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Abstract

The main aim in network anomaly detection is effectively spotting hostile events within the traf-
fic pattern associated to network operations, by distinguishing them from normal activities. This
can be only accomplished by acquiring the a-priori knowledge about any kind of hostile be-
havior that can potentially affect the network (that is quite impossible for practical reasons) or,
more easily, by building a model that is general enough to describe the normal network behavior
and detect the violations from it. Earlier detection frameworks were only able to distinguish
already known phenomena within traffic data by using pre-trained models based on matching
specific events on pre-classified chains of traffic patterns. Alternatively, more recent statistics-
based approaches were able to detect outliers respect to a statistic idealization of normal net-
work behavior. Clearly, while the former approach is not able to detect previously unknown
phenomena (zero-day attacks) the latter one has limited effectiveness since it cannot be aware
of anomalous behaviors that do not generate significant changes in traffic volumes. Machine
learning allows the development of adaptive, non-parametric detection strategies that are based
on “understanding” the network dynamics by acquiring through a proper training phase a more
precise knowledge about normal or anomalous phenomena in order to classify and handle in a
more effective way any kind of behavior that can be observed on the network. Accordingly, we
present a new anomaly detection strategy based on supervised machine learning, and more pre-
cisely on a batch relevance-based fuzzyfied learning algorithm, known as U-BRAIN, aiming at
understanding through inductive inference the specific laws and rules governing normal or ab-
normal network traffic, in order to reliably model its operating dynamics. The inferred rules can
be applied in real time on online network traffic. This proposal appears to be promising both in
terms of identification accuracy and robustness/flexibility when coping with uncertainty in the
detection/classification process, as verified through extensive evaluation experiments.

Keywords: Network Anomaly Detection, Machine Learning, Supervised Classification,
Fuzzy-based techniques, Inductive Inference.

∗Corresponding author.
Email addresses: dangelo@unisannio.it (Gianni D’angelo), fpalmieri@unisa.it (Francesco Palmieri),

massimo.ficco@unina2.it (Massimo Ficco), rampone@unisannio.it (Salvatore Rampone)
Preprint submitted to Journal of Applied Soft Computing June 23, 2015

Francesco Palmieri
Published in: Applied Soft Computing journal.
This version of the article has been accepted for publication, after peer review and is subject to Elsevier terms of use. 
The Version of Record is available online at: http://dx.doi.org/10.1016/j.asoc.2015.07.029



1. Introduction

Together with the astonishing deployment of network technologies and the consequent incre-
ment in traffic volumes, the importance of network misuse detection and prevention frameworks
is proportionally growing in almost all the modern organizations, in order to protect the most
strategic resources from both external and internal threats. In this scenario, the task of identify-
ing and categorizing network anomalies essentially consists in determining all the circumstances
in which the network traffic pattern deviates from its normal behavior, that in turn depends on
multiple elements and considerations associated to the activities taking place every day on the
network.

However, the main difficulty related to a really effective detection is associated to the con-
tinuous evolution of anomalous phenomena, due to the emergence of new previously unknown
attacks, so that achieving a precise, stable and exhaustive definition of anomalous behavior, en-
compassing all the possible hostile events that can occur on a real network, is practically impos-
sible. Nevertheless, detection systems must not be limited by the a priori knowledge of a specific
set of anomalous traffic templates or be conditioned by a large number of complex operating
parameters (e.g., traffic statistic distributions and alarm thresholds), and hence have to be able
to recognize and directly classify any previously unknown phenomenon that can be experienced
on the network. As a consequence, the ultimate goal of modern anomaly detection systems is
behaving in a adaptive way in order to flag in “real-time”, all the deviations from a model that is
built dynamically and in an incremental way by capturing the concept of normality in network
operations according to a learning-by-example strategy. These new systems, overcoming the
known limitations of the more traditional ones based on pattern detection and statistical analysis,
are empowered by flexible machine learning techniques.

Accordingly, we propose a novel anomaly detection strategy, particularly suitable for IP net-
works, based on supervised machine learning, and more specifically on a batch relevance-based
fuzzyfied learning algorithm known as U-BRAIN.

This strategy aims at understanding the processes that originate the traffic data, by deriving
the specific laws and rules governing it, in order to reliably model its underlying dynamics. This
is accomplished by performing inductive inference (or better, generalization) on traffic observa-
tions, based on some empirical pre-classified “experiential” (training) data, representing incom-
plete information about the occurrence of specific phenomena that describe normal or anomalous
network activities. In addition, the adopted learning scheme allows a certain degree of uncer-
tainty in the whole detection process making the resulting framework more solid and flexible in
managing the large variety and complexity of real traffic phenomena. Then the inferred rules can
be applied in real time on online network traffic.

We evaluated the effectiveness of the presented detection framework within a widely known
test case scenario, in order to make the achieved results comparable with those of other proposal
available in literature. These results demonstrated a quite satisfactory identification accuracy by
placing our strategy among the most promising state-of-the-art proposals.

2. Background and Related Work

Network anomaly detection has gained a great attention in security research with about 40
years of experiences available in literature. The first approach to automatic detection has been
proposed in [1], followed by a large number of contributions exploring many other solutions and
proposals [2][3][4].
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The earliest and more traditional detection approaches, mainly aiming at spotting intrusion
activities, work by matching specific traffic patterns, gathered from the packets under observa-
tion, against a list of predefined signatures, each associated to a known attack or hostile/anoma-
lous behavior. Some well-known examples are SNORT [5] and BRO [6]. While ensuring very
good response times and a quite satisfactory degree of effectiveness in case of previously known
menaces, these approaches are almost totally clueless in presence of new (zero-day) attacks,
or when, due to minor modifications in its behavior, an already known attack does not closely
match the associated signatures. In both the cases new up-to-date signatures must be generated
and added to the list as soon as more detailed information about the hostile behavior become
available. Unfortunately, this implies human intervention, and hence too much time to ensure
real-time response.

Other very common detection systems are based on a statistical idealization of the network
behavior and process the traffic observations through statistical-analysis techniques by flagging
the outliers as anomalous events. The most significant examples are NIDES (Next-Generation
Intrusion Detection Expert System) [7], an hybrid system providing a statistical analysis en-
gine, and SPADE (Statistical Packet Anomaly Detection Engine) [8] a statistical detection sys-
tem based on determining anomaly scores, available as a plug-in for SNORT. However, while
straightforward and robust in their formulation (they do not require prior knowledge of the secu-
rity menaces nor need packet inspection), statistic detection approaches may result too simplistic
in their basic assumptions and hence scarcely reliable in their results. In fact, being based only
on the statistical properties of the involved traffic flows, these approaches are too sensitive to the
normality assumption, and really effective only against specific phenomena that imply significant
variations in the statistical properties of the network traffic (Volume-based Attacks). More pre-
cisely, such detection techniques have to be based on extremely accurate statistical distributions
that describe the traffic under observation. Unfortunately, modeling real network traffic, typically
characterized by an inhomogeneous usage pattern, by using only pure statistical methods, may
result in a poor choice in terms of real effectiveness. Furthermore, these solutions cannot be
aware of hostile activities that only affect the packet contents (such as stack smashing or other
kind of malicious code exploiting system/services vulnerabilities) or explicitly conceived to be
undistinguishable from regular user activities (e.g., low-rate DoS attacks).

As an alternative that may reveal extremely effective in coping with the above challenges,
machine learning provides fully automated detection capabilities, by allowing a system to learn
by example what are the anomalous events occurring in the observed traffic. It also allows im-
proving the detection performance over time with experience, as more and more examples (or
training data), describing normal or anomalous behaviors, are provided in its knowledge base. In
this way, the detection function, that is essentially a binary classifier working on the normal and
anomalous traffic classes, is inferred from the aforementioned training data. Such data consist
of a set of pre-classified traffic samples. In supervised learning, each sample is a pair consisting
of an input object (typically a vector of traffic features) and a desired output value (the class
value) also called the supervisory signal. The inferred classifier should assign the right output
class value to any valid input sample. This implies that the learning paradigm should be rea-
sonably capable to perform generalization from the knowledge contained in the training data to
previously unseen situations.

The use of machine learning in anomaly detection, with the development of generalization
capabilities from past experiences for classifying future data as normal or anomalous has been
exploited in many proposals [9], based on neural networks [10] [11], SVMs [12] and data mining
techniques [13][14]. These approaches can be further subdivided into generative or discrimina-
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tive. A typical generative approach (e.g., [15]) constructs a model by starting only from normal
training examples, and then evaluate several test instances in order to appreciate how well they
fit such model. As an example, the ideas presented in [16] explore different machine learning
techniques to construct detection models from past behavior. On the other hand, discriminative
techniques (e.g., [12]), attempt to understand the difference between the normal and anomalous
instance classes. A learning approach for reproducing packet level alerts for anomaly detection
at the flow level has been presented in [17]. Several approaches rely on clustering techniques,
such as ADWICE [18], performing unsupervised detection based on a fast incremental clustering
technique. K-Means+ID3 [19], instead, is a supervised learning approach combining k-Means
clustering and the ID3 decision trees in order to classify anomalous and normal network activ-
ities. Regarding the use of tree-based structures, the DGSOT+SVM [20] scheme is an iterative
approach leveraging the dynamic generation of self-organizing hierarchical trees together with
SVMs to be trained on the tree nodes, where support vectors are used as the basic knowledge
to control the tree growth. Also non-linear analysis, combined with recurrence quantification
techniques [51] has been used to construct a flexible detection approach based on understanding
the most hidden traffic dynamics by simultaneously observing the traffic behavior on multiple
time scales.

Other approaches introduced the concept of uncertainty within the learning strategy. Notably,
a detection solution based on weighted fuzzy matching over frequent episode rules is presented
in [21]. In addition, the approach presented in [22] applied fuzzy logic-based rules to audit data
in order to classify it as normal or anomalous.

Starting from the above experience, our machine-learning based detection solution combines
the strength of rule-based systems and the flexibility of fuzzy logic to reliably understand the
fundamental properties of the network traffic in order to rapidly flag the occurrence of abnormal
events.

3. A fuzzy rule-based detection strategy

The basic idea is building a formal model that expresses the relations between all the funda-
mental variables involved in the traffic dynamics, and hence “understands” the notions of normal
and anomalous behavior from the available experience by learning the characteristics of the cor-
responding traffic classes and expressing them into laws and rules that are general enough to
determine if any unseen instance belongs to the one or the other class. Obviously, the overall
detection quality strongly depends on the accuracy and generality of the above model and hence
on the completeness of the training data on which its “knowledge” about normal and anomalous
phenomena is built.

Starting from the previous considerations, we modeled our anomaly detection strategy ac-
cording to a supervised machine learning scheme, specifically conceived for learning disjunctive
normal form (DNF) [23] boolean formulas from partial truth tables, possibly with uncertain val-
ues or missing information bits. Such formulas, determined by using the U-BRAIN (Uncertainty-
managing Batch Relevance-based Artificial Intelligence) algorithm [24], describe the correlation
rules between attribute conditions and class labels, modeling the normal and anomalous traffic
profiles through boolean predicates on the observation attributes. Since the U-BRAIN algorithm
works on boolean data, the above attribute values have to be quantized, in order to represent them
in rules by using binary strings.

The aggregation of all the determined correlation rules defines the behavior of an inductively
learned classifier that is able to analyze the deviation from normal traffic profiles and the proxim-
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ity to the known anomalous ones, as determined from the historical observations available in the
training set. Clearly, by relying on a supervised approach where both the phenomena of interest
are known in the training set, such a classifier should be potentially able to achieve better detec-
tion performance respect to semi-supervised and unsupervised solutions, since more information
is available in its training knowledge base. However, the unbalancing in the amount of train-
ing data representing the two classes, together with the presence of some uncertainty and noise
in pre-classified samples, can significantly affect the final accuracy of the detection results. U-
BRAIN faces uncertainty problems by improving the flexibility of rules through the introduction
of fuzzy logic. This characteristic, allowing a certain degree of uncertainty at the binary classifier
level, makes the resulting detection strategy significantly stronger both in terms of flexibility and
ability to cope with the variety and complexity of network traffic phenomena. In this way the
detection approach considers a wider range of implications when making its decisions, resulting
in a more effective and powerful approach in presence of incomplete training data.

3.1. Initial knowledge construction

A fundamental preliminary task in a supervised network anomaly detection system is the ini-
tial “knowledge construction” where the most significant network utilization patterns, describing
the fundamental traffic dynamics, should be described in terms of specific features gathered from
traffic observations. This is a very slow and complex activity that implies collecting and pre-
classifying network traffic observations over a sufficiently long period of time, in order to build a
quite complete training set, reliably describing the historical knowledge of the network behavior,
or “baseline”. The training data will thus consist in a parametric network traffic model that can
be viewed as an approximation of reality, where a limited set of parameters is available in form
of the most discriminant traffic features that are able to describe the traffic behavior. Such traffic
model can be realized by looking at different observation dimensions, such as inter-arrival times
of packet transmission and reception events, together with information about packet sizes, flags,
source and destination addresses, ports/services involved, by also attempting to use the mem-
ory of recent past to identify persistent events like end-to-end connections (traffic flows). These
observations are represented as a time series, that is, a sequence of scalar samples measured
at uniformly spaced time intervals. More formally, the training set T = (t1, t2, . . . tN) consists
of N samples, each structured as an d-dimensional vector of traffic features si = ( f1, f2, . . . fd).
The training set is joined with a one-dimensional feature set C = (c1, c2, . . . cm) associated to
the supervisory signal, where ci represent the class (i.e., anomalous, not anomalous) to which
each sample ti belongs. In this way, the knowledge base of the classifier is described by a set or
rules that will be “inferred” from the aforementioned collection of pre-classified training sam-
ples, where p of them are associated to anomalous traffic observation and q to normal ones, with
p � q.

3.2. The U-BRAIN algorithm

U-BRAIN is a machine learning algorithm able to infer explicitly the laws that govern a
process from examples. In its latest version, U-BRAIN can also act on incomplete data. Orig-
inally, the algorithm, named BRAIN [25], was conceived for recognizing the borders of coding
regions in human DNA. The algorithm was based on the Michalski’s STAR technique [26], on
the candidate-elimination method introduced by Mitchell [27], and on the work of Haussler [28].
The BRAIN algorithm was later extended [24] to treat data with missing bits by using fuzzy sets.
The resulting U-BRAIN algorithm keeps the computational complexity of the original one. The
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great versatility that characterizes it, makes U-BRAIN applicable in every industry and science
field in which there are data to be analyzed, such as the financial world, the aviation industry
as well as the biomedical scope. U-BRAIN models a process by a formula able to forecast the
future process behavior. Specifically, the algorithm builds Boolean formulae F of n literals xi

(i = {1, . . . , n}) in DNF form, made up of disjunctions of conjunctive terms, starting from a set T
of training data. The data (instances) in T are divided into two classes, named positive and nega-
tive, respectively modeled by the n-sized vectors ~ui with i = {1, . . . , p} and ~v j with j = {1, . . . , q},
representing the issues to be classified. Each element ui,k or v j,k with k = {1, . . . , n} can assume
values belonging to the set {0.1, 1

2 } respectively associated to positive, negative and uncertain
values. The conjunctive terms of the formula are carried-out in an iterative way by two nested
loops (see algorithm 1 schema). The inner cycle refers to the selection of the literals of each
formula term, while the outer one is devoted to the terms themselves. In order to build a formula
consistent with the given data, U-BRAIN compares each given positive instance with each neg-
ative one and builds a family of fuzzy sets of conditions that must be satisfied by at least one of
the positive instances and violated by all the negative ones formally defined as:

S i, j =
{
xk |ui,k > v j,k ∨ ui,k = v j,k = 1

2

}
∪

{
xk |ui,k < v j,k ∨ ui,k = v j,k = 1

2

}
(1)

In other words, the k-th literal belongs to the S i, j set if the elements in the position k, belonging
to the i-th positive instance ui,k and to the j-th negative instance v j,k, are different or both equal
to 1

2 .
Starting from these sets S i, j, the algorithm determines for each literal xk, belonging to them,

a set of coefficients Ri, j, Ri and R, called relevances, forming a probability distribution:

Ri, j(xk) =
µi, j(xk)
#(S i, j)

Ri(xk) =
1
q

q∑
j=1

Ri, j(xk) (2)

R(xk) =
1
p

o∑
j=1

Ri(xk)

where µi, j is the membership function of the set S i, j

µi, j(xk) =


1 if ui,k = 1 and v j,k = 0(

1
2

)(p+q)
if ui,k > v j,k and

(
ui,k = 1

2 or v j,k = 1
2

)(
1
2

)(p+q+1)
if ui,k = 1

2 and v j,k = 1
2

0 otherwise
(3)

µi, j(xk) =


1 if ui,k = 0 and v j,k = 1(

1
2

)(p+q)
if ui,k < v j,k and

(
ui,k = 1

2 or v j,k = 1
2

)(
1
2

)(p+q+1)
if ui,k = 1

2 and v j,k = 1
2

0 otherwise
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and where #(x) is the fuzzy cardinality of a subset s of a set S defined as #(x) =
∑

x∈S µs(x).
The membership function, defined in (3), is conceived in such a way that, in a comparison be-
tween two instances, the certain values have a much prominent role w.r.t. the missing ones while
uncertain information may gain relevance only if the certain one is not sufficient (see [24]).

This allows the selection of the literals based on a maximum probability greedy criterion
(the literal having maximum relevance value is selected).The goal of such greedy selection is
simultaneously covering the maximum number of positive instances with the minimum possible
number of literals. Each time a literal is chosen, the condition sets S i, j, and the corresponding
probability distribution, are updated by erasing the sets containing the literal itself. The inner
cycle is then repeated and the term is completed when there are no more elements in the sets
of conditions. Then the new term is added to the formula and, in the outer cycle, the positive
instances satisfying the term are erased. Then, the inner cycle starts again on the remaining
data. The algorithm ends when there are no more data to treat. The algorithm has two biases:
the instance set must be self-consistent, that means that an instance cannot belong to both the
classes, and no duplicated instances are allowed. In fact, it may happen that the initial set of
training instances contains redundant information. This may be due to repeated instances present
from the beginning of the process or resulting from a reduction step, whose task is limiting the
presence of missing bits, by recovering them as possible. Such redundancy is automatically
removed by keeping each instance just once and deleting all the repetitions, in order to avoid
consistency violation that can halt the process.

Algorithm 1 The U-BRAIN schema
Require: p > 0. q > 0. T = { ~u1, . . . , ~up, ~v1, . . . , ~vq}

1: F ← ∅ {Initialize F}
2: while there are positive instances ~ui ∈ T do
3: Uncertainty Reduction
4: Repetition Deletion
5: m← ∅ {Initialize term m}
6: Build S i, j sets f rom T
7: while there are elements in S i, j do
8: Compute Ri, j for {xk, xk}, k = {1, . . . , n}
9: Compute Ri for {xk, xk}, k = {1, . . . , n}

10: Compute R for {xk, xk}, k = {1, . . . , n}
11: Choose literal x with max relevance R
12: m← m ∪ {x} {Update term m}
13: U pdate S i, j sets
14: end while
15: F ← F ∪ {m} {Add term m to F}
16: U pdate positive instances ~ui ∈ T, i = {1, . . . , p}
17: U pdate negative instances ~v j ∈ T, j = {1, . . . , q}
18: Check consistency
19: end while
20: return F
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3.3. U-BRAIN Algorithm Complexity and its Parallel implementation
The overall algorithm’s time complexity is O(n5) and its space complexity is O(n3) for large n

(where n is the number of variables). So, processing large amounts of data with a single computer
may be prohibitive in terms of both space and time needed. Of course, such a complexity is only
referred to the training phase where the set of classification rules is initially built from the train-
ing data. Once these rules are available the detection activity is extremely simple and fast and
hence can be performed in real-time by operating on-line on live network traffic, by potentially
including the resulting classifier within a next-generation firewall or IDS system providing lim-
ited processing capabilities. The whole operating scenario is depicted in Figure 1 where all the
off-line activities, associated to the U-BRAIN framework, are reported into a grey box, whereas
the other ones can be managed on-line within the context of a real-time detection system.

Figure 1: Detection system architecture

However, in order to keep the classifier up-to-date with the evolving network traffic dynam-
ics, periodical re-training is necessary. Due to the above computing and space demands char-
acterizing the training phase, such activity can be performed off-line and independently from
the running classifier, by eventually distributing its load among multiple cooperating runtime
machines that provide high performance High-Performance Computing (HPC) capabilities. Ac-
cordingly, the main goal of a recent work [29] has been the construction of a new version of the
U-BRAIN algorithm relying on HPC capabilities, in order to overcome the limits related to its
high computational complexity. The new version, using more clever mathematical and program-
ming solutions, such as a Dynamic Programming and a new relevance representation, allows the
algorithm implementation on parallel computing systems with reduced communication costs. To
this aim an effective distributed computing and storage architecture has been specifically de-
signed according to an high degree temporal and spatial locality principle [30]. The algorithm
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has been implemented by using a Single Program Multiple Data (SPMD) [31] technique together
with a Message-Passing Programming paradigm. Overall, the results obtained on standard data
sets show that the parallel version is up to 30 times faster than the serial one. Moreover, by
increasing the problem size, with a constant number of processors, the average speed-up further
increases. Recently, the U-BRAIN parallel version has been used in diagnosis of aerospace struc-
tures’ defects. In such a context, the algorithm demonstrated to be effective as a defect classifier
in non destructive testing [32].

4. Performance Evaluation

In evaluating the performance of the proposed detection strategy our main aim was making
our results comparable with alternative approaches already available in literature. Unfortunately,
this is not immediate, in lack of a generally recognized benchmark for assessing and validating
anomaly detection solutions. In fact, most of the publicly available data sets and taxonomies that
can be used for benchmarking anomaly detection systems are generally known to be error-prone
and of limited significance in their results.

However, while strongly criticized [33] as being excessively “artificial” for the usage of
synthetic simulated background data not containing the noise that characterize real traffic, the
KDD’99 dataset [34], originally produced from DARPA Lincoln Labs, is widely recognized as
the most used publicly available labeled dataset for comparing network anomaly detection sys-
tems, as it can be appreciated from a huge number of research works. It starts from several
weeks of raw traffic data collected within a local-area network (LAN) simulating a typical U.S.
Air Force LAN, in which 24 attack types have been identified and labeled, and all the data flow
activity has been summarized into connections by using the Bro IDS [6], that extracted 41 dis-
tinct features for each connection. Observations are partitioned into two subsets representing
respectively the training and the testing set, where the raw training data yielded about 5 million
connection records and the test one around 2 million ones. The test set also includes specific
attack types not present in the training data (that can be considered as zero-day attacks) in order
to asses the classifier generalization capability. In order to avoid some of the known consistency
problems of the KDD’99 data set [35] we used its preprocessed version known as NSL-KDD [36]
that removed inconsistencies and redundancy in the training set, so that the performance of the
classifiers will not be perturbed or biased by the methods which exhibit better detection rates
on frequent records. Although the NSL-KDD data set is not a perfect representative of a real
network scenario (it still suffers from some of the weaknesses reported in [37]), we believe that it
can be considered the best available compromise for comparing/benchmarking different anomaly
detection methods.

4.1. Feature Reduction
First of all, we are interested in investigating the relevance of the 41 features available in

KDD’99 samples with respect to dataset labels. In order to ensure a satisfactory degree of per-
formance, mainly in terms of responsiveness, the number of features constituting each sample
should be kept as small as possible, by diversifying the features and making them discrimina-
tive as well as mutually independent. This is due to the fact that a group of highly independent
features is more effective in discriminating between the two classes than any of them taken indi-
vidually.

Several techniques can be used for determining the best, and most relevant features that can
be used for building robust learning models. Their goal is significantly improving the detection
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performance by eliminating irrelevant and redundant features from the available data and hence
reducing the overall problem dimension. This transforms our data representation into a shorter,
more compact, and hopefully, more predictive one keeping only the really useful features from
the original feature set.

The simplest approach for selecting the really necessary features is trying to extract the more
specific properties of the traffic under observation, by properly mining the pre-classified feature
vectors in the training set. This implies searching the whole feature space, a component at a time,
for the subset of features that is most likely to best characterize the normal and anomalous traffic
classes, by ranking each individual feature according to the aforementioned considerations and
identifying and removing useless features that may adversely affect the detection performance.

4.1.1. Ranking
Ranking may be based on several criteria that are able to quantify the relevance of a given

feature, and hence its role in determining the class label. The most used for this purpose is
information gain, based on the feature’s entropy, and defined as:

IG( fk, ci) = P( fk, ci)log
P( fk, ci)

P( fk)P(ci)
+ P( f̄k, ci)log

P( f̄k, ci)
P( f̄k)P(ci)

(4)

where the P(·) are occurrence probabilities in S and
∑

i IG( fk, ci) = H(C) − H(C|S ). When
the feature fk is relevant, and hence necessary for an accurate detection of class ci, the associated
entropies will assume values close to 0 and thus the information gain will be consequently close
to 1.

Also the well known χ2 test can be used as a good quality metric to evaluate the predictive
properties of a specific feature, by computing the χ2 statistic for each combination of feature fk
and class ci:

χ2( fk, ci) =
N(P( fk, ci)P( f̄k, c̄i) − P( fk, c̄i)P( f̄k, ci))2

P( fk)P( f̄k)P(ci)P(c̄i)
(5)

where N is the total number of observations in the training set.
We obtained the same (and hence extremely coherent) results from both the Information Gain

and χ2 tests on the whole training set, resulting in the ranking reported in Table 1.

4.1.2. Feature Selection
The top k features (resulting in a percentage of the number of original ones) can be chosen

after ordering the whole feature set according to the ranking score. However, features’ quality
may significantly vary, so that performing feature selection based only on the ranking order can
potentially introduce in the set some low-discriminating features. Analogously, the features can
be selected by introducing a threshold on the ranking score, (e.g., 0.01 for Information Gain) and
including the features with a value over it. However, there is a time consuming but more effective
alternative, exploring the predictive power of groups of features by using tree-based classification
algorithms such as C4.5 [38]. This may result in an automatic feature selection strategy based
on an initial mining phase operating on a sufficiently large quantity of pre-classified data, that
starting from a reasonably complete set of features removes one by one the least discriminants
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Table 1: Features ranking results

Order Ranking Score Feature Order Ranking Score Feature
1 0.81620015 src bytes 21 0.08826684 dst host srv rerror rate
2 0.6715649 service 22 0.06263911 protocol type
3 0.63304893 dst bytes 23 0.05674069 rerror rate
4 0.51938822 flag 24 0.05217739 dst host rerror rate
5 0.51868903 diff srv rate 25 0.05156684 srv rerror rate
6 0.50984907 same srv rate 26 0.03672469 duration
7 0.4759185 dst host srv count 27 0.01155446 hot
8 0.43821385 dst host same srv rate 28 0.00960996 wrong fragment
9 0.41091066 dst host diff srv rate 29 0.00650408 num compromised
10 0.40596111 dst host serror rate 30 0.00371697 num root
11 0.40475154 logged in 31 0.00215482 num access files
12 0.39806695 dst host srv serror rate 32 0.00116837 is guest login
13 0.39273998 serror rate 33 0.00091826 num file creations
14 0.38358863 count 34 0.00051404 su attempted
15 0.37912493 srv serror rate 35 0.00032406 root shell
16 0.27083688 dst host srv diff host rate 36 0.00010426 num shells
17 0.19803814 dst host count 37 0.00006037 num failed logins
18 0.18887561 dst host same src port rate 38 0.00003811 land
19 0.14155352 srv diff host rate 39 0.00000717 is host login
20 0.09424551 srv count 40 0 num outbound cmds

41 0 urgent

ones in terms of ranking, by verifying that the classification accuracy does not fall under a pre-
determined value.

Accordingly, we progressively removed a feature at a time in successive J48-based classifi-
cations, until the relative absolute error ε, remains under the 1% threshold. ε has been measured
as as the total absolute error relative to what the error would have been if the prediction ϕi had
been the average τ of the target values τi, so that:

ε =

n∑
i=1
|ti − oi|

n∑
i=1

∣∣∣ti − t
∣∣∣ (6)

The whole selection process results in only 6 (starting from the first in table 1) necessary
features as it can be seen from the chart in Figure 2, that implies a significant reduction in the
overall space and runtime complexity in both the training and testing phases.

Quantization has been performed on all the six attributes (the first two are nominal/discrete,
the other numeric/continuous) in order to transform them into binary data strings as required by
the U-BRAIN algorithm. Since the service and flag attributes are respectively composed by 70
and 11 elements, we used 7 bits to represent the former one and 4 bits for the latter. Analogously,
by considering their minimum and maximum values, we have chosen 12 bits for src bytes and
dst bytes, while 8 bits were devoted to same srv rate and diff srv rate. So, 52 bits are necessary
to represent each instance, where 51 bits are dedicated to the feature space and one bit is required
for the label representing the target class (0=normal, 1=anomalous). Each connection has been
labeled as either associated to normal activity or to a network anomaly, regardless of the specific
attack type reported in the KDD dataset. The individual instance layout is presented in table 2.
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Figure 2: Feature selection results

Table 2: Generic instance layout

Description Attribute Bits
destination network service service 7
connection attributes and error status flags 4
bytes from source to destination src bytes 12
bytes from destination to source dst bytes 12
% of connections to the same service same srv rate 8
% of connections to different services diff srv rate 8
label class 1
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4.2. Training and Testing

In order to assess the potential of the proposed strategy for detecting network anomalies
we provided a proof of concept using U-BRAIN to find rules and formulae for distinguishing
between anomalous (intrusions, attacks) and normal connections/events. U-BRAIN has been
properly trained on the NSL-KDD training set and its real effectiveness has been successively
verified on the corresponding testing set. However, due to the U-BRAIN consistency bias, a data
pre-processing/cleaning step has been necessary to remove the inconsistencies on both training
and testing data. In particular, all the new duplicates introduced by feature reduction (the in-
stances passed from 41 to 6 attributes) have been removed. The resulting dataset is composed
by 21178 training instances (8757 positive and 12421 negative) and 6032 testing instances (2116
positive and 3916 negative), as reported in Table 3.

Table 3: The NSL-KDD data set after preprocessing

Training Set Testing Set
Positives Negatives Total Positives Negatives Total

8757 12421 21178 2116 3916 6032

First of all, 10-fold cross validation has been performed on the entire training set, in order to
ensure results consistency and guarantee a better reliability to the whole process. Accordingly, all
the training data have been randomly divided into 10 disjoint subsets (folders), each containing
approximately the same amount of instances (see Table 4).

Table 4: 10-fold cross-validation instance breakdown

Test Training Data Test data
Positives Negatives Total Positives Negatives Total

1 7843 11218 19061 914 1203 2117
2 7870 11191 19061 887 1230 2117
3 7831 11230 19061 926 1191 2117
4 7865 11196 19061 892 1225 2117
5 7883 11178 19061 874 1243 2117
6 7840 11221 19061 917 1200 2117
7 7852 11209 19061 905 1212 2117
8 7886 11175 19061 871 1246 2117
9 7972 11089 19061 785 1332 2117
10 7971 11082 19053 786 1339 2125

In each experiment, nine folders have been used as training data, while the remaining folder
is used for validation. This process has been repeated 10 times, for each different choice of the
validation folder. The results are reported in Table 5, resuming how well the model assigns the
correct class value to the test instances.

In detail, the first four columns, after the test number, represent the confusion matrix in terms
of True Positives (T P: correct detections), False Negatives (FN: missed detections), True Neg-
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Table 5: 10-fold cross-validation classification performance on NSL-KDD training data

Test Confusion matrix Accuracy Sensitivity Specificity Precision F1 Correlation ROC Error
TP FP TN FN Measure Coefficient Area Ratio

1 905 9 1194 9 0.991 0.990 0.993 0.990 0.990 0.983 0.991 0.009
2 880 14 1216 7 0.990 0.992 0.989 0.984 0.988 0.980 0.990 0.010
3 913 14 1177 13 0.987 0.986 0.988 0.985 0.985 0.974 0.987 0.013
4 880 19 1206 12 0.985 0.987 0.984 0.979 0.983 0.970 0.986 0.015
5 866 18 1225 8 0.988 0.991 0.986 0.980 0.985 0.975 0.988 0.012
6 905 11 1189 12 0.989 0.987 0.991 0.988 0.987 0.978 0.989 0.011
7 894 23 1189 11 0.984 0.988 0.981 0.975 0.981 0.967 0.984 0.016
8 856 21 1225 15 0.983 0.983 0.983 0.976 0.979 0.965 0.983 0.017
9 775 23 1309 10 0.984 0.987 0.983 0.971 0.979 0.967 0.985 0.016

10 778 19 1320 8 0.987 0.990 0.986 0.976 0.983 0.973 0.988 0.013
Mean 865 17 1225 11 0.987 0.988 0.986 0.980 0.984 0.973 0.987 0.013
StDev 0.003 0.003 0.004 0.0062 0.004 0.006 0.003 0.003

Cin @ 95% (0.985-0.989) (0.986-0.990) (0.984-0.989) (0.976-0.985) (0.981-0.987) (0.969-0.978) (0.985-0.989) (0.011-0.015)

atives (T N: correct silence), False Positives (FN: false alarms). The following seven columns
report respectively:

• Accuracy
(

(T P+T N)
(T P+T N+FP+FN)

)
, that is the portion of correctly classified instances.

• Sensitivity
(

T P
(T P+FN)

)
, also called True Positive Rate, that is the portion of positive instances

which are correctly identified as positives by the classifier.

• Specificity
(

T N
(T N+FP)

)
, also called True Negative Rate, that refers to the classifier’s ability

to identify negative results.

• Precision
(

T P
(T P+FP)

)
, that is a measure of retrieved instances that are relevant.

• F1-Measure
(

2·T P
(2·T P+FP+FN)

)
, that is the harmonic mean of precision and sensitivity, hence

gathering into a single value both the metrics. In fact, evaluating precision and sensitivity
also in a joint way may be very useful, since it is quite easy optimizing one of the metrics
by declining the other.

• Matthews Correlation Coefficient [39]
(

T P×T N−FP×FN
√

(T P+FP)(T P+FN)(T N+FP)(T N+FN)

)
, correlating the

observed and predicted binary classifications by simultaneously considering true and false
positives and negatives. It can assume a value between -1 and +1, where +1 represents a
perfect prediction, 0 no better than random prediction and -1 indicates total disagreement
between prediction and observation.

• ROC Area or Area under the ROC curve (plotting the detection rate against the false posi-
tive one), summarizes the total accuracy of the detector in a way that accounts for both the
gains in True Positive Rate and the losses in False Positive Rate. More precisely, it rep-
resents the probability for the classifier of ranking a randomly selected positive instance
better than a randomly selected negative one, by reflecting the inherent difficulty of the de-
tection task in presence of noise. Accordingly, with a ROC Area value of 0.9, for example,
there is an 90% probability that given two randomly selected alternatives, the correct one
will be identified, so that a ROC Area value of 1 is associated to perfect detection while an
value of 0.5 implies completely random results.
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Finally, the last column reports the error ratio referred to the per-folder classification process.

The mean value, the standard deviation and the confidence interval (at a 95% of confidence
level) are reported for all performance parameters in order to emphasize the reliability and sig-
nificance of the results.

Once the classification formulae have been built from the entire training set, the overall de-
tection performance has been evaluated on the testing set. The results are reported in Table 6,
where we can observe a significant classification accuracy associated to a very high precision in
identifying traffic that is not affected by anomalies. This is also confirmed by the observation of
the F1-Measure results, strongly reflecting the excellent combined performance in precision and
sensitivity. In addition, both the Matthews Correlation Coefficient and the area under the ROC
curve report respectively a very satisfactory score (0.87) and a value (0.93) quite near to a perfect
prediction. In addition, the whole experiment resulted in a very limited error ratio. We can argue
that the errors observable from the confusion matrix can be in most part due to specific kind
of non-noisy attacks present in the testing set (e.g., buffer overflow), that due to their inherent
structure in term if traffic pattern may be indistinguishable from normal activity and hence lead
to contradictory results. However, this should not be considered a real problem in a network
anomaly detection system, since the results show a good efficiency in identifying traffic patterns
that can be considered “normal”, and we are essentially interested in distinguishing the occur-
rence of suspicious events (and eventually flagging them for further analysis) deviating from the
“normal” traffic behavior.

Table 6: Classification performance on the NSL-KDD testing set

Confusion matrix Accuracy Sensitivity Specificity Precision F1 Correlation ROC Error
TP FP TN FN Measure Coefficient Area Ratio

1890 128 3788 226 0.941 0.893 0.967 0.936 0.914 0.870 0.930 0.059

In addition, in order to evaluate our anomaly detection strategy also on real traffic data, we
tested it against a packet trace collected at the Federico II University of Napoli, containing all
the (anonymized) traffic incoming from an 1 Gbps link to the Internet of the engineering Cam-
pus, collected on March 24, 2009 from 00:00 to 13:00. Only incoming traffic has been collected
for traffic cleaning and purity reasons (filtering undesired anomalous events is much easier since
the expected traffic pattern is known). The trace contains several anomalous events simulated
through distributed SYN floods and port-scanning attacks occurring at various times (see ta-
ble 7), properly chosen as representative of most of the anomalous traffic patterns that can be
observed on a border connection to the Internet (inbound distributed denial of service attacks,
bandwidth floods, single and multiple scans). The features of interest, involving number of
packets, as well as their rates and average sizes (resulting from feature selection, as previously
described), have been extracted by using the CAIDA CoralReef toolset.

The classification results reported in table 8, related to the 10-fold cross validation, demon-
strate the effectiveness of the proposed approach also on real data.
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Start Time Duration Attack Packet rate
01:15 60s SYN flood 500/s
02:15 300s SYN flood 500/s
03:15 600s SYN flood 500/s
04:15 60s SYN flood 250/s
05:15 300s SYN flood 250/s
06:15 600s SYN flood & portscan 250/s

Table 7: The simulated attacks in the real traffic trace.

Table 8: 10-fold cross-validation classification performance on real traffic data

Test Confusion matrix Accuracy Sensitivity Specificity Precision F1 Correlation ROC Error
TP FP TN FN Measure Coefficient Area Ratio

1 77 13 2007 11 0.989 0.875 0.994 0.856 0.865 0.859 0.934 0.011
2 81 32 1988 7 0.981 0.920 0.984 0.717 0.806 0.803 0.952 0.019
3 80 24 1996 8 0.985 0.909 0.988 0.769 0.833 0.829 0.949 0.015
4 78 212 1808 10 0.895 0.886 0.895 0.269 0.413 0.454 0.891 0.105
5 76 12 2008 12 0.989 0.864 0.994 0.864 0.864 0.858 0.929 0.011
6 67 8 2013 20 0.987 0.770 0.996 0.893 0.827 0.823 0.883 0.013
7 49 26 1994 39 0.969 0.557 0.987 0.653 0.601 0.587 0.772 0.031
8 65 8 2012 23 0.985 0.739 0.996 0.890 0.807 0.804 0.867 0.015
9 59 17 2003 29 0.978 0.670 0.992 0.776 0.720 0.710 0.831 0.022

10 44 15 2032 17 0.985 0.721 0.993 0.746 0.733 0.726 0.857 0.015
Mean 67.6 36.7 1986.1 17.6 0.974 0.791 0.982 0.743 0.747 0.745 0.887 0.026
StDev 0.029 0.120 0.031 0.185 0.142 0.132 0.058 0.029

Cin @ 95% (0.954-0.995) (0.705-0.877) (0.960-1.004) (0.611-0.875) (0.645-0.849) (0.651-0.840) (0.845-0.928) (0.005-0.046)

4.3. Results Comparison

4.3.1. Classification Stage
In order to obtain a clearer view about the quality of the above results on terms of classifica-

tion performance we compared them with those obtained on the same data set by using several
of the most common and effective supervised classification techniques whose implementation
details are widely known. These techniques have been explicitly chosen to cover the funda-
mental categories of approaches available in literature, ranging from rule-based methods (in our
case C4.5/J48 [40][41] ), to neural networks (with a Multilayer Perceptron (MLP) [42]), Support
Vector Machines (SVM) [43][44] or Bayesian networks (by using a Naive-Bayes classifier [45]).

As comparison metrics, in addition to the more traditional accuracy and precision, we used
the Matthews correlation coefficient that is considered to be the most effective quality measure
in binary classification, and in particular in anomaly detection where the amount of normal in-
stances greatly surpasses the number of anomalous ones. In fact, such coefficient is significantly
more stable, in presence of very different class sizes, than other widely used metrics such as the
area under the ROC curve. It also achieves an optimum balance of the types of errors over the two
classes. As it can be easily appreciated from Figure 3 as well as from the detailed performance
results reported in Table 9, the U-BRAIN-based strategy outperforms all the other methods on
the NSL-KDD data. Network anomalies are rare with respect to ordinary situations, and it is
preferable to ensure high specificity in the anomaly detection, even at the cost of sacrificing the
sensitivity of the test, so having more false negatives but very few false positives. This is exactly
the kind of behavior shown by the U-BRAIN rules/formulas whose main aim is effective gener-
alization through inductive inference, also supported by the introduction of a certain degree of
tolerance/uncertainty in the detection in order to be more adaptive in presence of the continuously
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evolving network phenomena.

Table 9: Classification performance comparison results

Accuracy Sensitivity Specificity Precision Correlation
U-Brain 0.941 0.893 0.967 0.9362 0.870
J48 0.858 0.962 0.779 0.767 0.736
SVM 0.795 0.966 0.664 0.685 0.639
MLP 0.768 0.905 0.664 0.671 0.571
Naive Bayes 0.698 0.977 0.487 0.591 0.508

4.3.2. Application Stage
In order to compare the efficiency and effectiveness of the proposed technique with other

known anomaly detection approaches, not only in terms of classification performance, but also
at the final application stage, we performed a tentative comparison on the final accuracy of
the results achieved on the same dataset by our scheme and several distinguished (supervised
and unsupervised) anomaly detection methods such as the k-Nearest Neighbor outlier mining
algorithm (K-NN) [46], fixed-width clustering (Cluster) [47], ADWICE [18], fpMAFIA [48],
SVM+DGSOT [20], SVM [48], K-Means+ID3 [19], HDG-clustering [49], RPCPAI [50] and
Recurrence Quantification-based [51], whose ROC graphs and Area measures are available in
literature. The area under the ROC curve has been chosen for comparison since it is one of
the most standardized accuracy metrics for anomaly detection algorithms, that consequently has
been widely used in literature, so that many performance results referring to the KDD dataset are
publicly available.

Based on the comparison results reported in Figure 4, we can assert that the proposed detec-
tion method can compete with the other available techniques since its detection performance is
located exactly on the average (0.93) of all the examined ROC results, represented by the dotted
line in the aforementioned Figure. We can also appreciate a very low standard deviation (0.06)
and a [0.8831 − 0.9697] 95% confidence interval, both denoting a good reliability and statistical
significance of the above results.

5. Conclusions

Identifying anomalous events is one of the best ways to discover a lot of existing malfunctions
and handle most of the security and performance problems that may occur in modern networks.
Hence, the availability of reliable detection devices and strategies becomes a fundamental pre-
requisite for next generation network-empowered infrastructures. We presented a new supervised
machine learning approach to anomaly detection, whose goal is understanding the dynamics and
behaviors characterizing network traffic in order to generate a set of rules and criteria that can
be used to effectively discriminate anomalous events in the normal traffic flow. Such approach
couples the capability of inferring rigid decisional structures, represented as boolean formulas,
from incomplete sample observations, with the flexibility introduced by a fuzzy-based uncer-
tainty management strategy. This allows the detection engine to easily adapt to the very different
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kind of phenomena that can be experienced on a real network. The results of the experimental
evaluation demonstrate the ability of successfully handling very different kind of events/phenom-
ena within the context of a quite difficult selection of training and testing data, commonly used
for assessing detection approaches.

However, it must be considered that the detection capability is directly depending on accuracy
of the self-learnt rules describing the traffic model, so that, if the training data are not enough
complete and realistic, i.e., they do not reflect all the aspects characterizing the real network
traffic, the risk of false positives and/or negatives increases. This introduces the need of an
incremental knowledge construction ad refinement process, implemented within the context of a
continuous supervised re-training mechanism, managed trough human-driven results validation.
Furthermore, while rule construction is a computationally heavy task that has to be managed
off-line, on a periodic basis, by relying on properly crafted parallel computing environments, the
on-line detection activity, based on the above rules, is extremely simple and effective in term of
performance and can be easily implemented in most of the next-generation security equipments
available on modern networks.

Finally, it should be considered that, by relying on a native rule-based detection strategy,
where the inferred rules have the main goal of reliably describing the model (ideally dynami-
cally kept up-to-date through periodic re-training) that represents network traffic, this approach
is potentially more effective against previously unknown phenomena and robust against obfus-
cation mechanisms.
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