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Abstract. The paper is focused on the analysis of stability properties of a
family of numerical methods designed for the numerical solution of stochastic

Volterra integral equations. Stability properties are provided with respect to
the basic test equation, as well as to the convolution test equation. For each
equation, stability properties are intended both in the mean-square and in the

asymptotic sense. Stability regions are also provided for a selection of methods.
Numerical experiments confirming the theoretical study are also given.

1. Introduction. Stochastic Volterra integral Equations (SVIEs) are equations of
the form

Xt = X0 +

t
∫

0

a(t, s,Xs)ds+

t
∫

0

b(t, s,Xs)dWs, t ∈ [0, T ], (1)

where a and b are measurable functions and the initial condition X0 is a random
variable. The second integral in the right hand side is an Itô integral, which has to
be taken with respect to the Brownian motion Ws. The solution Xt is a random
variable for each t.

Initial contributions regarding the numerical solution of SVIEs have been given
in [16, 17, 18], where the authors extended classical methods for stochastic ordinary
differential equations (i.e. Euler Maruyama and Milstein methods; see [10, 12] and
references therein) to the integral case. However, the analysis mainly regarded their
accuracy properties and, in the existing literature on the topic, stability issue have
not yet been provided. Our aim is to develop a stability analysis of numerical
methods for SVIEs, by exploring a more general family of methods for (1), i.e.
that of stochastic ϑ-methods (see [8, 11] for insights on ϑ-methods for stochastic
differential and integro-differential equations).
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Similarly as in the deterministic case (see [1, 4, 5, 6] and references therein), we
first analyze the stability properties of stochastic ϑ-methods with respect to the
following basic linear test equation,

Xt = X0 +

t
∫

0

λXsds+

t
∫

0

µXsdWs, t ∈ [0, T ], (2)

with λ, µ ∈ R. Moreover we will also consider the convolution test equation,

Xt = X0 +

t
∫

0

(λ+ σ(t− s))Xsds+

t
∫

0

µXsdWs, t ∈ [0, T ], (3)

with λ, µ, σ ∈ R. In both cases, we provide stability issues both in the mean-square
and in the asymptotic sense (for the analysis of stability of numerical methods for
SDEs, see [3, 7, 8, 13, 14] and references therein), as explained in details in the
remainder of the manuscript. The paper is organized as follows: Section 2 presents
the family of stochastic ϑ-methods for SVIEs (1); stability issues with respect to
the basic test equation (2) are given in Section 3, while Section 4 is devoted to
analyzing stability properties with respect to the convolution test equation (3).
Some numerical experiments confirming the theoretical analysis are given in Section
5 and, finally, concluding remarks are provided in Section 6.

2. ϑ-methods for SVIEs. As usual in the context of Volterra integral equations
(see [1, 4, 5, 6] and references therein), we introduce the set of grid points

Ih = {tn = nh, n = 0, ..., N, Nh = T}

equidistantly spaced, being h the chosen fixed stepsize. By evaluating the SVIE (1)
in the generic mesh point tn, we have

Xtn = X0 +

∫ tn

0

a(tn, s,Xs) ds+

∫ tn

0

b(tn, s,Xs) dWs.

Let Y0 = X0. We introduce the stochastic ϑ-method, having the form

Yn = Y0+h
n−1
∑

i=0

(ϑa(tn, ti+1, Yi+1) + (1− ϑ)a(tn, ti, Yi))+
n−1
∑

i=0

b(tn, ti, Yi)∆Wi, (4)

where h = ti+1 − ti e ∆Wi = Wi+1 −Wi. Taking into account that the Wiener

increments ∆Wi can be replaced by the scaled random variables
√
hVi, where Vi

is a standard Gaussian random variable, i.e. it is N (0, 1)-distributed, the method
assumes the form

Yn = Y0+h
n−1
∑

i=0

(ϑa(tn, ti+1, Yi+1) + (1− ϑ)a(tn, ti, Yi))+
√
h

n−1
∑

i=0

b(tn, ti, Yi)Vi. (5)

The following theorem exhibits the convergence order of (5), under the hypothesis
(6), that also guarantee the existence and uniqueness of the solution of (1) (see
[15, 18] and references therein). The proof of this theorem follows analogously as
in [16], which corresponds to the case ϑ = 0.
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Theorem 2.1. Assuming that the coefficients a and b of (1) satisfy

|a(t, s, x)− a(t, s, y)| ≤ K1(t, s)|x− y|,
|b(t, s, x)− b(t, s, y)| ≤ K2(t, s)|x− y|,

|a(t1, s, x)− a(t2, s, x)|2 ≤ K3(t1, t2, s)(1 + |x|2)|t1 − t2|,
(6)

|b(t1, s, x)− b(t1, s, x)|2 ≤ K4(t1, t2, s)(1 + |x|2)|t1 − t2|,
with K > 0, for all s ≤ t ∈ [0, T ] and x ∈ R. Then, the stochastic ϑ-method (5) is
convergent of order 1/2, i.e. there exist a constant C such that

E|Xn − Yn|2 ≤ Ch. (7)

In analogy with stochastic differential case [3, 12], the order of convergence of the
stochastic ϑ-method can be improved [17] by adding further terms in the numerical
approximation, leading to

Yn = Y0 + h

n−1
∑

i=0

(ϑa(tn, ti+1, Yi+1) + (1− ϑ)a(tn, ti, Yi)) +

n−1
∑

i=0

b(tn, ti, Yi)∆Wi

+
n−1
∑

i=0

∂a

∂x
(tn, ti, Yi)b(ti, ti, Yi)

∫ ti+1

ti

∫ s

ti

dWu ds

+

n−1
∑

i=0

∂b

∂x
(tn, ti, Yi)b(ti, ti, Yi)

∫ ti+1

ti

∫ s

ti

dWu dWs.

(8)
where Y0 = X0, and

∂
∂x

denotes the partial derivative with the respect to the second
argument.

As highlighted in [3, 13], the values of increments and the above double integrals
can be obtained as sample values of normal random variables using the transforma-
tions

∆Wi = Vi,1
√
h,

∫ ti+1

ti

∫ s

ti

dWu ds =
1

2

(

Vi,1 +
Vi,2√
3

)

h
√
h,

∫ ti+1

ti

∫ s

ti

dWu dWs =
1

2

(

V 2
i,1 − 1

)

h,

where Vi,1 and Vi,2 are mutually independent N (0, 1) random variables. Therefore,
the improved stochastic ϑ-method assumes the form

Yn = Y0 + h
n−1
∑

i=0

(ϑa(tn, ti+1, Yi+1) + (1− ϑ)a(tn, ti, Yi))

+
√
h

n−1
∑

i=0

b(tn, ti, Yi)Vi,1

+
1

2
h
√
h

n−1
∑

i=0

∂a

∂x
(tn, ti, Yi)b(ti, ti, Yi)

(

Vi,1 +
Vi,2√
3

)

+
1

2
h

n−1
∑

i=0

∂b

∂x
(tn, ti, Yi)b(ti, ti, Yi)

(

V 2
i,1 − 1

)

.

(9)
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Similarly as in [17], suitably approximating the partial derivatives in (9) leads to
the following derivative free method

Yn = Y0 + h

n−1
∑

i=0

(ϑa(tn, ti+1, Yi+1) + (1− ϑ)a(tn, ti, Yi)) +
√
h

n−1
∑

i=0

b(tn, ti, Yi)Vi,1

+
h

2

n−1
∑

i=0

(

a(tn, ti, Yi + a(ti, ti, Yi)h+ b(ti, ti, Yi)
√
h)− a(tn, ti, Yi)

)

(

Vi,1 +
Vi,2√
3

)

+

√
h

2

n−1
∑

i=0

(

b(tn, ti, Yi + a(ti, ti, Yi)h+ b(ti, ti, Yi)
√
h)− b(tn, ti, Yi)

)

(

V 2
i,1 − 1

)

.

(10)
The following theorem exhibits the convergence order of (9)and (10) and its proof

follows analogously as in [17], which corresponds to the case ϑ = 0.

Theorem 2.2. Under the same hypothesis of Theorem 1 and assuming that the
coefficients a and b in (1) and their derivatives up to order 3 are bounded, the
improved stochastic ϑ-methods (9) and (10) have order 1, i.e.

E(|Xn − Yn|2) ≤ Kh2. (11)

3. Stability analysis with respect to the basic test equation. We now study
the stability properties with respect to the basic test equation (2). We observe that
this equation is equivalent to the linear test equation for SDEs

dXt = λXtdt+ µXtdWt

and, as a consequence, the following well-known conditions [10] for the mean-square
and asymptotic stability of the exact solution respectively occur

lim
t→∞

E|X(t)|2 = 0 ⇔ λ+
1

2
µ2 < 0, (12)

lim
t→∞

|X(t)| = 0 w.p.1 ⇔ λ− 1

2
µ2 < 0. (13)

Theorem 3.1. Let x = hλ and y = hµ2. The recurrence relation for the stochastic
ϑ-methods (5), (9) and (10) with respect to the basic test equation (2) assumes the
form

Yn+1 = (α+ βVn,1 + γV 2
n,1 + δZn)Yn, (14)

with

(i) α =
1 + (1− ϑ)x

1− ϑx
, β =

√
y

1− ϑx
, γ = 0, δ = 0 for method (5),

(ii) α =
1 + (1− ϑ)x− 1

2y

1− ϑx
, β =

√
y

1− ϑx
, γ =

y

2(1− ϑx)
, δ =

x
√
y

1− ϑx
for method

(9),

(iii) α =
1 + (1− ϑ)x− 1

2

(

x
√
y + y

)

1− ϑx
, β =

√
y

1− ϑx
, γ =

x
√
y + y

2(1− ϑx)
, δ =

x
√
y + x2

1− ϑx
for method (10),

and Zn = 1
2

(

Vn,1 +
Vn,2√

3

)

.
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Proof. (i) Applying (5) to the test equation (2), we obtain

Yn+1 = Y0 + x

n
∑

i=0

(ϑYi+1 + (1− ϑ)Yi) +
√
y

n
∑

i=0

YiVi.

Hence, by isolating the term with i = n in both sums in the right-hand side,
we have

Yn+1 = Yn + x (ϑYn+1 + (1− ϑ)Yn) +
√
yYnVn,

that gives the thesis by denoting Vn = Vn,1.
(ii) Applying (9) to the test equation (2), we obtain

Yn+1 = Y0 + x

n
∑

i=0

(ϑYi+1 + (1− ϑ)Yi) +
√
y

n
∑

i=0

YiVi,1

+
n
∑

i=0

x
√
yZiYi +

1

2
y

n
∑

i=0

Yi(V
2
i,1 − 1).

The result then follows by arguments similar to those of case (i). The proof
of case (iii) proceeds analogously.

Theorem 3.2. The stochastic ϑ-methods (5), (9), (10) are mean-square stable with
respect to the basic test equation (2) if and only if

∣

∣

∣

∣

α2 + β2 + 3γ2 +
δ2

3
+ 2αγ + βδ

∣

∣

∣

∣

< 1,

where α, β, γ and δ are given in Theorem 3.1.

Proof. By (14) we obtain, passing to the expectations,

E|Yn+1|2

=
(

α2 + β2
E|Vn,1|2 + γ2E|Vn,1|4 + δ2E|Zn|2 + 2αγE|Vn,1|2 + βδEV 2

n,1

)

E|Yn|2,
taking into account that EVn,1 = EV 3

n,1 = EVn,2 = EZn = 0. Since E|Vn,1|2 = 1,

E|Vn,1|4 = 3, E|Zn|2 = 1/3, the result follows.

Theorem 3.3. The stochastic ϑ-methods (5), (9), (10) are asymptotically stable if
and only if

E(log
∣

∣α+ βVn,1 + γV 2
n,1 + δZn

∣

∣) < 0,

where α, β, γ and δ are given in Theorem 3.1.

Proof. By (14), we obtain

Yn =

(

n−1
∏

i=0

Qi

)

Y0,

with Qi = α + βVi,1 + γV 2
i,1 + δZi. Then, the thesis follows from Lemma 5.1 in

[8].

Remark 1. We observe that the recurrence relation (14) for the stochastic ϑ-
method (5) corresponds to the recurrence relation of the Euler-Maruyama version
of the stochastic ϑ-method for SDEs in [2, 8]. Moreover, if we remove from (9) the
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sum involving the derivative ∂a
∂x

, i.e. if we remove the double integral in dWuds
from (8), then it assumes the form

Yn = Y0 + h
n−1
∑

i=0

(ϑa(tn, ti+1, Yi+1) + (1− ϑ)a(tn, ti, Yi)) +
√
h

n−1
∑

i=0

b(tn, ti, Yi)Vi,1

+
1

2
h

n−1
∑

i=0

∂b

∂x
(tn, ti, Yi)b(ti, ti, Yi)

(

V 2
i,1 − 1

)

.

(15)
and the related recurrence relation (14) corresponds to the recurrence relation of
the Milstein version of the stochastic ϑ-method for SDEs in [2], with parameters

α =
1 + (1− ϑ)x− 1

2y

1− ϑx
, β =

√
y

1− ϑx
, γ =

y

2(1− ϑx)
, δ = 0.

Figures 1 and 2 respectively show the regions of mean-square and asymptotic
stability of (5), (9), (10) and (15) with respect to the basic test equation (2).
As visible from these figures, the rectangular and improved rectangular methods
introduced in [16, 17], i.e. those corresponding to ϑ = 0 in (5), (9) and (10), have
only bounded stability regions. Methods (5), (9), (10) and (15) here introduced can
achieve unbounded stability regions with suitable choices of the parameter ϑ ≥ 1/2.
We also observe that the numerical differentiation leading to the derivative free
method (10) has a negative effect on the stability regions.

Moreover, Figure 3 depicts mean-square stability regions for values of ϑ > 1. As
visible from the figure, in this case some methods are A-stable. This issue is coherent
with the evidence highlighted in [9] for stochastic ϑ-methods in the framework of
SDEs.

4. Stability analysis with respect to the convolution test equation. We
now analyze the stability properties with respect to the convolution test equation
(3). To this purpose, the following result first providing recurrence relations is
useful.

Theorem 4.1. Let x = hλ, y = hµ2 and z = h2σ. The recurrence relation for the
stochastic ϑ-methods (5), (9) and (10) with respect to the convolution test equation
(3) assumes the form

(1−ϑx)Yn+2 = (2+(1−2ϑ)x+z+An+1+Bn+1)Yn+1−(1+(1−ϑ)x+An)Yn, (16)

with
(1− ϑx)Y1 = (1 + (1− ϑ)x+ (1− ϑ)z +A0 +B0)Y0

and
An =

√
yVn,1 + ζ(V 2

n,1 − 1) + ηZn, Bn = ψZn,

where

(i) ζ = η = ψ = 0 for method (5),

(ii) ζ = 1
2y, η = x

√
y, ψ = z

√
y for method (9),

(iii) ζ = 1
2 (x

√
y + y), η = x(x+

√
y), ψ = z(x+

√
y) for method (10),

(iv) ζ = 1
2y, η = 0, ψ = z

√
y for method (15),
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Figure 1. Mean-square stability regions in the (x, y)-plane with
respect to the basic test equation (2).

being Zn = 1
2

(

Vn,1 +
Vn,2√

3

)

.

Proof. Applying the stochastic ϑ-methods (5), (9) and (10) to the convolution test
equation (3) we obtain

Yn+1 = Y0+

n
∑

i=0

ϑ(x+z(n−i))Yi+1+

n
∑

i=0

(

(1−ϑ)x+Ai+((1−ϑ)z+Bi)(n+1−i)
)

Yi,

with Ai and Bi given by (i), (ii) and (iii), respectively. This is equivalent to

(1−ϑx)Yn+1 =
(

1+(1−ϑ)x+(1−ϑ)z+An+Bn

)

Yn+

n−1
∑

i=0

(

ϑzYi+1+((1−ϑ)z+Bi)Yi
)

.

The thesis follows by substracting (1 − ϑx)Yn+1 from (1 − ϑx)Yn+2 and suitably
rearranging the involved terms.

Theorem 4.2. The stochastic ϑ-methods (5), (9), (10) and (15) are mean-square
with respect to the convolution test equation (3) if the spectral radius ρ(K) of matrix

K =









0 0 1

−E(An(An+Bn))
(1−ϑx)2 − ν

1−ϑx
µ

1−ϑx

E(βn)− 2µE(An(An+Bn))
(1−ϑx)3 − 2νµ

(1−ϑx)2 E(αn)









(17)
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Figure 2. Asymptotic stability regions in the (x, y)-plane with
respect to the basic test equation (2).

is less than 1, where

µ = 2 + (1− 2ϑ)x+ z, ν = 1 + (1− ϑ)x (18)

and

αn =

(

µ+An+1 +Bn+1

1− ϑx

)2

, βn =

(

ν +An

1− ϑx

)2

.

Proof. With above notation, recurrence relation (16) becomes

(1− ϑx)Yn+2 = (µ+An+1 +Bn+1)Yn+1 − (ν +An)Yn. (19)

Squaring this relation, passing to expectations and employing the relation

(1− ϑx)E(AnYnYn+1) = E(An(An +Bn))E(Y
2
n )

leads to

E(Y 2
n+2) =

(

E(βn)−
2(µ+ E(An+1) + E(Bn+1))E(An(An +Bn))

(1− ϑx)3

)

E(Y 2
n )

− 2ν(µ+ E(An+1) + E(Bn+1))

(1− ϑx)2
E(YnYn+1) + E(αn)E(Y

2
n+1).
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Figure 3. Mean-square stability regions in the (x, y)-plane with
respect to the basic test equation (2) for values of ϑ ≥ 1.

Multiplying Equation (19) by Yn+1, passing to expectations leads to

E(Yn+1Yn+2) = −E(An(An +Bn))

(1− ϑx)2
E(Y 2

n )

− ν

1− ϑx
E(YnYn+1) +

µ+ E(An+1) + E(Bn+1)

1− ϑx
E(Y 2

n+1).

Since from (i)–(iv) of Theorem 4.1 follows that E(An+1) = E(Bn+1) = 0, we obtain






E(Y 2
n+1)

E(Yn+1Yn+2)

E(Y 2
n+2)






= K







E(Y 2
n )

E(YnYn+1)

E(Y 2
n+1)






,

with K given by (17).

We observe that, by taking into account (i)–(iv) in Theorem 4.1, expected values
in (17) can be computed as follows

E(An(An +Bn)) = y + 2ζ2 +
1

3
η2 +

√
yη +

1

2

√
yψ +

1

3
ηψ,

E(αn) =
µ2 + y + 2ζ2 + 1

3η
2 +

√
yη + 1

3ψ
2 + µ

√
yψ + 2

3µηψ

(1− ϑx)2
,

E(βn) =
ν2 + y + 2ζ2 + 1

3η
2 +

√
yη

(1− ϑx)2
,
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Figure 4. Mean-square and asymptotic stability regions in the
(x, y)-plane with respect to the convolution test equation (3) for
the stochastic ϑ-method (5) for several choices of ϑ and z.

with µ and ν given by (18).
Figures 4 and 5 show the mean-square and asymptotic stability regions of above

methods with respect to the convolution test equation (3).

5. Numerical tests. We now present a selection of numerical experiments con-
firming the theoretical expectations regarding the stability properties of methods
(5), (9), (10) and (15) presented in the previous sections.

We first consider the basic test equation (2) with λ = −8 and µ = 2
√
2 and apply

methods (5), (9), (10) and (15) with ϑ = 1/2. The mean-squares of the obtained
numerical solutions over 1000 realizations are depicted in Fig. (6), where it is visible
that the choice of the stepsize has a direct influence on the mean-square stability
properties. This is coherent with the stepsize restrictions shown in Fig. 1: indeed,
for h = 1/2, the corresponding point (x, y) = (−4, 4) lies inside the stability region
only of method (5), while for h = 1/8, the corresponding point (x, y) = (−1, 1) lies
inside the stability region of all methods. The asymptotic stability analysis, leading
to the stability regions in Fig. 2, is now confirmed by the results in Fig. 7: also
in this case, the choice of the stepsize, coherent with Fig. 2, leads to the expected
stable and unstable behaviours.

We next consider the convolution test equation (3) with λ = −4, µ = 2
√
2 and

σ = −8 and apply methods (5), (9), (10) and (15) with ϑ = 1. In correspondence
of h = 1/2, the point (x, y, z) = (−2, 4,−2) is identified in Fig. 5: as visible
in the figure, methods (9) and (15) are unstable, while methods (5) and (10) are
stable. Such a behaviour is coherent with the numerical results obtained in Fig.
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Figure 5. Mean-square and asymptotic stability regions in the
(x, y)-plane with respect to the convolution test equation (3) for
z = −2 and several choices of ϑ.

8 (top), where the mean-squares of the obtained numerical solutions over 1000
realizations are drawn. By considering instead the convolution test equation (3)

with λ = −4, µ = 2
√
5/5 and σ = −128, in correspondence of h = 1/8, the point

(x, y, z) = (−1/2, 1/10,−2) lies inside the stability region of all methods for ϑ = 1.
This stable behaviour is also visible in Fig. 8 (bottom).

The asymptotic stability analysis, leading to the stability regions in Fig. 5, is
confirmed by the results in Fig. 9: also in this case, the choice of the parameters
specified in Fig. 9, corresponding to (x, y, z) = (−1/2, 3,−2) (top) and (x, y, z) =
(−1/8, 3/4,−2) (bottom), leads to the expected unstable and stable behaviours,
respectively.

6. Conclusions. In this paper we have analyzed mean-square and asymptotic sta-
bility properties of a selection of ϑ-methods, i.e. (5), (9), (10) and (15) for the
numerical solution of Volterra stochastic integral equations (1). The analysis has
highlighted mean-square and asymptotic stability properties, which are also con-
firmed in the numerical experiments. Further developments of this research will
regard stability and accuracy analysis of wider families of methods, such as Runge-
Kutta methods for SVIEs (1).

Acknowledgments. This work is supported by GNCS-INDAM. The authors are
very grateful to the anonymous referees for the profitable suggestions which helped
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Figure 6. Mean-square of the numerical solution of problem (2),
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2, obtained by applying methods (5)

(blue), (9) (black), (10) (magenta) and (15) (red) with ϑ = 1/2.
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