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Abstract: Two cracks, initiated from the opposite tips of a 45° inclined central notch, 

were considered in cruciform specimens made of Ti6246. A static load was applied 

along one arm of the specimen and a cyclic load (R=-1) was applied along the other 

arm. Crack propagation was carefully monitored by optical means for different ratios 

of static to cyclic load. The observed crack propagation was simulated using two 

numerical tools, involving two different mixed-mode crack propagation prediction 

methods. The experimental evidence shows that there is a switch in crack propagation 

direction from orthogonal to the cyclic load at low static load levels to orthogonal to the 

static load for high static load levels. Both numerical procedures were able to predict 

this switch, albeit at slightly different static to cyclic load ratios.
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1. Introduction

Three-dimensional crack growth simulations have assumed increased relevance 

over the last few decades. Early work was focused on building the framework to 

appropriately represent cracks with complex geometries, and calculate the related 

Stress Intensity Factors (SIFs) along the crack front [1]. As crack propagation 

capabilities increased, much of the effort went into the development of the framework 

necessary to model the extending crack with minimal user workload, for instance by 

Finite Element Method (FEM) codes, such as FRANC3D [2], CRACKTRACER3D [3], 

ZENCRACK [4], and by Dual Boundary Element Method (DBEM) codes, such as 

BEASY [5]. As shown in recent works, these methods nowadays allow to perform 

automatic 3D fatigue crack growth simulations for cracks in large structures [6-7], in 

the presence of residual stresses generated by plastic deformations [8-12] and with 

allowance for load spectrum effects [13]. Additionally, hybrid FEM - DBEM global-local 

approaches have been proposed along the years [14-16]: these approaches take 

advantage of both the FEM versatility when modelling the global problem, and of the 

higher efficiency of DBEM for simulating crack-growth in restricted subdomains. An 

overall extended review on the numerical codes nowadays available for modelling 

fracture can be found in [17].

In the past, non-planar 3D crack growth algorithms typically utilized 2D mode I/II 

crack growth theories that worked well for a wide range of engineering applications. 

Traditional crack growth criteria, such as the Maximum Tangential Stress (MTS) 

criterion [18], assume proportional loading (KII/KI = constant during one cycle), and 

predict crack growth along a KII  0 path. Sih [19] proposed the Minimum Strain 

Energy Density criterion (MSED) to govern the direction of the crack for 2D mixed-

mode situations. According to that criterion, the crack grows in the direction in which 

the strain energy density is minimum. Sih also extended the MSED criterion to 3D 

problems in  [20]. Nevertheless, the criterion captures only the deflection angle  and 

it is unable to predict the twist angle  Therefore, it cannot predict non-planar fracture 

propagation in the presence of Mode-III loading, and it is difficult to apply the criterion 

when mixed-mode I/II/III fracture occurs. To overcome this limitation, Schöllmann [21] 



proposed a Maximum Principal Stress (MPS) criterion by introducing an equivalent K-

value based on the three basic fracture modes. It assumes that the crack will grow 

radially from the crack front and perpendicular to the maximum principal stress if such 

stress as soon as the latter reaches a critical value. Dhondt [22] uses a similar but not 

quite identical approach assuming that crack propagation takes place orthogonal to the 

largest principal stress of the asymptotic stress field. The method yields an equivalent 

K-factor and a value for  and  along the crack front.  Ayatollahi and Saboori [23] 

recently extended MTS and MSED criteria to general mixed-mode I/II/III fractures 

allowing to calculate both  and  fracture angles numerically. Hussain et al. [24] 

proposed an Energy Release Rate (ERR) criterion to predict the direction and 

extension of crack growth in Mode-I and Mode-II states. They derived an ERR 

expression using a rigorous elasticity approach and use that expression to predict the 

direction and extension of crack growth.

Nevertheless, with the advance of the technology to model nonplanar cracks in 

complex geometries the problem of the crack path assessment has become more 

demanding, requiring propagation criteria that include HCF/LCF interaction, Mixed 

Non-Proportional Loading (MNPL), fracture mode asymmetry and both elastic and 

fracture resistance anisotropy. For non-proportional loading, the relative proportions of 

KI, KII and KIII vary with time throughout the cycle making the setup of effective crack 

path criteria more complicated. MNPL can result from any structural loading 

configuration wherein steady and cyclic loads are simultaneously acting along different 

directions, as for a turbine blade where the steady state centrifugal load (LCF) couples 

with the blade vibrations (HCF, Fig. 1).

In aero engines, the use of blisks (blade integrated disks) is state of the art in all 

compressor stages due to the significant weight savings compared to a configuration 

in which the blades are mounted in disk slots. Due to this type of design the question 

arises whether a crack in the blade initiated and propagating due to the HCF-loading 

(resonance vibrations during flight) may turn into the disk due to the centrifugal LCF-

loading (which is nearly constant during a flight) and ultimately lead to a possibly 

catastrophic disk failure. 

Cruciform specimens have been widely and successfully used in the last years to study 

propagating cracks undergoing multi-axial loading conditions [25-32]. This generally 



allowed to determine carrying capacity of real damaged structural elements 

undergoing multiaxial loading conditions, or to look for patterns in the crack growth with 

variations of dominant parameters, such as loading biaxiality, temperature, material 

properties, etc. Nevertheless, few information was found in the literature to understand 

the crack growth directions of cracks in cruciform specimens subject to various ratios 

of static loads in one direction and dynamic loads in the second direction.

The basic idea beyond this work was to avoid the complex modelling of a blisk by 

means of the simpler modelling and testing of cruciform specimens (Fig. 1). To this 

aim, a crack was introduced under 45° in the cruciform specimens. The LCF loading 

was simulated by a static load along one arm of the cruciform, whereas the HCF 

loading was simulated by a cyclic load (at a frequency of 5 Hz) in a direction 

perpendicular to the static load. Tests were performed for different ratios of static to 

cyclic load. The resulting crack propagation direction and crack propagation rate were 

monitored and compared with predictions from FEM and DBEM.

Figure 1: typical LCF and HCF loading in a blisk and corresponding 

cruciform specimen



In this context it is important to point to the assumptions made and the techniques used 

in the numerical simulations:

- Due to the rather low load level plasticity is limited to the crack tip, so K-based 

linear elastic  fracture mechanics is used. No plastic stress intensity factor such 

as explained in [31] is needed.

- The crack propagation (size and direction) is solely based on the asymptotic 

stress field, i.e. based on KI, KII and KIII. No T-stress [27] or critical distance 

concept [26] is used.

- Propagation is assumed to be driven by Mode-I, i.e. along a path for which KII 

 KIII  0.

- Crack propagation is calculated by applying an appropriate crack propagation 

law to the local K-values along the crack front. Therefore, no global crack 

propagation laws with constants based on the ratio of the loading along each 

arm of the cruciform specimen such as in [29] is derived.

The present article is organized as follows: at first the experimental set-up for the 

cruciform specimen tests is described. Subsequently, the algorithmic approach for the 

numerical calculation of multi-axial mixed-mode crack propagation used in 

CRACKTRACER3D (FEM) and BEASY (DBEM) is explained. Finally, the experimental 

tests are numerically simulated and the corresponding results are compared.

2. Experimental set-up

A biaxial testing machine with two servo-hydraulic actuators per axis was used to 

perform the cruciform tests [33]. The actuators are connected in a pairwise modal 

control scheme, so that the center of the specimen remains at the initial position during 

the whole test. All tests discussed in this paper have been performed under room 

temperature with load-controlled conditions for both axes. The cruciform specimen 

used [33-34] is manufactured out of slabs of the material Ti6246 and displayed in 

Figure 2 together with the crack starter notch. Within the test, the crack growth was 

monitored by both an Alternating Current Potential Drop (ACPD) measurement system 



as well as a cycle synchronized optical camera system. After the tests the photographs 

were processed by using the DIC-software GOM-Correlate together with a self-written 

automatic crack detection tool based on the Dijkstra-Algorithm.

The crack starter notch was manufactured by means of electrical discharge machining 

with a specially manufactured electrode representing the negative form of the crack 

starter notch achieving notch radii in the range of 0.1 mm. The surface condition of the 

specimens has been produced by finely turning. 

      

(a)                                                               (b)

                                       (c )                                            (d)



Figure 2: Geometric details of the cruciform specimen and of the crack starter notch 

In this paper the results of the three tests outlined in Table 1 are discussed and 

theoretically re-evaluated.

 

Cyclic loadTest No.

(-)

Load step

(-)

 Static Load 

Force 

(kN)

Force 

Amplitude (kN)

R-Ratio

(-)

Frequency

(Hz)

I 1 24.0 8.0 -1 5

1 2.0

2 12.0

II

3 24.0

16.0 -1 5

1 3.0

2 12.0

3 18.0

III

4 12.0

24.0 -1 5

Table 1: Test Matrix Overview.

The load in test I was chosen in such a way that the resulting stress level  in the 

uncracked specimen is well within the linear elastic range (about 400 MPa) and that 

the ratio of the cyclic load to the static load is comparable to the ratio of the HCF loading 

to the LCF loading in a real blisk. Therefore, the K-concept is fully adequate to evaluate 

the crack propagation (small scale yielding at the crack tip) and no plastic analyses are 

necessary. Test II and III were triggered based on the experimental outcome of test I. 

This will be discussed in section 5.

For all specimens the angle  as well as the total crack length  have been 

determined at both sides utilizing a measuring microscope. Here, values of 

 for the crack angle and initial crack lengths of = 44.2° ± 0.8° = 1.97 mm ± 0.13 



 have been measured. The orientation of the crack was chosen such that no initial mm

bias arises as to the direction of crack propagation w.r.t. the loading axes. The length 

of the initial crack is based on the experimental capabilities and the resulting K-values 

(not too small in order to get crack propagation and not too large such that enough life 

is left to get a large crack before failure).

For all tests, a pre-cracking procedure has been carried out in order to produce two 

initial cracks from the two notch tips. Only for the pre-cracking phases, cyclic loads 

with R=0.1 and f=5 Hz were applied to both cruciform axes and, starting from an initial 

load  , loads were increased stepwise based on the fact whether a crack max =  8 kN

has been initiated or not. After successfully producing a crack with the potential to grow, 

the load was stepwise reduced to its initial value in order to let the crack grow out of 

the major part of the generated plastic zone. 

3. Description of the FEM procedure

The numerical simulations were performed with the MTU software CRACKTRACER3D. 

It uses an iterative procedure to calculate the crack propagation of an arbitrary three-

dimensional crack. Each iteration consists of an automatic meshing procedure for the 

structure with the actual crack (preprocessing step), a subsequent linear elastic finite 

element calculation and, finally, the determination of the K-values and a crack 

propagation increment (postprocessing step). In the preprocessing step part of the 

mesh for the uncracked structure (the so-called domain – it corresponds to the roughly 

square middle part in Fig. 3) is deleted and remeshed with a collapsed hexahedral 

mesh at the crack front and a tetrahedral mesh elsewhere. (Details in Fig. 4). The  

hexahedral mesh is a focused mesh with collapsed quarter-point elements at the crack 

tip able to generate the correct linear elastic  stress and strain singularity. In 1/

between the focused mesh at the crack tip and the mesh outside the domain 

tetrahedral elements are used out of flexibility reasons. The resulting meshes are 

connected using multiple point constraints. Any existing boundary conditions and loads 

are subsequently mapped from the uncracked mesh onto the cracked configuration. 

The purpose of the finite element calculation is the determination of the stresses at the 



integration points ahead of the crack front, from which the K-factors are calculated. 

Next, the KI, KII and KIII-factors are converted into an equivalent K-factor Keq and a 

propagation direction (characterized by the deflection angle  is calculated. This finally 

leads to a crack propagation increment by use of a modified Walker law, after which 

the whole procedure is started again. The calculation of the equivalent K-factor and 

the crack propagation direction are based on the largest principal value and the 

corresponding principal plane of the asymptotic stress field at the crack tip. This 

corresponds to the assumption that the crack propagates in mode-I. For details of the 

procedure the reader is referred to [34], for the modified Walker law [35] may be 

consulted.

Figure 3: Cracked mesh for an intermediate crack propagation state of test I; 

the cyclic load is applied from left to right



      

Figure 4: Mesh details in the crack vicinity (detailed view of the mesh in Fig. 3)

For the current calculations a mission was defined by three loading steps: the static 

(tensile) loading in x-direction, the static loading in x-direction plus the cyclic tensile 

loading in y-direction and the static loading in x-direction minus the cyclic tensile 

loading in y-direction (Figure 5). Each of these three loading steps leads to its own 

combination of KI, KII and KIII and consequently to possibly different values of Keq, 

deflection angle  and twist angle  Therefore, a strategy is needed to determine the 

overall mission crack propagation increment based on the values in the individual steps.



Figure 5: Loading steps in the mini-mission

In CRACKTRACER3D the mission deflection angle is defined as the deflection angle 

of the step (the so-called dominant step) which leads to the highest crack propagation 

rate obtained by substituting Keq in a simple Paris-type crack propagation law. To this 

end, the values of Keq in each step are determined based on KI, KII and KIII by looking 

for the largest principal stress of the asymptotic stress field [22]. They are subsequently 

substituted in a Paris-type crack propagation law in the form (cf. [35]):

  ,                                               (1)=
max ( ,0)

where   is usually chosen as 10-7 m/cycle, and  and  are ( )

temperature-dependent material constants. 

static static+cyclic static-cyclic

KI (MPa.m0.5) 0.49 2.46 -1.47

KII  (MPa.m0.5) 0.83 -2.48 4.14

Keq  (MPa.m0.5) 1.25 4.42 4.03

 (°) -59.7 53.3 -77.4

da/dN (m/cycle) 2.99e-11 1.32e-9 9.99e-10

Table 2a: K-values and deflection angle for a static load of 2 kN



This procedure is illustrated in Tables 2a and 2b for a cyclic load of ±8 kN and a static 

load of 2 kN and 24 kN, respectively. The two individual K-values (KIII is not listed since 

it is zero), the resultant equivalent K-value, the deflection angle and the crack 

propagation rate according to Eq. (1) are shown for the three steps of the mini-mission 

consisting of static, static+cyclic and static-cyclic loading. One notices that step 2 is 

dominant for the low static loading while step 3 is dominant for the high static loading. 

Therefore, for the low static loading the mission deflection angle is taken from step 2 

(53.3°), whereas for the high static loading it is taken from step 3 (-65.0°). 

static static+cyclic static-cyclic

KI (MPa.m0.5) 5.90 7.87 3.94

KII  (MPa.m0.5) 9.93 6.62 13.24

Keq  (MPa.m0.5) 15.00 12.75 17.54

 (°) -59.7 -50.3 -65.0

da/dN (m/cycle) 5.17e-8 3.17e-8 8.26e-8

Tabel 2b: K-values and deflection angle for a static load of 24 kN

Once the dominant step is determined the Keq-values in each loading step are re-

evaluated (yielding Keq,corr) based on this new information. Indeed, in Tables 2a,b Keq 

is the highest principal asymptotic stress (normalized through multiplication by , see 

[3] for details; any further occurrence of the asymptotic stress in this article will be 

assumed to be normalized in the same way) in each loading step separately. Now, this 

is corrected into the principal asymptotic stress which acts in a principal plane as 

closely as possible to the principal plane corresponding to the highest principal 

asymptotic stress in the dominant step. This is verified by taking the scalar product of 

the normal to the planes. This can lead to the selection of a principal asymptotic stress 

in some loading steps which is not the highest for that loading step. In the present 

example this is the case for loading step 1 and loading step 3 for the 2 kN static load. 

This is illustrated in Table 3. For a static loading of 24 kN no change in principal planes 

took place and the corrected Keq,corr values are identical to the uncorrected ones. 



static static+cyclic static-cyclic

Keq(MPa.m0.5) 1.25 4.42 4.03

Keq,corr(MPa.m0.5) 0.43 4.42 -1.15

Table 3: Corrected equivalent K-values and deflection angles for a static load of 2 kN

At the present stage the procedure explained in the previous paragraphs has led to 

equivalent K-factors in each loading step separately and a mission deflection angle 

(one angle applicable to the whole mission). Next, cycle extraction is applied to obtain 

a mission crack propagation rate. To that effect a suitable one-dimensional function 

has to be identified. The da/dN values from Eq. (1) seem suitable, since they unite the 

effect of stress through Keq and the effect of temperature through the material 

constants m and ref. What is lost, however, is the sign of Keq, leading to exclusively 

positive R-values for the extracted cycles. To remedy this a new crack propagation 

rate is calculated based on  Keq,corr  in each loading step separately according to

  ,                                               (2)= | | 
| |

Notice that the value of da/dN in Eq. (2) can be negative (if Keq,corr is negative). This 

ensures the extraction of cycles with negative R-values (R=Keq,corr,min/Keq,corr,max). Due 

to the correction of the Keq values for the static load of 2 kN the corresponding da/dN 

values in Table 2a, which were used to determine the dominant loading step, are 

changed according to Eq. (2), leading to the values in Table 4 (notice the negative 

da/dN values for loading step 3). These are the values used for cycle extraction.

static static+cyclic static-cyclic

(da/dN)-dominant 2.99e-11 1.32e-9 9.99e-10

(da/dN)-cycle extraction 1.18e-12 1.32e-9 -2.38e-11



Table 4: da/dN (m/cycle) curves for a static loading of 2kN used for determining the 

dominant step and for performing the cycle extraction

Since for a static loading of 24 kN the equivalent K-values were not changed and all of 

them are positive the da/dN values to which the cycle extraction is applied coincide 

with the ones used to determine the dominant step (Table 2b).

The cycle extraction is performed with the rainflow algorithm according to the method 

explained in [36]. Each cycle is characterized by Keq,corr,min and Keq,corr,max. Let the 

temperature corresponding to Keq,corr,max be called Tmax and similarly for the minimum 

equivalent K-factor. Then, the procedure in CRACKTRACER3D is such that the cycle 

is evaluated once at the temperature Tmax  and once at the temperature Tmin. 

Subsequently, the highest crack propagation rate is taken.

4. Description of the DBEM procedure

Numerical simulations were also performed with the DBEM code BEASY [37]. The 

portion of the cruciform specimen circumscribed by the dashed (red) line in Fig. 2b, 

with related boundary conditions on the cutting surfaces, was considered as the 

reference model to be used in the DBEM environment. 

The DBEM mesh shown in Fig. 6 comprises nearly 3900 linear boundary elements, 

rising up to 6000 elements for the last propagation steps (when larger cracks and finer 

meshes are required). The choice of using linear rather than quadratic elements is 

given by the fact that contacts between crack faces were considered (faster 

convergence was achieved).

The initial notch with two cracks, initiated at 45° at the two opposite tips after the 

precracking phase, was taken as the initial configuration for the simulations (Fig. 6b). 

The total length of the notch and cracks was 2 mm, corresponding to the specimen 

tested experimentally.



(a)                                                      (b)

Figure 6: DBEM model used for the numerical analyses (a) with highlight of the crack 

insertion area (b)

In order to be consistent with the FEM modelling of the experimental tests, preliminary 

FEM analyses were used to calculate the traction distributions on the DBEM cutting 

surfaces (those crossed by the dashed (red) line in Fig. 2b). A model like that shown 

in Fig 3 but without the crack was used for such a purpose. The FEM stresses 

evaluated on the cut surfaces were applied on the corresponding DBEM surfaces. In 

addition, springs of negligible stiffness were applied on few DBEM elements of the 

model in order to prevent rigid body motion. The final DBEM model with all loads 

applied is shown in Fig. 6a.

J-paths (rings of internal points) were introduced along the two crack fronts in order to 

compute the corresponding J-integral values. Such J distributions were then used to 

compute KI, KII and KIII values along the crack front by means of the procedure 

presented in [38-39].

The mission profile considered for the analyses was defined by means of two load 

cases:



1. a static tensile load in x-direction plus a cyclic tensile load in y-direction (load 

case A)

2. a static tensile load in x-direction plus a cyclic compressive load in y-direction 

(load case B).

Several criteria to determine Keq by combining the three basic fracture modes have 

been proposed along the years, such as: Maximum principal [40], sum of squares [41] 

and Yaoming-Mi [42]. In particular, the Yaoming-Mi formula (Eq. (3)) was applied in 

this work to obtain an equivalent Keq value for further use in the Walker crack growth 

law (Eq. (4)) [43]. A comparison among various formulations for calculating Keq can be 

found in [44]. [5] provides a comparison between formulations for calculating deflection 

angles and crack growth rates, as well as for Keq.

The stress ratio R considered in the Walker crack-growth law is calculated as in Eq. 

(5). Material fracture data are listed in Table 5. In particular, the Walker coefficient w 

was optimized in such a way that the classical Walker law used for the DBEM agreed 

with the modified Walker law used by MTU.

E [GPa]  [-] C [mm/cycle/(MPa mm0.5)^m]] m [-] w [-]
120.4 0.32 4.83828E-13 3 0.67

Table 5: Main mechanical properties and Walker law parameters for Ti6246

The crack-growth angle i was computed by means of the Minimum Strain Energy 

Density (MSED) criterion [19, 20] for each load case, i.e. load cases A and B. The 

criterion predicts the deflection angle of the crack for each load case i by minimizing 

the strain energy density calculated as a function of the three basic K-values (Eq. (6)) 

[20]. No twist angle  can be calculated by means of MSED criterion [17].  Finally, the 

overall deflection angle  was calculated by a weighted average of the single i by 

means of Eq. (7), the weights of which are the Keq values for each load case.

(3)= ( + | |)2 + 2 2

(4)da dN = C (1 R)1 w m



(5)R = K , /K ,

(6)( ) = 11( ) 2 + 13( ) + 22( ) 2 + 33( ) 2

(7)=
| | + | |

| | + | |

For some combinations of static and dynamic load magnitudes, load case 2 provided 

negative KI values, with no physical meaning since it points to a mutual intersection of 

the crack faces. To circumvent this drawback, a nonlinear contact condition, with 

allowance for friction (friction coefficient f=0.3) was applied to the crack face elements 

for such load cases. In this way, the resulting KI values became nearly null, the related 

KII and KIII decreased due to friction effects, providing a direct impact on the Keq values 

and eventually on the final growth angle  (Eq. 7).

5. Comparison of the numerical and test results for  the cruciform specimens

5.1. Numerical and experimental results for test I.

The first test (test I in Table 1) is characterized by a static loading of 24 kN and a 

dynamic loading of ±8 kN. The experimental crack paths are shown in Fig. 7a, whereas 

the numerical crack paths provided by CRACKTRACER3D and BEASY are visualized 

in Figures 7b and 7c, respectively. Please note that in order to simplify the comparison 

between the numerical and experimental results all figures in this section are oriented 

such that the static load is applied from the lower left to the upper right of the figure, 

whereas the cyclic load is applied from the upper left to the lower right.



Figure 7a: Experimental test result of Test I

Figure 7b: FEM numerical crack propagation for Test I



Figure 7c: DBEM numerical crack propagation for Test I.

In this test the crack propagation takes place in a direction orthogonal to the static load. 

This is confirmed by the numerical simulations both in CRACKTRACER3D and BEASY. 

Since the crack is open during the complete loading cycle no contact formulation in 

between the crack faces was needed. Not only the shape of the crack but also the 

crack length vs. the number of cycles is well reproduced by the two numerical 

approaches. This is shown in Figure 8, where “Size a” and “Size b” refer to 

measurements on the upper and lower surface of the cruciform specimen.



Figure 8: Crack length versus number of cycles for test I.

In summary, for this case (Test I in Table 1) it is possible to assess that:

the calculation of the equivalent K-factor in combination with a classical crack 

propagation law calibrated by mode-I test data yields a correct crack 

propagation prediction

the procedures for the propagation angle calculations turn out to be correct.

Transferring the results of test I to the blisk case, it means that a crack originating in 

the blade of a blisk due to vibrational loading (HCF) may in principal well turn into the 

disk and lead to a catastrophic failure due to the centrifugal loading (LCF). Therefore, 

each newly designed blisk has to be the subject of intensive investigations checking 

whether for this concrete blisk cracks starting in the  blade may turn into the disk. 

Now, it is clear that in the absence of static loading the crack propagation direction 

should be orthogonal to the cyclic loading. This means that a transition of the crack 

propagation direction from orthogonal to the cyclic loading to orthogonal to the static 

loading must take place for a static load in between 0 kN and 24 kN (always 



considering a cyclic load of ±8 kN). In order to assess the value of such a transition 

static load, further experimental and numerical tests were performed. This was out of 

scientific interest rather than to answer questions from the engineering design 

department.

5.2. Experimental results for tests II and III (Table1)

Test II was scheduled with a static load much smaller than the cyclic load. In order to 

avoid problems with potential residual stresses the cyclic load was increased 

compared to test I to ±16 kN and a static load of 2 kN was applied (test II). Crack 

propagation due to this loading only occurred at the top crack front (Fig. 9a) and was 

indifferent, i.e. not perpendicular to the static nor to the cyclic load but somewhere in 

between. This crack propagation pattern was deemed to be due to residual stresses. 

Therefore, the static force was increased in a new loading step to 12 kN in order to 

overcome the residual stresses. Under the latter loading a crack started from the lower 

front (Fig. 9b) and grew orthogonal to the static load, whereas the crack at the upper 

front continued to grow indifferently. Since scaling should not alter the crack path, this 

test shows that the application of 6 ±8 kN leads to crack propagation orthogonal to the 

static load at least at the lower front. Further increasing the static load to 24 kN led to 

crack growth orthogonal to the static load at both crack fronts (Fig. 9c).

(a)                                    (b)                                      (c)

Figure 9 Experimental results for test II



In order to further investigate the range of low static loads and overcome any potential 

residual stresses the static and cyclic load were increased in test III to 3 kN and ±24 

kN, respectively. The experimental result is shown in Fig. 10a. At the bottom front the 

crack grows indifferently, whereas at the top front it propagates after some indifferent 

crack growth orthogonal to the cyclic load. Increasing the static load to 12 kN in the 

next load step does not change this pattern (Fig. 10b). A further increase to 18 kN 

leads to bifurcation with secondary cracks propagating orthogonal to the static load 

(Fig 10c). Reducing the static load again to 12 kN leads to propagation of the cracks 

which were created before the bifurcation (Figs. 10d-e). This seems to indicate that the 

cracks grow orthogonal to the cyclic load for a static load below 4 kN and orthogonal 

to the static load for a static load above 6 kN (all loads scaled for a cyclic load of ±8 

kN). 

(a)                                     (b)                                    (c)

                                             (d)                                      (e)

Figures 10: Experimental results for test III.



5.3 FEM and DBEM results for various static to cyclic load ratios

Although this experimental outcome is highly complex (bifurcation, indeterminate crack 

propagation maybe due to residual stresses) an attempt was made to verify the 

simplified message formulated in the preceding paragraph by use of numerical 

methods. First, numerical simulations were performed with CRACKTRACER3D for 

values of the static load varying between 0 kN and 24 kN and a cyclic load of ±8 kN. It 

was found that below 2 kN the propagation was orthogonal to the cyclic load. Above 

2.5 kN it was orthogonal to the static load. In between it was indeterminate (Fig. 11a-

c; the cyclic load is applied from upper left to lower right). The change in direction was 

accompanied by a change in dominant loading step: below the shift the static load plus 

the cyclic load step was dominant, above the shift the static load minus the cyclic load 

step was dominant. Notice that Figure 11a is the superposition for the propagation at 

0 kN and 2 kN static load, whereas Figure 11c is the superposition for the propagation 

at 2.5 kN, 3 kN, 4 kN, 5 kN, 10 kN, 15 kN, 20 kN and 24 kN. Therefore, these pictures 

are slightly blurred.

Fig 11a



Fig 11b

Figure 11c

Figure 11: Crack propagation due to a static load below 2kN (a), at 2.25 kN (b, 

zoomed-in view) and above 2.5 kN (c); the cyclic load is applied from upper left to 

lower right



Similar calculations were performed with BEASY. The results are summarized in 

Figure 12. The cyclic load was again set to ±8 kN and various crack-growth simulations 

were performed for various levels of the static load. It was found that the cracks 

propagate orthogonal to the static load when the latter has a magnitude higher than 

2kN, whereas the cracks propagate parallel to the static load when such load has a 

nearly null magnitude. Figure 12 shows also the crack paths predicted with a 0 kN ± 8 

kN and 0 kN + 8 kN (i.e. cyclic load replaced by a tensile static load) load. As expected, 

the 0 kN + 8 kN loading leads to propagation perpendicular to the cyclic load. Adding 

also the contribution of the negative part of the cyclic load (thus applying 0 kN ± 8 kN) 

leads to a smoother crack deflection but still perpendicular to the cyclic load.

It is worth noting that these simulations have been performed with contact between the 

crack surfaces. This required the explicit modelling of the initial notch in order to 

prevent an unrealistic contact between the notch surfaces.

The transition from propagation perpendicular to the cyclic load to perpendicular to the 

static load occurs when the static load is very small compared to the cyclic load 

amplitude. Such a transition occurs with the DBEM at a static load of about 1 kN which 

is significantly smaller than the transition value of 2.25 kN computed by 

CRACKTRACER3D and the estimated transition value of nearly 5 kN in the tests. 

An explanation for such a low value for the transition load provided by the DBEM 

simulations can be related to the contact conditions between the crack faces. Indeed, 

Tables 2a and 2b show that the transition at increasing static load takes place as soon 

as the static-cyclic loading case becomes dominant in terms of Keq w.r.t. the 

static+cyclic load case. Figures 13a and 13c show that contact takes place for the 

static+cyclic load case. The accompanying friction reduces the corresponding Keq-

values. For the static-cyclic load case contact is less relevant (Figure 13b and 13d), 

and no appreciable changes in Keq are to be expected for such load cases. Therefore, 

the higher the friction between the crack faces is, the lower the transition load will be.

.



Figure 12: Crack propagation direction due to different static loads. The cyclic load is 

applied from top left to bottom right

(a)                                               (b)



(c )                                                 (d)

  Figure 13: DBEM deformed crack shape during the propagation for cyclic loads of 

±8 kN (vertical arrows) and a static load of (a,b) 1 kN or (c,d) 4 kN.(horizontal arrows)

The prediction of the crack propagation vs. the number of cycles with 

CRACKTRACER3D is shown in Figure 14. For small static loads the crack propagation 

is relatively fast. Close to the transition load of 2.25 kN the propagation slows down 

considerably: for a 2.5 kN static load the number of cycles needed to reach a crack 

propagation of 0.4 mm is 3.5 times larger than for a static load of 2.25 kN. At this load 

the crack propagation direction changes from orthogonal to the cyclic load to 

orthogonal to the static load. For increasing static loads the propagation slowly 

accelerates to yield a crack propagation level similar to the case with zero static load.



Fig. 14: Crack propagation for different static loads (CRACKTRACER3D)

A similar picture arises for the numerical analysis with the DBEM (Fig. 15). Without 

static load the crack propagation rate reaches a relatively high level. Slightly increasing 

the static load (transition region) the propagation drops down by a factor of two. With 

a further increase of the static load the crack propagation rate returns to levels 

corresponding to a zero static load. This means that adding a relatively small static 

load to the cyclic one produces a switch in the crack growth direction accompanied by 

a notable increase of the residual fatigue life.



Fig. 15: DBEM crack propagation for different static loads

Conclusions

In order to investigate whether cracks initiated in the transition radius between blade 

and disk of a blisk and propagating due to HCF vibrational loading may turn into the 

disk driven by LCF centrifugal loading, cruciform specimen tests were set up subjected 

to a static loading in one direction and a cyclic loading in the other direction. At realistic 

ratios of cyclic to static loading the crack propagates orthogonal to the static loading, 

i.e. into the disk. This is confirmed quantitatively by the predictions of two different 

software programs, therefore adding to the credibility of the crack propagation criteria 

used in each of them. For smaller static to cyclic load ratios the crack propagation 

switches into a direction orthogonal to the cyclic loading. Although the test results are 

not easy to interpret due to bifurcation and residual stresses it looks as if the numerical 

codes underestimate the static to cyclic loading ratio of the switching point. Further 

experimental evidence and numerical calculations are deemed necessary to clarify this 

latter point.
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