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Abstract
A neural network for modelling photovoltaic modules using angle of incidence and

clearness index is proposed. Engineers require methods to estimate the output of a pho-
tovoltaic plant depending on meteorological conditions. Therefore, models for the grid
inverter and the generator must be provided and their outputs must be combined. The con-
nection between both models is related to the maximum power point of the generator and
how it is tracked by the inverter. That maximum power point under specific conditions of
irradiance and module temperature is determined by the I–V curve of the module, which
must be simulated under those conditions. Algebraic procedures were used to simulate
the I–V curve. Recently, neural networks have been used for the same purpose. Previous
methods only take into account the irradiance and the module temperature. The model
proposed is based on neural networks and it uses not only the irradiance and the module
temperature, but also the angle of incidence and the instantaneous clearness index as ad-
ditional inputs. The normalised clearness replaces the standard clearness index since it
allows the removal of the hourly trend found in this last index. This new model improves
the results obtained with previous ones as it can distinguish amongst samples with the
same solar irradiance and temperature values but with different angle of incidence and
instantaneous clearness index. Results show that this model could be used to improve the
accuracy of the tools used to forecast the output of photovoltaic plants.
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Piliougine, M., Elizondo, D., Mora-López, L. and Sidrach-de-Cardona, M. (2015), Modelling photovoltaic mod-
ules with neural networks using angle of incidence and clearness index. Prog. Photovolt: Res. Appl., 23: 513–
523. doi: 10.1002/pip.2449
This article has been published in final form at:
https://doi.org/10.1002/pip.2449

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by

statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to

Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by

third parties from platforms, services and websites other than Wiley Online Library must be prohibited.

1

https://doi.org/10.1002/pip.2449


1 Introduction

In order to design a photovoltaic power plant, it is necessary to provide an estimation of the power that
the system will produce under different meteorological conditions. This can be done by modelling
each component of the photovoltaic plant and combining their outputs. The performance of a grid in-
verter depends on its ability to track the maximum power point of the generator for variable irradiance
and module temperature levels. This maximum power point must be determined by simulating the
I–V curve under different conditions. Manufacturers provide the electrical parameters of photovoltaic
modules at standard test conditions (STC). However, the information provided by the specifications
is not enough to build an operational model valid for a wide range of irradiances and module temper-
atures. The tracking procedure is not only related to the absolute values of the electrical parameters,
but also to the shape of the I–V curve.

Algebraic procedures can be found in the literature in order to determine the I–V curve of a PV
module under different conditions of irradiance and cell temperature. These methods consist of a
point-by-point extrapolation. A correction is applied to each current–voltage pair to translate it into
a set of new conditions. The result is an approximation to the I–V curve that would be measured
if the module were under the new conditions of irradiance and cell temperature. An example of
algebraic method is the procedure 1 of IEC 60891 standard [1]. The I–V curve for a given value of
irradiance G and module temperature T can be simulated using a reference I–V curve measured under
an irradiance G∗ (1000 W/m2) and a module temperature T ∗ (25 ◦C). It is only necessary to apply
Eq. (1) and Eq. (2) to each point (V ∗

i , I
∗
i ) of the reference curve (with i = 1, . . . , n) in order to obtain

the points (V̂i, Îi) of the simulated curve.

Îi = I∗i + I∗SC

(
G

G∗ − 1

)
+ α(T − T ∗) (1)

V̂i = V ∗
i −RS(Îi − I∗i )− κ Îi(T − T ∗) + β(T − T ∗) (2)

In the above equations, I∗SC is the short–circuit current of the reference curve and α, β, κ and
RS are the intrinsic parameters of the photovoltaic module. The values of these parameters can be
calculated by means of additional procedures described in the IEC 60891 standard from experimental
measurements. However, approximated values of these parameters are provided by the manufacturer.
In the literature there are other algebraic methods which improve the method given by the standard
[2–5].

An alternative approach is to use an artificial neural network (ANN) to create a model of a photo-
voltaic module. This approach is more flexible since the inputs considered for building the model can
be easily modified. Several examples can be found in the literature where ANNs are used to generate
I–V curves of photovoltaic modules [6–13]. In these works, ANNs are used in order to reconstruct
the I–V curve of a module under given values of irradiance and module temperature.

The most important contribution of our paper is the introduction of the angle of incidence (AOI)
and the normalised instantaneous clearness index as additional inputs to a multilayer perceptron neural
network. The normalised instantaneous clearness index is a reformulation of the standard instanta-
neous clearness index which takes into account the air mass factor to normalise its value. It has been
proved that the accuracy of the predicted curves improves when using these two additional inputs.

The rest of the paper is organised as follows: A review of the application of neural networks in
order to simulate photovoltaic systems is presented in Section 2. The formulae used to estimate the
angle of incidence and the clearness index are detailed in Section 3. The methodology proposed in
this paper is described in Section 4, including the process followed for training the neural network. A
discussion of the results is presented in Section 5. Finally, the conclusions of the paper are summarised
in Section 6.

2



2 Neural networks applied to PV simulation

ANNs have been successfully applied to solve many real life applications, including the prediction of
solar radiation and the modelling of photovoltaic systems. Kalogirou [14] presents a brief introduction
to neural networks and a review of their application to solve typical energy problems.

Many authors have used neural networks to estimate and forecast the global solar radiation and
the clearness index [15–19]. There are also some examples where this approach has been used as a
tool to track the maximum power point of a PV generator, see for instance [20, 21].

Using a neural network as a model of a specific photovoltaic module it is possible to reproduce its
characteristic curve at a given value of irradiance and cell temperature. Once the network has been
trained, the I–V curve under new conditions can be calculated by providing the corresponding values
for both irradiance and cell temperature as inputs.

Karatepe et al. [6] use a multilayer perceptron taking as inputs the values of irradiance and cell
temperature and giving as output the parameters required by the single diode equivalent circuit. Then,
these values used in the model to estimate more points of the I–V curve.

Di Piazza et al. [7] use a growing neural gas network to determine three points of the I–V curve:
the short–circuit current ISC, the open–circuit voltage VOC and the maximum power point PM (given
by VM and IM). Then, these values are used to determine the parameters of the double–diode model.
Eventually, the complete I–V curve is generated.

In a similar way, in the work by Dolan et al. [8], a multilayer perceptron is used to estimate five
points of the curve (in addition to ISC, VOC and PM, two other intermediate points are considered).
These points are used to reconstruct the entire I–V curve of the module using its electrical model.
They do not only take into account the electrical model of the module, but also the heat transfer with
the environment and the influence of the shades and wind.

Almonacid et al. [9] study the electrical characterisation of mono–crystalline and poly–crystalline
silicon modules using multilayer perceptrons. In other work, the same technique is used to the elec-
trical characterisation of CIGS modules [10].

Zárate et al. [11] use an additional fictitious input, which represents the voltage coordinate for
each point of the I–V curve. The output of the network is a unique neuron which provides the current
value of each point.

Bonanno et al. [12] investigate the use of radial basis function neural networks in order to predict
the I–V curve taking into account the irradiance and module temperature, applying this method to
different technologies and for indoor and outdoor characterisation.

In these previous works based on neural networks only the irradiance and the module tempera-
ture are used as inputs to the model. However, there are measurements under the same irradiance
and module temperature with different I–V curves because there are other external parameters which
influence the module’s behaviour. In our previous work [13], solar spectral information was included
as an additional input to a multilayer perceptron, performing previous results. Nevertheless spectral
measurements are hardly available in most cases. The main contribution of this paper is the inclusion
of the AOI and the clearness index as additional inputs to the multilayer perceptron. This way we
are providing to the model more information related to incident radiation. Both new inputs can be
calculated in an easy way and with minimum computational effort.

Another novelty of this paper is the way of estimating the error between a measured curve and a
simulated one. Previous works take into account the differences between each individual I–V point
of one curve and its matching point of the other curve and then a mean squared root is applied.
The problem with this approach is that, given two different curves, the estimated error depends on
the position and distribution of the I–V points along the curves. However, we assume that the error
between two curves is the enclosed area between them. Therefore, we provide a definition of the error
between two curves independent of the exact position of the points of those curves.

3



su
rf

ac
e

n
o
rm

al

lig
ht

 b
ea

m

AOI

90°

90°

90°

S

Figure 1: Angle of incidence as a function of the solar angles.

3 Calculation of additional inputs

In this section the formulae for the computation of the angle of incidence and the clearness index
are detailed. This includes the necessary intermediate calculations. Both magnitudes will be used as
additional inputs to the neural network in order to improve its performance.

3.1 Angle of incidence

In order to calculate the angle of incidence (AOI), it is necessary to determine the solar position at
each time. An algorithm published by Reda and Andreas [22] was used to calculate three values: the
Sun’s topocentric elevation angle e (or its complementary, the zenith angle θ), the topocentric azimuth
angle Γ and the Sun–Earth distance R (the term topocentric means that these measurements are taken
from an observer on the Earth surface instead as opposed to one at the centre of the Earth). The inputs
of the algorithm are the geographical coordinates (latitude, longitude and altitude) and the Ephemeris
Julian Day (a unique value to express date and time in a linear scale used in Astronomy). The angle
of incidence for an arbitrarily oriented module can be calculated based on its slope ω (measured from
ground) and its rotation γ (from the South) using Eq. (3) (see Fig. 1):

cos(AOI) = cos θ cosω + sin θ sinω cos(Γ− γ) (3)

3.2 Extraterrestrial irradiance

The beam extraterrestrial irradiance Gext,b (W/m2) is defined as the irradiance at normal incidence
outside Earth’s atmosphere. The solar constant S0 is the value of this magnitude at the mean Sun–
Earth distance (R0 = 1 AU = 1.496 × 108 km). A good estimation of this value is 1366.1 W/m2

[23]. The beam extraterrestrial irradiance when the Sun–Earth distance R differs from 1 AU can be
calculated taking into account the inverse square law:
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Figure 2: KT and K
′
T as a function of the local time on 23 February 2011.

Gext,b = S0 ·
(
R0

R

)2

(4)

In general, for an arbitrary orientation normal incidence does not occur. Therefore, we must
estimate the incident extraterrestrial irradiance Gext by reducing Gext,b using a factor equal to the
cosine of the angle of incidence:

Gext = Gext,b · cos(AOI) (5)

3.3 Air mass factor

The air mass factor quantifies the length of trail of the Sun’s beams in the atmosphere. It is defined
as the optical path length of the light when the Sun is at a given elevation divided by this value when
the Sun is at the zenith. The air mass could be approximated using the formula given by Kasten and
Young [24] as a function of the elevation angle:

AM =
1

sin e+ 0.50572 · (e+ 6.07995)−1.6364
(6)

The value of the air mass factor given above can be corrected using the atmospheric pressure value
[25]:

AMPC = AM · P
P0

(7)

where P is the measured pressure and P0 is the standard atmospheric pressure at sea level (1013 mbar).

3.4 Instantaneous clearness index

Woyte et al. [26] define the instantaneous clearness index KT on a arbitrarily oriented surface as the
ratio between the measured global irradiance and the estimated extraterrestrial irradiance at the same
orientation:
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Geographical coordinates
Longitude 4.48◦W
Latitude 36.72◦N
Elevation 50 m

PV module orientation
PV module slope (from horizontal) 21◦

PV module rotation (from south) 4◦E

Table 1: Parameter values used for solar position calculations.

KT =
G

Gext
=

G

S0(R0/R)2 cos(AOI)
(8)

This index KT depends on the zenith angle and consequently on the time of the day (see Fig. 2).
However, an alternative formulation of the clearness index is proposed by Pérez et al. [27] to avoid
that dependence. This new index is known as the normalised clearness index K

′
T and it is defined as:

K
′

T =
KT

1.031 · exp
(

−1.4

0.9 + 9.4
AM

)
+ 0.1

(9)

where AM is the air mass calculated in Section 3.3 (instead of using AM we have taken AMPC).

4 Methodology of application

In this work a multilayer perceptron was used to simulate the electrical behaviour of the photovoltaic
module. A multilayer perceptron is a type of neural network made of an input layer, an output layer
and one or several hidden layers (the number of hidden layers and units in each one are problem
dependent and they need to be defined by the user beforehand). Each neuron of a layer is connected
to all the neurons in the following layer. Each connection has an associated weight, which defines its
strength, and must be adjusted during the training phase. The proposed model and its validation can
be carried out following these steps:

4.1 Acquiring measured I–V curves

In this preliminary step several I–V curves are measured under different conditions of incident irradi-
ance and module temperature.

Measurements were carried out on the roof of the photovoltaic laboratory at the University of
Málaga in southern Spain. Table 1 gives the geographical coordinates of the laboratory and the orien-
tation of the module used to build the model. The specifications of the module are also summarised
in Table 2.

The typical meteorological conditions at the site of the installation are: 1,890 kWh/m2 of annual
global horizontal irradiation, average daytime air temperature of 18 ◦C, relative humidity of 63% and
wind speed of 1 m/s. The set of measurements used in this work started on 1 February 2011 and
finished on 22 May 2011. The interval of the measurement was set to 5 minutes.

The measurement system is based on a bipolar Kepco BOP (a four quadrant power supply). A
computer controls the voltage sweep automatically whereas voltage and current of the module are
measured using a pair of digital multimeters (current is sensed with the help of a shunt resistor). A
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General features
Dimensions (mm × mm × mm) 1208 × 654 × 39.5
Number of cells 66
Cells in series 33
Cells in parallel 2
Type of cell mc–Si
Cell dimensions (mm × mm) 103 × 103
Cell area 104.4 cm2

Electrical parameters at STC
Short–circuit current ISC 6.54 A
Open–circuit voltage VOC 19.8 V
Maximum power PM 94 W
Maximum power current IM 5.88 A
Maximum power voltage VM 16 V

Table 2: Main features of the photovoltaic module.

A 3152 samples with only G and T
A1 100 samples randomly selected to train the ANN
A2 3052 remaining samples to test the ANN

B 3152 samples with G, T , AOI and K
′
T

B1 100 samples randomly selected to train the ANN
B2 3052 remaining samples to test the ANN

Table 3: Description of the training and testing sets.

waveform generator performs a square signal to trigger both multimeters simultaneously. The module
temperature is measured through a RTD Pt100 sensor coupled to its back. The incident irradiance on
the module surface is measured using a pyranometer. The control application allows us to measure
I–V curves at regular intervals of time automatically. A complete description of the measurement
system can be found in Piliougine et al. [28].

4.2 Selection of the training set

Due to the large volume of collected data, a subset of the I–V curves has been selected for the training
process of the neural network model. We selected amongst all the measures in the database those that
correspond to clear–sky days. We took into account only those days whose daily clearness index is
over 0.7. Therefore, over the entire period of measurement, the following days were selected: 18, 23,
24, 25 and 28 February; 1, 2, 17, 18, 19, 24, 27, 30 and 31 March; 1, 7, 8, 9, 10, 12, 13, 14, 16, 26,
27 and 28 April; 5, 8, 9, 14, 21 and 22 May. In addition, only those records taken under an irradiance
value greater than 200 W/m2 were selected. In summary, a total of 3156 samples were used. Two
initial data sets were created:

• A: 3156 I–V curves with values of G and T

• B: 3156 I–V curves with values of G, T , AOI and K
′
T

A total of 100 samples were randomly selected to train the network and the remaining 3056 samples
were used to test the models. Table 3 summarises these data sets. This selection procedure was
performed for the sets A and B. Then, as can be seen in Table 3, there are 2 training sets (A1 and B1)
and 2 testing sets (A2 and B2).
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4.3 Preparing the training patterns

I–V curves are provided as tables of current–voltage pairs. The learning of a set of points is more
complicated than the learning of a scalar parameter such as ISC or VOC, because it is necessary to find
a format to represent I–V curves to be used in a neural network. In this work, a fictitious neuron is
added to the input layer to represent the voltage coordinate of each point of the curve. In the output
layer a single neuron represents the current associated to each voltage value.

The neural network has five inputs. The first four correspond to the meteorological conditions
(G, T,AOI, K ′

T ), that must be fixed for each I–V curve. The last input is used to provide a varying
voltage value in order to sweep different points of the same I–V curve. The output neuron will generate
the corresponding current values.

Each table with voltage-current pair values must be transformed into a set of samples to train the
network (as many as points belonging to the I–V curve). The sample corresponding to each I–V pair
is made of the four fixed meteorological conditions and the varying value of voltage. The network is
trained in order to generate the corresponding current value. In mathematical terms, we are mapping
the initial function Ψ into another function Θ easier to manage with an MLP:

Ψ : R4 → Rn×2 Ψ(G, T,AOI, K
′

T ) = {(Vi, Ii)}ni=1 (10)

Θ : R5 → R Θ(G, T,AOI, K
′

T , V ) = I (11)

4.4 Training of the multilayer perceptron

The Levenberg–Marquardt training algorithm was selected because it has a faster convergence than
gradient descent [29]. There are several stop criteria to finish the training phase. The simplest is reach-
ing the maximum number of iterations. Another possibility is achieving a gradient value lower than a
minimum threshold. Validation check is another criterion to stop training and avoid over-fitting. Over-
fitting occurs when the network learns the training set but presents difficulties generalising previously
unseen patterns (testing set). Each time the network is trained, most of the samples are selected to
adjust the weights, while the error of the few remaining samples is only monitored (validation error).
When this error increases consecutively a certain number of times (fixed as a constant by the user),
the network is starting to over-fit data and the training process must be stopped.

There is no rule to determine the number of hidden units in a MLP beforehand. We must experi-
ment with different number of neurons performing multiple trainings and studying how this number
affects the performance of the network. For this paper, the training process was repeated several
times, starting from 2 hidden units up to 8 hidden units. Even with the same number of hidden units,
each execution of the training algorithm is different, due to the random initialisation of the weights.
Therefore, we must repeat the process a significant number of times (10 times in this experiment). In
summary, we used 7 different topologies (varying from 2 to 8 hidden units) and each one was trained
10 times using MLPGT (neural network with only G and Tm as inputs) and another 10 times using
MLPALL (neural network with G,Tm,AOI and K

′
T ).

4.5 Generating I–V curves

On the one hand, there is a network MLPALL trained using G, T , AOI and K
′
T . On the other hand, there

is another network MLPGT trained using only G and T . It is possible to simulate an I–V curve at given
conditions (G, T,AOI, K ′

T) following the scheme described in Fig. 3 (an analogous scheme could be
used to generate a curve using MLPGT). An array of voltage values V̂i within a range is generated
(this range must be fixed based on the electrical features of the module). Fixing the conditions of
the measurement at the network input and varying the fictitious voltage input neuron (using the array
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voltage grid generator

measured curve
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Figure 3: Scheme of the simulation of an I–V curve by a MLP.

measured curve
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...
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IEC
60891

simulated curve
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Figure 4: Scheme of the simulation of an I–V curve by IEC 60891.

of voltage values), the network will return a sequence of current values Îi given by Eq. (12). The
simulated curve is determined by the list of points {(V̂i, Îi)}, where i = 1, . . . , n̂.

Îi = MLPALL(G, T,AOI, K
′

T, V̂i) i = 1, . . . , n̂ (12)

4.6 Validation of the model

In order to complete our study, a model based on the procedure 1 of IEC 60891 was included (referred
as IEC60981). In order to apply the algebraic method (see Fig. 4), a reference I–V curve must be selected
amongst all measured curves. For each sample of the testing set B1, with its own value of irradiance
and module temperature, the reference curve must be translated into those conditions using Eqs. (1)
and (2).

The generalisation error of each model could be estimated using all the curves of the data set not
seen during the training phase, i.e. the sets in Table 3 referred as A2 and B2. Each sample belonging to
the testing set B2 contains a measured curve m(v) = {(Vi, Ii)} (where i = 1, . . . , n) and its conditions
of measurement, i.e., G, T , AOI and K

′
T. For each model (MLPGT, MLPALL or IEC60981) and for each

measured curve in the testing set, it is possible to generate a simulated curve s(v) = {(V̂i, Îi)} (where
i = 1, . . . , n̂) and compare it with the measured curve m(v) to estimate the error. In this work the
error is estimated as the area enclosed between both curves within the first quadrant (see Fig. 5). If
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Figure 5: Estimation of the error between two I–V curves.

there were one or more cut-off points between both curves, this area must be calculated using different
integration intervals. For example, two I–V curves m(v) and s(v) (measured curve and simulated one)
with a unique cut–off point (Vcutoff, Icutoff) are shown in Fig. 5. The error has one term measuring the
enclosed area from v = 0 until Vcutoff and another term to quantify the enclosed area from Vcutoff until
the end:

error =

∣∣∣∣∣∣
v≤Vcutoff∑
v=0

m(v)∆v −
v≤Vcutoff∑
v=0

s(v)∆v

∣∣∣∣∣∣+
+

∣∣∣∣∣∣
V m

OC∑
Vcutoff≤v

m(v)∆v −
V s

OC∑
Vcutoff≤v

s(v)∆v

∣∣∣∣∣∣
(13)

As can be seen in Eq. (14), the relative error can be computed if the last value is divided by the
area enclosed by the measured curve within the first quadrant. Finally, the global relative error of
each method is calculated as the mean error amongst all the curves in the testing set.

relative error =
error∣∣∣∣∣∣

V m
OC∑

v=0

m(v)∆v

∣∣∣∣∣∣
(14)

4.7 Application of the model

The multilayer perceptron was trained using a filtered dataset composed of measurements taken under
irradiance values over 200 W/m2 and from clear–sky days (daily clearness index over 0.7). Hence, if
the proposed method is to be of practical value, these criteria must be verified.

Although the model of the grid inverter is beyond the scope of this paper, the simulation of the
photovoltaic plant requires an estimation of the I–V curve under changing conditions in time. In
order to get different curves along the day, a forecasting of the evolution of the incident irradiance
must be provided. Furthermore, using a thermal model of the module and the evolution of the other
meteorological conditions (mainly air temperature and wind speed), the profile of cell temperature
must be also estimated. The angle of incidence and the clearness index are calculated using the
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Figure 6: Relative error (%) as a function of the number of hidden units.

formulae described in section 3. Then, using MLPALL or MLPGT, the I–V curves along a specific day
can be predicted . Once we have obtained these curves, the inverter model is fed with this information,
and the output of the plant along that day can be estimated.

5 Comparative results

In Fig. 6, for both the MLPGT and the MLPALL, we have plotted the minimum value of the global
relative error amongst the 10 repetitions of the same configuration as a function of the number of
hidden units (h = 2, . . . , 8). The introduction of the AOI and the normalised clearness index into the
training process of the multilayer perceptron improves the global generalisation performance of the
network. As we can see in Fig. 6, the best result for the MLPALL was achieved with 5 neurons in the
hidden layer.

The best trained network using only G and T (the one with the smallest error) was selected and
named MLPGT. Also, the best trained network using G, T , AOI and K

′
T was selected and denominated

MLPALL. The performance of both models with respect to the procedure 1 of IEC 60891 was also
estimated. Herein the selected reference curve was the one acquired on 28 February 2011 at 13:16
under an irradiance G = 1000 W/m2 and a module temperature T = 30.2 ◦C. For the module used in
this experiment, the values of the required intrinsic parameters are:

α = 0.0027 A/◦C

β = 0.0706 V/◦C

κ = 0.0027 Ω/◦C

RS = 0.264 Ω

Taking into account the complete testing set (3056 samples not selected for the training phase),
the MLPALL model obtains better results in terms of global relative error (1.9%) than the MLPGT

(2.1%) or the IEC60981 (3.8%) models. In Table 4 the mean relative curve errors of the three models
for different irradiance ranges are summarised. As can be seen, the proposed method outperforms
the other methods in all cases, although the greatest differences are obtained under high irradiance
values.

Another criterion to compare the models is the percentage of examples of the testing set where
the MLPALL model has less error than the other two models. From the results it can be stated that the
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Irradiance (W/m2) IEC60891 MLPGT MLPALL

200–400 8.4% 4.9% 4.8%
400–600 4.1% 3.3% 2.8%
600–800 3.0% 2.2% 1.8%
≥800 2.7% 1.0% 0.9%

Table 4: Relative curve error of the three models for different irradiance ranges.
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Figure 7: Comparison of models for a curve measured on 24 March 2011.

MLPALL model returns a better approximation (closer to the measured curve) than either the MLPGT

or the IEC60981 models over a total of 1609 examples (52.6%) whereas the MLPGT model performs
best in only 1093 of the curves (35.8%). The IEC60981 model outperforms the other two models over
354 examples only (11.6%).

In order to illustrate the performance of these models, several I–V curves amongst the testing set
were selected. Fig. 7 is a typical example of an I–V curve acquired under a high irradiance value in
which all models behave in a similar way. It was taken on 24 March 2011 at 12:01 with a global
irradiance of 912 W/m2 and a module temperature of 45.7 ◦C. The AOI was 23.8◦ and the normalised
clearness index was 0.75. The visual difference between the true measured curve and each simulation
is very small. It is necessary to zoom in to be able to see the difference between them (see Fig. 8). The
curve provided by the MLP model using the angle of incidence and the normalised clearness index is
closer to the measured curve than the ones obtained with the other models.

In many I–V curves the model trained with the angle of incidence and the normalised clearness
gives better results than the model without those parameters. For instance, the I–V curve correspond-
ing to 7 April 2011 at 10:21, with G = 447 W/m2, T = 28.6 ◦C, AOI = 57.7◦ and K

′
T = 0.69 (see

Fig. 9) is an example which confirms that the MLPALL model performs better than the MLPGT and
IEC60981 models. In addition, the curve simulated by MLPGT has a odd behaviour (it does not emulate
well the shape of the measured curve).

There are examples where none of the models gives a satisfactory approximation. For exam-
ple, Fig. 10 shows an I–V curve measured on 28 February 2011 at 18:11 (with G = 214 W/m2,
T = 18.7 ◦C, AOI = 74.9◦ and K

′
T = 0.84). All the approximations are far from the measured curve

being MLPALL the best model. Again, the shape of the approximation given by the MLPGT model
does not correspond to the typical shape of an I–V curve.
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Figure 8: Zoom in on the previous figure to see some difference.
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Figure 9: Comparison of models for a curve measured on 7 April 2011.

6 Conclusions

In this paper, a new model to simulate I–V curves of photovoltaic modules is proposed. This model,
based on the use of a multilayer perceptron neural network, can be used in combination with other
models of the elements of a photovoltaic plant to predict its energy output. The main contribution with
respect previous papers that already propose the use of neural networks is the incorporation of two
new input variables: the angle of incidence and the normalised clearness index. The use of these new
parameters allow to distinguish situations in which the solar irradiance and the module temperature
are the same but the I–V curves are different.

The proposed model was compared to two previous models: the IEC 60891 method and a neural
network model using only the irradiance and the module temperature. The obtained results prove
that with the proposed model the error of the simulated I–V curve is less than 2%, being a significant
improvement over the algebraic method, which duplicates this error.

A detailed curve-by-curve study was also performed over several examples amongst the testing
set. In most of the cases the introduction of the angle of incidence and the instantaneous clearness
index improves the results with respect to the other models. Moreover, the MLP trained only with
G and T sometimes presents problems related to the shape of the curve. However, these problems
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Figure 10: Comparison of models for a curve measured on 28 February 2011.

do not arise if the network is trained using the angle of incidence and the normalised instantaneous
clearness index.

The proposed model allow us to improve the accuracy of tools used to forecast the energy output
of photovoltaic plants. The methodology proposed in this work can be applied to other types of
photovoltaic technologies including polycrystalline silicon, amorphous silicon and cadmium telluride.

Nomenclature

e Sun’s topocentric elevation angle (◦)

G Global irradiance on the module plane (W/m2)

Gext,b Extraterrestrial global irradiance on a plane normal to the light beam (W/m2)

Gext Extraterrestrial global irradiance on an oriented surface (W/m2)

Icutoff Current of a cut–off point between two curves (A)

IM Current at the maximum power point (A)

ISC Short–circuit current of the module (A)

KT Instantaneous clearness index

K
′
T Normalised instantaneous clearness index

n Number of points of an I–V curve

P Atmospheric pressure (mbar)

P0 Standard atmospheric pressure at sea level, constant (1013 mbar)

PM Maximum power of the module (W)

R Sun–Earth distance (AU)

R0 Mean Sun–Earth distance, constant (1 AU)
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RS Internal series resistance of the module (Ω)

S0 Solar constant (1366.1 W/m2)

T Module temperature (◦C)

Vcutoff Voltage of a cut–off point between two curves (V)

VM Voltage at the maximum power point (V)

VOC Open–circuit voltage of the module (V)

α Module current temperature coefficient (A/◦C)

β Module voltage temperature coefficient (V/◦C)

Γ Sun’s topocentric azimuth angle measured from the south, west positive (◦)

γ Rotation angle of the module measured from the south, west positive (◦)

κ Curve correction factor of the module (Ω/◦C)

ω Slope or tilt angle of the module (◦)

θ Sun’s topocentric zenith angle (◦)

AM Air mass factor

AMPC Air mass factor corrected by pressure

ANN Artificial Neural Network

AOI Angle Of Incidence

IEC International Electrotechnical Commission

IEC60891 Procedure 1 of IEC 60891

MLP Multilayer Perceptron

MLPALL MLP trained with G, T , AOI and K
′
T

MLPGT MLP only trained with G and T

PV Photovoltaic

STC Standard Test Conditions
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