.

Proof. Thanks to the results in Theorem 7 we need to show only that the perfect seed set,

identified by the algorithm TREE-PA(T, t) is optimal.

The basic observation is that each time a node v ∈ V is not required to belong to the seed

set (i.e., Case II of Algorithm 1 does not occur), we can discard the node without harming

the optimality of the solution. Hence, we can assume without loss of generality that v is not

added to the seed set, otherwise, we can add fv instead of v and get a solution of the same

size. When the node v is not added to the seed set, the algorithm checks whether, in order

to guarantee v will become aware at the end of the diffusion process, it is mandatory that its

parent fv becomes a spreader (see line 13 of Algorithm 1).

Formally, we are going to show that the algorithm TREE-PA(T, t) is optimal for the PARS

problem. The result will follow since the set R is initially empty.

We show the optimality of each choice made by the algorithm TREE-PA(T, t). Let vi be the

node considered during the i-th iteration of the foreach cycle in line 2 of Algorithm 1. Recall

that any possible children of vi has been already analyzed and virtually removed from the

tree (that is vi is a leaf of T (i)). Let S be the solution provided by TREE-PA and S∗ be any

optimal PARS solution.

First of all we show that if vi ∈ S then vi ∈ S∗. Indeed vi is added to S in Case II that is

when vi ∈ Ri (i.e., vi must become a spreader) and ti(vi) ≥ 2. Since vi is a leaf, the only way

to make vi a spreader is by adding it to the seed set.

On the other hand, if vi /∈ S and vi ∈ S∗, we can easily build another optimal solution

by adding fvi instead of vi to the set S∗ and get a solution of at most the same size. Let

S′ = S∗ ∪ {fvi} − vi, we can easily show that S′ is a solution for the PARS problem. Since

vi /∈ S, we have that Case II did not occur, that is, vi /∈ Ri or t(vi) < 2. In both cases fvi

will be able to make vi aware (if vi /∈ Ri) or spreader (if t(vi) < 2). The selection of vi

as seed node may impact on Ri+1 and ti+1(fvi). Indeed, when v ∈ S∗ then Ri = Ri+1 and

ti+1(fvi) = ti(fvi)−1, while when v /∈ S∗ we may have Ri+1 = Ri∪{fvi} and ti+1(fvi) = ti(fvi).

By Lemma 1, since fvi ∈ S′ we know that the optimal solutions for I = (T (i+ 1), ti+1, Ri+1)

and I ′ = (T (i+1), t′i+1, R
′
i) have the same size and we can use S′ instead of S∗ without harming

the optimality of the solution.

10

Hence, we can assume that if vi /∈ S then vi /∈ S∗. The optimality of the algorithm is

then guaranteed by the fact that it inserts a node in the set Ri+1 only whenever it is required.

Indeed the parent node fvi is added to Ri+1 only when the node vi is not made aware by

the contribution of its children (i.e., vi /∈ Ai) or vi must become a spreader and the residual

threshold is 1 (vi ∈ Ti AND ti(vi) = 1) but this will only happen if fvi will become a spreader.

Finally, the root node r = vn is analyzed in line 16 of the algorithm as a specific case,

considering that it has no parent nodes. In particular if tn(r) > 0 and the root node is not

aware thanks to the contribution of its children or must bust be a spreder (r /∈ An < Rn) then

r is added to the seed set and the same must happen for any other PARS solution.

5 A general algorithm for the PA problem

In this section we generalize the TREE-PA algorithm, given in Section 4, and propose an

algorithm for the PA problem in case of arbitrary graphs and thresholds. The algorithm

PA(G, t), given in Algorithm 2, works greedily by iteratively deprecating nodes from the

input graph G unless a certain condition occurs which makes a node be added to the seed

set S; it stops when all nodes have either been discarded or selected as seed. The algorithm

maintains five sets of nodes:

• S that represents the current seed set;

• U that represents the set of nodes in the surviving graph (i.e., nodes not removed from

the initial graph);

• Temp which is a set of nodes moved into a temporary waiting state (such nodes still

belong to U but their neighbors will not count on them for becoming spreaders);

• R that represents a set of nodes that must become spreaders (but will not do so with

the current seed);

• A is the set of aware nodes (assuming that all the nodes in R will become spreaders).

11

Algorithm 2: PA(G, t) //G = (V,E) is a graph with thresholds t(v) for v ∈ V

1 S = ∅; Temp = ∅; U = V ; R = ∅; A = ∅;
2 foreach v ∈ V do
3 k(v) = t(v);
4 δ(v) = |N(v)|;

5 while A 6= V OR R 6= ∅ do
6 if ∃v ∈ U s.t. k(v) = 0 then // Case 1): v is a spreader, thanks to its neighbors outside U

7 foreach u ∈ N(v) ∩ U do
8 k(u) = max(k(u)− 1, 0); A = A ∪ {u};
9 if v /∈ Temp then δ(u) = δ(u)− 1;

10 U = U − {v}; R = R− {v}; A = A ∪ {v};

11 else
12 if ∃v ∈ (U−Temp) ∩R s.t. δ(v)<k(v) OR ∃v /∈ A s.t. δ(v) = 0 then

// Case 2): v must be a seed

13 S = S ∪ {v};
14 foreach u ∈ N(v) ∩ U do
15 k(u) = k(u)− 1;
16 δ(u) = δ(u)− 1;

17 U = U − {v}; R = R− {v}; A = A ∪ {v};

18 else
19 if U − Temp−R 6= ∅ then // Case 3): v is moved in the temporary repository

20 v = argminw∈U−Temp−R {δ(w)}

21 if v /∈ A then
22 R = R ∪ {x} where x = argmaxw∈N(v)∩(U−Temp){δ(w)}

23 foreach z ∈ N(x) ∩ U do A = A ∪ {z};

24 else

25 v = argmaxw∈R

{

k(w)
δ(w)(δ(w)+1)

}

;

26 foreach u ∈ N(v) ∩ U do δ(u) = δ(u)− 1;
27 Temp = Temp ∪ {v}; R = R− {v}; A = A ∪ {v};

28 return S

The algorithm proceeds as follows: As long as there exists at least a node which is either

non-aware or belongs to R, a node v is selected according to a certain function (see Case 3)

and is moved into a temporary waiting state, represented by the set Temp. As a consequence

of being in Temp, all the neighbors of v will not count on v for becoming spreaders (for each

u ∈ N(v) the value δ(u), which denotes the degree of u restricted to the nodes in the U−Temp,

is reduced by 1).

Due to this update, some nodes in the surviving graph may remain with less “usable” neighbors

(if a node v /∈ A has δ(v) = 0 or v ∈ R has δ(v) < t(v)); in such a case (see Case 2) the nodes

12

are added to the seed set and removed from the graph, while the thresholds of their neighbors

are decreased by 1 (since they have one more spreader neighbor). If (see Case 1) the surviving

graph contains a node v whose threshold has been decreased down to 0 (which means that

the nodes which have been already added to the seed set S (see Case 2) suffice to make v a

spreader), v is deleted from the graph and the thresholds of its neighbors are decreased by 1

(since once v becomes a spreader, they have one more spreader neighbor). Notice that Case

1 can also apply to nodes in Temp. In such a case the value δ(·) of the neighbors of the

selected node v were already reduced by 1 (when v was moved to Temp (and, therefore, it is

not reduced further. By construction, once a node is moved to Temp, then it will be removed

from the graph only by Case 1; indeed, Cases 2 and 3 only apply to nodes outside Temp. In

other words, once a node is moved to Temp, it will not belong to the seed set.

When Case 3 applies the idea is to identify nodes that will never belong to the initial seed set.

Two cases are considered, if the surviving graph still contains nodes which do not belong to

the set R, then one of such nodes having minimum δ(·) is moved to the set Temp. Otherwise

all the nodes in the surviving graph must spread and the choice of the node to be deprecated

is made according to a metric first studied in [20]. We notice that the metric used to choose

which node to deprecate, that is to pose in the temporary repository when Case 3 applies,

does not influence the correctness of the algorithm but it is the hearth for its effectiveness in

terms of solution size.

Example 1 Let G be a complete graph, the algorithm PA(G, t) optimally returns a single

seed whichever the threshold function is: At the first iteration of the while loop, Case 3 applies

and a node v1 is selected; then a node v2 is added to R (that is v2 must become a spreader),

while all the others (being neighbors of v2) are marked aware; during the successive iterations,

|V | − t(v2)− 1 nodes are removed from U ; finally Case 2 holds for v2 which is added to S and

the algorithm returns S = {v2}.

In the rest of the paper, we use the following notation. We denote by n the number of

nodes in G, that is, n = |V | and by λ the number of iterations of the while loop of algorithm

PA(G, t). Given a subset V ′ ⊆ V of nodes of G, we denote by G[V ′] the subgraph of G induced

by nodes in V ′. Moreover, with respect to the iterations of the while loop in PA(G, t), for

each i = 1, . . . , λ we denote:

• by Ui, T empi, Ri, Ai, δi(u), and ki(u), the sets U, Temp,R,A and the values of δ(u), k(u),

respectively, as updated at the beginning of the i-th iteration;

• by Si the set of seeds selected by the algorithm from the i-th iteration until and including

the λ-th iteration.

13

• by vi the node selected during the i-th iteration.

When i = 1, the above values are those of the input graph G, that is: U1 = V , G[U1] = G,

S1 = S, δ1(v) = |N(v)| and k1(v) = t(v), for each node v of G.

The following two facts highlight some properties that will be useful for the algorithm

analysis. In particular, Fact 3 assures that at any iteration of algorithm PA, all the nodes

removed from the initial graph are aware nodes (see 1.), as well as the nodes that are in the

temporary waiting state (see 2.); moreover, the nodes that must become spreaders belong to

the surviving graph but are not in the temporary waiting state (see 3.). The latter Fact 4

says that at any iteration of algorithm PA, the set of “usable” neighbors of any node in the

surviving graph does not include the neighbors that are in the temporary waiting state.

Fact 3 For each iteration i of the while loop in PA(G, t), the following relations hold:

1. V − Ui ⊆ Ai

2. Tempi ⊆ Ai

3. Ri ⊆ Ui − Tempi.

Fact 4 For each iteration i of the while loop in PA(G, t) and u ∈ Ui, it holds

δi(u) = |N(u) ∩ (Ui − Tempi)|.

Lemma 2 Algorithm PA(G, t) executes at most 2n iterations of the while loop (i.e., λ ≤ 2n).

Proof. First of all we see that, during each iteration i ≥ 1 of the while loop of PA(G, t), one

node vi ∈ Ui is selected. If Ri = ∅ then Ai 6= V (otherwise the algorithm terminates). Since

by 1. of Fact 3 it holds V − Ui ⊆ Ai, we have that there exist u ∈ Ui such that u /∈ Ai. Then

using 2. of Fact 3 we have that u /∈ Tempi and consequently Ui − Tempi − Ri 6= ∅. Hence

a node is selected by Case 1 or by Case 2 or at line 20 of the algorithm. Otherwise (Ri 6= ∅)

and a node is selected by Case 1 or by Case 2 or at line 25 of the algorithm. We conclude

the proof noticing each v ∈ V can be selected at most twice: Once v can be eventually added

to Temp (if Case 3 holds) and once v is removed from U (if either Case 1 or Case 2 holds).

Indeed by 3. of Fact 3, Case 3 only applies to nodes in Ui − Tempi.

Theorem 7 For any graph G = (V,E) and threshold function t(·), the algorithm PA(G,t)

returns a perfect seed set for G in O(|E| log |V |) time.

Proof. In order to prove that the set S provided by the algorithm PA(G,t) is a perfect seed

set for G, we first show that for each i = 1, . . . , λ the set Si allows to make each node in

Ri =

λ
⋃

j=i

(Rj ∪ {u : u /∈ Aj , δj(u) = 0})

14

a spreader, that is,

Ri ⊆ SpreaderG[Ui][Si]. (3)

Before proving (3), we show that it allows to conclude that the algorithm returns a perfect

seed set. Indeed, this follows by recalling that G[U1] = G and observing that a node u is

moved to the set A (at any round) only if ({u} ∪ N(u)) ∩ R1 6= ∅ (that is, only if either the

node itself or one of its neighbors is in R1 ⊆ SpreaderG[U1][S1] = SpreaderG[S]) and that the

algorithm terminates when all nodes are aware (A = V) and the set R is empty.

We show now (3) by induction on i from λ down to 1.

Consider first i = λ. Let vλ be a node in G[Uλ]. Recalling that λ is the last step of the

algorithm it must hold that at the beginning of the (non executed) round λ+ 1

Rλ+1 = ∅, Aλ+1 = V. (4)

Moreover, since at most one node is removed from R at each step, we have that either

Rλ = ∅ or Rλ = {vλ}. (5)

We distinguish three cases depending on which case of the algorithm applies to the selection

of node vλ.

• (Case 1 holds). In this case kλ(vλ) = 0 and vλ is immediately a spreader in G[Uλ]. By

(4) and (5) the statement (3) is clearly satisfied for i = λ.

• (Case 2 holds). In this case either it holds that Rλ = {vλ} and kλ(vλ) > δλ(vλ) or it

holds that vλ /∈ Aλ and δλ(vλ) = 0. Moreover, Sλ = {vλ}. Consequently, noticing that

Aλ+1 = Aλ ∪ {vλ} = V , we have Rλ ⊆ {vλ} ⊆ SpreaderG[Uλ]
[Sλ].

• Finally we show that Case 3 can not apply during the last iteration of the algorithm. By

contradiction assume that vλ is selected in Case 3. Notice that since Case 1 and Case 2

do not apply, we have

i) each v ∈ Uλ has kλ(v) > 0,

ii) each v ∈ Uλ − Tempλ ∩Rλ has δλ(v) ≥ kλ(v),

iii) each v 6∈ Aλ has δλ(v) > 0.

Suppose first Rλ = ∅. We know that Aλ 6= V (cfr. line 5 of the algorithm). If we assume

vλ ∈ Aλ then no node is added to A except for the selected node vλ (cfr. line 27 of the

algorithm). Hence Aλ+1 = Aλ ∪ {vλ} = Aλ 6= V contradicting (4). Suppose now Rλ = ∅

and vλ /∈ Aλ. By iii) there exists a neighbor u of vλ that is added to R (cfr. line 22 of

15

the algorithm). Hence, Rλ+1 6= ∅ contradicting (4).

Finally assume Rλ = {vλ}. If Uλ − Tempλ − Rλ 6= ∅ then vλ should be selected in

Uλ−Tempλ−Rλ = Uλ−Tempλ−{vλ} (cfr. line 20 of the algorithm), but this is obviously

impossible. Otherwise, let Uλ − Tempλ −Rλ = ∅. In this case, Uλ − Tempλ = {vλ} and

then δλ(vλ) = 0. But we know that, by ii) and i) we get δλ(vλ) ≥ kλ(vλ) > 0.

Consider now i < λ and suppose the algorithm be correct on G[Ui+1], that is, we know that

Ri+1 ⊆ SpreaderG[Ui+1][Si+1]. We show that the algorithm is correct on G[Ui] with thresholds

ki(u), for u ∈ Ui.

The algorithm PA implies that for each u ∈ Ui we have

ki+1(u)=

{

max(ki(u)−1, 0) if Case 1 or 2 hold and u ∈ N(vi) ∩ Ui

ki(u) otherwise,
(6)

where vi is the node selected at iteration i.

We distinguish three cases depending on which case of the algorithm applies when selecting

vi.

• (Case 3 holds). In this case, we know that Ui = Ui+1 and Si+1 = Si. Moreover, by (6)

we have ki+1(u) = ki(u), for each u ∈ Ui+1.

If we suppose vi /∈ Ri, we get that Ri ⊆ Ri+1 and consequently

Ri = Ri+1 ⊆ SpreaderG[Ui+1][Si+1] = SpreaderG[Ui][Si].

Assuming otherwise that vi ∈ Ri, we have Ri ⊆ Ri+1 ∪ {vi}and Ui − Tempi − Ri = ∅.

By 3. of Fact 3, we then get Ui − Tempi = Ri. As a consequence,

(N(vi) ∩ (Ui − Tempi)) ⊆ Ri+1 (7)

Recalling that Case 3 of the algorithm holds and vi ∈ Ri, we have δi(vi) ≥ ki(vi). From

this, Fact 4, equation (7), and the induction hypothesis Ri+1 ⊆ SpreaderG[Ui+1][Si+1], we

obtain that the set Si+1 = Si is able to make vi a spreader in G[Ui]. Therefore, we can

conclude that Ri ⊆ SpreaderG[Ui][Si].

• (Case 2 holds). In this case we know that Ui+1 = Ui − {vi}, Ri ⊆ Ri+1 ∪ {vi}, and

Si = Si+1 ∪ {vi}. Hence, vi ∈ Spreader[Si]. Moreover by (6), it follows that for any

u ∈ N(vi)∩Ui, if u ∈ Spreader[Si+1] then u ∈ Spreader[Si]. Therefore, Ri ⊆ Spreader[Si].

• (Case 1 holds). In this case we have ki(vi) = 0, Ui+1 = Ui − {vi}, Ri ⊆ Ri+1 ∪ {vi}

and Si = Si+1. Since ki(vi) = 0, node vi is immediately a spreader in G[Ui]. Hence,

each neighbor u of vi in G[Ui] has one more spreader neighbor and its threshold is

updated according to (6). Therefore, since Ri+1 ⊆ SpreaderG[Ui+1][Si+1], we have that

Ri ⊆ SpreaderG[Ui][Si].

16

Finally, we notice that the PA algorithm can be implemented to run in O(|E| log |V |) time.

Indeed we need to process the nodes v ∈ V (each one at most two times (see Lemma 2))

according to the metrics δ(v) and k(v)/(δ(v)(δ(v) + 1)), and the updates, that follows each

processed node v ∈ V involve at most |N(v)| neighbors of v.

6 Experimental Results

Due to Theorem 1, we can not aim to any significant performance guaranteed on the seed

set size for general graphs and threshold functions. Nonetheless, extensive experiments,

show that the PA algorithm, presented and analyzed in Section 5, performs very well on real

networks, both in terms of efficiency of the solution and of the convergence time.

In order to evaluate the PA algorithm, we conducted experiments on 12 real networks of various

sizes from the Stanford Large Network Data set Collection (SNAP) [34], the Social Computing

Data Repository at Arizona State University [41] and Newman’s Network data [36]. The main

characteristics of the studied networks are shown in Table 1.

Name # of nodes # of edges Max Size of Clust. Modularity
degree the LCC Coeff.

Amazon0302 [34] 262111 1234877 420 262111 0.4198 0.6697

BlogCatalog3 [41] 10312 333983 3992 10312 0.4756 0.2374

BuzzNet [41] 101168 4284534 64289 101163 0.2508 0.3161

Ca-AstroPh [34] 18772 198110 504 17903 0.6768 0.3072

Ca-CondMath [34] 23133 93497 279 21363 0.7058 0.5809

Ca-GrQc [34] 5242 14496 81 4158 0.6865 0.7433

Ca-HepPh [34] 10008 118521 491 11204 0.6115 0.5085

Ca-HepTh [34] 9877 25998 65 8638 0.5994 0.6128

Cit-HepTh [34] 27770 352807 64 24700 0.3120 0.7203

Delicious [34] 103144 1419519 3216 536108 0.0731 0.602

Douban [41] 154907 327162 287 154908 0.048 0.5773

Facebook [34] 4039 88234 1045 4039 0.6055 0.8093

Jazz [36] 198 2742 100 198 17899 0.6334

Karate [36] 34 78 17 5 45 0.5879

Last.fm [41] 1191812 5115300 5140 1191805 0.1378 0.1378

Power grid [36] 4941 6594 19 4941 0.1065 0.6105

Youtube2 [41] 1138499 2990443 28754 1134890 0.1723 0.6506

Table 1: The networks.

The active information diffusion problem is a novel model of information diffusion and, to the

best of our knowledge, no heuristic is known for the PA problem. For this reason we decided

to evaluate the effectiveness of our algorithm (PA) with two heuristics that respectively solve

17

two problems related to the PA problem. The first heuristic, named MTS [20], is devoted to

the minimum target set selection (TSS) problem where the aim is to have each node become

a spreader. We have chosen this TSS heuristics since it experimentally outperforms the other

known algorithms as well as simple baseline greedy strategies [14, 32, 39] for the TSS problem,

see [20]. The rationale of this comparison is to show that by relaxing the goal of the TSS

model for the new model (which only aims to make each node aware) we are able to identify

significantly smaller seed sets. On the other hand, when all the thresholds t(v) are equal to the

node degrees d(v), the PA problem is equivalent to the well known dominating set problem.

For this reason we will compare our algorithm with the (best known) heuristic [5], named

DOM, for the dominating set problem. It is worth mentioning that all the three competing

algorithms have the same time complexity (O(|E| log |V |)).

Thresholds values. We tested the three algorithms using two types of threshold function:

• Random thresholds where t(v) is chosen uniformly at random in the interval [1, d(v)].

• Proportional thresholds, where for each v the threshold t(v) is set as α × d(v) with

α = 0.1, 0.2, . . . , 1. Notice that for α = 0.5 we are considering a particular version of the

activation process named “majority” thresholds, while for α = 1 we are considering the

dominating set problem.

Summarizing, our experiments compare both the size and the number of rounds to reach

the final “all-aware” configuration of the seed sets generated by 3 algorithms (PA, MTS,

Dom) on 17 networks (see Table 1), fixing the thresholds in 11 different ways (Randomly and

Proportionally with α = 0.1, 0.2, . . . , 1). Overall we performed 3× 17× 11 = 561 tests. Since

the random thresholds test settings involve some randomization, we executed each test 10

times. The results were compared using means of target set sizes (the observed variance was

negligible).

Random Thresholds. Table 2 depicts the results of the Random threshold test setting,

that is using random thresholds (for each test setting, the same thresholds values have been

used for both the algorithms). On the left side, each number represents the size of the perfect

seed set generated by PA and MTS algorithms. Similarly, on the right side, each number

represents the the number of rounds to reach the final “all-aware” configuration starting the

diffusion process with the perfect seed set generated by PA and MTS algorithms. The value in

bracket represents the overhead percentage of MTS algorithm compared to the PA algorithm.

Proportional thresholds. Figures 3–7 report the results for the proportional thresholds

settings. For each network, the left plot depicts the size of the perfect seed set (Y-axis), for

18

each value of α ∈ [0.1, 1] (X-axis) and for each algorithm (series) while the right plot depicts

the number of rounds to reach the final “all-aware” configuration (Y-axis), for each value of

α ∈ [0.1, 1] (X-axis) and for each algorithm (series). We present the results only for 5 of the

considered networks because the experiments performed on the other networks exhibit quite

similar behaviors. Comparisons of the results obtained on all the networks for the cases α = 0.5

(i.e., majority) and α = 1 (i.e., domination) are reported in Figures 8 and 9 respectively. In

both these figures a logarithmic scale is used for the Y-axis (i.e., the size of the perfect seed

set).

The experiment results confirm our hypothesis: The size of the initial seed set provided by our

PA algorithm is in general significantly smaller than the size of the set provided by the other

strategies. We notice that the gap between the PA and the MTS algorithms increases with the

value of the node thresholds (this result was expected: the larger the value of t(), the larger the

difference between the models). The PA algorithm is always better than the DOM algorithm,

when t(v) < d(v). Moreover when t(v) = d(v) (that is, when the PA problems becomes the

dominating set problem), the two algorithms provide comparable results (see Figure 9), hence

the PA algorithm could be considered as an effective alternative heuristics for the dominating

set problem. With respect to the number of rounds needed to reach the desired “all-aware”

configuration, a part the Dom strategy that always requires one round, the algorithms always

provide comparable results.

19

Name Seed set size PA Seed set size MTS Rounds PA Rounds MTS

Amazon0302 36753 38804 (5.58%) 33 27 (-18.18%)

BlogCatalog3 10 12 (20%) 43 39 (-9.30%)

BuzzNet 141 998 (607.80%) 52 46 (-11.54%)

Ca-AstroPh 919 1157 (25.9%) 32 29 (-9.38%)

Ca-CondMath 1573 1810 (15.07%) 21 20 (-4.76%)

Ca-GrQc 636 661 (3.93%) 13 14 (7.69%)

Ca-HepPh 790 901 (14.05%) 35 29 (-17.14%)

Ca-HepTh 964 945 (-1.97%) 16 18 (12.5%)

Cit-HepTh 955 1045 (9.42%) 76 74 (-2.63%)

Delicious 43653 44578 (2.12%) 53 46 (-13.21%)

Douban 2374 2343 (-1.31%) 22 24 (9.09%)

Facebook 9 213 (2267%) 17 25 (47.06%)

Jazz 4 7 (75%) 11 15 (36.36%)

Karate 3 3 (0%) 7 5 (40%)

Last.fm 33046 33430 (9.75%) 22 27 (1.16%)

Power grid 352 340 (-3.41%) 16 23 (43.75%)

Youtube2 27403 27801 (1.45%) 38 36 (-5.26%)

Table 2: Random Thresholds Results: For each network and each algorithm, the average size
of the perfect seed set and the number of rounds to reach the final “all-aware” configuration
are given.

Figure 3: Proportional Thresholds Results: CA-GrQc network.

20

Figure 4: Proportional Thresholds Results: Douban network.

Figure 5: Proportional Thresholds Results: Power grid network.

21

Figure 6: Proportional Thresholds Results: Ca-HepTh network.

Figure 7: Proportional Thresholds Results: Delicious network.

22

Figure 8: Majority Results (α = 0.5).

Figure 9: Domination Results (α = 1).

23

7 Conclusion and Open Problems

We have studied some algorithmic aspects of a recently introduced information diffusion model,

that differentiates among spreaders and aware nodes [16]. Many interesting questions related

to this model remain open and might be interesting to study:

• It would be interesting to establish to what extent the general hardness result still holds

for dense graphs.

• More generally, are there classes of graphs, other then trees and cliques, for which the

problem can be either efficiently solved or admits a small approximation factor?

• It would also be interesting to determine a significant upper bound on the size of a

perfect seed set returned by the proposed PA algorithm in terms of node degrees and

thresholds in the spirit of the bound given in [1] for the TSS problem.

References

[1] Eyal Ackerman, Oren Ben-Zwi, and Guy Wolfovitz. Combinatorial model and bounds for
target set selection. Theoretical Computer Science, 411(44–46):4017–4022, 2010.

[2] L.A. Adamic, T.M. Lento, E. Adar, P.C. Ng. Information Evolution in Social Networks,
Proc. of the 9th ACM Inter. Conference on Web Search and Data Mining, (2016) 473–482

[3] Eytan Bakshy, Itamar Rosenn, Cameron Marlow, and Lada Adamic. The role of social
networks in information diffusion. In Proceedings of the 21st International Conference on
World Wide Web, pages 519–528, 2012.

[4] Oren Ben-Zwi, Danny Hermelin, Daniel Lokshtanov, and Ilan Newman. Treewidth gov-
erns the complexity of target set selection. Discrete Optimization, 8(1):87–96, 2011.

[5] Alina Campan, Traian Marius Truta, and Matthew Beckerich. Fast dominating set algo-
rithms for social networks. In MAICS, 2015.

[6] Carmen C. Centeno, Mitre C. Dourado, Lucia Draque Penso, Dieter Rautenbach, and
Jayme L. Szwarcfiter. Irreversible conversion of graphs. Theoretical Computer Science,
412(29):3693–3700, 2011.

[7] Ning Chen. On the approximability of influence in social networks. SIAM Journal on
Discrete Mathematics, 23(3):1400–1415, 2009.

[8] Wei Chen, Carlos Castillo, and Laks Lakshmanan. Information and Influence Propagation
in Social Networks. Morgan & Claypool, 2013.

[9] Chun-Ying Chiang, Liang-Hao Huang, and Hong-Gwa Yeh. Target set selection problem
for honeycomb networks. SIAM Journal on Discrete Mathematics, 27(1):310–328, 2013.

24

[10] Morgan Chopin, André Nichterlein, Rolf Niedermeier, and Mathias Weller. Constant
thresholds can make target set selection tractable. Theory of Computing Systems,
55(1):61–83, 2014.

[11] Ferdinando Cicalese, Gennaro Cordasco, Luisa Gargano, Martin Milanič, Joseph Peters,
and Ugo Vaccaro. Spread of influence in weighted networks under time and budget
constraints. Theoretical Computer Science, 586:40–58, 2015.

[12] Ferdinando Cicalese, Gennaro Cordasco, Luisa Gargano, Martin Milanič, and Ugo Vac-
caro. Latency-bounded target set selection in social networks. Theoretical Computer
Science, 535:1–15, 2014.

[13] Amin Coja-Oghlan, Uriel Feige, Michael Krivelevich, and Daniel Reichman. Contagious
sets in expanders. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1953–1987, 2015.

[14] Gennaro Cordasco, Luisa Gargano, Marco Mecchia, Adele A. Rescigno, and Ugo Vaccaro.
Discovering Small Target Sets in Social Networks: A Fast and Effective Algorithm. In
Algorithmica, ISSN: 0178-4617, 2017

[15] Gennaro Cordasco, Luisa Gargano and Adele A. Rescigno. Active Spreading in Networks.
In Proceedings of the 17th Italian Conference on Theoretical Computer Science ICTCS,
Lecce, Italy, September 7-9, pages 149–162, 2016.

[16] Gennaro Cordasco, Luisa Gargano, Adele A. Rescigno, and Ugo Vaccaro. Evangelism in
Social Networks: Algorithms and Complexity. In NETWORKS, ISSN: 1097-0037, 2017.

[17] Gennaro Cordasco, Luisa Gargano, Adele A. Rescigno, and Ugo Vaccaro. Optimizing
Spread of Influence in Social Networks via Partial Incentives. In Structural Information
and Communication Complexity: 22nd International Colloquium, SIROCCO, pages 119–
134. Springer International Publishing, 2015.

[18] Gennaro Cordasco, Luisa Gargano, Adele A. Rescigno, and Ugo Vaccaro. Brief announce-
ment: Active information spread in networks. In Proceedings of the 2016 ACM Symposium
on Principles of Distributed Computing PODC, pages 435–437, New York, NY, USA, 2016.

[19] Gennaro Cordasco, Luisa Gargano, Adele A. Rescigno. On Finding Small Sets that
Influence Large Networks. In Social Network Analysis and Mining SNAM, Vol. 6(1),
2016.

[20] Gennaro Cordasco, Luisa Gargano, and Adele Anna Rescigno. Influence propagation
over large scale social networks. In Proceedings of the 2015 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, ASONAM 2015, pages
1531–1538, 2015.

[21] R. Dawkins. The Selfish Gene, Oxford University Press, (1989).

[22] Thang N. Dinh, Huiyuan Zhang, Dzung T. Nguyen, and My T. Thai. Cost-effective viral
marketing for time-critical campaigns in large-scale social networks. IEEE/ACM Trans.
Netw., 22(6):2001–2011, December 2014.

25

[23] David Easley and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, New York, NY, USA, 2010.

[24] Luisa Gargano, Pavol Hell, Joseph G. Peters, Ugo Vaccaro. Influence diffusion in social
networks under time window constraints. Theor. Comput. Sci., 584(C):53–66, 2015.

[25] Gunderson, K. Minimum degree conditions for small percolating sets in bootstrap perco-
lation. ArXiv e-prints, 1703.10741, 2017.

[26] T.W. Hayne, S.T. Hedetniemi, and P.J. Slater. Fundamentals of domination in graphs.
Marcel Dekker, Inc., New York, 1998.

[27] A. Hellwig, and L. Volkmann. Some upper bounds for the domination number. J. Combin.
Math. Combin. Comput., 57:187–209, 2006.

[28] Dorit Hochbaum (Editor). Approximation Algorithms for NP-Hard Problems. PWS
Publishing Company, 1997.

[29] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proc. of the ACM SIGKDD KDD 2003, pages 137–146, 2003.

[30] David Kempe, Jon Kleinberg, and Éva Tardos. Influential nodes in a diffusion model for
social networks. In Proc. of ICALP 2005, pages 1127–1138, 2005.

[31] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. Theory of Computing, 11(4):105–147, 2015.

[32] Suman Kundu and Sankar K. Pal. Deprecation based greedy strategy for target set
selection in large scale social networks. Information Sciences, 316:107–122, 2015.

[33] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. The dynamics of viral
marketing. ACM Trans. Web, 1(1), May 2007.

[34] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collec-
tion. http://snap.stanford.edu/data, 2015.

[35] Mark E. J. Newman. Modularity and community structure in networks. Proc. Natl. Acad.
Sci. U.S.A. 103 (23): 85778582.

[36] Mark Newman. Network data, http://www-personal.umich.edu/~mejn/netdata/,
2015.

[37] André Nichterlein, Rolf Niedermeier, Johannes Uhlmann, Mathias Weller. On tractable
cases of target set selection. Social Network Analysis and Mining, 3(2):233–256, 2013.

[38] T. V. Thirumala Reddy and C. Pandu Rangan. Variants of spreading messages. J. Graph
Algorithms Appl., 15(5):683–699, 2011.

[39] Paulo Shakarian, Sean Eyre, and Damon Paulo. A scalable heuristic for viral marketing
under the tipping model. Social Network Analysis and Mining, 3(4):1225–1248, 2013.

26

[40] Michela Del Vicario, Alessandro Bessi, Fabiana Zollo, Fabio Petroni, Antonio Scala, Guido
Caldarelli, Eugene Stanley and Walter Quattrociocchi. The spreading of misinformation
onlines. PNAS, 113(3):554–559, 2016.

[41] Reza Zafarani and Huan Liu. Social computing data repository at ASU.
http://socialcomputing.asu.edu, 2009.

27

