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We report on the experimental implementation of a spin pump with ultracold bosonic atoms in
an optical superlattice. In the limit of isolated double wells it represents a 1D dynamical version
of the quantum spin Hall e�ect. Starting from an antiferromagnetically ordered spin chain, we
periodically vary the underlying spin-dependent Hamiltonian and observe a spin current without
charge transport. We demonstrate a novel detection method to measure spin currents in optical
lattices via superexchange oscillations emerging after a projection onto static double wells. Further-
more, we directly verify spin transport through in-situ measurements of the spins' center of mass
displacement.

PACS numbers: 67.85.-d, 03.65.Vf

Exposing materials to strong magnetic �elds has led to
remarkable discoveries, most prominently the pioneering
observation of the integer and fractional quantum Hall
e�ect [1, 2]. These quantum phenomena surprise due
to their robustness and independence of material prop-
erties, arising from their topological nature [3]. In this
context, Thouless recognized that 1D dynamical systems
can share the same topological character as the 2D in-
teger quantum Hall (IQH) e�ect [4, 5]. Such topological
charge pumps exhibit a quantized transport per pump cy-
cle in a gapped �lled band of an adiabatically and period-
ically evolving potential. More recently, a fundamentally
di�erent quantum state was observed [6], the topologi-
cal insulator (TI) [7, 8], which preserves in addition to
charge time-reversal symmetry. In 2D systems with spin
conservation, it exhibits the quantum spin Hall (QSH)
e�ect, characterized by a quantized spin but vanishing
charge conductance. Analogous to the Thouless pump, a
dynamical version of a TI can be designed � a quantum
spin pump [9�11].

Spin pumps could serve as spin current sources, e.g. for
spintronic applications [12]. Such spin current generators
have been proposed based on the spin Hall e�ect [13, 14],
the cyclic variation of two system parameters in inter-
acting quantum wires [15, 16], and topological insula-
tors [17]. However, spin pumps have been realized only
in few experiments, e.g. in quantum dot structures [18]
and by parametrically excited exchange magnons [19].
Here, we demonstrate the �rst implementation of a spin
pump with ultracold bosonic atoms in optical superlat-
tices and present a direct measurement of the arising spin
current.

In 1983, Thouless investigated particle transport in two
superimposed 1D periodic potentials adiabatically moved
relative to each other. This sliding motion periodically
varies the combined potential and thereby the underlying
single-particle Hamiltonian, which can be parametrized

by the cyclic pump parameter φ. During the pumping, a
particle acquires an anomalous velocity proportional to
the Berry curvature de�ned on the closed surface spanned
by φ and the quasi-momentum k. The resulting displace-
ment after one pump cycle only depends on the geometric
properties of the pump cycle and is not quantized unless
all quasi-momenta of a band are occupied equally. In
this case, the pump is topological with a displacement
proportional to the Chern number, the integral of the
Berry curvature over the entire surface. Thus, transport
is quantized and robust against perturbations [4, 5]. Re-
cently, such geometric and quantized, topological pumps
have been realized with ultracold bosonic [20, 21] and
fermionic atoms [22].

In analogy to the Thouless pump, a spin pump can
be thought of as a dynamical version of a QSH system
[9], which is characterized by a bulk excitation gap and
gapless edge excitations. In general, the electron spin
is not conserved, e.g. in the presence of spin-orbit cou-
pling, and therefore unconventional topological invari-
ants, like the Z2 index [7], are needed for classi�cation.
Non-interacting QSH systems with spin conservation can
be interpreted as two independent IQH systems. There-
fore, a quantum spin pump can be composed of two in-
dependent pumps, where the up and down spins have
inverted Berry curvature and are therefore transported
in opposite directions.

A quantum spin pump can be implemented with ultra-
cold atoms in two hyper�ne states in a spin-dependent
dynamically controlled optical superlattice, which can be
formed by superimposing two lattices with periods ds
and dl = 2ds. In the tight binding limit, a spin in this
superlattice is described by the Rice-Mele model [23],
which comprises staggered on-site energies ±∆/2 be-
tween neighboring sites and alternating tunnel cou-
plings 1

2 (J ± δJ) with the dimerization parameter δJ .
Pumping can be induced by an adiabatic modulation
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of the potential and corresponds to a loop in parame-
ter space (δJ , ∆) around the degeneracy point (δJ = 0,
∆ = 0). If the two spin components do not interact
with each other, their pumping motion is independent
and a spin pump can be realized by a spin-dependent
deformation of the potential, so that time-reversal sym-
metry is retained and their Berry curvature is reversed.
The associated spin transport is quantized only for equal
occupation of all quasi-momenta, which can be realized
with non-interacting fermions by placing the Fermi en-
ergy in the band gap and bosons by localizing each spin
component to a Mott insulator with negligible inter-spin
interaction.
In addition, the two spin components can be coupled

by introducing spin-isotropic on-site interactions U be-
tween the atoms. For strong interactions U � J and
unit �lling, the bare tunneling is suppressed and the sys-
tem can be described by a 1D spin chain

Ĥ =− 1
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with spin-dependent tilt ∆ and alternating exchange cou-
pling 1

2 (Jex ± δJex) ' (J ± δJ)
2
/U . For large tilts ∆�

1
2 (Jex + δJex) the many-body ground state are locked
spins in an antiferromagnetic order, while for strong ex-
change coupling 1

2 (Jex + δJex)� ∆ dimerized entangled
pairs are favored. A variation of the parameters (δJ , ∆)
during the spin pump cycle corresponds to a modula-
tion of (Jex, ∆) in the interacting 1D spin chain. The
cycle needs to be performed adiabatically with respect
to the intra double well exchange coupling 1

2 (Jex + δJex)
and encircles the degeneracy point (δJex = 0, ∆ = 0) as
illustrated in Fig. 1(a). This leads to a quantized spin
transport described by the Z2 invariant as in the topo-
logically equivalent case of independent spins [7]. Such a
spin pump can be interpreted as a dynamical version of
the QSH e�ect, where the pump parameter φ is an addi-
tional dimension in a generalized momentum space [24].
The adiabatic variation of φ corresponds to a threading
of a magnetic �ux through a cylinder following Laughlin's
interpretation of the IQH e�ect [25].
Implementing this Hamiltonian requires a dynamically

controllable spin-dependent superlattice [26, 27]. In the
limit of isolated double wells δJex ≈ Jex, applying a
global gradient to a spin-independent superlattice can
locally reproduce the staggered tilts (Fig. 1(a)). Despite
the antiferromagnetically ordered state being an excited
many-body state in the globally tilted system, the pump
can still be described by a topological invariant as the
pump of Eq. 1 with local tilts, if the pumping is fast
compared to 1

2 (Jex− δJex), which determines the gaps of
additional level crossings in the spectrum [28]. This can
be readily achieved in the experiment by choosing lattice

depths, for which inter-double well coupling is quenched.

The experimental setup consists of a 3D optical lat-
tice with a superlattice along the x-axis and deep trans-
verse lattices along y and z to create an array of decou-
pled 1D systems. Each system is initially occupied by
an antiferromagnetically ordered spin chain of up |↑〉 =
|F = 1,mF = −1〉 and down |↓〉 = |F = 1,mF = +1〉
87Rb atoms [29], localized on individual sites with Jex ≈
δJex ≈ 0 [28]. To start the pump cycle, every second
barrier is decreased to transfer two neighboring spins to
the ground state of a double well. Since a large mag-
netic gradient ∆� Jex is present along x, the up (down)
spin stays localized on the left (right) side, shortly de-
noted as |↑, ↓〉. The gradient is then reversed adiabati-
cally compared to Jex. Thereby the wavefunction follows
the instantaneous eigenstate and a spin current occurs
as the two spins exchange their positions via the delocal-
ized triplet state 1√

2

(
|↑, ↓〉+ |↓, ↑〉

)
at ∆ = 0 (Fig. 1(b)).

At the end of the �rst half cycle, individual sites are
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Figure 1. Spin pump cycle. (a) Spin pump cycle in parameter
space (green) of spin-dependent tilt ∆ and exchange coupling
dimerization δJex. The path can be parametrized by the an-
gle φ, the pump parameter. The insets in the quadrants show
the local mapping of globally tilted double wells to the cor-
responding local superlattice tilts with the black rectangles
indicating the decoupled double wells. Between φ = 0 and
π, |↑〉 and |↓〉 spins exchange their position, which can be
observed by site-resolved band mapping images detecting the
spin occupation on the left (L) and right (R) sites, respec-
tively. (b) Evolution of the two-particle ground state in a
double well around ∆ = 0 with tunnel coupling 1

2
(J + δJ),

on-site interaction energy U , and spin-dependent tilt ∆ as
well as the exchange coupling Jex ' (J + δJ)2 /U and the
lattice constant ds.
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Figure 2. Spin current measurement. (a) Illustration of the measurement scheme. ∆ is ramped with a rate of ∆̇ = 82(2) kHz/s
at ∆ = 0 and the ramp is stopped abruptly at di�erent points in the cycle ∆s (upper graph). During this ramp, the two-particle
wavefunction initially in the ground state has a small admixture a2 of the �rst excited state around ∆ = 0 (middle graph).
After the stop of the ramp, this admixture leads to spin imbalance oscillations with an amplitude proportional to a2 and thus to
the instantaneous spin current at ts. The lower graph shows a numerical simulation of the spin imbalance time traces assuming
perfect adiabaticity. (b) Spin imbalance oscillation amplitude A at di�erent points in the pump cycle for Jex/h = 342(2)Hz
(blue) and Jex/h = 467(3)Hz (orange). Each point is the amplitude obtained by �tting Eq. 3 to the spin imbalance that was
measured as a function of the holdtime t′; error bars are the �t uncertainty. Three traces are shown on the right hand side
for ∆s/h = −144(7)Hz (I, dark blue), ∆s/h = 18(5)Hz (II, blue), and ∆s/h = 530(30)Hz (III, light blue) corresponding to
the illustrations in (a). Each trace consists of 26 points, which were averaged �ve times. The light solid lines in the main
plot show the numerical calculation for the oscillation amplitude taking into account the reduced detection e�ciency due to a
residual exponential decay of ∆. The dark solid lines include additionally a �nite ground state occupation of 97(1) % and a
pump e�ciency of 89(1) %, which were measured separately by band mapping.

decoupled by increasing the short lattice depth. Subse-
quently, δJex is inverted by �ipping the dimerization and
also the magnetic gradient to maintain the correct local
tilts (insets Fig. 1(a)). This corresponds to a projection
on double wells shifted by one lattice site. The state of
the system remains unchanged during this sudden switch
and the spins in the new shifted double well are in the
ground state. After a full cycle, the two spin components
have each moved by 2 ds in opposite directions; therefore
the total particle current vanishes as the contributions
from the two spin components cancel each other exactly.
Thus, pumping leads to a spin transport without induc-
ing a particle current.

The spin current j between the left (L) and the right
(R) site of a double well is related to the change in the ex-
pectation value of the spin imbalance I = 1

2 (nL↓−nL↑−
nR↓ + nR↑) given by the integral form of the continuity
equation 2j = ∂tI, with niσ the occupation of spin σ
on site i. To understand how this spin current arises
and how it can be detected, it is useful to examine the
evolution of the eigenstates during the adiabatic change
of ∆(t). Two spins initially at time ti in the eigenstate
|nti〉 of the two-particle double well Hamiltonian ĤDW(ti)
[28] follow the instantaneous eigenstate |nt〉, but acquire
� even for a perfect adiabatic evolution � a small imag-
inary contribution i am(t) from other eigenstates |mt〉.

This admixture occurs only temporarily during the ramp
and induces an anomalous spin velocity (Fig. 2(a)). The
coe�cients am can be calculated in �rst-order perturba-

tion theory am(t) = −∆̇ 〈mt|~∂∆|nt〉
En(t)−Em(t) with ∆̇ = ∂t∆(t)

the ramp speed and El(t) the eigenenergy of |lt〉 [30].
When starting from the ground state |1t〉, the wavefunc-
tion is well approximated by only considering contribu-
tions from the �rst excited state |ψt〉 ≈ |1t〉+ i a2(t) |2t〉.
The am-coe�cients of higher lying states are strongly
suppressed as the corresponding wavefunctions depend
weakly on ∆ and Em−E1 � Jex. The wavefunction |ψt〉
can be probed by a sudden stop of the pump cycle at
time ts by projecting it onto ĤDW(ts). During the subse-
quent time evolution, the two states |1t〉 and |2t〉 acquire
a relative phase leading to oscillations of the spin im-
balance I(t) = Is + A sin[(E2(ts) − E1(ts))/~ · (t − ts)]
with Is the imbalance at time ts. The oscillation am-
plitude A = −2 a2(ts) 〈1ts | Î |2ts〉 is proportional to the
admixture of the second eigenstate and can be related to
the spin current j(ts) through the continuity equation [28]

j(ts) = A
E2(ts)− E1(ts)

2~
. (2)

Experimentally, the gradient ramp was abruptly stopped
at ∆s = ∆(ts) and a time trace of the resulting double
well superexchange oscillation [31] was recorded by a si-
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multaneous measurement of nL↑, nL↓, nR↑ and nR↓ with
Stern-Gerlach separated site-resolved band mapping im-
ages (Fig. 2(a)). The amplitude A was found by �tting

I�t (t′) =Ae−t
′/τex sin (ωext

′ + θ) + Is + Id e−t
′/τd (3)

to the oscillation data, where t′ = t − ts and θ ≈ 0
a phase shift induced by a �nite freezing ramp speed.
Compared to the ideal evolution, two additional e�ects
are taken into account. First, an exponential decay of
the amplitude with a time constant τex accounts for de-
phasing between individual double wells. Both, τex and
the oscillation frequency ωex ' (E2 − E1)/~ were deter-
mined for each ∆s with an independent superexchange
oscillation measurement. Second, an additional decay of
the imbalance o�set Id is caused by an exponential re-
laxation of a small residual magnetic �eld gradient after
the abrupt stop of B′ = −24.3(6)Hz/ds, with a decay
constant τd = 1.05(5)ms. The resulting oscillation am-
plitudes during the pump cycle for two di�erent Jex as
well as exemplary spin imbalance traces are summarized
in Fig. 2(b). The spin current peaks around ∆ = 0, where
the ground state is delocalized and spins move. For large
gradients the eigenstates are independent of ∆ and the
spin current vanishes. Note that the residual gradient
∆d slightly shifts the peak towards higher ∆. Further-
more, the spin current strongly depends on the exchange
coupling Jex. With increasing Jex, the wavefunction de-
localizes and depends less on ∆, so the peak width in-
creases while the maximum amplitude decreases. How-
ever, unlike the instantaneous current, the transported
spin during one pump cycle, is independent of the pump
parameters.
To compare the data with theoretical expectations, we

performed a numerical calculation including a reduced
detection e�ciency caused by the residual gradient de-
cay. Imbalance time traces for ψts were evaluated using
a two spin, two-site extended Bose-Hubbard Hamiltonian
ĤDW(t′) with ∆(t′) = ∆d e

−t′/τd + ∆s [28, 32]. The cal-
culated time traces were also �tted with Eq. 3; the re-
sulting oscillation amplitude describes ideal transport of
ground state spins (light lines in Fig. 2). This curve can
be �tted to the data by rescaling the amplitude with a
factor of 0.84(6), which directly determines the reduction
of the integrated measured current compared to the ideal
one and thereby the transported spin polarization. The
deviation from ideal transport can be attributed to an
imperfect initial state preparation with 97(1) % ground
state occupation and a pump e�ciency per half a pump
cycle of 89(1) %, which describes the fraction of double
wells that remain in the ground state after half a cycle.
The pump e�ciency is limited by inter-double well tran-
sitions, technical heating and nonadiabatic double well
transitions. Considering this additional occupation of
the �rst excited state, which creates an opposite current,
the total spin current can be calculated (dark lines in
Fig. 2(b)). Fitting these expected oscillation amplitudes

j

250 350 450 550

Jex/h (Hz)

0.0

0.1

0.2

A 250 350 450 550

Jex/h (Hz)

0.0

0.5

1.0

1.5

in
t.

  

Figure 3. Imbalance oscillation amplitude A at ∆s = 0 as a
function of Jex. Each point is an average of the �tted am-
plitudes of three time traces; the error bars are the standard
deviations. The blue lines are a numerical calculation taking
into account the reduced detection e�ciency as well as the
measured initial state occupation and �nite pump e�ciency.
Assuming a constant scaling factor for each Jex as indicated
by the measurement in Fig. 2, the integrated current per cycle
can be estimated and is shown in the inset. In the ideal case,
the integrated current is equal to one (gray line).
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Figure 4. Center-of-mass position of up (red) and down (blue)
spins as a function of the pump parameter φ. The points
show the center-of-mass position averaged over ten data sets
of a spin-selective imaged atom cloud; the error bars show
the error of the mean. Each data set consists of an average
of ten pairs, which contain an image obtained by a sequence
with pumping and one using a reference sequence with the
same length but constant pump parameter φ = 0. Di�erence
images of both sequences for up and down spin are shown on
the right side. The solid lines depict the calculated motion
of a localized spin for the ideal case (light gray) and for a
reduced ground state occupation and a pump e�ciency per
half pump cycle that was determined independently through
a band mapping sequence (gray).

to the measured data by rescaling with a global factor
results in a �t value of 1.05(8) for Jex/h = 342(2)Hz
and 1.06(8) for Jex/h = 467(3)Hz. This shows that even
though the shape and amplitude of the curve changes, the
integrated current is only de�ned by the pumps' topology
not by the speci�c tunneling parameters. Furthermore,
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we note that the deviation to the theoretically expected
integrated current can not be attributed to edge e�ects
as they are negligibly small for the present trapping po-
tential.

To study the dependence of the maximum current
on the exchange coupling, the oscillation amplitude was
measured at ∆s = 0 for various Jex (Fig. 3). The max-
imum amplitude decreases with rising Jex, as the spins'
wavefunction is more delocalized for the same ∆ and
therefore the current �ow is spread over a larger sector
in the pump cycle. The observed peak amplitude agrees
with the numerical model including the initial ground
state occupation and pump e�ciency. As suggested by
the measurements in Fig. 2, the integrated spin current
can be extracted by rescaling the ideal amplitude with a
global factor and is found to be constant for all exchange
couplings (inset Fig. 3).

Independent evidence for the spin separation and a
quantitative comparison with the total spin current can
be obtained by measuring the center-of-mass position of
the two spin components from in-situ absorption images
after removing one of the spin components. When vary-
ing φ, the up and down spins clearly separate (Fig. 4).
This independently veri�es the spin transport and shows
quantitative agreement with the results of the spin cur-
rent measurement [28].

In conclusion, we have demonstrated the implemen-
tation of a spin pump and introduced a new method for
directly measuring instantaneous spin currents. Compar-
ing the measured spin imbalance oscillation amplitudes
with the adiabatic theory shows that the integrated cur-
rent is independent of the speci�c pump parameters and
gives evidence for the utility of the developed current
measurement method. The method can also be extended
to more general systems by performing an instantaneous
projection onto double wells. Investigating such spin
pumps on a single site level would allow for local obser-
vation of spin currents and the direct observation of edge
excitations in �nite systems [33]. A system described by
the non-trivial Z2-invariant can be realized with time-
reversal invariant spin orbit interaction [9, 11]. When
breaking time-reversal symmetry, the topological prop-
erties of the QSH system remain but spin-Chern num-
bers are required for the description [11]. Furthermore,
a topological, interaction-driven quantum motor [34, 35]
can be accomplished by only pumping one of the compo-
nents while the other is coupled by interaction. For spin
pumps with highly degenerate many-body ground states,
fractional transport is predicted [36].

We acknowledge insightful discussions with M. Aidels-
burger. This work was supported by NIM, the EU
(UQUAM, SIQS), and the DFG (DIP & FOR2414).
M. L. was additionally supported by ExQM and
R.C. by FIRB-2012-HybridNanoDev (Grant No.
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SPIN CURRENT MEASUREMENT

Two-site extended Bose-Hubbard model

In the tight binding limit, two spins on an isolated
double well (δJ = J) can be described by a two-site Bose-
Hubbard model, where we denote the spins σ = {↑, ↓}
and the left (right) site with L (R). The Hamiltonian is
given by

ĤBH =− J
∑

σ={↑,↓}

(
â†L,σâR,σ + h.c.

)
− ∆

2
(n̂L,↓ − n̂L,↑ − n̂R,↓ + n̂R,↑)

+ U (n̂L,↑n̂L,↓ + n̂R,↑n̂R,↓)

(S.1)

with â†R/L,σ (âR/L,σ) the creation (annihilation) operator

of spin σ on the left or right site, n̂R/L,σ the number op-
erator counting the spins, J the tunneling rate, ∆ the
spin-dependent energy o�set between left and right site,
and U the on-site interaction energy. The accuracy of
the exchange coupling, especially at large J/U , can be in-
creased by including corrections from density-dependent
hopping Jddh = −g

∫
w3

L(r)wR(r)d3r and nearest neigh-
bor interaction ULR = g

∫
w2

L(r)w2
R(r) d3r [S1, S2]. Here,

wL/R(r) denotes the Wannier function on the left/right
site. The Hamiltonian of this extended Bose-Hubbard
model ĤDW is in the basis |↑↓, 0〉, |↑, ↓〉, |↓, ↑〉, |0, ↑↓〉
with J ′ = J + Jddh:

ĤDW =


U −J ′ −J ′ ULR

−J ′ ULR + ∆ ULR −J ′
−J ′ ULR ULR −∆ −J ′
ULR −J ′ −J ′ U

 . (S.2)

The dependence of the energy spectrum En of the ex-
tended Bose-Hubbard model on ∆ is shown in Fig. S1(a).
We de�ne the exchange coupling Jex as the gap between
the �rst and second eigenenergy at ∆ = 0. The ground
state in the limit |∆| � Jex is |1〉 ≈ |↓, ↑〉 for positive and
|↑, ↓〉 for negative ∆. At ∆ = 0 and U � J the ground
state is approximately a triplet state 1√

2

(
|↑, ↓〉 + |↓, ↑〉

)
.

Note that the third eigenstate is independent of ∆.
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Figure S1. Energy spectrum and am-coe�cients. (a) Energy
spectrum of the extended Bose-Hubbard model for two spins
on a double well. (b) Magnitude of the am-coe�cients at
di�erent spin-dependent tilt values ∆ during the magnetic
�eld ramp with a speed of ∆̇ = 82(2) kHz/s and exchange
coupling of Jex/h = 342(2)Hz.

An adiabatic change of the tilt ∆ with rate ∆̇ leads in
�rst-order approximation to the temporary wavefunction

|ψt〉 = |nt〉+ i
∑
m 6=n

am(t) |mt〉 (S.3)

using parallel transport conditions [S3]. Here, |lt〉 is an
instantaneous eigenstate of ĤDW and the admixture co-
e�cients are

am(t) = − 〈mt| ~∂t |nt〉
En(t)− Em(t)

= −∆̇
〈mt| ~∂∆ |nt〉
En(t)− Em(t)

. (S.4)

A detailed derivation can be e.g. found in Ref. [S3]. The
am-coe�cients for |nt〉 = |1t〉, i.e. starting from the
ground state, are depicted in Fig. S1(b); the contribu-
tion a2 clearly dominates and other coe�cients can be
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neglected because the dependence of the eigenstates |4〉
and |3〉 on ∆ is weak or even vanishing because of the
large gap |Em − E1| ∼ U � Jex, for m > 2. Then the
temporary wavefunction Eq. S.3 reduces to

|ψt〉 ≈ |1t〉+ i a2(t) |2t〉 . (S.5)

Connection Between Amplitude and Current

For the current measurement, the pump cycle is
abruptly stopped at ∆s. In the ideal case this hap-
pens instantaneously, such that the wavefunction |ψ(∆s)〉
subsequently evolves according to the static Hamilto-
nian ĤDW(∆s). Since |ψ(∆s)〉 is in general not an eigen-
state of ĤDW(∆s), the expectation value of the imbalance
operator I oscillates in time

I(t′) = A sin

(
E2(ts)− E1(ts)

~
t′
)

+ Is (S.6)

with t′ = t − ts. The oscillation amplitude is directly
proportional to the a2-coe�cient

A = −2 a2(ts) 〈1ts | Î |2ts〉 . (S.7)

When comparing this result to the the integral form of
the continuity equation, the spin current at ts is directly
connected to the oscillation amplitude A via

j(ts) =
1

2
∂tI(t′)

∣∣∣∣
t=ts

= A
E2(ts)− E1(ts)

2~
cos

(
E2 − E1

~
t′
)∣∣∣∣

t=ts

= A
E2(ts)− E1(ts)

2~
.

(S.8)

Oscillation Amplitude � Model and Corrections

For two spins occupying the ground state of an isolated
double well, the ideal oscillation amplitude for a perfectly
abrupt stop of the ramp can be evaluated from Eq. S.7.
This ideal amplitude, within ĤDW, is shown as a func-
tion of ∆s in Fig. S2 (green solid lines). As the abrupt
stop is smoothed by a decaying residual magnetic gra-
dient, the measured amplitude for a given spin current
is slightly reduced. This amplitude can be calculated
numerically by solving the time-dependent Schrödinger
equation including the residual magnetic gradient de-
cay. The model assumes an initial state after the adia-
batic evolution (Eq. S.5) stopped at ∆s + ∆d and a time-
dependent Hamiltonian ĤDW(∆de

−t′/τd + ∆s). For long
times t′ � τd, the Hamiltonian approaches the ideal case.
With a numerical time propagation, the evolution of the
wavefunction and thereby I(t′) can be calculated. From
this time trace the amplitude is extracted with a �t of
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Jex/h=467Hz

0.00

-500 -250 0 250 500
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0.00

0.07
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0.21
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Jex/h=342Hz

Figure S2. Current measurement. The �gure summarizes dif-
ferent theory curves for both data sets at Jex/h = 467(3)Hz
(orange) and Jex/h = 342(2)Hz (blue) from 2 in the main
text. The green solid line shows the ideally expected oscilla-
tion amplitude. A corrected description taking into account
the reduced detection e�ciency due to a residual exponential
decay of the magnetic �eld gradient (orange solid line), and
a description including additionally a �nite ground state oc-
cupation of 97(1) % and a pump e�ciency of 89(1) % (blue
solid line) are shown. Furthermore, a measurement of the
particle current is shown (gray), obtained by analyzing the
particle imbalance oscillations between the left and right side
of the double well based on the same data sets as for the spin
imbalance oscillations.

3 from the main text as for the experimental data. The
e�ect of this detection correction is visualized in Fig. S2
as orange solid lines.

Preparing only ground state double wells is extremely
challenging and therefore a small residual amount of ex-
cited state double wells is expected. When considering
only ground and �rst excited state, the spin imbalance is
a good measure for the state occupation at |∆| � Jex,
where the spins are perfectly localized. By measuring
the spin imbalance before (Ii) and after half a pump cy-
cle (If), the initial state preparation and the pump ef-
�ciency can be characterized. The pump e�ciency β1

is a measure of the fraction of double wells that remain
in the ground state during half a pump cycle and can
be deduced from the spin imbalance: β1 = Ii−If

2Ii . The
initial fraction of ground and excited state double wells

is n
(i)
1 = I1+Ii

2I1
and n

(i)
2 = I2+Ii

2I2
= I1−Ii

2I1
, assuming

I1 = −I2 being the ideal spin imbalance at the initial
conditions.
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The integrated spin current j =
∫ tf
ti
j(t) dt is the sum of

the ideal integrated spin currents j1/2,ideal of both states
weighted by the initial band occupation and the pump
e�ciency. The ideal spin currents are oppositely directed
j1,ideal = −j2,ideal = I1 and given by the ideal initial spin
imbalance. Furthermore, equal pump e�ciency β2 = β1

for ground and �rst excited state are assumed.

j = n
(i)
1 β1 j1,ideal + n

(i)
2 β2 j2,ideal

=
(
n
(i)
1 − n

(i)
2

)
β1 j1,ideal

=
Ii − If

2

(S.9)

The result can be veri�ed by a comparison with the in-
tegral form of the continuity equation 2j = ∂tI.
The reduction of the integrated current as a result of

a �nite excited state occupation and a reduced pump ef-
�ciency can be approximately captured in the data anal-
ysis by rescaling of the current j(t) with a global factor.
Such a rescaling corresponds to a description by an aver-
age state occupation with perfect pump e�ciency. The
blue line in Fig. S2 shows the spin current taking into
account the detection e�ciency, the initial ground state
occupation as well as the pump e�ciency.

ENERGY SPECTRUM

In the experiment, the spin chain with local tilts is re-
alized in the limit of isolated double wells with a global
magnetic gradient. In this system unlike for Ĥ in 1
of the main text, the prepared initial state is not the
ground state but an excited state. During the pump cy-
cle, however, it evolves in the same way as the ground
state of a spin-dependent superlattice with the excep-
tion of a number of additional crossings that occur in
the energy spectrum (see Fig. S3). However, the gaps are
very small � on the order of the inter double well ex-
change coupling 1

2 (Jex− δJex) � and can be crossed non-
adiabatically. In conclusion the gradient model requires
not only adiabaticity with respect to the intra double
well exchange tunneling 1

2 (Jex + δJex) but also pure non-
adiabatic transfer with respect to gaps on the order of the
inter double well exchange coupling 1

2 (Jex−δJex). As the
latter can be suppressed exponentially with the long lat-
tice depth, and adiabaticity on the double well scale can
be reached by slower ramp speed, the transport in these
models can be described by the same topological invari-
ant. An energy spectrum for two up and two down spins
on two double wells is shown in Fig. S3 for the experi-
mental parameter set for Jex/h = 342(2)Hz. The pump
cycle follows the thicker darker depicted state, which is
either strongly gapped around ∆ = 0 or crosses states
with negligibly small gaps. Additionally, the state over-
lap between the groundstate in the staggered model and

1

2
(J + δJ )

|〈1
|Ψ

〉|2

0

1

-3 -2 -1 0 1 2 3

∆/h (kHz)
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3

E
/h

 (k
H

z)

1

2
(J − δJ )≈ 0

Figure S3. Energy spectrum and state overlap for a superlat-
tice with staggered tilt and a global gradient, respectively. In
the upper panel the energy spectrum of two up and two down
spins on two double wells with local, staggered tilt (red) and
global gradient (blue) is shown. The thicker darker lines rep-
resent the ground state of the staggered superlattice |1st〉 and
the corresponding state in the globally tilted lattice |φgrad〉,
which is used for pumping in the experiment. In the lower
panel the state overlap between these two states is depicted.

the pumped state for the model with a global gradient is
calculated and found to be one, apart from the vicinity
of the tiny gaps. This shows that the pumped state in
the gradient model is very similar to the one in the model
with staggered tilts.

EXPERIMENTAL SEQUENCE

The experimental sequence starts with a Mott insu-
lator of (F = 1,mF = −1) 87Rb atoms in a 3D opti-
cal lattice of three mutually orthogonal standing waves
with wavelengths λx = λy = 767 nm and λz = 844 nm.
With a sequence of microwave driven adiabatic passages,
the atoms are transferred to the (F = 1,mF = 0) via
the (F = 2,mF = +1) state (see ft1, ft2 in Fig. S4).
Then two neighboring lattice sites are merged along the
x-direction into decoupled sites with twice the period
by ramping up a long lattice with period dl = 2ds,
where ds = λx/2, and simultaneously turning the short
period lattice o�. With coherent microwave-mediated
spin changing collisions [S4] each atom pair is trans-
ferred to a pair of |↑〉 = |F = 1,mF = −1〉 and |↓〉 =
|F = 1,mF = +1〉 atoms. Subsequently, a magnetic �eld
gradient is turned on and the long lattice sites are split
adiabatically into two decoupled sites by turning on the
short period lattice to a depth of Vs = 40Er,s in 50ms

with Er,i = h2

2mRbλ2
i

, where mRb is the mass of a Rubid-
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Figure S4. Summary of the experimental sequences. The lat-
tice depths are shown in each upper panel in their respective
recoil energies: along the x-direction with period ds (blue)
and dl (red), along the y-direction with period ds (green)
and along the z-direction with period dz (yellow). In the
lower panel the two contributions to the magnetic �eld gra-
dient as well as the mircowave pulses are sketched. (a) A
time sequence for the initial state preparation is depicted. It
ends with decoupled sites occupied by antiferromagnetically
ordered |↑〉 = |F = 1,mF = −1〉 and |↓〉 = |F = 1,mF = +1〉
spins. (b) Example sequence for the current measurement
at ∆s = 0 which directly follows the initial state prepara-
tion. (c) The spin pump sequences for the in-situ and band
mapping measurement starting directly after the initial state
preparation. Note after half a cycle the dimerization is �ipped
by swapping to a second laser creating π shifted double wells,
and the magnetic �eld gradient is reversed in 2ms.

ium atom. Due to the present magnetic �eld gradient
of ∆/h = 2.7(2) kHz during the splitting, the up and
down spins order antiferromagnetically in individual, de-
coupled sites with Jex ≈ 0. A detailed time sequence
of the individual experimental parameters is shown in
Fig. S4(a). This initial state preparation is then followed
by the pumping sequence.

The spin pump sequence for multiple cycles, which
was used for the in-situ measurements, starts by cou-
pling neighboring lattice sites of each double well by de-
creasing the short period lattice to the �nal value for the
corresponding superexchange coupling. Then, the spin-
dependent gradient is inverted adiabatically by changing
the bias �eld along the x-direction (see gradient calibra-
tion), and at the end of the �rst half pump cycle the
distribution is frozen again by increasing the short lat-
tice depth such that Jex ≈ 0. To continue the cycle, the
dimerization is changed by swapping to a second laser
which creates a π-shifted long lattice, and simultane-
ously setting the magnetic bias �eld back to its initial
value in 2ms. Then the previously described cycle is re-
peated multiple times. Before in-situ imaging, residual
atoms in the (F = 1, mF = 0) state are removed by ap-
plying simultaneously a microwave �eld on the (F = 1,
mF = 0)→(F = 2, mF = 0) transition and a resonant
imaging light pulse to remove the atoms in the F = 2
manifold. Subsequently, one of the spin states is selected
and transferred to the (F = 2, mF = 0) state by a mi-
crowave driven adiabatic passage and imaged by absorp-
tion imaging.
The current measurement sequence is limited to the

�rst half pump cycle. Neighboring sites are coupled
by decreasing the short lattice depth Vs and the bias
�eld Bx is changed with a constant rate to di�erent �-
nal values of the magnetic tilt ∆s, where it is abruptly
stopped. After a variable holdtime t, the spin distribu-
tion is frozen by ramping up the short period lattice and a
site-resolved band mapping was performed. During time-
of-�ight, the spin-components are separated spatially by
a Stern-Gerlach �eld and the four site occupations nL↓,
nL↑, nR↓, and nR↑ can be simultaneously extracted from
each absorption image.

CALIBRATION OF LATTICE, GRADIENT

FIELD AND HUBBARD PARAMETERS

Calibration of bare tunneling rate: The bare tunnel-
ing matrix element J couples two neighboring sites and
can be calibrated from left-right oscillations of a single
atom on a double well with degenerate on-site energies
(∆ = 0). At the beginning, a single atom is prepared
on the left site of each double well. To this end, an
n = 1 Mott insulator in the long lattice is prepared and
adiabatically split with the short lattice in the presence
of a large potential tilt. The short lattice depth is in-
creased such that the atoms localize on the lower-lying
left site (J ≈ 0). Then, the tilt is removed and subse-
quently the short period lattice is ramped down in 200µs
to the lattice depth at which J needs to be calibrated.
The localized wavefunction is not an eigenstate of the
symmetric double well, but an equal superposition of the
ground |1〉 and �rst excited state |2〉 and thus the left-
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Figure S5. Calibration of the magnetic gradient. The data
points show a measurement of the magnetic tilt ∆ by laser-
assisted tunneling spectroscopy in a tilted double well as a
function of the magnetic bias �eld Bx. From the measured
frequency, the tilt can be directly inferred by 2∆ = h fr − δ0.
The error bars show the standard deviation of an average of
eight points, four for (F = 2, mF = ±2) each.

right occupation oscillates in time. The left-right fraction
can be measured with site-resolved band mapping and its
oscillation frequency fbare is equal to the di�erence of the
single-particle eigenenergies hfbare = ε2 − ε1 = 2J .

Calibration of on-site interaction energy: The on-site
interaction energy U is the extra energy for placing a
second particle on the same site and can be calibrated
via the superexchange oscillation frequency. An up and
a down spin are localized on the left and right site
of a double well prepared in the presence of a large
spin-dependent tilt ∆ as for the current measurement.
Then, the magnetic �elds, except for a small bias �eld to
maintain the quantization axis, are switched o� to non-
adiabatically remove the tilt while Jex ≈ 0 and after-
wards the short period lattice is decreased within 200µs
to the �nal value, at which U is calibrated. The local-
ized state is not an eigenstate anymore and evolves in
time. The time evolution leads to superexchange oscilla-
tions [S2], which for the experimentally used parameters
are dominated by the contributions from the ground and
�rst excited state ~ωex ' E2 − E1 = Jex. The exchange
coupling Jex can be calculated from an extended Bose-
Hubbard model and depends strongly on U . Thus, U can
be inferred from ωex.

Gradient Calibration: The spin-dependent gradient
�eld is generated by two pairs of coils: an anti-Helmholtz
pair along the z-direction, which creates a quadrupole
�eld Bquad (x ex + y ey − 2z ez), and a Helmholtz pair
along the x-direction, which creates a homogenous bias
�eld Bxex with ei the unit vector in i-direction. At
the atom cloud (x ≈ 0), the total magnetic �eld is
B =

√
(Bquad x+Bx)2 +B2

ofs(y, z) and the magnetic
�eld gradient B′ = ∂B/∂x depends linearly on the bias
�eld Bx for Bx � Bofs. A precise knowledge of the
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Figure S6. Calibration of the residual exponential decay of ∆
after the ramp stop t′ = t − ts. The data points show the
magnetic gradient determined by microwave spectroscopy on
the (F = 1, mF = −1)→ (F = 2, mF = −2) transition when
stopping the gradient ramp at ∆s = 0. The linear ramp be-
fore and the exponential decay after the stop time ts is clearly
visible. By �tting a linear (t < 0) and an exponential func-
tion (t > 0) to the data, the decay constant τd = 1.05(5)ms
and ∆d, which depends on the double well site distance, can
be determined.

spin-dependent double well tilt is required for the current
measurement method. To this end, a calibration was per-
formed using laser-assisted tunneling spectroscopy. The
setup comprises two beams interfered under an angle of
90◦ with a frequency di�erence of δω forming a running
wave lattice oriented at 45◦ to the physical lattice. A
single spin in the (F = 2, mF = ±2)-state is loaded in
the ground state of a tilted double well potential with
δ0/h = 4.91(2) kHz and additional magnetic tilt 2∆,
which needs to be calibrated. The running wave lattice
modulates neighboring lattice sites relative to each other
and will induce tunneling if ~ δω = 2∆ + δ0. A series of
spectroscopy scans varying δω are performed for various
magnetic �eld values Bx. The resulting data is shown in
Fig. S5. For large Bx a deviation from the linear behavior
is visible, which can be captured by �tting the magnetic
�eld distribution of a quadrupole �eld

∆ ∝ BxBquad√
B2
x +B2

ofs

, (S.10)

where both Bquad and Bofs are �t variables.

Decay Calibration: During the current measurement
sequence, the magnetic �eld gradient is ramped to a �nal
value ∆s and abruptly stopped there. Experimentally,
an instantaneous stop is not realizable but a small resid-
ual gradient remains which decays slowly during the cur-
rent measurement. The calibration of the decay time τd
as well as the residual gradient ∆d at ts is essential for
the current measurement and is realized with microwave
spectroscopy. The sequence starts with a single spin in
the (F = 1, mF = −1) state localized on the left site by a
strong magnetic gradient. The gradient is reduced with
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the identical rate as for the current measurement and
stopped at ∆s = 0 but individual sites are decoupled by
a large short lattice depth. Now, resonance frequency
scans on the (F = 1, mF = −1)→(F = 2, mF = −2)
microwave transition with a pulse duration of 44µs are
recorded at various times around ts; the gradient ∆(t′)
determined from the center frequencies is summarized in
Fig. S6. A clear exponential decay ∆d e

−t′/τd can be �t-
ted for t′ > 0 with a decay constant τd = 1.05(5)ms. The
amplitude ∆d can be calibrated by comparing the linear
increase for t′ < 0 with the gradient calibration (Fig. S5)
and leads to ∆d/h = 24.3(6)Hz for sites separated by ds.
This corresponds to a tilt in the superlattice for the ex-
perimental parameters of ∆d/h = 19.8(5)Hz at Jex/h =
342(2)Hz and ∆d/h = 19.4(5)Hz at Jex/h = 467(3)Hz.
The di�erence originates mainly in the slightly di�erent
distance between the sites depending on the double well
parameters.

Simultaneous band mapping of two spins: The simul-
taneous site-resolved detection of two spins per double
well su�ers from an additional reduction of the detected
imbalance. This reduction occurs during the merging of
the left and right site of each double well in the pres-
ence of a spin-independent tilt into a single site of the
long lattice. This process transfers atoms from the left
site to the ground band and spins from the right site to
the second excited band of the long lattice. The subse-
quent band mapping measures the band occupation and
hence also the site occupations. However, spins in these
bands undergo singlet-triplet oscillations after and also
during the merging [S2, S5]. A calibrated holdtime be-
fore the release is chosen such that correct imbalances
are detected. Nevertheless, the detected imbalance is re-
duced most likely due to dephasing during the merging
ramps. The value of this reduction can be calibrated to
rescale the measured imbalances with a constant factor
to correctly determine the imbalance. The calibration
measurement compares the two spin site-resolved band
mapping with a single spin band mapping, where shortly
before the merging one of the spin components is removed
by an adiabatic spin transfer and a subsequent resonant
light pulse.

MULTIPLE PUMP CYCLES

Band mapping data

The in-situ data show a separation and opposite trans-
port of the two spin components for multiple pump cy-
cles. In Fig. S7 the spin imbalance Is during the pump
cycle is depicted versus the pump parameter φ, which is
de�ned as the angle of the pump path in parameter space
(δJex/δJex,max,∆/∆max). The imbalance starts with a
negative value, the state is predominantly |↑↓〉, and in-

0.0 0.5 1.0 1.5
φ (2π)

-1.0

-0.5

0.0

0.5

1.0

Figure S7. Static spin imbalance I during the pump cycle.
The data is shown with respect to the pump parameter φ
de�ned as the angle of the pump path in parameter space
(δJex/δJex,max,∆/∆max). The error bars show the error of
the mean of �ve repetitions each.

verts during the �rst half pump cycle. After switching
the dimerization, the pump cycle continues by inverting
the spin-imbalance each half pump cycle. At φ = 2π a
small step in I is visible, which originates mainly from
singly occupied sites created at the surface of the atom
cloud during pumping.

Initial state and pump e�ciency

For the in-situ measurement the calculated motion of a
localized spin is shown, which takes into account the ini-

tial ground state occupation n
(i)
1 and pump e�ciency βi

per i-th half pump cycle. The model is analogous to the
one for the spin current, where the corrections are ex-
tracted from the spin-imbalance measured at each half
pump cycle. The step height is then given by

si = βi

(
2n

(i)
1

i−1∏
j=0

βj − 1
)

(S.11)

with n
(i)
1 = 0.94 and β0...4 = {1, 0.97, 0.91, 0.96, 0.90}. In

total, the displacement after the i-th half pump cycle is

x =
∑
j=1

sj . (S.12)

PUMP SCHEME IN A TIGHT-BINDING MODEL

WITH MAGNETIC FIELD GRADIENT

In the tight-binding approximation the dynamics of
non-interacting atoms in an optical superlattice poten-
tial in the presence of a �eld gradient is described by a
generalized Harper model with a site-dependent Zeeman-
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like term

Ĥs =ĤJ + Ĥ∆

=−
∑
m,σ

1

2
(J + δJm) (â†m+1,σâm,σ + h.c.)

+
∑
m

m∆
(
â†m,↑âm,↑ − â

†
m,↓âm,↓

) (S.13)

with δJm = (−1)mδJ . The pumping scheme is imple-
mented with a cycle, in which (δJ, ∆)→ (δJ(φ), ∆(φ))
and where the pump parameter changes constantly in
time φ = 2πt/T . In the deep tight-binding regime the
parameter space describes an ellipse (δJ(t), ∆(t)) =
(δJ sin(2πt/T ), ∆ cos(2πt/T )). At ∆ = 0, the spectrum
has an energy gap ∆E = 2 δJ , and thus the adiabatic
condition is met if T � ~/δJ .
The part of the Hamiltonian Ĥ∆ is odd while the part

ĤJ is even under time-reversal symmetry and therefore
Eq. S.13 belongs to the class that satisfy the condition
Ĥ[−t] = Θ̂Ĥ[t]Θ̂−1, where Θ̂ is the time-reversal opera-
tor. Moreover, the Hamiltonian is time-reversal invariant
at two points t1 = T

4 and t2 = 3T
4 , where ĤJ dominates.

The existence of these two points plays a crucial role in
the classi�cation of the pump cycle. In particular, pump
cycles in which Ĥ[t1] and Ĥ[t2] have di�erent time re-
versal polarization are topologically distinct from trivial
cycles and de�ne a Z2 spin-pump. In a single double well
at time t = 0, Ĥ∆ dominates and locks the up (down)
spins on the left (right) well, denoted by |↑, ↓〉. This
state evolves into the |↓, ↑〉 state after half a pump cycle
at t = T

2 , where the two spins have exchanged their po-

sitions. In contrast, at t = T
4 and t = 3T

4 , the term ĤJ

dominates and the spins are delocalized over the double
wells; then the system is dimerized.

CENTER OF MASS SHIFT AND

TIME-REVERSAL POLARIZATION

Consider a Hamiltonian Eq. S.13 with lattice constant
ds = dl/2 = 1 and periodic boundary conditions. Then,
in absence of spin-orbit type of interaction that means
independent spin components without inter-spin inter-
actions, the spin transport for a homogeneously popu-
lated band is characterized by the spin Chern number
Csc = ν↑ − ν↓. Since the spin components are decoupled
even in the presence of a �eld gradient, the Chern num-
bers νσ can be evaluated using the Thouless-Kohmoto-
Nightingale-Nijs expression [S6]:

νσ =
1

2π

∫ T

0

dt

∫ π

−π
dk Ωσ(t, k), (S.14)

where Ωσ is the Berry curvature associated to the single-
particle wavefunction

Ωσ(t, k) = i (〈∂tuσ|∂kuσ〉 − h.c.) . (S.15)

The spin Chern number can be furthermore related for
the non-interacting case to the Z2 topological invariant
I = mod2(Csc/2) that distinguishes a nontrivial Z2 pump
from a trivial one and is related to the change in time
reversal polarization.

As known from polarization theory [S7], the charge
polarization is the center of mass of a localized Wan-
nier state and is in turn related to Berry's phase of the
corresponding Bloch functions. In the same way, the po-
larization of a single spin component is given by:

Pσ =
1

2π

∫ π

−π
dk Aσ(k), (S.16)

where Aσ(k) = i
∑ 〈uσ|∂kuσ〉 is the Berry connection.

The change in polarization induced by changing the
pump parameter φ by 2π, or the time variable, corre-
sponds to the Chern number [S7]

νσ =

∫ 2π

0

dφ ∂φPσ(φ). (S.17)

The spin-density can be directly measured by in-situ
absorption imaging for a single spin component. The
change of spin-polarization ∆Pσ = Pσ(φ1) − Pσ(φ2) at
two di�erent times t1 and t2, coincides with the spatial
shift of the Wannier function. Measuring the center of
mass shift for a single spin component thus gives the
Chern number of this component.

For time-reversal invariant systems, taking into ac-
count the role of Kramer's degeneracy, one can de�ne
a corresponding time-reversal polarization in terms of
the di�erence of the individual spin polarizations Ps =
P↑ −P↓. Hence, the change in time-reversal polarization
during a cycle gives the Z2 topological invariant. Further-
more, it is equal to the integration of the instantaneous

spin-current j over the pump cycle as,
∫ T

0
dt j(t).

SPIN PUMPING WITH INTERACTIONS

When in addition hardcore interactions between the
spin components are assumed, spin pumping can be un-
derstood in a similar way as in the non-interacting case.
For half �lling a representation in terms of spin operators
can be introduced in this limit:

Ŝ+
m = â†m↑âm↓,

Ŝ−m = â†m↓âm↑,

Ŝzm = â†m↑âm↑ − â
†
m↓âm↓.

(S.18)
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Model Eq. S.13 can thus be mapped to a model of an
antiferromagnetic spin chain with two perturbations

Ĥe� =Ĥxy + Ĥdim + Ĥ∆

=− Jex
4

∑
m

(Ŝ+
mŜ
−
m+1 + h.c.)

− δJex
4

∑
m

(−1)m(Ŝ+
mŜ
−
m+1 + h.c.)

+ ∆
∑
m

mŜzm,

(S.19)

where the second term describes a staggered compo-
nent of the exchange interaction, while the last one is
a Zeeman-like term, which controls the on-site energies.

A cycle, in which (δJex, ∆) are adiabatically var-
ied de�nes a topological spin pump [S8]. Such a spin
pump transfers Sz = ~ per cycle, which can be still
described by the Z2 topological invariant. Note that
the Hamiltonian Ĥxy in Eq. S.19 corresponds to a co-
sine band ε(k) = −Jex/2 cos(k). The staggered ex-
change interaction δJex opens a gap at k = ±π2 and for
half �lling, only the lowest subband is occupied. Due
to the π periodicity in k-space, the double degenerate
point (k, δJex, ∆) = (π2 , 0, 0) is identical to that at
(−π2 , 0, 0) and becomes the source and sink for a vector
�eld B+1 and B−1 de�ned in the k-φ-parameter space.
If a pump path γ encloses the origin (δJex, ∆) = (0, 0),
e.g. (δJex, ∆) = (δJex,max cosφ, ∆max sinφ), where
φ : 0 → 2π, the number of lattice sites that a spin is
transported, is given by the �ux B+1 enclosed by the
path

∮
γ

∫ π

k=−π
dS ·B+1 = 1. (S.20)

This corresponds to a quantized spin transport. The to-
tal Sz at one end of this system increases while that at
the other end decreases by one during the entire cycle as
long as the gap is maintained open and the point (0, 0)
is not outside the 2D closed surface.

Away from the hard-core constraints for the bosons,
the e�ect of a �nite interaction can be taken into account
via a bosonization approach. When applying Haldane's
bosonization of interacting bosons [S9] to the Hamilto-
nian Eq. S.13 and δJex,∆ = 0, the Hamiltonian of the
bosons can be written as:

Ĥ0 =
∑
σ

∫
dx

2π

[
vσKσ(πΠσ)2 +

vσ
Kσ

(∂xΦσ)2

]
, (S.21)

where the two canonical �elds ful�ll [Φα(x),Πβ(x′)] =
i δαβδ(x−x′), vσ is the velocity of excitations, and Kσ is
the Tomonaga-Luttinger exponent. In the case of hard-
core bosons, vσ = Jex sin(πρ0

σ) and Kσ = 1, while ρ0 is
the boson density.
Introducing the �elds θα = π

∫ x
Πα, the boson annihi-

lation operators can be represented as [S9]:

ajσ = ψσ(x) (S.22)

= eiθσ(x)
+∞∑
m=0

cσm cos(2mΦσ(x)− 2mπρ(0)
σ x),

where cσm are non-universal coe�cients. For hardcore
bosons at half �lling, these coe�cients have been found
analytically [S10]. From Eq. S.22, the bosonized expres-
sion of the staggered hopping term can be deduced:

Ĥhop. ∝ δJ
∫

dx sin(2Φc) cos(2Φs), (S.23)

with only the most relevant term in the renormalization
group sense and the charge and spin variables Φ↑/↓ =
(Φc ± Φs). When Φc is pinned (e.g. at commensurate
�llings) in the gapped spin phase also the �eld Φs is
pinned 〈Φs〉 ≡ π

4 (1 + sign(δJ)). The excitations above
the ground state are solitons and antisolitons, which are
topological excitations of the �eld Φs that carry a spin
1/2.
The time reversal-polarization is identi�ed as Ps =

mod2( 2Φs
π ) and because under time reversal Θ̂ΦsΘ̂

−1 =
−Φs, time reversal polarization is either 0 or 1. Thus,
the topological classi�cation of the spin pump remains
also away from the hard-core bosons limit.
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