
A

Documenting Design-Pattern Instances: a Family of Experiments on
Source Code Comprehensibility

GIUSEPPE SCANNIELLO, University of Basilicata
CARMINE GRAVINO, University of Salerno
MICHELE RISI, University of Salerno
GENOVEFFA TORTORA, University of Salerno
GABRIELLA DODERO, Free University of Bozen-Bolzano

Design-patterns are recognized as a means to improve software maintenance by furnishing an explicit spec-
ification of class and object interactions and their underlying intent [Gamma et al. 1995]. Only a few em-
pirical investigations have been conducted to assess whether the kind of documentation for design-patterns
implemented in source code affects its comprehensibility. To investigate this aspect, we conducted a family
of four controlled experiments with 88 participants having different experience (i.e., professionals and Bach-
elor, Master, and PhD students). In each experiment, the participants were divided into three groups and
were asked to comprehend a non-trivial chunk of an open-source software system. Depending on the group,
each participant was, or was not, provided with graphical or textual representations of the design-patterns
implemented within the source code. We graphically documented design-pattern instances with UML class
diagrams. Textually documented instances are directly reported in source code as comments. Our results
indicate that documenting design-pattern instances yields an improvement in correctness of understanding
of source code for those participants with an adequate level for experience.

Categories and Subject Descriptors: D.2.0 [Software Engineering]: General; D.2.7 [Software Engineer-
ing]: Maintenance

General Terms: Design; Documentation; Human Factors

Additional Key Words and Phrases: Design-Patterns, Controlled Experiment, Maintenance, Replications,
Software Models, Source Code Comprehension

ACM Reference Format:
ACM Trans. Softw. Eng. Methodol. V, N, Article A (January YYYY), 40 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
In the context of building and town design, Alexander et al. [1977] asserted that a
“pattern describes a problem which occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you
can use this solution a million times over, without ever doing it the same way twice”.
This definition of pattern also holds for the design and development of object-oriented
software [Gamma et al. 1995]. In such a context, a design-pattern includes a name,
an intent, a problem, its solution, some examples, and more. The core of both kinds
of design-pattern definitions concerns the solution to a problem in a given context. In
software development, such a solution is named design-pattern instance or also design
motif [Guéhéneuc and Antoniol 2008].

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1049-331X/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

carmine gravino
Copyright © held by the Association for Computing Machinery, Inc. (ACM).
Authors version
The publisher version is available at https://dl.acm.org/doi/10.1145/2699696

A:2 G. Scanniello et al.

Gamma et al. assert that developers would benefit from the documentation of design-
patterns to comprehend source code, making its modification and evolution an easier
task [Gamma et al. 1995]. Although there are a number of empirical investigations
on design-patterns (e.g., [Prechelt et al. 2001; Bieman et al. 2003; Cepeda Porras and
Guéhéneuc 2010; Jeanmart et al. 2009; Khomh and Guéhéneuc 2008; Di Penta et al.
2008; Vokác 2004; Vokác et al. 2004; Krein et al. 2011]), only a few evaluations have
been conducted to study this conjecture, namely there is a lack of investigations to
assess the benefit of documenting design-pattern instances on source code compre-
hensibility in the context of software maintenance and evolution [Krein et al. 2011;
Gravino et al. 2012; Prechelt et al. 2002; Gravino et al. 2011].

To obtain an initial insight into the usefulness of the documentation of design-
pattern instances (or simply pattern instances or instances, from here on), some
of the authors (the first four) of this paper carried out two experiments as a pilot
study [Gravino et al. 2011]. These experiments aimed to assess the benefit of docu-
menting instances with respect to not documenting them at all. The first experiment
studied instances graphically documented by using the class diagrams of the Unified
Modeling Language (UML) [OMG 2005], while instances textually documented were
considered in the second experiment. These results provided evidence that document-
ing pattern instances improves source code comprehensibility with respect to not doc-
umenting them at all. This effect is even clearer in the case of graphically documented
instances. To further investigate the effect of the kind of design-pattern instance doc-
umentation on source code comprehensibility and to study any possible effect of the
developers’ experience [ISO 1991], we have performed a series of empirical investi-
gations as a family1 of controlled experiments. This family includes four experiments
with 88 participants having different levels of experience (i.e., professionals and Bach-
elor, Master, and PhD students). The original experiment was carried out with profes-
sional developers and preliminarily findings are shown in [Gravino et al. 2012]. The
results of this experiment suggest that professionals provided with graphically and
textually documented pattern instances achieved a significantly better comprehension
of source code than those provided with source code alone. Therefore, we provide here
the following new contributions: (i) three new experiments have been added; (ii) the
analysis procedure of the already published experiment has been updated; (iii) the ef-
fect of the participants’ experience has been analyzed; (iv) a more thorough discussion
of the obtained results is reported; and (v) practical implications for the results are
presented and discussed. Our family of experiments does not include the pilot study
mentioned above [Gravino et al. 2011].

The experiments in our family were grounded on theoretical foundations to avoid
casting serious doubts on their validity. To this end, we took advantage of the frame-
work by Aranda et al. [2007], which has been properly adapted here to better handle
the problem at hand. In addition, each experiment was carried out by following recom-
mendations provided by Juristo and Moreno [2001] and by Wohlin et al. [2012].

The paper is organized as follows. In Section 2, we discuss how we deal with com-
prehensibility in our family of experiments. In Section 3, we present the design of the
experiments according to the guidelines suggested by Jedlitschka et al. [2008]. In Sec-
tion 4, we show the achieved results, while their discussion is presented in Section 5.
Related work is shown in Section 6, while remarks and future work conclude the paper.

1A family is composed of multiple similar experiments that pursue the same goal in order to build the
knowledge that is needed to extract and to abstract significant conclusions [Basili et al. 1999]. Families of
experiments allow researchers to answer questions that are beyond the scope of individual experiments and
to generalize findings across studies. In addition, families of experiments can contribute to the conception of
hypotheses that may not be suggested by individual experiments.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:3

2. DEALING WITH SOURCE CODE COMPREHENSIBILITY
Any study on comprehensibility should consider many variables [Aranda et al. 2007].
Some variables are affected by comprehensibility (affected variables or dependent vari-
ables), while others affect comprehensibility (affecting variables or moderator vari-
ables). In Table I, some dependent and moderator variables are highlighted with re-
spect to source code comprehensibility. In particular, in this table we summarize our
modification to the framework by Aranda et al. [2007].

The larger the number of controlled dependent/moderator variables, the better it is.
In controlled experiments some factors may be possible to control, while others may be
difficult or impossible to control [Wohlin et al. 2012]. To increase the confidence in the
outcomes, we had to select and study a number of dependent and moderator variables.
The following are the moderator variables considered in our family of experiments:

— Type of task. Tasks performed by people are facilitated or hindered at varying de-
grees. Comprehensibility for information search or maintenance tasks requires infor-
mation integration and this could lead to different results. We focus here on aspects
related to the general comprehension of source code (e.g., question Q1 in Appendix A)
and to the comprehension of source code with the goal of performing modification
tasks (e.g., question Q12 in Appendix A).

— Experience. Finding competent people is a challenge in most software engineer-
ing studies [Bergersen et al. 2014]. In our family of experiments, we conducted four
controlled experiments. The participants in each experiment had a similar level of
experience with design-pattern development. We classified participants on the basis
of their knowledge on high- and low-level design of object-oriented software systems
and software development and maintenance.

The dependent variables are:

— Correctness of understanding. The degree to which a person correctly answers
questions about source code. This variable estimates the comprehensibility achieved
by people. To assess correctness of understanding, we used the comprehension ques-
tionnaire in Appendix A.

Table I. Moderator (Affecting) and Affected (Dependent) Variables

Kind of Variable Name Description

Moderator

Type of task Tasks performed by people are facilitated or hindered
at varying degrees. Comprehensibility requires the in-
tegration of information (e.g., source code and docu-
mentation) in the people mental model. This could
lead to different results.

(Affecting)

Experience Previous experience with the kind of pattern instance
documentation and with programming and mainte-
nance.

Domain knowledge Previous knowledge with the solution domain of the
system under study and with its application domain.

Problem size Different notations might scale up with variable de-
grees of success.

Dependent

Correctness of understanding The degree to which a person can answer questions
about a comprehension task on source code.

(Affected)

Time Time required to accomplish a comprehension task on
source code.

Confidence Subjective confidence that people display regarding
their own understanding.

Perceived difficulty Subjective judgment about the ease in obtaining infor-
mation through the provided artifacts (e.g., analysis
and design models).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 G. Scanniello et al.

— Time. The time required to answer questions about source code. This variable repre-
sents an approximation for effort. This is almost customary in literature (e.g., [Ricca
et al. 2014]) and it is compliant with the ISO/IEC 9126 standard [ISO 1991], where
effort is the productive time associated with a specific project task.

— Confidence. The subjective confidence that a person shows about his/her own un-
derstanding of the furnished source code. It is expressed for each question in the
comprehension questionnaire.

— Perceived difficulty. It concerns the subjective judgment about the ease in obtain-
ing information through the documentation of a design-pattern instances (if present)
and/or source code.

The theoretical framework by Aranda et al. [2007] was originally conceived to em-
pirically evaluate model comprehensibility. It consists of a sequence of guidelines or-
ganized in the following order:

(1) Selecting the notation. There are several decisions to be taken to reduce as much
as possible biases in the experimentation.

(2) Articulating the underlying theory. The assumptions under which a notation
is useful should be made clear.

(3) Formulating the claims of the notation. The underlying theory is expressed as
a set of claims regarding comprehensibility.

(4) Choosing a control. A baseline for the comparison has to be chosen.
(5) Turning the claims into hypotheses. Claims are turned into testable hypothe-

ses that cover most of the dependent variables.
(6) Informing the hypotheses. The defined hypotheses are informed using frame-

works from cognitive science theory.
(7) Designing and executing the study. Whatever is the empirical method used

for comprehensibility evaluation, some design choices should be taken into account
(e.g., comprehension questionnaire).

In the following subsections, we show how we have instantiated the guidelines in
between Selecting the notation and Informing the hypotheses, while Designing and
executing the study is described in Section 3 (i.e., The Family of Experiments).

2.1. Selecting the notation
Some notations have been proposed for documenting design-patterns and their in-
stances in source code. Many of these notations are based either on UML or on textual
descriptions [Gamma et al. 1995; Heer and Agrawala 2006]. Those based on UML are
widely used in software engineering academic and industrial courses to teach design-
pattern based development [Gamma et al. 1995; Bruegge and Dutoit 2003]. In our
family of experiments, we investigated source code comprehensibility when pattern
instances implemented in it are documented graphically, as proposed by Gamma et al.
[1995] using UML class diagrams (see for example Figure 1(a)), or textually, as done in
JHotDraw2 (see for example Figure 1(b)). In this latter case, textual descriptions are
directly reported in source code as comments (e.g., [Guéhéneuc and Antoniol 2008]),
when design-patterns are intentionally used. In many cases, identifier names (e.g.,
class names) suggest the pattern instances implemented in source code. We selected
these two notations because both are widely used and known in academic and in in-
dustrial contexts, so improving external validity. The kind of documentation for design-

2It is a two-dimensional graphics framework for structured drawing editors. It can be downloaded at
www.jhotdraw.org.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

www.jhotdraw.org

A:5

pattern instances represents the manipulated factor (or independent variable or main
factor) in our family of experiments.

(a)

(b)

Fig. 1. A sample of an instance for the Observer design-pattern: graphically documented (a) and textually
documented (b)

2.2. Articulating the underlying theory
The underlying theory is ideally obtained from the literature by identifying target
users, domains, problem sizes, and required domain experience of people who will use

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 G. Scanniello et al.

a notation. The effect of design-pattern instance documentation on source code com-
prehensibility has been scarcely investigated, therefore, we could not rely on the liter-
ature. Based on our experience, knowledge, and results from our pilot study [Gravino
et al. 2011], we postulated the following claims:

(1) source code comprehensibility increases when documented pattern instances are
used as a complementary information;

(2) graphically documented pattern instances can be exploited by any user with expe-
rience in UML;

(3) textually documented instances require the target user to have some experience in
dealing with source code written by other developers.

Both kinds of documentation are mostly used as a communication mechanism among
developers to make a software implementation (and implicitly the rationale behind it)
clearer and more understandable.

2.3. Formulating the claims
Since source code comprehension increases when documentation is given (e.g., [Ar-
isholm et al. 2006; Budgen et al. 2011; Prechelt et al. 2002; Scanniello et al. 2013]),
we claimed that correctness in understanding unknown source code increases when
pattern instances are documented and given to developers dealing with comprehen-
sion tasks. The use of that documentation should reduce possible misunderstandings
among developers even when they have different level of experience.

2.4. Choosing a control
Our natural choice for the control/baseline was source code without documented in-
stances, and without any reference to pattern instances from source-code identifiers.
We opted for this strategy because it is rather common that professional develop-
ers and students unintentionally (or accidentally) use design-patterns when writing
source code (e.g., [Guéhéneuc and Antoniol 2008]). Therefore, when a different devel-
oper has to comprehend that source code, s/he has to deal with pattern instances that
are not documented at all.

2.5. Turning the claims into hypotheses
A graphical representation of a pattern instance might show a superset of the infor-
mation provided by the corresponding textual representation. For example, in both
representations the roles each class plays within the pattern instance might be indi-
cated, while in a textually documented instance the relationships among abstract and
concrete classes and interfaces might not be reported. Figure 1(a) shows an example of
a graphically documented instance of the Observer design-pattern [Gamma et al. 1995]
within the source code of JHotDraw v5.1. Figure 1(b) shows how the same instance is
explicitly reported within the source code as comment.

The graphical instance shows more information and thus it should improve source
code comprehensibility. For example, from the class diagram in Figure 1(a), we under-
stand that, when a drawing is changed, all its views are updated. More experienced
developers might find the additional information provided by graphically documented
instances to be of little use, because they can directly deduce such an information
from the name of the design-pattern and from the role of each class and interface. On
the other hand, developers with different levels of experience (e.g., less experienced)
would receive some help in using graphically documented instances even if the use
of this kind of documentation might require more cognitive resources to switch the
perception mode from text to graphic and back.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:7

2.6. Informing the hypotheses
We consider external cognition to have particular relevance in our study. This branch
of cognitive science treats humans and the artifacts they use to solve a given task as
a single cognitive entity. The perspective is that artifacts are part of problem-solving
resources, and thus they improve human reasoning. Representations might improve
reasoning in several ways [Bauer and Johnson-Laird 1993]. According to Scaife and
Rogers [1996], documented instances can reduce cognitive effort by putting knowl-
edge in the representation, rather than in the head of the developer (i.e., offloading).
That is, the least information has to be kept in mind and the fewer rules are needed
to process them, the better it is. This is especially true for graphically documented
instances, because they show relationships among classes and roles that each class
plays [Guéhéneuc and Antoniol 2008]. When using textually documented instances,
more experienced developers might not be hindered in inferring this information. In-
deed, these developers might have concerns going from source code to documentation
and vice-versa when using graphically documented instances. Approaching source code
comprehension tasks in such a way might affect comprehensibility when a developer
is not accustomed to use documentation that is kept externally from source code.

3. THE FAMILY OF EXPERIMENTS
The software engineering community has been embracing replications more read-
ily (e.g., [da Silva et al. 2014]). Even with the increased interest in replications, there is
no agreement yet on terminology, typology, purposes, operation, and other replication
issues [Kitchenham 2008; Shull et al. 2008]. The lack of shared terminology allows au-
thors to use different definitions for the same kind of replication and to use the same
definition to refer to different kinds of replication [Baldassarre et al. 2014]. In general,
we can define a replication as the repetition of an experiment, either as closely follow-
ing the original experiment as possible, or with a deliberate change to one or several
of the original experiment parameters [Gómez et al. 2010]. In particular, there are two
important factors that underlie the definition of replications: the procedure (i.e., the
steps followed) and the researchers (i.e., the experimenters conducting the replication).
As for the procedure, the kinds of replications range in between close and conceptual.
A close replication is a replication whose procedure is as close to the original proce-
dures as possible [Shull et al. 2008], while a replication is conceptual if the research
question is the same, but the experimental procedure is completely different from that
of the original experiment. As for the researchers, we can distinguish between inter-
nal and external replications. Internal replications are conducted by the same group
of researchers as the original experiment [Mendonça et al. 2008], while external repli-
cations are executed by different experimenters also using the same procedure as the
original experiment. In case of external replications, the results might slightly be af-
fected by experimenters’ biases [Juristo and Moreno 2001; Shull et al. 2008].

Experiments need to be replicated in different contexts, at different times, and un-
der different conditions before they can produce generalizable knowledge [Shull et al.
2008]. From the scientific and industrial perspectives, we can identify two primary
motivations for conducting replications: (i) they are necessary to solve problems and
collect evidences because they bring credibility to a given research and (ii) they are
valuable because they provide evidence on the benefits of a software engineering prac-
tice thus allowing industrial stakeholders to use this information to support adoption
decisions [Baldassarre et al. 2014; Colosimo et al. 2009; Pfleeger and Menezes 2000].

Differently from a single replication, a family of controlled experiments can con-
tribute to the conception of important and relevant hypotheses that may not be sug-
gested by an individual experiment/replication (e.g., any possible effect of the develop-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 G. Scanniello et al.

Table II. Participants in the family of experiments grouped by experiment
Experiment Context Description Participants Type Year
E1-Prof Practitioners Original experiment 25 - 2011
E2-UniSA University of Salerno Internal replication 25 2nd year Master students 2012
E3-UniBAS University of Basilicata Internal replication 23 3rd year Bachelor students 2012
E4-UniBZ Free University of Bozen-Bolzano External replication 15 2nd/3rd year PhD students 2013

ers’ experience) [Basili et al. 1999]. This is why we carried out a family of controlled
experiments composed of: the original experiment, two internal replications, and one
external replication.

In Table II, we summarize information on the four experiments we conducted in
our family. The original experiment, named E1-Prof, was carried out with professional
developers in 2011. Some results from this experiment were preliminarily presented
in [Gravino et al. 2012]. All the participants in E1-Prof had at least a Bachelor degree
in Computer Science. Among the participants in E1-Prof, there were neither PhD stu-
dents nor PhD graduates. By varying participants’ experience, E1-Prof was replicated
in 2012 at the University of Salerno with 25 second year students from the Master
program in Computer Science. This experiment is named E2-UniSA. In the same year,
we conducted the second replication named E3-UniBAS. The participants in this repli-
cation were 23 third year students from the Bachelor program in Computer Science at
the University of Basilicata. The third replication was E4-UniBZ. It was performed at
the Free University of Bozen-Bolzano with 15 PhD students in Computer Science. We
considered this experiment an external replication because an investigator (the fifth
author) performed this experiment on the basis of an experimental package provided
by the original investigators (the first four authors). The new investigator participated
neither in the design of the experiments nor in the preparation of the experimental
material. The experiments E2-UniSA, E3-UniBAS, and E4-UniBZ are presented for
the first time in this paper.

Features that made the experiments in our family distinct from the pilot
study [Gravino et al. 2011] were: (i) the experiment design and (ii) the kind of the
involved participants3. We also renewed and improved the experimental material.

For replication purposes, we made available on the Web an experiment package, the
raw data, and a technical report [Scanniello et al. 2014b].

3.1. Goal
According to the Goal Question Metrics (GQM) template by Basili and Rombach
[1988], the goal of our family of experiments can be formalized as follows:

Analyze source code comprehensibility for the purpose of evaluating graphi-
cally and textually documented design-pattern instances with respect to correctness
of understanding, time, confidence, and perceived difficulty from the point of view
of the researcher and from the point of view of the practitioner in the context of
object-oriented software.

3.2. Context Selection
For each experiment, its participants had the following characteristics:

3The participants in the first experiment of the pilot study were Master students in Computer Science from
the University of Basilicata, while the participants in E3-UniBAS were students from a Bachelor program
in Computer Science from the same university. In the second experiment of the pilot study, the students
were enrolled to the 1st year of a Master program in Computer Science at the University of Salerno, while
in our family of experiments the Master students came from the same university, but they were enrolled to
the 2nd year of the same program.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:9

- E1-Prof. The participants were Italian software professionals. They have been
working for software companies in the contact network of the research groups of
the original investigators. These companies were partners in research projects, or
hosted students from the universities of Basilicata and Salerno for internships or
employed alumni from either universities.

- E2-UniSA. The participants were students from the Software Engineering II course
of the Master program at the University of Salerno. They all passed the following
courses: Software Engineering I, Object Oriented Programming I and II, and Data
Bases. In particular, they knew the basics of high- and low-level design of object-
oriented software systems (based on UML), software development, and software
maintenance. The majority of the participants took an internship in a company,
as the final part of their Bachelor degree. The experience level of these students is
considered inferior to that of the participants in E1-Prof.

- E3-UniBAS. The participants were students from the Software Engineering I
course of a Bachelor program at the University of Basilicata. They all passed the
following courses: Procedural Programming, Object Oriented Programming I, and
Data Bases. In the Software Engineering I course, they learned object-oriented mod-
eling and UML. They had a limited experience in developing and maintaining non-
trivial software systems. These students can be considered to be the participants in
our family of experiments with the lowest level of experience.

- E4-UniBZ. The participants were students from an international PhD course at the
Free University of Bozen-Bolzano. They took their Master degree in Computer Sci-
ence from universities worldwide. In particular, they came from: Italy (6), Lithuania
(2), Russia (2), Romania (1), Morocco (1), Serbia (1), Thailand (1), and Brazil (1). The
participants in E4-UniBZ can be considered those with the highest level of experi-
ence in our family of experiments or at least their experience is not inferior to that
of the participants in E1-Prof.

The prior knowledge and experience of the participants in each experiment can be
considered rather homogeneous (especially in those experiments conducted with stu-
dents [Verelst 2004]). The classification of participants in levels of experience follows
an approach similar to that proposed by Ricca et al. [2010] and Abrahão et al. [2013].

The participation in the experiments was on a voluntary basis. Each participant
took part in only one experiment. Results did not influence the grades in the Software
Engineering courses where the replications E2-UniSA and E3-UniBAS took place. Pro-
fessionals participated in the experiment as part of their work hours. This choice was
made to encourage professionals to participate. No participants were obliged to partic-
ipate in the experiments.

We selected a chunk (i.e., vertical slice) of JHotDraw v5.1 that included: (i) a non-
trivial number of instances and (ii) well-known and widely adopted design-patterns.
In the source code selection process, we have taken into account a trade-off between
complexity of the implemented functionality in the chunk and the effort to comprehend
source code. One of the authors (i.e., the third) detected and documented the pattern
instances present in the source code of the experimental object. To this end, both the
JHotDraw documentation and the PMARt data set [Guéhéneuc 2007] were used. This
allowed us to document both intentional and unintentional instances (see Appendix
B, where it is also possible to understand which classes participated in more than one
instance). We also took care to not exclude classes in the selected source code that were
related to other classes, which played a role in a pattern instance. The selection process
was iterative and allowed us to select a total number of 10 instances. The following
instances were present in the selected chunk of JHotDraw: State, Adapter, Strategy,
Decorator, Composite, Observer, Command, Template Method, and Prototype. For the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 G. Scanniello et al.

State design-pattern, there were two instances, while only one instance was present
for all the remaining design-patterns. The chunk consisted of 1326 Lines of Code, 26
Classes, and 823 Lines of Source Code Comment.

The use of incomplete documentation and of a subset of the entire software on which
a maintenance operation impacts is quite common in the software industry [Scanniello
et al. 2014a]. For example, it happens when only a part of the documentation actually
exists (e.g., in lean development processes) or is updated [Bruegge and Dutoit 2003;
McDermid 1991], or only a subset of the entire documentation is useful to perform a
given maintenance operation [Asuncion et al. 2007; Lindvall and Sandahl 1996].

As for E1-Prof, E2-UniSA, and E3-UniBAS, we translated the experimental mate-
rial including the comments in the original source code of JHotDraw from English
into Italian. This allowed us to reduce biases related to different levels of participants’
familiarity with English. For E4-UniBZ, the comments were not translated because
the official language of the PhD program at the Free University of Bozen-Bolzano is
English. As for the participants provided with source code alone and graphically docu-
mented instances, we removed any possible information on pattern instances present
in comments and identifiers (e.g., CompositeFigure was renamed ArrayFigure). We
took this decision to analyze only the effect of pattern instance documentation.

3.3. Selection of the Variables
To determine Time, we used the overall time (expressed in minutes) to answer the
comprehension questionnaire. The higher the value of Time, the higher the effort to
accomplish the comprehension tasks.

To quantify Correctness of understanding, we used an approach based on the infor-
mation retrieval theory [Salton and McGill 1983]. We defined: As,i as the set of string
items provided as answer to the question i in the comprehension questionnaire by the
participant s; Ci as the correct set of items expected for the question i (i.e., the oracle).
Then, we computed precision and recall for each answer to a given question in the
questionnaire as follows:

precisions,i =
|As,i ∩ Ci|
|As,i|

(1)

recalls,i =
|As,i ∩ Ci|
|Ci|

(2)

Precision (i.e., the fraction of items in the answer that are correct) and recall (i.e.,
the fraction of correct items in the answer) measure accuracy and completeness of
the answer to a given question, respectively. To get a trade-off between accuracy and
completeness, we used the balanced F-measure of precision and recall:

F−Measures,i =
2 · precisions,i · recalls,i
precisions,i + recalls,i

(3)

For each participant, Correctness of understanding is computed as the average of the
F-Measure values of all the questions in the comprehension questionnaire. This vari-
able takes values in between 0 and 1. A value close to 1 means that the participant
achieved a good source code comprehension because s/he answered rather well to all
the questions in the comprehension questionnaire. Conversely, a value close to 0 means
that source code comprehension was not good. We chose the measures above because
they are widely used in the empirical software engineering field (e.g., [Ricca et al. 2010;
Abrahão et al. 2013]).

Figure 3.3 shows a sample question. It expected as correct answer the following set
of items: CreationTool, ArrayFigure, StandardDrawingView, createFigure(), draw(),

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:11

Fig. 2. A sample question from comprehension questionnaire

Table III. Experiment Design

Experiment GD TD SC Total
E1-Prof 8 9 8 25
E2-UniSA 8 9 8 25
E3-UniBAS 8 8 7 23
E4-UniBZ 5 5 5 15

and drawingRequestUpdate(). These items can be derived by the instance of the Ob-
server pattern shown in Figure 1 and by the instances of the Prototype and Compos-
ite patterns. The Observer instance is in charge of painting and/or repainting objects
that are instances of Figure. The Prototype instance helps in understanding the ob-
ject that would manage the creation of a template for Figure, while the Composite in-
stance draws each base element of an object Figure. Details on the latter two instances
can be found in the experimental material we made available on the web [Scanniello
et al. 2014b]. If, for example, a participant provided CreationTool, ArrayFigure, and
drawingChangeListeners() as his/her answer, the corresponding value for Correctness
of understanding would be 0.44. This results from the precision and recall values,
respectively being 0.66 and 0.33. In fact, the number of correct items provided is 2
(CreationTool and ArrayFigure), the total number of items provided is 3, and the ex-
pected number of correct items is 6.

As mentioned in Section 2.1, Method is the main factor (or manipulated factor) in our
family of experiments. It is a nominal variable and assumes values in {SC, TD, GD}.
SC indicates that the participant was provided with source code without documented
design-pattern instances. On the other hand, TD and GD indicate that participants
were provided with source code added with textually or graphically documented in-
stances, respectively. The moderator variable Experience assumes values in {E1-Prof,
E2-UniSA, E3-UniBAS, E4-UniBZ}.

3.4. Experiment Design
We used the one factor with three treatments design [Wohlin et al. 2012] shown in
Table III. The use of a different experimental design (such as a within-participant
counterbalanced design) with non-trivial experimental objects (as in our family of ex-
periments) may bias results introducing a possible carry-over effect: if a participant
is tested first under the experimental condition A and then under the experimental
condition B, s/he could potentially exhibit better or worse performances under the con-
dition B.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 G. Scanniello et al.

We used the participants’ working experience4 as the blocking factor for E1-Prof,
while the participants’ ability5 was the blocking factor for both E2-UniSA and E3-
UniBAS. As for E4-UniBZ, we used the final grade of the Master degree6. Due to the
used experiment design, we use hereafter group and treatment interchangeably.

3.5. Hypotheses
We have defined and investigated two null hypotheses. Each of them is described as a
parameterized hypothesis as follows:

— Hn1 X. With respect to the dependent variable X (i.e., Correctness of understand-
ing or Time), there is no difference among source code with undocumented design
pattern instances, source code with textually documented design pattern instances,
and source code with graphically documented design pattern instances.

— Hn2 X. With respect to the dependent variable X and the participants’ experience,
there is no difference among source code with undocumented design pattern in-
stances, source code with textually documented design pattern instances, and source
code with graphically documented design pattern instances.

When null hypotheses are rejected, it is possible to accept the alternative ones that
can be easily derived (e.g., Ha1 X: With respect to the dependent variable X, there
is difference among source code with undocumented design pattern instances, source
code with textually documented design pattern instances, and source code with graph-
ically documented design pattern instances).

3.6. Experiment Tasks
We asked participants to perform the following tasks:

— Comprehension task. Independently from the treatment, the comprehension
questionnaire was composed of 14 open questions (see Appendix A). These ques-
tions were divided into three groups to let participants take a break if needed when
passing from a group of questions to the next one. This choice aimed to reduce fa-
tigue effect biases. The questions were arranged into these groups on the basis of
the recommendations by Sillito et al. [2008]. In particular, the questions in the first
group focused on expanding points in the source code believed to be relevant and
related to software comprehension, often by exploring relationships among entities
(e.g., classes and method). The questions in the second group are concerned with
understanding concepts in the source code that involved multiple relationships and
software entities. Answering these questions required understanding the overall
structure of a subgraph7. To answer the questions in the third group, the participant
had to deal with over related groups of subgraphs. That is, these questions involved

4A professional was considered as junior developer when his/her working experience was less than or equal
to 3 years, senior otherwise. The junior developers were 10, while 15 were the senior developers.
5In Italy, the exam pass grades are expressed as integers and take values in between 18 and 30. The lowest
grade is 18, while the highest 30. Students with a Grade Point Average (GPA) less than or equal to 24 were
considered low ability participants; otherwise high [Abrahão et al. 2013].
6A PhD student was considered to be low when his/her final grade was less than or equal to 8, high otherwise.
All the final grades were normalized in between 1 and 10 because of differences in the organization of the
universities where the PhD students took their Master grade. For example, final Master grades in Italy are
expressed as integers and take values in between 66 and 110, so a student with a final grade less than or
equal to 88 was considered to be a low ability participant.
7Sillito et al. [2008] see a code base as a graph of entities (classes, methods, and fields, for example) and
relationships between those entities (references and calls, for example). To answer any specific question
related to the comprehension of a software, the authors believe that it requires considering some subgraph
of the code base.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:13

Table IV. Post-experiment survey questionnaire

Id Question Answers
S1 I had enough time to perform the task (1-5)
S2 The tasks I performed were perfectly clear to me (1-5)
S3 The task objectives were perfectly clear to me (1-5)
S4 Comments included in the source code were

clear
(1-5)

S5 I found the arrangement of the comprehension
questions in three parts to be useful

(1-5)

S6 The design-pattern instances were useful to an-
swer the questions

(1-5)

S7 The design-pattern instances were well docu-
mented

(1-5)

S8 How much time (in percentage) you believe to
have spent in reading source code?

(A-E)

S9 How much time (in percentage) you believe
to have spent in analyzing design-pattern in-
stances?

(A-E)

1 = Strongly agree, 2 = Agree, 3 = Neutral, 4 = Disagree,
5 = Strongly disagree
A. < 20%; B. ≥ 20% and < 40%; C. ≥ 40% and < 60%;
D. ≥ 60% and < 80%; E. ≥ 80%

understanding relationships between multiple subgraphs or the understanding of
the interaction between a subgraph and the rest of the system. All the questions in
the comprehension questionnaire were formulated using a similar form/schema. For
each question, the participants in the groups GD and TD had to specify whether the
answer was deduced from: (DPI) Design-Pattern Instances, (PK) Previous knowl-
edge, (I) Internet, or (SoC) Source Code. If participants specified DPI, they were
also asked to indicate the used instance/s. Participants in the group SC could choose
among: PK, I, or SoC (see Figure 3.3). This was the only difference introduced in the
comprehension questionnaires used for SC, GD, and TD. As for confidence level, par-
ticipants had to chose among the following possibilities: Unsure, Not sure enough,
Sure enough, Sure, and Very Sure. Furthermore, perceived difficulty level admitted
values were {Very Difficult, Difficult, On Average, Simple, and Very Simple}.

— Post-experiment task. We asked participants to fill in the post-experiment sur-
vey questionnaire shown in Table IV. The goal of this questionnaire was to obtain
feedback about participants’ perceptions of the experiment execution. Answers to
questions S1-S7 were based on a five-point Likert scale [Oppenheim 1992]: from
strongly agree (1) to strongly disagree (5). Questions S8 and S9 demanded answers
according to a different five-point Likert scale based on the percentage of time used
to deal with source code and documented pattern instances (see last row of Table
IV). The participants in the GD and TD groups had to answer all the questions in
Table IV, while other participants answered just questions in between S1 and S5.

3.7. Experiment Procedure
The experiment procedure adopted for the replications was different from that in the
original experiment, where at most two professionals were involved in each experimen-
tal session. In fact, it is practically impossible to conduct a single experimental session
gathering together professionals from different companies. Before the controlled ex-
periment, all the professionals had to fill in a pre-questionnaire. This questionnaire
was sent and returned by email. The gathered information was used to classify partic-
ipants as junior or senior developers. Just before an experiment session, experiment

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 G. Scanniello et al.

supervisors (two of the authors, namely the first and the third) highlighted the study
goal without providing details on its hypotheses. Experiment sessions were carried out
under controlled conditions to avoid biasing results. Experiment supervisors were the
same at each session. This allowed us to reduce possible observation biases. No train-
ing session on tasks similar to the ones in the experiment was carried out. The main
reasons were: (i) they should have an adequate experience in performing maintenance
operations on source code written by others and (ii) time and logistic constraints made
the execution of a training session impossible (the use of professionals might cause
this kind of concern).

As for the replications, we conducted them in research laboratories under controlled
conditions. A few days before each experiment, participants attended a training ses-
sion where supervisors presented detailed instructions on the experiment and recalled
basic notions on design-pattern based development. All the participants in a single
experiment attended this session together.

We monitored participants to prevent communication with each other. This was also
done in E1-Prof, when more professionals participated in one session. At the end of
each experiment, we asked participants to return material. No time limit to perform
the experiment was imposed. This implies that quality and time are considered sepa-
rately when analyzing results [Bergersen et al. 2011; Bergersen et al. 2014]. As sug-
gested by Bergersen et al. [2011] this is acceptable when the goal of a study is not to
characterize individual differences among participants [Bergersen et al. 2011].

The participants used a general purpose and well known text editor, namely Ul-
traEdit (www.ultraedit.com). We opted for this editor because it was used in basic pro-
gramming language courses at both the University of Salerno and University of Basil-
icata. Therefore, the prior knowledge of the participants in E2-UniSA and E3-UniBAS
should be rather homogeneous on this tool. Finally, we did not allow the participants
to choose their preferred IDE (Integrated Development Environment) because famil-
iarity with the tool might skew results in an undesirable way.

We allowed all the participants to use the Internet to accomplish the experiment
session since developers usually exploit this medium as support for their daily work
activities. We tried to reproduce actual working conditions.

We asked all the participants to use the following experimental procedure: (i) writ-
ing down their name and start-time; (ii) answering the questions of the comprehension
questionnaire without executing source code; and (iii) writing down the end-time. The
experiment procedure was the same for each group of questions within the compre-
hension questionnaire. We did not suggest any approach to deal with source code. To
avoid wasting time, we only discouraged to read all the source code.

We provided all the participants with a printed copy of the following experiment ma-
terial: (i) the comprehension questionnaire and (ii) a post-experiment survey question-
naire. The participants in the group GD were provided with the source code (without
any reference to pattern instances) and a printed copy of the document where each
pattern instance was graphically reported (see Figure 1(a)). The participants in the
group TD were provided with source code that included references to the instances in
the comments (see Figure 1(b)). As for the group SC, the participants were provided
with source code without any kind of documentation.

3.8. Analysis Procedure
To perform data analysis, we used the R environment (www.r-project.org) for statistical
computing and we carried out the following steps:

(1) We undertook the descriptive statistics of the dependent variables.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

www.ultraedit.com
www.r-project.org

A:15

(2) To test null hypotheses, we adopted non-parametric tests due to the sample size
and mostly the non-normality of the data. As for Hn1 X, we used the Kruskal-
Wallis test. This statistical test is a non-parametric alternative to ANOVA in case
of one factor with more than two treatments [Wohlin et al. 2012]. We used the
Kruskal-Wallis test because of the design of the experiments (only unpaired anal-
yses were possible) in the family and for its robustness [Wohlin et al. 2012]. As for
Hn2 X, we opted for a two-way permutation test [Baker 1995], a non-parametric
alternative to the two-way ANOVA test. In all the performed statistical tests, we
decided (as it is customary) to accept a probability of 5% of committing Type-I-
error [Wohlin et al. 2012].

(3) The chosen statistical tests allow the presence of a significant difference between
independent groups to be verified, but they do not provide any information about
the magnitude of such a difference. To measure this difference (if present), we used
the Cliff ’s d non-parametric effect size measure [Kampenes et al. 2007]. Effect size
is considered negligible for |d| < 0.147, small for 0.147 ≤ |d| < 0.33, medium for
0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474 [Kampenes et al. 2007]. We also com-
puted the average percentage improvement for the defined dependent variables
(i.e., Time and Correctness of understanding). For example, given the variable
Time and the methods SC and TD, we computed MeanTime(GD)−MeanTime(SC)

MeanTime(SC) %. If
the obtained value is negative, participants spent on average less time with GD. In-
deed, the lower the value, the lower the effort to comprehend source code with GD
is. As for Correctness of understanding, it estimates the average percentage im-
provement in source code comprehension. The higher the value, the better source
code comprehension with GD is.

(4) We also analyzed the statistical power of each performed test. Statistical power is
defined as the probability that a statistical test will correctly reject a null hypoth-
esis [Dybå et al. 2006]. Knowledge of statistical power can influence the planning,
the execution and the results of an empirical study (e.g., [Arisholm et al. 2007; Co-
hen 1988]). Statistical power can be also determined post-hoc [Dybå et al. 2006;
Scanniello et al. 2014a]. The highest value is 1, while 0 the lowest. Therefore, the
higher the statistical power value, the higher the probability to reject a null hy-
pothesis when it is actually false. The value 0.80 is considered as a standard for
adequacy [Ellis 2010]. The statistical power is computed as 1 minus the Type-II-
Error (i.e., β-value). This type of error indicates that a null hypothesis is false, but
the statistical test erroneously fails to reject it. In the discussion of the results, we
used the β-value when a statistical test was unable to reject a null hypothesis. The
higher the β-value, the lower the probability of erroneously not rejecting a null
hypothesis is.

(5) We used mosaic plots to graphically summarize the results for the confidence and
perceived difficulties as well as the source of information the participants exploited
to answer questions in the comprehension questionnaire.

(6) To summarize raw data and to support their discussion we also used boxplots.

3.9. Differences and Issues
3.9.1. Differences among Experiments. The choice and the numbers of factors to be varied

among experiments is relevant because a large number of variations could make it
less likely to trace observed results to the factor of interest (manipulated factor) and
thus the result validity and interpretation could be strictly affected [Shull et al. 2008;
Scanniello et al. 2014a]. In the following, we summarize variations among the four
experiments in our family:

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 G. Scanniello et al.

— Participants. Variations in the participants’ experience and in environmental fac-
tors can contribute some confidence that the effect of the factor under study is not
limited to one particular setting or experimental environment.

— Training session. Professionals did not carry out a training session on tasks simi-
lar to those used in the experiment.

— Experiment material. Sources of possible confusion in materials were removed
after each experiment. As for E4-UniBZ, the experimental material was in English.
Independently from the treatment, the participants in E4-UniBZ were asked to an-
swer two additional questions to understand the common sense in the representa-
tion and use of design-patterns. In particular, the following two open questions were
asked:
(i) Based on your experience and knowledge, please explain why (or why not) the
documentation of design-pattern instances should improve source code comprehen-
sibility and maintainability;
(ii) Please suggest how design-pattern instances should be documented to improve
source code comprehensibility and maintainability.
We added this difference in the replication E4-UniBZ because we believe that more
significant comments might be given from the participants with an experience and
maturity level higher than those of the participants in E2-UniSA and E3-UniBAS.

3.9.2. Documentation and Communication Issues. The success or the failure of replications
might be influenced by issues such as documentation [Shull et al. 2004] and commu-
nication among experimenters [Vegas et al. 2006]. To deal with these issues, we used
laboratory packages, knowledge sharing mechanisms, and communication media. In
particular, with regard to documentation, original experimenters translated all the
material (not initially written in English) from Italian into English. The investigator
of the external replication (the fifth author) was provided with all the experiment ma-
terial and asked clarifications and implemented modifications if needed. In addition,
the experimenters shared: (i) the papers where the pilot study and original experiment
were presented [Gravino et al. 2011; Gravino et al. 2012] and (ii) a document to provide
a common background.

We used instant messaging tools, mobile phones, teleconference tools, and email to
establish a communication channel among experimenters. To reduce consistency is-
sues across the experimenters, the results from the most important interactions were
reported in a shared document where experiment decisions were recorded.

4. RESULTS
In this section, we present the obtained results following our analysis procedure.

4.1. Descriptive Statistics
Table V shows the values of mean and standard deviation for Time and Correctness of
understanding grouped by Method. The distribution of the values for these variables
grouped by Method and Experiment is graphically shown by the boxplots in Figure 3.

We can observe that in all the experiments (except for E2-UniSA) the participants
belonging to the group/treatment SC spent on average more time than the participants
in the groups GD and TD. A small difference can be observed between the groups GD
and TD in all the experiments with respect to the mean time to accomplish the task.
Boxplots in Figure 3(a) show that the same trend is present among the experiments
for each group (e.g., participants in E1-Prof spent more time than those in E4-UniBZ).

As for Correctness of understanding, the participants in the groups GD and TD
achieved on average better scores. This does not hold in E4-UniBZ for the group TD.
On the other hand, a small difference is observable in favor of the group TD for E1-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:17

Table V. Descriptive statistics for GD, TD, and SC

Experiment Dependent variable GD TD SC
Mean St. Dev. Mean St.Dev. Mean St.Dev.

E1-Prof Time 142.2 31.17 136.4 37.00 147.4 42.81
Correctness of understanding 0.51 0.10 0.54 0.07 0.40 0.10

E2-UniSA Time 85.5 24.089 93.44 22.07 83.5 33.98
Correctness of understanding 0.406 0.116 0.43 0.1 0.31 0.12

E3-UniBAS Time 112 30.836 125.125 21.397 148.857 40.268
Correctness of understanding 0.379 0.073 0.349 0.131 0.384 0.111

E4-UniBZ Time 94.6 13.686 77.8 20.777 108.4 28.5
Correctness of understanding 0.511 0.034 0.602 0.177 0.388 0.124

E1-Prof E2-UniSA E3-UniBAS E4-UniBZ

0
50

10
0

15
0

20
0

GD

Ti
m
e

E1-Prof E2-UniSA E3-UniBAS E4-UniBZ

0
50

10
0

15
0

20
0

TD

E1-Prof E2-UniSA E3-UniBAS E4-UniBZ

0
50

10
0

15
0

20
0

SC

(a)

E1-Prof E2-UniSA E3-UniBAS E4-UniBZ

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

GD

C
or

re
ct

ne
ss

 o
f u

nd
er

st
an

di
ng

E1-Prof E2-UniSA E3-UniBAS E4-UniBZ

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

TD

E1-Prof E2-UniSA E3-UniBAS E4-UniBZ

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

SC

(b)

Fig. 3. Distributions for Time (a) and Correctness of understanding (b) grouped by Method and experiment

Prof. Boxplots in Figure 3(b) show that more experienced participants benefit from
documented pattern instances more than low experienced participants. As for what
concerns the treatment SC, there is a non-noteworthy difference among participants
in all experiments.

4.2. Hypotheses Testing
4.2.1. Hn1 X: SC vs. GD vs. TD . The results for the null hypothesis Hn1 X are summa-

rized in Table VI. The Kruskal-Wallis8 test indicates that this null hypothesis can be

8To evaluate if data were not normally distributed, we applied the Shapiro-Wilk W test [Shapiro and Wilk
1965]. If this test returns a p-value smaller than the chosen threshold (0.05 in our case), data are considered
to be non normally distributed. The Shapiro-Wilk W test returned 0.02 as p-value for the group GD in E1-
Prof. Although p-values larger than 0.05 were obtained in all other cases, we performed non-parametric
analyses for uniformity reasons and to be as much conservative as possible.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 G. Scanniello et al.

Table VI. Results for Hn1 X (SC vs. GD vs. TD)

Experiment Dependent variable p-value

E1-Prof Time No (0.791)
Correctness of understanding Yes (0.035)

E2-UniSA Time No (0.943)
Correctness of understanding No (0.091)

E3-UniBAS Time No (0.097)
Correctness of understanding No (0.836)

E4-UniBZ Time No (0.343)
Correctness of understanding Yes (0.046)

rejected on Correctness of understanding for E1-Prof and E4-UniBZ. The p-values are
0.035 and 0.046, respectively.

When three different groups are compared, a significance test only shows whether
there is a significant difference in general [Wohlin et al. 2012]. A post-hoc analysis is
needed afterwards, to evaluate between which conditions the significant effect occurs.
Therefore, we performed a post-hoc analysis on Correctness of understanding for the
experiments E1-Prof and E4-UniBZ, namely those experiments where a significant
difference was observed. For each of these two experiments, we tested the following
null hypotheses: (i) HnSCvs.D - Source code comprehensibility does not increase when
using D (i.e., TD or GD) with respect to SC; and (ii) HnTDvs.GD - Source code com-
prehensibility does not increase when using GD with respect to TD. These hypotheses
are one-sided on the basis of the results of the descriptive statistics. HnSCvs.D is a
parametrized null hypothesis.

The above hypotheses have been verified by the Mann-Whitney test [Conover 1998]
(also known as the Wilcoxon rank-sum test). The results of the performed post-hoc
analysis are summarized in Table VII and Table VIII.

The Mann-Whitney test indicated the presence of statistically significant differences
in E1-Prof and E4-UniBZ for both HnSCvs.TD and HnSCvs.GD (see Table VII). The ob-
tained p-values range in between 0.008 (SC vs. TD in E1-Prof) and 0.047 (SC vs. GD
in E4-UniBZ). In both experiments, the effect size is large and the values range in
between 0.562 and 0.76 and the average improvement values are very high (from 87%
to 116.2%). These results indicate a better source code comprehension for TD and GD
than for SC, in practical terms. The statistical power values are not always adequate.
This could be due to the number of participants in the groups.

Table VII. Post-hoc analysis on Correctness of understanding (HnSCvs.TD and
HnSCvs.GD in E1-Prof and E4-UniBZ)

Experiment Hypothesis p− value Cliff ’s d Statistical Average
Power Improvement

E1-Prof HnSCvs.TD Yes (0.008) -0.708 0.903 93.3%
HnSCvs.GD Yes (0.033) -0.562 0.607 87%

E4-UniBZ HnSCvs.TD Yes (0.03) -0.76 0.6 116.2%
HnSCvs.GD Yes (0.047) -0.68 0.528 92.8%

Table VIII. Post-hoc analysis on Correctness of
understanding (HnTDvs.GD) in E1-Prof and E4-
UniBZ)

Experiment p− value Cliff ’s d β-value

E1-Prof No (0.314) -0.153 0.865
E4-UniBZ No (0.072) -0.6 0.782

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:19

Table IX. Results for Hn2 X

Dependent variable Method Experience Method vs. Experience
p− value

Time No (0.33) Yes (<0.001) No (0.495)
Correctness of understanding Yes (<0.001) Yes (<0.001) No (0.157)

As for HnTDvs.GD, the Mann-Whitney test indicated that this null hypothesis can-
not be rejected (see Table VIII). Therefore, the difference between the participants who
used graphically documented and textually documented pattern instances is not sta-
tistically significant. The β-values are close to the standard for adequacy (0.865 and
0.782). The effect size is either small (in E1-Prof) or large (in E4-UniBZ).

These results suggest that the documentation of pattern instances aids in correct-
ness of understanding for object-oriented source code in E1-Prof and E4-UniBZ. In ad-
dition, we observed that there is a non-noteworthy difference in comprehending source
code when pattern instances are documented either graphically or textually.

4.2.2. Hn2 X: Participants’ Experience Effect. Table IX summarizes the results from the
two-way permutation test. The effect of participants’ experience is statistically sig-
nificant on Time and no interaction between Method and Experience is present. As
shown in Figure 3(a), professionals spent more time to accomplish the comprehension
task when pattern instances are documented. There is a non-noteworthy difference
in the other experiments for the group GD. As for the group TD, the participants in
E3-UniBAS spent more time than the participants in the other two replications. The
results from the two-way permutation test also indicate a positive effect of Method and
Experience on Correctness of understanding. The p-values are less than 0.001, respec-
tively. More experienced participants benefited more than less experienced ones when
pattern instances are documented (see Figure 3(b)). No interaction between Method
and Experience is shown on Correctness of understanding.

The data analysis results suggest that the participants experience has a statistically
significant effect on source code comprehensibility with respect to both the variables
Time and Correctness of understanding, while there is no significant interaction effect.

4.3. Confidence
Figure 4 shows the mosaic plots for the confidence that the participants displayed
regarding their own understanding on the source code in the comprehension task.
The data are grouped by Experience and Method. The participants generally indicated
“sure enough”, “sure”, and “very sure” as their own confidence level of source code un-
derstanding. This holds in all the experiments and for all the methods (i.e., GD, SC,
and TD). Indeed, the participants in E3-UniBAS expressed the worst level of confi-
dence in understanding. A possible reason could be related to the participants’ knowl-
edge on high- and low-level design of object-oriented software systems and software
development and maintenance.

4.4. Perceived Difficulty
The subjective judgment on the ease in obtaining information through the documenta-
tion of pattern instances (if present) and/or source code is visually summarized by the
mosaic plots in Figure 5. Independently from the method, the most frequent answer
given in all the experiments of our family is “On Average” (i.e., 3). Although there is a
non-noteworthy difference among the experiments in our family, it seems that low ex-
perienced participants found it less easy to obtain information from the documentation
provided to accomplish comprehension tasks.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 G. Scanniello et al.
1-Very low, 2-Low, 3-Medium, 4-High, 5-Very high

Method

L
e

v
e

l
o

f
c
o

n
fi
d

e
n

c
e

GD SC TD

1
2

3
4

5

(a) E1-Prof

1-Very low, 2-Low, 3-Medium, 4-High, 5-Very high

Method
L

e
v
e

l
o

f
c
o

n
fi
d

e
n

c
e

GD SC TD

1
2

3
4

5

(b) E2-UniSA1-Very low, 2-Low, 3-Medium, 4-High, 5-Very high

Method

L
e

v
e

l
o

f
c
o

n
fi
d

e
n

c
e

GD SC TD

1
2

3
4

5

(c) E3-UniBAS

1-Very low, 2-Low, 3-Medium, 4-High, 5-Very high

Method

L
e

v
e

l
o

f
c
o

n
fi
d

e
n

c
e

GD SC TD

1
2

3
4

5

(d) E4-UniBZ

Fig. 4. Mosaic plot for Confidence (1 - Unsure; 2 - Not Sure Enough; 3 - Sure Enough; 4 - Sure; 5 - Very
Sure)

4.5. Source of Information
Figure 6 shows the mosaic plots regarding the source of information for each exper-
iment. The participants indicated source code as the main source of information to
answer questions in the comprehension questionnaire. This finding held in all exper-
iments except for the group GD in E1-Prof, where the participants indicated DPI as
the main source of information. As for E3-UniBAS and E4-UniBZ, the difference be-
tween DPI and SoC is less evident for the group TD. The participants in these two
experiments indicated that they did not use the Internet to answer the questions of
the comprehension questionnaire.

To accomplish a source code comprehension task, the participants perceived docu-
mented instances as a relevant, but not predominant source of information. This is

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:21

GD SC TD

1
2

3
4

5

(a) E1-Prof

GD SC TD

1
2

3
4

5

(b) E2-UniSA

GD SC TD

1
2

3
4

(c) E3-UniBAS

GD SC TD

1
2

3
4

5

(d) E4-UniBZ

Fig. 5. Mosaic plot for Perceived Difficulty (1 - Very Difficult; 2 - Difficult; 3 - On Average; 4 - Simple; 5 -
Very Simple)

a case where controlled experiments provide insight into the difference between per-
ceived usefulness of a given method and the actual advantage of using it.

4.6. Post-experiment Survey Questionnaire
The time needed to carry out experiments was considered appropriate (question S1).
The median value was 1 (strongly agree) for all experiments except for E2-UniSA,
where the median was 3 (neutral). The objectives (S2) were considered to be clear in
all experiments except in E2-UniSA: the median values were 2 (agree) and 3 (neutral),
respectively. The participants found comprehension tasks to be clear. The median value
was 2 (agree) in all experiments. The answers to S4 suggest that the participants
found comments to be clear. In particular, the median value was 1 (strongly agree) in
E3-UniBAS, while it was 2 (agree) in all remaining experiments. All the participants

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 G. Scanniello et al.

Method

S
ou

rc
e

of
 In

fo
rm

at
io

n

GD SC TD

D
P
I

I
P
K

S
oC

(a) E1-Prof Method

S
o

u
rc

e
 o

f
In

fo
rm

a
tio

n

GD SC TD

D
P
I

I
P
K

S
o
C

(b) E2-UniSA

Method

S
ou

rc
e

of
 In

fo
rm

at
io

n

GD SC TD

D
P
I

P
K

S
oC

(c) E3-UniBAS Method

S
o

u
rc

e
 o

f I
n

fo
rm

a
tio

n

GD SC TD

D
P
I

P
K

S
o
C

(d) E4-UniBZ

Fig. 6. Mosaic plot for source of information - (DPI) Design-Pattern Instances, (PK) Previous knowledge, (I)
Internet, or (SoC) Source Code.

agreed on the usefulness of the arrangement of the comprehension questionnaire in
three parts (S5). In all experiments, the median value was 2 (agree).

As for E2-UniSA, the participants that carried out the experiment in the groups
GD or TD expressed a neutral judgment (the median value) on the usefulness of pat-
tern instances to accomplish the comprehension task (S6). The participants in other
experiments agreed on the usefulness of pattern instances. In these experiments, the
median value was 2. The participants found pattern instances to be well documented.
The median value for S7 was 2 (agree) in all experiments.

Regarding S8, the median value was equal to D in all experiments. The participants
indicated that the time they spent to analyze source code ranges from 60% to 80% of
the total time. The participants in E2-UniSa specified that the time to consult pattern
instances was less than 20% (S9) of the total time to accomplish the comprehension
task. All the other participants specified a range between 20% and 40%.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:23

Table X. Correctness of understanding grouped by CI and NCI

Experiment Method CI NCI p-valueMean St.Dev. Mean St.Dev.
E1-Prof GD 0.671 0.309 0.499 0.359 Yes (0.004)

TD 0.73 0.277 0.337 0.333 Yes (< 0.001)
E2-UniSA GD 0.721 0.252 0.392 0.339 Yes (< 0.001)

TD 0.694 0.342 0.34 0.358 Yes (< 0.001)
E3-UniBAS GD 0.602 0.328 0.268 0.315 Yes (< 0.001)

TD 0.626 0.265 0.35 0.363 Yes (0.006)
E4-UniBZ GD 0.644 0.28 0.584 0.376 No (0.39)

TD 0.725 0.298 0.422 0.324 Yes (< 0.001)

4.7. Further Analyses
In the following, with respect to Correctness of understanding, we compare the results
of the participants who correctly identified the instances needed to answer the ques-
tions in the comprehension questionnaire and those who did not. We conclude with
the feedback that the participants in E4-UniBZ gave on how design pattern instances
should be documented to improve source code comprehensibility and maintainability.

4.7.1. Correctly vs. Incorrectly Identified Instances. The answers to the questions in the
comprehension questionnaire have been classified as: CI (Correctly Identified pat-
tern instances) and NCI (Non Correctly Identified pattern instances). To understand
whether the identification of design-pattern instances affects Correctness of under-
standing, we compute the mean and standard deviation values on these two groups of
answers. These statistics are summarized in Table X.

The descriptive statistics suggest that Correctness of understanding improves when
pattern instances are correctly recognized. This result held in all experiments with
instances documented both graphically and textually. In addition, there is a non-
noteworthy difference between the groups GD and TD when the instances are either
correctly or incorrectly identified.

The results of a Mann-Whitney test for unpaired analyses indicate that the Cor-
rectness of understanding is significantly greater when design-pattern instances are
correctly identified with respect to when these instances are not correctly identified.
This is true in all the experiments with the only exception of E4-UNiBZ on GD, where
the statistical test returned a p-value equal to 0.39. It is also worth mentioning that
the statistical power is always high, when the Mann-Whitney test returned a p-value
less than 0.05. The statistical power assumes values in between 0.87 and 1. We also
computed the effect size for GD and TD when pattern instances were correctly or not
correctly recognized by participants. In particular, the effect size is small in E1-Prof
on GD (Cliff ’s d = 0.277), while it is medium in E3-UniBAS on TD. In all the other
experiments (except E4-UNiBZ on GD), the effect size is large (values range between
0.432 and 0.623).

4.7.2. A Qualitative Look Inside the Use of Design-Pattern Instances. In this section, we dis-
cuss answers that the participants in E4-UniBZ gave to the two additional open ques-
tions presented in Section 3.9.1. The following are the main outcomes:

— The participants provided slightly different interpretations of why the documenta-
tion of pattern instances should make source code comprehension and maintenance
easier. However, there was consensus that instance documentation made software
implementation more understandable (e.g., the link among classes can be found
quickly) and that it implicitly clarifies the rationale behind that implementation.
The participants did not find instance documentation to be useful as a communica-
tion mechanism among developers.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 G. Scanniello et al.

— 10 out of 15 participants stated that pattern instances should be graphically rep-
resented with UML class diagrams to improve source code comprehensibility and
maintainability. This answer was given by 4 participants in the group SC and by 4
participants in the group TD, while it was given by 2 participants in the group GD.
A possible justification is that the participants were familiar with the method of
representing instances proposed by Gamma et al. [1995] and thus when instances
were not documented in accordance with this method they were less comfortable
with comprehension tasks. When instances were documented in accordance with
the method by Gamma et al. [1995], the participants believed that a different kind
of documentation could better fit comprehensibility. We can conjecture that this find-
ing might be due to how participants learned the basics of design-pattern develop-
ment and not to the true benefits deriving from the use of one kind of documentation
rather than another. This point might represent a future direction for our research.

4.8. Threats to Validity
To comprehend strengths and limitations of our family of experiments, threats that
could affect results and their generalization are presented and discussed in this sub-
section. Despite our effort in mitigating as many threats as possible, some of them
are unavoidable. We discuss the threats to validity using the guidelines proposed by
Wohlin et al. [2012].

4.8.1. Internal Validity. In empirical studies internal validity threats are relevant. They
are even more relevant in a study like ours that try to establish a causal relationship,
because threats to internal validity may invalidate such a relationship.

— Interaction with selection. It has been mitigated by the experiment design. Each
group of participants worked on one task only, with or without documented design-
patterns instances. Furthermore, the participants in each experiment had similar
background and experience.

— Maturation. The adopted experimental design should mitigate possible learning ef-
fect since participants worked on one task only. We have mitigated the fatigue effect
allowing participants to take a break when passing from a group of questions in the
comprehension questionnaire to the next one.

— Diffusion or imitation of treatments. This threat concerns the information exchanged
among participants within each experiment. We prevented this in several ways.
While accomplishing each experiment, the participants were monitored by the ex-
periment supervisors to prevent that they communicated with one another. The su-
pervisors also ensured that no communication among participants occurred during
each break. This point is less serious in E1-Prof, where at most two professionals
were present in each laboratory session. The use of the Internet to exchange infor-
mation might represent another bias. Participants could also use the Internet to get
additional information on the experimental object. For example, the participants in
the group TD could have fetched from the web the graphical representations of the
pattern instances in the experimental object. To deal with threats related to the use
of the Internet, we monitored participants, while performing experimental tasks.
As an additional measure to prevent the diffusion of material among participants,
we asked participants to return material when each experiment was accomplished.
This allowed reducing biases related to the communication among participants in
different experiments.

4.8.2. External Validity. External validity primarily refers to the generalizability of the
obtained results. Questions about external validity may arise in controlled experi-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:25

ments. However, this kind of empirical strategy is often conducted in the early steps of
a longterm empirical investigation to reduce failure risks [Arisholm et al. 2006].

— Interaction of selection and treatment. The use of students as participants may affect
external validity [Carver et al. 2003; Ciolkowski et al. 2004; Hannay and Jørgensen
2008]. To deal with this threat, we conducted replications with professionals and
PhD students. Regarding professionals, they are Italian junior/senior software de-
velopers. The majority of the professionals (15 out of 25) worked for companies lo-
cated in Southern Italy. The remaining participants worked for companies located
in Central (8) and Northern Italy (2). Southern Italy and Central Italy are over-
represented with respect to Northern Italy. This point might represent a threat to
external validity. Regarding the size of the sample (i.e., number of professionals), it
was hard to find a larger number of participants because of their limited availability
and restrictions from their employers. PhD students were enrolled in an interna-
tional PhD course in Computer Science. We were not able to find a larger number
of PhD students because of their limited availability. As for the participants in E2-
UniSA and E3-UniBAS, they were trained on UML, design-pattern development,
and took several programming courses (e.g., procedural programming and object ori-
ented programming). In addition, some of the participants in E2-UniSA (i.e., about
40%) had an internship in industry as a final part of their Bachelor degree. How-
ever, working with students also has various advantages. For example, the students
prior knowledge is rather homogeneous [Verelst 2004]. To increase our confidence in
the results, we are also promoting further independent/external replications mak-
ing a laboratory package available on the web [Scanniello et al. 2014b]. This will
allow researchers to easily conduct replications of our experiments [Lindvall et al.
2005]. External differentiated replications will further increase the confidence in
our results. These kinds of replication will reduce the likelihood of the researcher
bias possibly present in our experimental procedure [Sjøberg et al. 2005].

— Interaction of setting and treatment. In our study, the size and complexity of the
experimental object (i.e., documentation and system itself) may affect result valid-
ity. We selected a portion of an open-source software system large enough to be
considered not excessively easy. Larger experimental objects could overload partic-
ipants, thus biasing the experimental results. In addition, the source code of the
experimental object was not familiar to participants, thus allowing us to simulate
a realistic comprehension task. Another possible threat to external validity related
to the experimental object is that JHotDraw is well designed and design-patterns
are mostly intentionally used. This might make the experimental object not rep-
resentative. Future work is needed to verify if our results can be generalized in
case of poorly designed software systems developed without the intentional use of
design-patterns. The use of UltraEdit might represent another threat to the validity
of the results as well as the translation of the experimental material. However, it
is worth mentioning that these two possible threats might affect the results for all
the three treatments (SC, GD, and TD). However, it is still possible that some of the
participants were more familiar with UltraEdit than others, especially in E1-Prof
and E4-UniBZ. Identifier renaming might also bias the results. To deal with this
concern, source code modifications were performed by one of the authors (the first),
who was not involved in the definition of the comprehension questionnaire.

4.8.3. Construct Validity. Construct validity concerns the link between the concrete ex-
perimental elements and the abstract concepts of the experimental goal. Some con-
struct validity threats are also related to the experiment design and to social factors.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 G. Scanniello et al.

— Interaction of different treatments. To mitigate this threat we adopted a one factor
with three treatments design [Wohlin et al. 2012]. Each participant experimented
only one method on the same experimental object.

— Confounding constructs and level of construct. The procedure used to divide the par-
ticipants into the groups in Table III could affect the validity of the obtained results.
We are aware that the use of a different criterion to assess participants’ working
experience and ability could lead to different results. The fact that the participants
in our family of experiments received the documentation in their native language
(i.e., the participants in E1-Prof, E2-UniSA, and E3-UniBAS), while others did not
(i.e., the participants in E4-UniBZ) might also affect the validity of results. Another
threat is related to the fact that some of the participants received a training session
on design-pattern development, while others did not. Professionals did not receive a
training for time constraints.

— Evaluation apprehension. We mitigated this threat because the participants were
not evaluated on the results achieved in the experiments. All students in E2-UniSA
and E3-UniBAS were equally rewarded with one extra point in the exam grade,
regardless of their actual performance. All the participants in our family of experi-
ments were unaware of the objectives of our family of experiments and of our exper-
imental hypotheses.

— Experimenters’ expectancies. Questions in the comprehension questionnaire were
formulated in order to favor none among groups GD, TD or SC. The reliability of the
comprehension questionnaires was tested by applying the Cronbach’s α test [Cron-
bach 1951]. In Table XI, we summarize the results obtained for each set of the
closed-questions intended to measure the three subjective variables (i.e., Source
of Information, Perceived Difficulty, and Confidence). All the obtained values were
higher than the acceptable minimum threshold [Maxwell 2002] (α=0.70). The post-
experiment survey questionnaire was designed to capture the participants’ per-
ception of the tasks. We designed this questionnaire using standard methods and
scales [Oppenheim 1992].

Table XI. Results of the Cronbach’s α test for the questionnaires reliability

Variable E1-Prof E2-UniSA E3-UniBAS E4-UniBZ

Source of Information Acceptable (0.85) Acceptable (0.95) Acceptable (0.84) –
Perceived Difficulty Acceptable (0.86) Acceptable (0.86) Acceptable (0.9) Acceptable (0.84)
Confidence Acceptable (0.82) Acceptable (0.79) Acceptable (0.89) Acceptable (0.83)

“-” signifies that the Cronbach’s α test has not been computed because all the participants indicated source code (see also Figure 6(d)).

— Inadequate preoperational explication of construct. The constructs are not suffi-
ciently defined, before they are translated into measures or treatments. To deal with
this kind of threat to construct validity, we took advantage of the framework we in-
troduced in Section 2.

4.8.4. Conclusion Validity. Conclusion validity concerns issues that may affect the abil-
ity of drawing a correct conclusion.

— Reliability of measures. This threat is related to how the dependent variables were
measured. The method to assess correctness of understanding is widely used in ex-
periments with purposes similar to ours (e.g., [Ricca et al. 2010]). In addition, one
of the authors (i.e., the second) not involved in the task definition built the compre-
hension questionnaire and analyzed the participants’ answers to this questionnaire.
Regarding the second considered dependent variable, we asked the participants to
write their start and stop times on their questionnaire. We qualitatively validated
the provided information. Even if this method of measuring the task completion

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:27

time can be considered questionable [Hochstein et al. 2005], this practice is very
common [Huang and Holcombe 2009; Ceccato et al. 2014; Scanniello et al. 2014a].

— Random heterogeneity of participants. We drew fair samples and conducted our ex-
periments with participants belonging to these samples. Regarding practitioners,
their experience could be heterogeneous.

— Fishing and the error rate. Our hypotheses have been rejected considering proper
p-values.

— Statistical tests. We opted for non-parametric tests (e.g., Mann-Whitney test for un-
paired analyses) to statistically reject the defined null hypotheses. We used non-
parametric test also when parametric test could be applied. This choice might in-
crease the risk of Type II errors.

5. DISCUSSION
We first discuss the results of each experiment individually and then together. The
section is concluded with some practical implications from our family of experiments.

5.1. Individual Experiments
We observed a clear improvement in Correctness of understanding deriving from the
use of documented instances. This finding holds for all the experiments in the fam-
ily with the only exception of E3-UniBAS, namely the experiment having participants
with the lowest level of experience. For E1-Prof and E4-UniBZ, the difference in Cor-
rectness of understanding is statistically significant. The participants in these exper-
iments were those with the highest level of experience. On the basis of the observed
results, we can conclude that: if the maintainer has an adequate level of experience
with design-pattern development and computer programming, source code comprehen-
sibility is statistically greater when instances are textually or graphically documented
with respect to not having these instances documented at all. As for E2-UniSA, the
average improvement achieved by the participants with graphically documented in-
stances with respect to those having instances not documented at all was 30.1%. The
average improvement in comprehension was 38.7% when instances were textually doc-
umented. In other words, source code comprehensibility is greater, but not statistically
significant, when design-pattern instances are textually or graphically documented
with respect to not having them documented at all. This implies that a maintainer
benefits from the documentation of design-pattern instances also in case he/she has a
Bachelor degree and knows the basics of high- and low-level design of object-oriented
software systems, software development, and software maintenance.

The presence of documented instances did not significantly affect the time to accom-
plish comprehension tasks. Indeed, the participants spent slightly less time to accom-
plish that task when the implemented instances were documented either textually or
graphically. This result might be considered unexpected because more documents/in-
formation to read and interpret should require more time to execute a task. This is
even more evident for graphically documented instances. A justification for this result
is that explicitly reported instances allow finding implementation details quicker and
this reduces the time to comprehend source code.

In all the experiments, we observed that the average values for Correctness of un-
derstanding were higher when participants were able to correctly identify pattern in-
stances needed to answer the comprehension questionnaire. In many cases (7 out of
8), we observed that the Correctness of understanding is significantly greater when
design-pattern instances are correctly identified (see Table X). This finding suggests
that it is important to help the maintainer to easily recognize pattern instances in
source code because this would improve source code comprehensibility.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 G. Scanniello et al.

As for E1-Prof, we observed that the participants in the group GD indicated pattern
instances as the first source of information. In contrast, the participants in the group
TD indicated source code as the first source of information. Independently from the
group, source code is the first source of information in all the other experiments of our
family. This slight difference in the results achieved by the participants in the groups
GD and TD could be due to the fact that in the latter case, pattern instances are doc-
umented in source code. Then, some participants could have considered documented
pattern instances as an integral part of source code.

5.2. Participants’ Experience
Participants with the greater experience had a more correct understanding of source
code. In addition, more experienced participants benefit more than less experienced
ones when instances are documented either textually or graphically. As for Time, we
observed no noteworthy data pattern.

We observed that the participants who used textually documented instances and
with a given experience (i.e., at least a Bachelor degree) obtained on average better
results with respect to those participants who used graphically documented instances
(see Table V). The effect size is also in favor of TD. It is negligible in E2-UniSA, small
in E1-Prof, and large in E4-UniBZ. In case of the highest experienced participants (E1-
Prof and E4-UniBZ), we also found that the average time to accomplish comprehension
tasks is lower for TD than for SC and GD. These outcomes suggest that the partici-
pants that accomplished comprehension tasks with TD achieved an improved compre-
hension of source code with a lower effort. This is even more interesting if we compare
TD with SC: the participants analyzed more information in less time and obtained
an improved correctness of understanding of the source code. As for E2-UniSA, the
participants that accomplished comprehension tasks with GD achieved an improved
comprehension of source code with a higher effort with respect to those that accom-
plished tasks with TD. The outcomes suggest that a given experience is needed to
benefit from the documentation of design-pattern instances in the comprehension of
source code and to reduce the average time to accomplish comprehension tasks when
this kind of documentation is given in addition to source code.

5.3. Implications
To assess the implications of our family of experiments, we adopted a perspective-
based approach [Basili et al. 1996]. In particular, we focus here on the practitioner/con-
sultant (simply practitioner in the following) and researcher’s perspectives [Kitchen-
ham et al. 2008]:

— The use of textually or graphically documented instances improves the correctness
of understanding of source code given that the maintainer has an adequate level
of experience. This result is clearly relevant from the researcher’s perspective. For
example, the researcher could be interested in studying how source code compre-
hensibility is affected when using together textually and graphically documented
pattern instances. The practitioner could also be interested in our results because
it is worth documenting pattern instances to get an improved source code compre-
hension. However, this outcome opens a managerial dilemma: are the additional
effort and cost to create and maintain the documentation of pattern instances, ad-
equately paid back by an improved source code comprehensibility? Indeed, from a
managerial point of view, the adoption of graphical and textual documentation, as
means to represent pattern instances, should take into account the costs it will in-
troduce. Furthermore, what method is less expensive in representing design-pattern

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:29

instances? On the basis of our findings, these points represent future directions for
the research.

— The presence of documented instances does not seem to be a cause of distraction
for the maintainer (Hn1 Time was not rejected in all the experiments), while per-
forming comprehension tasks. In each experiment, the use of textual and graphical
instances reduces the average time to comprehend source code. This result is ob-
viously relevant for the practitioner, but also for the researcher. In particular, the
researcher could be interested in investigating how to better support the maintainer
in quickly finding implementation details from the pattern instances to reduce the
effort to comprehend source code.

— Benefits deriving from the documentation of pattern instances appear to be depen-
dent on the participants’ experience. This result is practically relevant for the pro-
fessional: maintainers with different experiences shall benefit from the documented
instances to a different degree. This aspect is clearly relevant also for the researcher,
who could be interested in studying what is the possible experience threshold to
benefit from the use of instance documentation in source code comprehension. From
the researcher perspective, this outcome also adds an empirical voice to the debate
over the use of students as valid proxies in developer-based studies [Carver et al.
2003; Höst et al. 2000; Arisholm and Sjøberg 2004]. That is, can students be consid-
ered as appropriate as professionals in controlled experiments? On the basis of our
results, it seems that students can if they have a sufficient knowledge on the tech-
nology/method that is being evaluated. Therefore, the use of students might be an
issue as long as we are interested in evaluating the adoption of a technology/method
by expert software engineers and if they do not have a sufficient knowledge on that
technology/method. On the other hand, the use of students might be valuable when
our goal is to study how easy to use is a technology/method and its possible benefit
without or with a limited training or experience (e.g., [Erra and Scanniello 2010;
Scanniello and Erra 2014]).

— The experiment with PhD students replicates the findings of the original experi-
ment. This implication is related to the implication in the prior bullet point. In fact,
PhD students can be as appropriate as professionals in controlled experiments. This
implication is relevant for the researcher because it suggests that PhD students
might substitute for professionals in developer-based studies. Although this point
deserves future investigations, we can postulate that our findings pose the basis for
future work in this direction.

— Comprehensibility improves when pattern instances are correctly recognized in
source code. This opens the following future research directions: (i) investigating
issues that led to certain patterns to be better comprehended and recognized than
others, (ii) defining new methods/notations to make the identification of pattern in-
stances in source code easier, and (iii) investigating source code comprehensibility
when graphically documented instances are complemented by other notations (e.g.,
UML sequence diagrams or textual documentation). The results from our family of
experiments delineate these future research directions.

— Since comprehensibility improves when source code is complemented by textually
or graphically documented instances, the number of defects should decrease corre-
spondingly as a consequence of a maintenance operation. This is true provided that
the maintainer has an adequate level of experience (i.e., at least a Bachelor degree).
The use of documented instances should also positively impact the communication
among developers. These implications are relevant for the practitioner.

— The majority of the participants found the source code to be the most relevant source
of information to perform comprehension tasks. This finding is relevant for the re-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 G. Scanniello et al.

searcher, who could be interested in assessing if and how this concern affects the
benefits stemming from the use of documented pattern instances.

— We considered pattern instances to be graphically documented using UML class di-
agrams. For each instance, we exploited the same graphical layout as proposed by
Gamma et al. [Gamma et al. 1995]. The use of different layouts might lead to differ-
ent results. This aspect is relevant for the practitioner interested in understanding
the best way for representing pattern instances, and for the researcher interested
in investigating how and why a different layout for a pattern instance affects source
code comprehensibility.

— The diffusion of a new technology/method is made easier when empirical evaluations
are performed and their results show that such a technology/method solves actual
issues [Baldassarre et al. 2014; Pfleeger and Menezes 2000]. Therefore, the results
from our family of experiments could increase the practice of documenting pattern
instances in the software industry. In addition, even if the costs related to software
development, maintenance, and evolution might increase, the introduction or the
enforcement of the systematical use of documented instances should not require a
complete and radical process change in a given company. This point has particular
interest for the practitioner.

6. RELATED WORK
Software maintenance is essential in the evolution of software systems and represents
one of the most expensive, time consuming, and challenging phases of the whole devel-
opment process. Maintenance starts after the delivery of the first version of the system
and lasts much longer than the initial development process [Bennett and Rajlich 2000;
Zelkowitz et al. 1979]. As shown in the survey by Erlikh [2000], the cost needed to per-
form maintenance operations ranges from 85% to 90% of the total cost of a software
project. Whatever is the maintenance operation, the greater part of its cost and effort
is due to the comprehension of source code [Mayrhauser 1995]. In particular, Pfleeger
and Atlee [2006] estimated that up to 60% of software maintenance is spent on com-
prehension. There are several reasons that make comprehension even more costly and
complex, namely the size of a software system and its available documentation [Self-
ridge et al. 1993].

Only few studies have been conducted to assess the support that the documentation
of pattern instances provides to software maintenance [Prechelt et al. 2002; Gravino
et al. 2011]. For example, Prechelt et al. [2002] studied whether pattern instances tex-
tually documented in source code (through comments) improve maintainers’ perfor-
mance in the execution of maintenance tasks with respect to well-commented source
code without explicit references to pattern instances. The study involved 74 German
graduate students and 22 undergraduate students from the USA, who performed tasks
on small Java and C++ programs, respectively. For example, the size of these programs
ranged from 495 to 762 lines of code (comment lines included), only two kinds of pat-
tern instances were present in each program, and maintenance operations were ex-
ecuted on sheet papers. The results suggested that maintenance tasks supported by
explicitly documented pattern instances were completed faster or with fewer errors.
This is the study most similar to ours. However, there are many differences that make
the study by Prechelt et al. [2002] different from the study we present in this paper.
The main difference is that we conducted a family of controlled experiments involv-
ing participants having four different levels of experience: from Bachelor students to
software professionals. In addition, we analyzed the effect of graphically documented
pattern instances, we used a larger experimental object from a real open-source soft-
ware system (2149 lines of code, comment lines included, with 10 pattern instances
implemented in), and the participants conducted their task inside a more realistic en-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:31

vironment, thus reducing threats to external validity. The results achieved in our long
term investigation together with those from Prechelt et al. [2002] demonstrate the
usefulness of explicitly documenting instances when dealing with source code compre-
hension. Therefore, the main “take away” lesson from our family of experiments and
from the two experiments by Prechelt et al. is: documenting instances can improve
source code comprehensibility. That is, it is not only important to use design-patterns
to develop an object-oriented software system, but it is even more important to prop-
erly document the instances implemented in its source code. These results are per-
haps not overly surprising, but it is acceptable if not significant, as evidence needs to
be verified/reaffirmed through empirical studies [Basili et al. 1999; Kitchenham 2008;
Kitchenham et al. 2002; Shull et al. 2008].

The research work presented in this paper is also different from other investiga-
tions conducted to examine software design-patterns [Prechelt et al. 2001; Bieman
et al. 2003; Cepeda Porras and Guéhéneuc 2010; Jeanmart et al. 2009; Khomh and
Guéhéneuc 2008; Di Penta et al. 2008; Vokác 2004; Vokác et al. 2004; Krein et al. 2011],
since we pursued a different goal. In particular, the focus here is on the kind of doc-
umentation for pattern instances and on source code comprehensibility. For example,
Prechelt et al. [2001] investigate whether the use of design-patterns is useful or harm-
ful. To this end, their experiment involved four different, rather small, C++ programs
and six software design-patterns. Each of these programs existed in two versions: one
based on design-patterns and another implementing a simplified design without pat-
tern instances. This empirical investigation has been next replicated by Vokác et al.
[2004] and Krein et al. [2011]. All the investigations reinforce the conclusion that each
kind of design-pattern has its own nature and proper place of use. The results achieved
in these investigations also suggest that some kinds of design-patterns are much eas-
ier to understand and use than others. The implication is that design-patterns are
not universally good or bad, they must be used in a way that matches the problem
and the maintainer. To this respect, our work complements these investigations by
explicitly considering the source code comprehension that four kinds of maintainers
achieved when source code is developed exploiting design-patterns and the instances
implemented in the source code are textually and graphically documented.

7. CONCLUSION
In this paper, we have presented results from a family of four controlled experiments,
carried out with students and practitioners. We used controlled experiments because
a number of confounding and uncontrollable factors might be present in real project
settings. The achieved results suggest that at least a given experience is needed to
benefit from the documentation of design-pattern instances as a complementary in-
formation to comprehend source code. For professionals and PhD students, the use
of graphically and textually documented pattern instances significantly improves cor-
rectness of understanding of source code. We did not observe any significant difference
between textually and graphically documented pattern instances with respect to both
correctness of understanding and task completion time. Our results also suggest that
correctness of understanding improves when pattern instances are correctly identified.
It seems crucial to ease the identification of instances in source code.

Possible future directions for our research are: (i) performing different kinds of em-
pirical investigations (e.g., case studies); (ii) investigating the effect of documentation
for specific design-patterns on source code comprehensibility; (iii) studying new rep-
resentations for documenting pattern instances; and (iv) investigating if providing
textual documentation alongside with the graphical one improves source code com-
prehensibility.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32 G. Scanniello et al.

ACKNOWLEDGMENTS

The authors would like to thank all the participants in the family of experiments.

REFERENCES
ABRAHÃO, S. M., GRAVINO, C., PELOZO, E. I., SCANNIELLO, G., AND TORTORA, G. 2013. Assessing the

effectiveness of sequence diagrams in the comprehension of functional requirements: Results from a
family of five experiments. IEEE Transactions on Software Engineering 39, 3.

ALEXANDER, C., ISHIKAWA, S., SILVERSTEIN, M., JACOBSON, M., FIKSDAHL-KING, I., AND ANGEL, S.
1977. A Pattern Language - Towns, Buildings, Construction. Oxford University Press.

ARANDA, J., ERNST, N., HORKOFF, J., AND EASTERBROOK, S. 2007. A framework for empirical evalua-
tion of model comprehensibility. In Proceedings of Modeling in Software Engineering. IEEE Computer
Society, 7–13.

ARISHOLM, E., BRIAND, L. C., HOVE, S. E., AND LABICHE, Y. 2006. The impact of UML documentation on
software maintenance: An experimental evaluation. IEEE Transactions on Software Engineering 32, 6,
365–381.

ARISHOLM, E., GALLIS, H., DYBÅ, T., AND SJØBERG, D. I. K. 2007. Evaluating pair programming with
respect to system complexity and programmer expertise. IEEE Transactions on Software Engineer-
ing 33, 2, 65–86.

ARISHOLM, E. AND SJØBERG, D. I. K. 2004. Evaluating the effect of a delegated versus centralized con-
trol style on the maintainability of object-oriented software. IEEE Transactions on Software Engineer-
ing 30, 8, 521–534.

ASUNCION, H. U., FRANÇOIS, F., AND TAYLOR, R. N. 2007. An end-to-end industrial software traceability
tool. In Proceedings of the Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering. ACM, 115–124.

BAKER, R. 1995. Modern permutation test software. In E. Edgington Randomization Tests, New York, Mar-
cel Decker.

BALDASSARRE, M. T., CARVER, J., DIESTE, O., AND JURISTO, N. 2014. Replication types: Towards a shared
taxonomy. In Proceedings of International Conference on Evaluation and Assessment in Software Engi-
neering. ACM, 18:1–18:4.

BASILI, V., SHULL, F., AND LANUBILE, F. 1999. Building knowledge through families of experiments. IEEE
Transactions on Software Engineering 25, 4, 456–473.

BASILI, V. R., GREEN, S., LAITENBERGER, O., LANUBILE, F., SHULL, F., SØRUMGÅRD, L. S., AND
ZELKOWITZ, M. V. 1996. The empirical investigation of perspective-based reading. Empirical Software
Engineering 1, 2, 133–164.

BASILI, V. R. AND ROMBACH, H. D. 1988. The TAME project: Towards improvement-oriented software
environments. IEEE Transactions on Software Engineering 14, 6, 758–773.

BAUER, M. I. AND JOHNSON-LAIRD, P. N. 1993. How diagrams can improve reasoning. Psychological Sci-
ence 4, 372–378.

BENNETT, K. H. AND RAJLICH, V. T. 2000. Software maintenance and evolution: a roadmap. In Proceedings
of the Conference on the Future of Software Engineering. ICSE ’00. ACM, New York, NY, USA, 73–87.

BERGERSEN, G., SJØBERG, D. I. K., AND DYBÅ, T. 2014. Construction and validation of an instrument for
measuring programming skill. IEEE Transactions on Software Engineering.

BERGERSEN, G. R., HANNAY, J. E., SJØBERG, D. I. K., DYBÅ, T., AND KARAHASANOVIC, A. 2011. Inferring
skill from tests of programming performance: Combining time and quality. In Procs. of the International
Symposium on Empirical Software Engineering. IEEE, 305–314.

BIEMAN, J., STRAW, G., WANG, H., MUNGER, P., AND ALEXANDER, R. 2003. Design patterns and change
proneness: an examination of five evolving systems. In Procs. of Software Metrics Symposium. IEEE
Computer Society, 40–49.

BRUEGGE, B. AND DUTOIT, A. H. 2003. Object-Oriented Software Engineering: Using UML, Patterns and
Java, 2nd edition. Prentice-Hall.

BUDGEN, D., BURN, A. J., BRERETON, O. P., KITCHENHAM, B. A., AND PRETORIUS, R. 2011. Empirical
evidence about the UML: a systematic literature review. Software: Practice and Experience 41, 4, 363–
392.

CARVER, J., JACCHERI, L., MORASCA, S., AND SHULL, F. 2003. Issues in using students in empirical studies
in software engineering education. In Proceedings of International Symposium on Software Metrics.
IEEE Computer Society, Washington, DC, USA, 239–250.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:33

CECCATO, M., DI PENTA, M., FALCARIN, P., RICCA, F., TORCHIANO, M., AND TONELLA, P. 2014. A family
of experiments to assess the effectiveness and efficiency of source code obfuscation techniques. Empiri-
cal Software Engineering 19, 4, 1040–1074.

CEPEDA PORRAS, G. AND GUÉHÉNEUC, Y.-G. 2010. An empirical study on the efficiency of different design
pattern representations in UML class diagrams. Empirical Software Engineering 15, 5, 493–522.

CIOLKOWSKI, M., MUTHIG, D., AND RECH, J. 2004. Using academic courses for empirical validation of
software development processes. In Proceedings of EUROMICRO Conference. IEEE Computer Society,
Washington, DC, USA, 354–361.

COHEN, J. 1988. Statistical Power Analysis for the Behavioral Sciences. L. Erlbaum Associates.
COLOSIMO, M., DE LUCIA, A., SCANNIELLO, G., AND TORTORA, G. 2009. Evaluating legacy system migra-

tion technologies through empirical studies. Information & Software Technology 51, 2, 433–447.
CONOVER, W. J. 1998. Practical Nonparametric Statistics. Wiley, 3rd Edition.
CRONBACH, L. 1951. Coefficient alpha and the internal structure of tests. Psychometrika 16, 3, 297–334.
DA SILVA, F. Q. B., SUASSUNA, M., FRANÇA, A. C. C., GRUBB, A. M., GOUVEIA, T. B., MONTEIRO, C.

V. F., AND DOS SANTOS, I. E. 2014. Replication of empirical studies in software engineering research:
a systematic mapping study. Empirical Software Engineering 19, 3, 501–557.

DI PENTA, M., CERULO, L., GUÉHÉNEUC, Y.-G., AND ANTONIOL, G. 2008. An empirical study of the re-
lationships between design pattern roles and class change proneness. In Procs. of the International
Conference on Software Maintenance. IEEE Computer Society, 217–226.

DYBÅ, T., KAMPENES, V. B., AND SJØBERG, D. I. K. 2006. A systematic review of statistical power in
software engineering experiments. Information & Software Technology 48, 8, 745–755.

ELLIS, P. 2010. The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation
of Research Results. Cambridge University Press.

ERLIKH, L. 2000. Leveraging legacy system dollars for e-business. IT Professional 2, 17–23.
ERRA, U. AND SCANNIELLO, G. 2010. Assessing communication media richness in requirements negotia-

tion. IET Software 4, 2, 134–148.
GAMMA, E., HELM, R., R.JOHNSON, AND VLISSIDES, J. 1995. Design Patterns: Elements of Reusable Object

Oriented Software. Addison-Wesley.
GÓMEZ, O. S., JURISTO, N., AND VEGAS, S. 2010. Replications types in experimental disciplines. In Proceed-

ings of International Symposium on Empirical Software Engineering and Measurement. ACM, 3:1–3:10.
GRAVINO, C., RISI, M., SCANNIELLO, G., AND TORTORA, G. 2011. Does the documentation of design pattern

instances impact on source code comprehension? Results from two controlled experiments. In Proceed-
ings of the Working Conference on Reverse Engineering. IEEE Computer Society, 67–76.

GRAVINO, C., RISI, M., SCANNIELLO, G., AND TORTORA, G. 2012. Do professional developers benefit from
design pattern documentation? a replication in the context of source code comprehension. In Procs.
of International Conference on Model Driven Engineering Languages and Systems. Lecture Notes in
Computer Science. Spinger, 185–201.

GUÉHÉNEUC, Y.-G. 2007. P-mart: Pattern-like micro architecture repository. In Procs. of EuroPLoP Focus
Group on Pattern Repositories.

GUÉHÉNEUC, Y.-G. AND ANTONIOL, G. 2008. Demima: A multilayered approach for design pattern identi-
fication. IEEE Transactions on Software Engineering 34, 5, 667–684.

HANNAY, J. AND JØRGENSEN, M. 2008. The role of deliberate artificial design elements in software engi-
neering experiments. IEEE Transactions on Software Engineering 34, 2, 242–259.

HEER, J. AND AGRAWALA, M. 2006. Software design patterns for information visualization. IEEE Trans.
Visualization & Comp. Graphics 12, 853–860.

HOCHSTEIN, L., BASILI, V. R., ZELKOWITZ, M. V., HOLLINGSWORTH, J. K., AND CARVER, J. 2005. Com-
bining self-reported and automatic data to improve programming effort measurement. ACM SIGSOFT
Software Engineering Notes 30, 5, 356–365.

HÖST, M., REGNELL, B., AND WOHLIN, C. 2000. Using students as subjects—a comparative study of stu-
dents and professionals in lead-time impact assessment. Empirical Software Engineering 5, 3, 201–214.

HUANG, L. AND HOLCOMBE, M. 2009. Empirical investigation towards the effectiveness of test first pro-
gramming. Information & Software Technology 51, 1, 182–194.

ISO. 1991. Information Technology–Software Product Evaluation: Quality Characteristics and Guidelines
for their Use, ISO/IEC IS 9126. ISO, Geneva.

JEANMART, S., GUÉHÉNEUC, Y.-G., SAHRAOUI, H., AND HABRA, N. 2009. Impact of the Visitor Pattern on
program comprehension and maintenance. In Procs. of the Symposium on Empirical Software Engineer-
ing and Measurement. IEEE Computer Society, 69–78.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34 G. Scanniello et al.

JEDLITSCHKA, A., CIOLKOWSKI, M., AND PFAHL, D. 2008. Reporting experiments in software engineering.
In Guide to Advanced Empirical Software Engineering (Eds) F. Shull and J. Singer and D. Sjoberg.
Springer London, 201–228.

JURISTO, N. AND MORENO, A. 2001. Basics of Software Engineering Experimentation. Kluwer Academic
Publishers.

KAMPENES, V., DYBA, T., HANNAY, J., AND SJOBERG, I. 2007. A systematic review of effect size in software
engineering experiments. Information & Software Technology 49, 11-12, 1073–1086.

KHOMH, F. AND GUÉHÉNEUC, Y.-G. 2008. Do design patterns impact software quality positively? In Pro-
ceedings of Conference on Software Engineering and Maintenance. 274–278.

KITCHENHAM, B. 2008. The role of replications in rmpirical software engineering - a word of warning.
Empirical Software Engineering 13, 2, 219–221.

KITCHENHAM, B., AL-KHILIDAR, H., BABAR, M., BERRY, M., COX, K., KEUNG, J., KURNIAWATI, F., STA-
PLES, M., ZHANG, H., AND ZHU, L. 2008. Evaluating guidelines for reporting empirical software engi-
neering studies. Empirical Software Engineering 13, 97–121.

KITCHENHAM, B., PFLEEGER, S., PICKARD, L., JONES, P., HOAGLIN, D., EL EMAM, K., AND ROSENBERG,
J. 2002. Preliminary guidelines for empirical research in software engineering. IEEE Transactions on
Software Engineering 28, 8, 721–734.

KREIN, J. L., PRATT, L. J., SWENSON, A. B., MACLEAN, A. C., KNUTSON, C. D., AND EGGETT, D. L.
2011. Design patterns in software maintenance: An experiment replication at brigham young university.
Proceedings of International Workshop on Replication in Empirical Software Engineering Research, 25–
34.

LINDVALL, M., RUS, I., SHULL, F., ZELKOWITZ, M. V., DONZELLI, P., MEMON, A. M., BASILI, V. R.,
COSTA, P., TVEDT, R. T., HOCHSTEIN, L., ASGARI, S., ACKERMANN, C., AND PECH, D. 2005. An evo-
lutionary testbed for software technology evaluation. Innovations in Systems and Software Engineer-
ing 1, 1, 3–11.

LINDVALL, M. AND SANDAHL, K. 1996. Practical implications of traceability. Software, Practice and Expe-
rience 26, 10, 1161–1180.

MAXWELL, K. 2002. Applied Statistics for Software Managers. Software Quality Institute Series. Prentice
Hall PTR.

MAYRHAUSER, A. V. 1995. Program comprehension during software maintenance and evolution. IEEE Com-
puter 28, 44–55.

MCDERMID, J. 1991. Software Engineer’s Reference Book. Butterworth-Heinemann, Linacre House, Jordan
Hill, Oxford, UK.

MENDONÇA, M. G., MALDONADO, J. C., OLIVEIRA, M. C. F. D., CARVER, J., FABBRI, S. C. P. F., SHULL, F.,
TRAVASSOS, G. H., HÖHN, E. N., AND BASILI, V. R. 2008. A framework for software engineering exper-
imental replications. In Proceedings of International Conference on Engineering of Complex Computer
Systems. IEEE Computer Society, 203–212.

OMG. 2005. Unified modeling language (UML) specification, version 2.0. Tech. rep., Object Management
Group. July.

OPPENHEIM, A. N. 1992. Questionnaire Design, Interviewing and Attitude Measurement. Pinter, London.
PFLEEGER, S. AND ATLEE, J. 2006. Software engineering - theory and practice (3. ed.). Ellis Horwood.
PFLEEGER, S. L. AND MENEZES, W. 2000. Marketing technology to software practitioners. IEEE Soft-

ware 17, 1, 27–33.
PRECHELT, L., UNGER, B., TICHY, W. F., BRÖSSLER, P., AND VOTTA, L. G. 2001. A controlled experiment

in maintenance comparing design patterns to simpler solutions. IEEE Transactions on Software Engi-
neering 27, 12, 1134–1144.

PRECHELT, L., UNGER-LAMPRECHT, B., PHILIPPSEN, M., AND TICHY, W. 2002. Two controlled experiments
assessing the usefulness of design pattern documentation in program maintenance. IEEE Transactions
on Software Engineering 28, 6, 595–606.

RICCA, F., DI PENTA, M., TORCHIANO, M., TONELLA, P., AND CECCATO, M. 2010. How developers’ experi-
ence and ability influence web application comprehension tasks supported by uml stereotypes: A series
of four experiments. IEEE Transactions on Software Engineering 36, 1, 96–118.

RICCA, F., SCANNIELLO, G., TORCHIANO, M., REGGIO, G., AND ASTESIANO, E. 2014. Assessing the effect
of screen mockups on the comprehension of functional requirements. ACM Transactions on Software
Engineering and Methodology 24, 1, 1:1–1:38.

SALTON, G. AND MCGILL, M. J. 1983. Introduction to Modern Information Retrieval. McGraw Hill, New
York.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:35

SCAIFE, M. AND ROGERS, Y. 1996. External cognition: how do graphical representations work? Interna-
tional Journal of Human-Computer Studies 45, 2, 185–213.

SCANNIELLO, G. AND ERRA, U. 2014. Distributed modeling of use case diagrams with a method based on
think-pair-square: Results from two controlled experiments. Journal of Visual Languages and Comput-
ing 25, 4, 494–517.

SCANNIELLO, G., GRAVINO, C., GENERO, M., CRUZ-LEMUS, J. A., AND TORTORA, G. 2014a. On the im-
pact of UML analysis models on source code comprehensibility and modifiability. ACM Transactions on
Software Engineering and Methodology 23, 2.

SCANNIELLO, G., GRAVINO, C., RISI, M., TORTORA, G., AND DODERO, G. 2014b. Technical report: please
copy and paste the following url; if it does not work, please check it carefully because there could be an
extraspace to be removed. http://www2.unibas.it/gscanniello/DP/.

SCANNIELLO, G., GRAVINO, C., AND TORTORA, G. 2013. An early investigation on the contribution of class
and sequence diagrams in source code comprehension. In European Conference on Software Mainte-
nance and Reengineering. IEEE Computer Society, 367–370.

SELFRIDGE, P., WATERS, R., AND CHIKOFSKY, E. 1993. Challenges to the field of reverse engineering. In
Proceedings of the Working Conference on Reverse Engineering. IEEE Computer Society.

SHAPIRO, S. AND WILK, M. 1965. An analysis of variance test for normality. Biometrika 52, 3-4, 591–611.
SHULL, F., CARVER, J. C., VEGAS, S., AND JUZGADO, N. J. 2008. The role of replications in empirical

software engineering. Empirical Software Engineering 13, 2, 211–218.
SHULL, F., MENDONCÇA, M. G., BASILI, V., CARVER, J., MALDONADO, J. C., FABBRI, S., TRAVASSOS,

G. H., AND FERREIRA, M. C. 2004. Knowledge-sharing issues in experimental software engineering.
Empirical Software Engineering 9, 1-2, 111–137.

SILLITO, J., MURPHY, G. C., AND DE VOLDER, K. 2008. Asking and answering questions during a program-
ming change task. IEEE Transactions on Software Engineering 34, 4, 434–451.

SJØBERG, D. I. K., HANNAY, J. E., HANSEN, O., KAMPENES, V. B., KARAHASANOVIC, A., LIBORG, N., AND
REKDAL, A. C. 2005. A survey of controlled experiments in software engineering. IEEE Transactions
on Software Engineering 31, 9, 733–753.

VEGAS, S., JURISTO, N., MORENO, A., SOLARI, M., AND LETELIER, P. 2006. Analysis of the influence
of communication between researchers on experiment replication. In Proceedings of the International
Symposium on Empirical Software Engineering. ACM, New York, NY, USA, 28–37.

VERELST, J. 2004. The influence of the level of abstraction on the evolvability of conceptual models of in-
formation systems. In Proceedings of the International Symposium on Empirical Software Engineering.
IEEE Computer Society, Washington, DC, USA, 17–26.

VOKÁC, M. 2004. Defect frequency and design patterns: An empirical study of industrial code. IEEE Trans-
actions on Software Engineering 30, 12, 904–917.

VOKÁC, M., TICHY, W. F., SJØBERG, D. I. K., ARISHOLM, E., AND ALDRIN, M. 2004. A controlled experi-
ment comparing the maintainability of programs designed with and without design patterns-a replica-
tion in a real programming environment. Empirical Software Engineering 9, 3, 149–195.

WOHLIN, C., RUNESON, P., HÖST, M., OHLSSON, M., REGNELL, B., AND WESSLÉN, A. 2012. Experimen-
tation in Software Engineering. Springer.

ZELKOWITZ, M. V., SHAW, A. C., AND GANNON, J. D. 1979. Principles of software engineering and design.
Prentice-Hall.

A. COMPREHENSION QUESTIONNAIRE
In the following, we report the complete list of questions in the used comprehension
questionnaire for the treatment SC. These questions are divided into three groups (see
Section 3.6). For each question, we also show the possible answers for confidence, per-
ceived difficulty, and source of information. As for the treatments GD and TD, we also
asked participants to specify the pattern instances they used to answer the question
when design-pattern instances were indicated as the source of information.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:36 G. Scanniello et al.

First group
Q1. What are the concrete classes, the abstract classes, and the interfaces
that describe the geometric shape rectangle and its attributes?

How much do you trust your answer+?
2 Unsure 2 Not sure enough 2 Sure Enough 2 Sure 2 Very Sure
How do you assess the question+?
2 Very difficult 2 Difficult 2 On average 2 Simple 2 Very Simple
What is the source of information used to answer the question+?
2 Previous Knowledge (PK) 2 Internet (I) 2 Source Code (SoC)
+ Mark only one answer
Q2. What are the main methods involved in creation and visualization
of a Figure object? Indicate the classes to which they belong as well.

How much do you trust your answer+?
2 Unsure 2 Not sure enough 2 Sure Enough 2 Sure 2 Very Sure
How do you assess the question+?
2 Very difficult 2 Difficult 2 On average 2 Simple 2 Very Simple
What is the source of information used to answer the question+?
2 Previous Knowledge (PK) 2 Internet (I) 2 Source Code (SoC)
+ Mark only one answer
Q3. What are the concrete classes, abstract classes, and interfaces that manage
the composition of a whole drawing and its changes?

How much do you trust your answer+?
2 Unsure 2 Not sure enough 2 Sure Enough 2 Sure 2 Very Sure
How do you assess the question+?
2 Very difficult 2 Difficult 2 On average 2 Simple 2 Very Simple
What is the source of information used to answer the question+?
2 Previous Knowledge (PK) 2 Internet (I) 2 Source Code (SoC)
+ Mark only one answer
Q4. What are the instance variables (their classes have to be indicated as well) that
are modified (i.e., those that change state) when a figure is decorated?

How much do you trust your answer+?
2 Unsure 2 Not sure enough 2 Sure Enough 2 Sure 2 Very Sure
How do you assess the question+?
2 Very difficult 2 Difficult 2 On average 2 Simple 2 Very Simple
What is the source of information used to answer the question+?
2 Previous Knowledge (PK) 2 Internet (I) 2 Source Code (SoC)
+ Mark only one answer
Q5. What are the instance variables (their classes have to be indicated as well) that
are modified (i.e., those that change state) when a new geometric shape is added?

How much do you trust your answer+?
2 Unsure 2 Not sure enough 2 Sure Enough 2 Sure 2 Very Sure
How do you assess the question+?
2 Very difficult 2 Difficult 2 On average 2 Simple 2 Very Simple
What is the source of information used to answer the question+?
2 Previous Knowledge (PK) 2 Internet (I) 2 Source Code (SoC)
+ Mark only one answer

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:37

Second group
Q6. What are the abstract classes and the interfaces that participate in the feature
”Adding a geometric figure to another geometric figure”?

How much do you trust your answer+?
2 Unsure 2 Not sure enough 2 Sure Enough 2 Sure 2 Very Sure
How do you assess the question+?
2 Very difficult 2 Difficult 2 On average 2 Simple 2 Very Simple
What is the source of information used to answer the question+?
2 Previous Knowledge (PK) 2 Internet (I) 2 Source Code (SoC)
+ Mark only one answer
Q7. What are the concrete classes, abstract classes, and the interfaces that
manage localization and visualization of connection points of a geometric figure?

How much do you trust your answer+?
2 Unsure 2 Not sure enough 2 Sure Enough 2 Sure 2 Very Sure
How do you assess the question+?
2 Very difficult 2 Difficult 2 On average 2 Simple 2 Very Simple
What is the source of information used to answer the question+?
2 Previous Knowledge (PK) 2 Internet (I) 2 Source Code (SoC)
+ Mark only one answer
Q8. What methods allow to modify a given geometric figure through direct
manipulation? Indicate the classes to which they belong as well.

How much do you trust your answer+?
2 Unsure 2 Not sure enough 2 Sure Enough 2 Sure 2 Very Sure
How do you assess the question+?
2 Very difficult 2 Difficult 2 On average 2 Simple 2 Very Simple
What is the source of information used to answer the question+?
2 Previous Knowledge (PK) 2 Internet (I) 2 Source Code (SoC)
+ Mark only one answer
Q9. What classes allow to insert a bitmap image in the drawing?

How much do you trust your answer+?
2 Unsure 2 Not sure enough 2 Sure Enough 2 Sure 2 Very Sure
How do you assess the question+?
2 Very difficult 2 Difficult 2 On average 2 Simple 2 Very Simple
What is the source of information used to answer the question+?
2 Previous Knowledge (PK) 2 Internet (I) 2 Source Code (SoC)
+ Mark only one answer
Q10. What methods allow to first select a figure and then to move it?
Indicate the classes to which they belong as well.

How much do you trust your answer+?
2 Unsure 2 Not sure enough 2 Sure Enough 2 Sure 2 Very Sure
How do you assess the question+?
2 Very difficult 2 Difficult 2 On average 2 Simple 2 Very Simple
What is the source of information used to answer the question+?
2 Previous Knowledge (PK) 2 Internet (I) 2 Source Code (SoC)
+ Mark only one answer

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:38 G. Scanniello et al.

Third group
Q11. You have to perform a corrective maintenance operation (i.e., errors in
the source code must be removed) and/or perfective maintenance operation (i.e.,
improving the code) on the following source code fragment. It defines and manages
the ellipse geometric shape and it allows its usage. Correction should be performed
directly on the paper.

(Note: the following source code fragment is not present in the source code
we gave you to perform the comprehension task.

public class FiguraEll isse extends RectangleFigure {

private El l i s se fDisplayBox ;

public FiguraEll isse () {
this (new Point (0 , 0) , new Point (0 , 0)) ;
}

public FiguraEll isse (Point origin , Point corner) {
for (int i =0; i < fDisplayBox . x ; i ++) ;
basicDisplayBox (origin , corner) ;

}

public void basicDisplayBox (Point origin , Point corner) {
fDisplayBox = new Rectangle (or ig in) ;
fDisplayBox . add (corner) ;
fDisplayBox . add (or ig in) ;

}

public Vector handles () {
Vector handles = new Vector () ;
BoxHandleKit . addHandles (this , handles) ;
handles = new vector () ;
return handles ;

}

public Rectangle displayBox () {
return new Rectangle (fDisplayBox . x , 0 , fDisplayBox . width , fDisplayBox . height) ;

}

protected void basicMoveBy (int x , int y) {
fDisplayBox . translate (x , y) ;

}

public void drawBackground (Graphics g) {
Rectangle r = displayBox () ;
g . f i l l O v a l (r . x , r . y , r . width , r . height) ;

}

public void drawFrame(Graphics g) {
Rectangle r = displayBox () ;
g . drawOval (r . x , r . y , r . width−1, r . height−1);

}

public Insets connectionInsets () {
Rectangle r = fDisplayBox ;
int cx = r . width / 2 ;
int cy = r . height / 2 ;
return new Insets (cy , cx , cy , cx) ;

}

public Connector connectorAt (int x , int y) {
return new ChopEllipseConnector (this) ;

}

public void write (StorableOutput dw) {
super . write (dw) ;
dw. writeInt (fDisplayBox . x) ;
dw. writeInt (fDisplayBox . y) ;
dw. writeInt (fDisplayBox . width) ;
dw. writeInt (fDisplayBox . height) ;

}

public void read (StorableInput dr) throws IOException {
super . read (dr) ;
fDisplayBox = new Rectangle (

dr . readInt () , dr . readInt () , dr . readInt () , dr . readInt ()) ;
}

}

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:39

How much do you trust your answer+?
2 Unsure 2 Not sure enough 2 Sure Enough 2 Sure 2 Very Sure
How do you assess the question+?
2 Very difficult 2 Difficult 2 On average 2 Simple 2 Very Simple
What is the source of information used to answer the question+?
2 Previous Knowledge (PK) 2 Internet (I) 2 Source Code (SoC)
+ Mark only one answer
Q12. If the system displays a geometric figure in a position different from where
it was originally drawn,what classes should be analyzed to identify the fault?

How much do you trust your answer+?
2 Unsure 2 Not sure enough 2 Sure Enough 2 Sure 2 Very Sure
How do you assess the question+?
2 Very difficult 2 Difficult 2 On average 2 Simple 2 Very Simple
What is the source of information used to answer the question+?
2 Previous Knowledge (PK) 2 Internet (I) 2 Source Code (SoC)
+ Mark only one answer
Q13. If the system selects a different tool from the one chosen by the user
(e.g., the pencil instead of the selected rubber), what concrete classes need
to be analyzed?

How much do you trust your answer+?
2 Unsure 2 Not sure enough 2 Sure Enough 2 Sure 2 Very Sure
How do you assess the question+?
2 Very difficult 2 Difficult 2 On average 2 Simple 2 Very Simple
What is the source of information used to answer the question+?
2 Previous Knowledge (PK) 2 Internet (I) 2 Source Code (SoC)
+ Mark only one answer
Q14. If the system does not react to changes on a drawing made by the user,
what concrete and abstract classes should be analyzed?

How much do you trust your answer+?
2 Unsure 2 Not sure enough 2 Sure Enough 2 Sure 2 Very Sure
How do you assess the question+?
2 Very difficult 2 Difficult 2 On average 2 Simple 2 Very Simple
What is the source of information used to answer the question+?
2 Previous Knowledge (PK) 2 Internet (I) 2 Source Code (SoC)
+ Mark only one answer

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:40 G. Scanniello et al.

B. DESIGN-PATTERN INSTANCES
In Table XII, we report some information about the original chunk of JHotDraw v5.1
we used in our family of experiments. In particular, we show whether each design-
pattern instance was textually documented in the source code. This documentation
is present for each pattern instance, but not all classes of a given pattern instance
contain that documentation. We also report whether class names were chosen to make
the role these classes played in each instance to be clear. In addition, for each class its
role in the instance is also indicated.

Table XII. Details on the design-pattern instances in the used source code of JHotDraw

Design-Pattern Documented Naming
Convention

Adapter Pattern
Yes No∗ Target: Handle

Adapter: LocatorHandle
Adaptee: Locator
Command Pattern

Yes YesInvoker: DrawApplication
∗ Command: Command
ConcreteCommand: InsertImageCommand
Receiver: DrawingView
Composite Pattern

Yes YesComponent: Figure
∗ Composite: CompositeFigure
Leaf: RectangleFigure
Decorator Pattern

Yes YesComponent: Figure
∗ Decorator: DecoratorFigure
ConcreteComponent: RectangleFigure
Observer Pattern

Yes YesSubject: Drawing
ConcreteSubject: StandardDrawing
∗ Observer: DrawingChangeListener (DrawingView)
ConcreteObserver: StandardDrawingView
Prototype Pattern

Yes No∗ Client: CreationTool
Prototype: Figure
ConcretePrototype: AbstractFigure
State1 Pattern

Yes NoContext: DrawApplication
∗ State: Tool
ConcreteState: AbstractTool
State2 Pattern

Yes No∗ Context: SelectionTool
∗ State: Tool
ConcreteState: AbstractTool
Strategy Pattern

Yes NoContext: LocatorHandle
∗ Strategy: Locator
ConcreteStrategy: AbstractLocator
Template Method Pattern

Yes No∗ AbstractClass: AbstractFigure
ConcreteClass: RectangleFigure

∗ Class/es in which the design-pattern instances was/were textually documented in the
source code

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

	Introduction
	Dealing with Source Code Comprehensibility
	Selecting the notation
	Articulating the underlying theory
	Formulating the claims
	Choosing a control
	Turning the claims into hypotheses
	Informing the hypotheses

	The Family of Experiments
	Goal
	Context Selection
	Selection of the Variables
	Experiment Design
	Hypotheses
	Experiment Tasks
	Experiment Procedure
	Analysis Procedure
	Differences and Issues
	Differences among Experiments
	Documentation and Communication Issues

	Results
	Descriptive Statistics
	Hypotheses Testing
	Hn1_X: SC vs. GD vs. TD
	Hn2_X: Participants' Experience Effect

	Confidence
	Perceived Difficulty
	Source of Information
	Post-experiment Survey Questionnaire
	Further Analyses
	Correctly vs. Incorrectly Identified Instances
	A Qualitative Look Inside the Use of Design-Pattern Instances

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Discussion
	Individual Experiments
	Participants' Experience
	Implications

	Related Work
	Conclusion
	Comprehension questionnaire
	Design-Pattern Instances

