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Abstract—A hierarchical key assignment scheme is a method to assign some private information and encryption keys to a set of 
classes in a partially ordered hierarchy, in such a way that the private information of a higher class can be used to derive the keys of 
all classes lower down in the hierarchy. In this paper we analyze the security of hierarchical key assignment schemes according to 
different notions: security with respect to key indistinguishability and against key recovery, as well as the two recently proposed 
notions of security with respect to strong key indistinguishability and against strong key recovery. We first explore the relations 
between all security notions and, in particular, we prove that security with respect to strong key indistinguishability is not stronger than 
the one with respect to key indistinguishability. Afterwards, we propose a general construction yielding a hierarchical key assignment 
scheme offering security against strong key recovery, given any hierarchical key assignment scheme which guarantees security 
against key recovery.

Index Terms—Access control, key assignment, provable security, key indistinguishability, strong key indistinguishability, key recovery, 
strong key recovery

1 INTRODUCTION

THE access control management ensures that only autho-
rized users are given access to certain resources. In

particular, with respect to their respective powers and
responsibilities, users are typically organized into hierar-
chies, composed by several disjoint classes (security classes).
Hierarchical structures are widely employed in many differ-
ent application areas, including database management sys-
tems, computer networks, operating systems, military and
government communications.

The use of cryptographic techniques to address the prob-
lem of key management in hierarchical structures has been
first considered by Akl and Taylor [1], who proposed a hier-
archical key assignment scheme where each class is assigned a
key that can be used, along with some public information
generated by a trusted authority, to compute the key
assigned to any class lower down in the hierarchy. Subse-
quently, many researchers have proposed schemes offering
different trade-offs in terms of the amount of public and pri-
vate information and the complexity of key derivation (e.g.,
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18]). Many other proposals either support more
general access control policies [19], [20], [21], [22] or satisfy
additional time-dependent constraints [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32]. Despite the large number of
proposed schemes, many of them lack a formal security
proof and have been shown to be insecure against collusive

attacks [27], [33], [34], [35], [36], whereby two or more classes
collude to compute a key to which they are not entitled.

According to the security reduction paradigm introduced
by Goldwasser and Micali [37], a scheme is provably-secure
under a complexity assumption if the existence of an adver-
sary A breaking the scheme implies the existence of an
adversary B breaking the computational assumption [37].
Atallah et al. [14] first addressed the problem of formalizing
security requirements for hierarchical key assignment
schemes and proposed two different notions: security
against key recovery and with respect to key indistinguishabil-
ity. Informally speaking, the former captures the notion that
an adversary should not be able to compute a key to which
it should not have access, while in the latter, the adversary
should not even be able to distinguish between the real key
and a random string of the same length. In particular, the
model considered in [14] allows an adversary attacking a
certain class in the hierarchy to gain access to the private
information assigned to all users not allowed to access such
class, as well as all the public information.

Atallah et al. [14] also proposed two provably-secure con-
structions for hierarchical key assignment schemes: the first
one is based on pseudorandom functions and satisfies secu-
rity against key recovery, whereas, the second one requires
the additional use of a symmetric encryption scheme and
guarantees security with respect to key indistinguishability.
Different constructions satisfying the above defined notions
of security have been proposed in [12], [15], [16], [17], [18],
[27], [31], [32], [38]. In particular, De Santis et al. [12], [17]
proposed two different constructions satisfying security
with respect to key indistinguishability: the first one, which
is based on symmetric encryption schemes, is simpler than
the one proposed in [14], requires a single computational
assumption, and offers more efficient procedures for key
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derivation and key updates; the second one, which is based
on a public-key broadcast encryption scheme, allows to
obtain a hierarchical key assignment scheme offering con-
stant private information and public information linear in
the number of classes. D’Arco et al. [15], [16] analyzed the
Akl-Taylor scheme according to the definitions proposed in
[14] and showed how to choose the public parameters in
order to get instances of the scheme which are secure against
key recovery under the RSA assumption. Moreover, they
showed how to turn the Akl-Taylor scheme in a construction
offering security with respect to key indistinguishability;
however such a scheme is less efficient than the construc-
tions proposed in [12], [14], [17]. Freire and Paterson [18] pro-
posed a construction based on factoring, satisfying security
with respect to key indistinguishability. Finally, Ateniese
et al. [27], [32] extended the model proposed in [14] to
schemes satisfying additional time-dependent constraints
and proposed two different constructions offering security
with respect to key indistinguishability. Other constructions
for time-dependent schemes, offering different trade-offs in
terms of amount of public and private information and com-
plexity of key derivation, were shown in [30], [31], [38], [39].
Recently, a more general scenario has been considered for
hierarchical key assignment schemes [40]. In such a scenario,
the access control is not only hierarchical, but also shared
between different classes. In particular, the authors of [40]
proposed a construction for hierarchical and shared key
assignment schemes that is secure with respect to key indis-
tinguishability and relies on both symmetric encryption and
perfect secret sharing.

Freire et al. [41] proposed new security definitions for
hierarchical key assignment schemes. Such definitions, called
security against strong key recovery and security with respect
to strong key indistinguishability, provide the adversary with
additional compromise capability, thus representing a
strengthening of the model provided in [14]. As stated by
Freire et al., such a newmodel is able to characterize a variety
of scenarios whichmay arise in real-world situations, since it
allows the protection of the key assigned to a certain class u,
even when the keys held by classes which are predecessors
of u in the hierarchy have been leaked, due to their use, loss
or theft. More precisely, Freire et al. considered an adversary
which, given a certain class, is allowed to gain the private
information assigned to all users not allowed to access such
class, as well as all the public information and keys assigned to
all the other classes which are predecessors of the target class in the
hierarchy. Freire et al. also proposed two hierarchical key
assignment schemes which are secure in the sense of strong
key indistinguishability. The first construction is based on
pseudorandom functions, whereas, the second one is based
on forward-secure pseudorandom generators. Finally, they
showed that the notions of security against key recovery and
against strong key recovery are separated, i.e., there exist
schemes that are secure against key recovery but which are
not secure against strong key recovery. On the other hand,
they did not clarify the relations between the notions of secu-
rity with respect to key indistinguishability and with respect
to strong key indistinguishability.

In this work, we explore the relations between all secu-
rity notions for hierarchical key assignment schemes, by
clarifying implications and separations occurring between

such notions. In particular, we show that security with
respect to strong key indistinguishability is not stronger than
the one with respect to key indistinguishability, thus estab-
lishing the equivalence between such two security notions.
A similar result has been recently shown in the uncondition-
ally secure setting [42]. Furthermore, we also show how to
construct a hierarchical key assignment scheme which is
secure against strong key recovery, starting from any
scheme which guarantees security against key recovery.

The paper is organized as follows: in Section 2 we review
the definition of hierarchical key assignment schemes; in
Section 3 we describe all security definitions for hierarchical
key assignment schemes; in Section 4 we analyze the rela-
tions among these definitions and in particular we show
that security with respect to strong key indistinguishability
is not stronger than the one with respect to key indistinguish-
ability; finally in Section 5, we show how to construct a hier-
archical key assignment scheme secure against strong key
recovery, starting from any hierarchical key assignment
scheme which is secure against key recovery.

2 HIERARCHICAL KEY ASSIGNMENT SCHEMES

Consider a set of users divided into a number of disjoint clas-
ses, called security classes. A security class can represent a
person, a department or a user group in an organization. A
binary relation � that partially orders the set of classes V is
defined in accordance with authority, position or power of
each class in V . The poset ðV;�Þ is called a partially ordered
hierarchy. For any two classes u and v, the notation u � v is
used to indicate that the users in v can access u’s data.
Clearly, since v can access its own data, it holds that v � v,
for any v 2 V . We denote the accessible set of a class v by Av,
which corresponds to the set fu 2 V : u � vg, for any v 2 V .
The partially ordered hierarchy ðV;�Þ can be represented by
the directed graph G� ¼ ðV;E�Þ, where each class corre-
sponds to a vertex in the graph and there is an edge from
class v to class u if and only if u � v. We denote byG ¼ ðV;EÞ
the minimal representation of the graph G�, namely, the
directed acyclic graph (DAG) corresponding to the transitive
and reflexive reduction of the graph G� ¼ ðV;E�Þ. The graph G
has the same transitive and reflexive closure of G�, i.e., there
is a path (of length greater than or equal to zero) from v to u
inG if and only if there is the edge ðv; uÞ inE�. Aho et al. [43]
showed that every directed graph has a transitive reduction,
which can be computed in polynomial time and is unique for
directed acyclic graphs. In the following, we denote by G a
family of graphs corresponding to partially ordered hierar-
chies. For example, G could be the family of the rooted trees
[7], the family of the d-dimensional hierarchies [13], etc.

A hierarchical key assignment scheme for a family G of
graphs, corresponding to partially ordered hierarchies, is
defined as follows in [12], [15], [16], [17], [27], [30], [31], [32].

Definition 2.1. A hierarchical key assignment scheme for G
is a pair ðGen;DerÞ of algorithms satisfying the following
conditions:

1) The information generation algorithm Gen is prob-
abilistic polynomial-time. It takes as inputs the secu-
rity parameter 1t and a graph G ¼ ðV;EÞ in G, and
produces as outputs



a) a private information su, for any class u 2 V ;
b) a key ku 2 f0; 1gt , for any class u 2 V ;
c) a public information pub.

We denote by ðs; k; pubÞ the output of the algo-
rithm Gen on inputs 1t and G, where s and k
respectively denote the sequences of private infor-
mation and keys.

2) The key derivation algorithm Der is deterministic
polynomial-time. It takes as inputs the security param-
eter 1t, a graph G ¼ ðV;EÞ in G, two classes u; v in V ,
the private information su assigned to class u and the
public information pub, and produces as output the key
kv 2 f0; 1gt assigned to class v if v 2 Au, or a special
rejection symbol ? otherwise.

We require that for each class u 2 V , each class
v 2 Au, each private information su, each key
kv 2 f0; 1gt , each public information pub which can be
computed by Gen on inputs 1t and G, it holds that

Derð1t; G; u; v; su; pubÞ ¼ kv:

The efficiency of a hierarchical key assignment scheme is
evaluated according to different parameters: storage req-
uirements, which correspond to the amount of secret data
that needs to be distributed and stored by the users and the
amount of data that needs to be made public; the complexity
of both key derivation and key update procedures (it is
desirable that updates to the access hierarchy require only
local changes to the public information and do not need any
private information to be re-distributed); the computational
assumption on which the security of the scheme relies (it is
desirable to employ standard assumptions).

3 NOTIONS OF SECURITY

A hierarchical key assignment scheme must be resistant to
collusive attacks. More precisely, for each class u 2 V , the key
ku should be protected against a coalition of all users in the
set Fu ¼ fv 2 V : u 62 Avg, corresponding to the ones which
are not allowed to compute the key ku.

Atallah et al. [14] first introduced two different security
goals for hierarchical key assignment schemes: security with
respect to key-indistinguishability and security against key
recovery. The former formalizes the requirement that the
adversary is not able to learn any information (even a single
bit) about a key ku which it should not have access to, i.e., it
is not able to distinguish it from a random string having the
same length. On the other hand, the latter corresponds to the
weaker requirement that an adversary is not able to compute
a key ku which it should not have access to. The notion of key
indistinguishability offers security guarantees that cannot be
achieved by schemes whose security relies only upon key
recovery. These stronger security guarantees could be neces-
sary. For example, as pointed out in [17], it is straightforward
that the key indistinguishability notion is needed when the
data associated to a class are protected bymeans of a symmet-
ric encryption scheme, whose implementation details make
the confidentiality of the ciphertext (or of part of it) depend-
ing on the secrecy of only a portion of the encryption key.

Recently, Freire et al. [41] proposed a new security
definition for hierarchical key assignment schemes. Such
a definition, called security with respect to strong key-

indistinguishability, formalizes the requirement that the
adversary is not able to learn any information about a key
ku which it should not have access to, even if it has the addi-
tional capability of gaining access to the keys associated to all
other classes which are predecessors of the target class in the
hierarchy. Notice that these encryption keys might leak
through usage and their compromise could not directly
lead to a compromise of the private information su or the
encryption key ku of the target class u. Freire et al. also
introduced the definition of security against strong key
recovery. Such a definition formalizes the requirement that
the adversary is not able to compute a key ku which it
should not have access to, even if it has the additional
capability of gaining access to encryption keys assigned to
all the other classes which are predecessors of the target
class in the hierarchy.

In the following, we consider a static adversary which,
given a class u, is allowed to gain the private information
assigned to all users not allowed to access such class, as
well as all the relative public information. For the case of
strong key indistinguishability and strong key recovery, such an
adversary is also able to access keys assigned to all other
classes which are predecessors of the target class in the hier-
archy. A different kind of adversary, the adaptive one, could
be also considered. In detail, such an adversary is first
allowed to access all public information as well as all private
information of a number of classes of its choice; afterwards,
it chooses the class u it wants to attack. In [27], [32] it has
been proven that security with respect to adaptive adversar-
ies is (polynomially) equivalent to the one against static ones.
In particular, the scenario considered in [27], [32], [44] is
more general, since the lifetime of each key is limited to a
given period of time. In such a setting, each class is assigned
to a different key for each different period of time. These
schemes are called Time-Bound Hierarchical Key Assignment
Schemes. However, the equivalence between adaptive and
static adversaries shown in [27], [32] also applies to hierar-
chical key assignment schemes, since they can be seen as
time-bound hierarchical key assignment schemes with a sin-
gle period of time. Therefore, in this paper we will only con-
sider static adversaries.

We use the standard notation to describe probabilistic
algorithm and experiments following [45]. If Að�; �; . . .Þ is
any probabilistic algorithm then a Aðx; y; . . .Þ denotes the
experiment of running A on inputs x; y; . . . and letting a be
the outcome, the probability being over the coin tosses of A.
Similarly, ifX is a set then x X denotes the experiment of
selecting an element uniformly from X and assigning x this
value. If w is neither an algorithm nor a set, then x w is a
simple assignment statement. A function � : N ! R is negli-
gible if for every constant c > 0 there exists an integer nc

such that �ðnÞ < n�c for all n � nc.

3.1 Security w.r.t. Key Indistinguishability

Consider a static adversary STATu that wants to attack a class
u 2 V and which is able to corrupt all users in Fu. We
define an algorithm Corruptu, which on input the private
information s generated by the algorithm Gen, extracts
the secret values sv associated to all classes v 2 Fu: We
denote by corru the sequence output by CorruptuðsÞ. Two
experiments are considered. In the first one, the adversary



is given the key ku, whereas, in the second one, it is given a
random string r having the same length as ku. It is the
adversary’s job to determine whether the received chal-
lenge corresponds to ku or to a random string. We require
that the adversary will succeed with probability only negli-
gibly different from 1=2.

Definition 3.1 ([IND-ST]). Let G be a family of graphs corre-
sponding to partially ordered hierarchies, let G ¼ ðV;EÞ be a
graph in G, let ðGen;DerÞ be a hierarchical key assignment
scheme for G and let STATu be a static adversary which attacks
a class u. Consider the following two experiments:

Experiment ExpIND�1
STATu

ð1t; GÞ
ðs; k; pubÞ  Genð1t; GÞ
corru  CorruptuðsÞ
d STATuð1t; G; pub; corru; kuÞ
return d

Experiment ExpIND�0
STATu

ð1t; GÞ
ðs; k; pubÞ  Genð1t; GÞ
corru  CorruptuðsÞ
r f0; 1gt
d STATuð1t; G; pub; corru; rÞ
return d:

The advantage of STATu is defined as

AdvIND
STATu
ð1t; GÞ ¼ jPr½ExpIND�1

STATu
ð1t; GÞ ¼ 1�

� Pr½ExpIND�0
STATu

ð1t; GÞ ¼ 1�j:

The scheme is said to be secure in the sense of IND-ST if, for
each graph G ¼ ðV;EÞ in G and each u 2 V , the function

AdvIND
STATu
ð1t; GÞ is negligible, for each static adversary STATu

whose time complexity is polynomial in t.

3.2 Security Against Key Recovery

Now consider the case where there is a static adversary
STATu which wants to compute the key assigned to a class
u 2 V . As done before, we denote by corru the sequence out-
put by the algorithm Corruptu, on input the private informa-
tion s generated by the algorithm Gen. The adversary, on
input all public information generated by the algorithmGen,
as well as the private information corru, outputs a string k0u
and succeeds if k0u ¼ ku. We require that the adversary will
succeedwith probability only negligibly different from 1=2t.

Definition 3.2 ([REC-ST]). Let G be a family of graphs corre-
sponding to partially ordered hierarchies, let G ¼ ðV;EÞ be a
graph in G, let ðGen;DerÞ be a hierarchical key assignment
scheme for G and let STATu be a static adversary which attacks
a class u. Consider the following experiment:

Experiment ExpREC
STATu
ð1t; GÞ

ðs; k; pubÞ  Genð1t; GÞ
corru  CorruptuðsÞ
k0u  STATuð1t; G; pub; corruÞ
return k0u:

The advantage of STATu is defined as

AdvREC
STATu
ð1t; GÞ ¼ Pr½ExpREC

STATu
ð1t; GÞ ¼ ku�:

The scheme is said to be secure in the sense of REC-ST if, for
each graph G ¼ ðV;EÞ in G and each class u 2 V , the function

AdvREC
STATu
ð1t; GÞ is negligible, for each static adversary STATu

whose time complexity is polynomial in t.

3.3 Security w.r.t. Strong Key Indistinguishability

Consider a static adversary STATu that wants to attack a class
u 2 V . Such adversary is able to corrupt all users in Fu and
to gain access to the keys associated to all classes in the set
Pu ¼ fv 2 V n fug : u 2 Avg of the predecessors of class u.
As done before, we denote by corru the sequence output by
the algorithm Corruptu, on input the private information s

generated by the algorithm Gen. Moreover, we define an
algorithm Keysu, which on input the encryption keys k gen-
erated by the algorithm Gen, extracts keys kv associated to
all classes v 2 Pu. We denote by keysu the sequence output
by KeysuðkÞ. Two experiments are considered. In the first
one, the adversary is given the key ku, whereas, in the sec-
ond one, it is given a random string r having the same
length as ku. It is the adversary’s job to determine whether
the received challenge corresponds to ku or to a random
string. We require that the adversary will succeed with
probability only negligibly different from 1=2.

Definition 3.3 ([STRONG-IND-ST]). Let G be a family of
graphs corresponding to partially ordered hierarchies, let
G ¼ ðV;EÞ be a graph in G, let ðGen;DerÞ be a hierarchical key
assignment scheme for G and let STATu be a static adversary
which attacks a class u. Consider the following two experiments:

Experiment ExpSTRONG�IND�1
STATu

ð1t; GÞ
ðs; k; pubÞ  Genð1t; GÞ
corru  CorruptuðsÞ
keysu  KeysuðkÞ
d STATuð1t; G; pub; corru; keysu; kuÞ
return d

Experiment ExpSTRONG�IND�0
STATu

ð1t; GÞ
ðs; k; pubÞ  Genð1t; GÞ
corru  CorruptuðsÞ
keysu  KeysuðkÞ
r f0; 1gt
d STATuð1t; G; pub; corru; keysu; rÞ
return d:

The advantage of STATu is defined as

AdvSTRONG�IND
STATu

ð1t; GÞ ¼ jPr½ExpSTRONG�IND�1
STATu

ð1t; GÞ ¼ 1�
� Pr½ExpSTRONG�IND�0

STATu
ð1t; GÞ ¼ 1�j:

The scheme is said to be secure in the sense of STRONG-
IND-ST if, for each graph G ¼ ðV;EÞ in G and each u 2 V ,

the function AdvSTRONG�IND
STATu

ð1t; GÞ is negligible, for each static

adversary STATu whose time complexity is polynomial in t.



3.4 Security Against Strong Key Recovery

Finally, consider the case where there is a static adversary
STATu that wants to compute the key assigned to a class
u 2 V . Such adversary is able to corrupt all users in Fu and
gain access to the keys associated to all classes in the set Pu

of the predecessors of u. As done before, we denote by corru
the sequence output by the algorithm Corruptu, on input
the private information s generated by the algorithm Gen.
Moreover, we denote by keysu the sequence output by
KeysuðkÞ. The adversary, on input all public information
generated by the algorithm Gen, as well as the private
information corru and the sequence keysu, outputs a
string k0u and succeeds if k0u ¼ ku. We require that the
adversary will succeed with probability only negligibly
different from 1=2t.

Definition 3.4 ([STRONG-REC-ST]). Let G be a family of
graphs corresponding to partially ordered hierarchies, let
G ¼ ðV;EÞ be a graph in G, let ðGen;DerÞ be a hierarchical key
assignment scheme for G and let STATu be a static adversary
which attacks a class u. Consider the following experiment:

Experiment ExpSTRONG�REC
STATu

ð1t; GÞ
ðs; k; pubÞ  Genð1t; GÞ
corru  CorruptuðsÞ
keysu  KeysuðkÞ
k0u  STATuð1t; G; pub; corru; keysuÞ
return k0u:

The advantage of STATu is defined as

AdvSTRONG�REC
STATu

ð1t; GÞ ¼ Pr½ExpSTRONG�REC
STATu

ð1t; GÞ ¼ ku�:

The scheme is said to be secure in the sense of STRONG-
REC-ST if, for each graph G ¼ ðV;EÞ in G and each class

u 2 V , the function AdvSTRONG�REC
STATu

ð1t; GÞ is negligible, for

each static adversary STATu whose time complexity is polyno-
mial in t.

4 IMPLICATIONS AND SEPARATIONS

In this section, we analyze the relations between the secu-
rity definitions described in Section 3. In particular, we
show implications and separations occurring between such
notions. Fig. 1 summarizes our results.

It is easy to see that any adversary which breaks the secu-
rity of the key assignment scheme in the sense of STRONG-
REC-ST can be easily turned into another adversary which
breaks the security of the key assignment scheme in the
sense of STRONG-IND-ST. Hence, the next result holds.

Theorem 4.1 ([STRONG-IND-ST ) STRONG-REC-ST]).
Let G be a family of graphs corresponding to partially ordered
hierarchies. If a hierarchical key assignment scheme for G is
secure in the sense of STRONG-IND-ST, then it is also secure
in the sense of STRONG-REC-ST.

In the following, we show that security against strong
key recovery does not necessarily imply security with
respect to strong key indistinguishability. Let ðGen;DerÞ be
a hierarchical key assignment scheme which is secure in

the sense of STRONG-REC-ST. We construct another scheme
ðGen0; Der0Þ and we show that it is secure in the sense of
STRONG-REC-ST but is not secure in the sense of STRONG-
IND-ST. Let u 2 V be a class and let ku be the key assigned
by Gen to u. Algorithm Gen0 computes the key assigned to
class u as k0u ¼ 1jjku, where the symbol jj denotes string con-
catenation. All other values computed by Gen0 are exactly
the same as the ones computed by Gen. Algorithm Der0 first
computes ku by usingDer, then obtains k0u ¼ 1jjku. Let STATu
be a static adversary that simply checks whether the first bit
x0 of the challenge x, corresponding either to the key k0u or to
a random string having the same length as k0u, is equal to 0. If
this happens, then STATu can easily conclude that the chal-
lenge x does not correspond to the key k0u, but is a random

string. Since the advantageAdvSTRONG�IND
STATu

is non-negligible, it

follows that ðGen0; Der0Þ is not secure in the sense of
STRONG-IND-ST. On the other hand, ðGen0; Der0Þ is secure
in the sense of STRONG-REC-ST. Assume by contradiction
that ðGen0;Der0Þ is not secure in the sense of STRONG-REC-
ST. It follows that also ðGen;DerÞ is not secure in the sense
of STRONG-REC-ST, thus leading to a contradiction. For this
reason, the next result holds.

Theorem 4.2 ([STRONG-REC-ST 6) STRONG-IND-ST]).
Let G be a family of graphs corresponding to partially ordered
hierarchies. If there exists a hierarchical key assignment scheme
for G which is secure in the sense of STRONG-REC-ST, then
there exists a hierarchical key assignment scheme for G that is
secure in the sense of STRONG-REC-ST but which is not
secure in the sense of STRONG-IND-ST.

The relations between the definitions of security against
strong key recovery and security against key recovery have
been established by Freire et al. [41]. In particular, they
showed that the two notions of security against key recov-
ery and against strong key recovery are separated, i.e., there
exist hierarchical key assignment schemes that are secure
against key recovery but which are not secure against strong
key recovery. An example of such schemes is the one based
on pseudorandom functions, proposed by Atallah et al.
[14]. Thus, the following theorems hold.

Theorem 4.3 ([STRONG-REC-ST ) REC-ST]). Let G be a
family of graphs corresponding to partially ordered hierarchies.
If a hierarchical key assignment scheme for G is secure in the
sense of STRONG-REC-ST, then it is also secure in the sense
of REC-ST.

Fig. 1. Relations between the security notions for hierarchical key
assignment schemes.



Theorem 4.4 ([REC-ST 6) STRONG-REC-ST]). Let G be a
family of graphs corresponding to partially ordered hierarchies.
If there exists a hierarchical key assignment scheme for G which
is secure in the sense of REC-ST, then there exists a hierarchi-
cal key assignment scheme for G that is secure in the sense of
REC-ST but which is not secure in the sense of STRONG-
REC-ST.

In detail, the above implication can be inferred from the
main idea underlying the separating example proposed in
[41]. On the other hand, the relations between the notions
of security with respect to key indistinguishability and
with respect to strong key indistinguishability are not
completely clear. As stated by the next theorem, it is easy
to see that security with respect to strong key indistin-
guishability implies security with respect to key indistin-
guishability. However, nothing is known about the other
direction.

Theorem 4.5 ([STRONG-IND-ST ) IND-ST]). Let G be a
family of graphs corresponding to partially ordered hierarchies.
If a hierarchical key assignment scheme for G is secure in the
sense of STRONG-IND-ST, then it is also secure in the sense
of IND-ST.

In the following, we show that security with respect to
strong key indistinguishability is not stronger than the one
with respect to key indistinguishability, that is to say,
STRONG-IND-ST and IND-ST are equivalent.

Theorem 4.6 ([IND-ST ) STRONG-IND-ST]). Let G be a
family of graphs corresponding to partially ordered hierarchies.
If a hierarchical key assignment scheme for G is secure in the
sense of IND-ST, then it is also secure in the sense of
STRONG-IND-ST.

Proof. Assume by contradiction that there exists a hierarchi-
cal key assignment scheme S for a graph G ¼ ðV;EÞ in G,
which is secure in the sense of IND-ST but that is not
secure in the sense of STRONG-IND-ST. Therefore, there
exists a class u 2 V and a static adversary STATu which is

able to distinguish between experiments ExpSTRONG�IND�0
STATu

and ExpSTRONG�IND�1
STATu

with non-negligible advantage.

Recall that the only difference between ExpSTRONG�IND�0
STATu

and ExpSTRONG�IND�1
STATu

is the last input of STATu, which

corresponds to a random value chosen in f0; 1gt
in the first experiment and to the real key ku in the
second one.

Let Pu ¼ fv 2 V n fug : u 2 Avg be the set of predeces-
sors of class u and let Gu ¼ ðPu;EuÞ be the subgraph of G
induced by Pu. W.l.o.g., let ðu1; . . . ; umÞ be any topologi-
cal ordering of the vertices in Pu, i.e., any linear ordering
of elements in Pu such that for each edge ðui; ujÞ 2 Eu, ui

precedes uj in the ordering. It is well know that any

directed acyclic graph has at least one topological order-
ing. More precisely, a directed graph G has a topological
ordering if and only if G is a DAG [46]. Notice that the
sequence keysu, which is an input of STATu in both the

experiments ExpSTRONG�IND�0
STATu

and ExpSTRONG�IND�1
STATu

, con-

tains exactly the keys ku1 ; . . . ; kum . First of all, it is easy to

observe that if m ¼ 0 the sequence keysu is empty, thus

the experiments ExpSTRONG�IND�0
STATu

and ExpSTRONG�IND�1
STATu

cor-

respond to ExpIND�0
STATu

and ExpIND�1
STATu

, respectively. In this

case, since STATu is able to distinguish between such
experiments with non-negligible advantage, it follows
that the scheme S is not secure in the sense of IND-ST,
which is a contradiction.

In addition, consider the case in which m > 0. We
will show how to turn the adversary STATu into another
polynomial-time adversary STAT0uh , where uh 2 Pu, which

breaks the scheme S in the sense of IND-ST, thus lead-
ing to a contradiction. We construct two sequences

Exp1;1
u ; . . . ;Exp1;mþ1

u and Exp2;1
u ; . . . ;Exp2;mþ1

u of mþ 1

experiments each, all defined over the same probability
space, where the first experiment of the former sequence,

that is Exp1;1
u , is equal to ExpSTRONG�IND�0

STATu
, whereas, the

last experiment of the latter sequence, that is Exp2;mþ1
u , is

equal toExpSTRONG�IND�1
STATu

.

For any q ¼ 2; . . . ;mþ 1, experiment Exp1;q
u in the first

sequence is defined as follows:

Experiment Exp1;q
u ð1t; GÞ

ðs; k; pubÞ  Genð1t; GÞ
corru  CorruptuðsÞ
keysqu  KeysquðkÞ
d STATuð1t; G; pub; corru; keys

q
u; rÞ

return d:

The output of the algorithm Keysqu is the sequence keysqu
where the first q � 1 values are independently chosen at
random in f0; 1gt and, if q 	 m, the other m� q þ 1
values correspond to the keys assigned to the classes
uq; . . . ; um.

On the other hand, for any q ¼ 1; . . . ;m, experiment

Exp2;q
u in the second sequence is defined as follows:

Experiment Exp2;q
u ð1t; GÞ

ðs; k; pubÞ Genð1t; GÞ
corru  CorruptuðsÞ
keysm�qþ2u Keysm�qþ2u ðkÞ
d STATu

�
1t; G; pub; corru; keys

m�qþ2
u ; ku

�

return d:

where keysm�qþ2u denotes the sequence where the first
m� q þ 1 values are independently chosen at random in
f0; 1gt and, if q � 2, the other q � 1 values correspond to
the keys assigned to the classes um�qþ2; . . . ; um.

Since Exp1;1
u , which corresponds to ExpSTRONG�IND�0

STATu
,

and Exp2;mþ1
u , which corresponds to ExpSTRONG�IND�1

STATu
, can

be distinguished by STATu with non-negligible advan-
tage, then there exists at least a pair of consecutive
experiments, in the sequence of 2mþ 2 experiments
obtained by composition of the two above defined
sequences, which are distinguishable by STATu with non-
negligible advantage.

We first show that such a pair cannot consist of the
two extremal experiments, namely, the last experiment
of the first sequence, that is Exp1;mþ1

u , and the first



experiment of the second sequence, that is Exp2;1
u .

Assume by contradiction that STATu is able to distin-

guish between Exp1;mþ1
u and Exp2;1

u with non-negligible

advantage. Notice that the only difference between such
two experiments is the last input of STATu, which corre-

sponds to a random value chosen in f0; 1gt in experi-

ment Exp1;mþ1
u , and to the real key ku in experiment

Exp2;1
u . We show how to construct another adversary

STAT0u which breaks the security of the scheme S in the
sense of IND-ST, by using the adversary STATu. The
adversary STAT0u, on inputs 1t , G, the sequence of pri-
vate information corru and a final value a, correspond-
ing either to the key ku or to a random value chosen in

f0; 1gt, constructs the sequence keysmþ1u needed for

STATu choosing independently at random m elements

in f0; 1gt. Then, STAT0u outputs the same output as

STATuð1t; G; pub; corru; keys
mþ1
u ;aÞ. Clearly, since STATu

is able to distinguish between Exp1;mþ1
u and Exp2;1

u

with non-negligible advantage, then STAT0u is able to

distinguish between ExpIND�0
STAT0u and ExpIND�1

STAT0u with non-

negligible advantage, thus breaking the security of the
scheme S in the sense of IND-ST. Contradiction. Thus,
the pair of consecutive experiments which can be distin-
guished by STATu, belongs either to the first sequence or
to the second one.

Assume that the pair of distinguishable consecutive
experiments belongs to the first sequence and it is com-
posed by Exp1;h

u and Exp1;hþ1
u , for some h ¼ 1; . . . ;m.

Notice that the views of STATu in such two consecutive
experiments differ only for a single value, which corre-

sponds to the key kuh in Exp1;h
u and to a random value

chosen in f0; 1gt in Exp1;hþ1
u . We show how to construct

an adversary STAT00uh which breaks the security of the

scheme S in the sense of IND-ST, by using the adversary
STATu. In particular, we show that STAT00uh is able to dis-

tinguish between experiments ExpIND�0
STAT00uh

and ExpIND�1
STAT00uh

with non-negligible advantage. The adversary STAT00uh ,
on inputs 1t, G, the sequence of private information
corruh and a final value a, corresponding either to the

key kuh or to a random value chosen in f0; 1gt, constructs
the inputs for STATu as follows:

� First, STAT00uh extracts from corruh the sequence
corru. This can be done since uh 2 Pu, i.e., uh is a
predecessor of u, hence classes which are cor-
rupted for u are also corrupted for uh and their
private information is in corruh .

� Then, STAT00uh uses corruh and a to construct a

sequence keysau, which corresponds either to keyshu
or to keyshþ1u . In particular, the first h� 1 elements

of keysau are independently chosen at random in

f0; 1gt, the hth element is set equal to a, whereas,
the remaining m� h ones, which correspond to
the keys of the classes uhþ1; . . . ; um, are computed
by using the private information of such classes,
which are contained in corruh .

� Moreover, the last input for STATu is set equal to a
random value r chosen in f0; 1gt.

Finally, STAT00uh outputs the same output as STATuð1t;
G; pub; corru; keys

a
u; rÞ. Clearly, since STATu is able to dis-

tinguish between Exp1;h
u and Exp1;hþ1

u with non-negligi-
ble advantage, then STAT00uh is able to distinguish

between ExpIND�0
STAT00uh

and ExpIND�1
STAT00uh

with non-negligible

advantage, thus breaking the security of the scheme S in
the sense of IND-ST. Contradiction.

Notice that if the pair of distinguishable consecutive
experiments belongs to the second sequence, i.e., is com-
posed by Exp2;h

u and Exp2;hþ1
u , for some h ¼ 1; . . . ;m,

the proof is similar to the previous case. tu
From Theorems 4.5, 4.6, 4.1 and 4.2 we obtain the follow-

ing results.

Theorem 4.7 ([IND-ST ) STRONG-REC-ST]). Let G be a
family of graphs corresponding to partially ordered hierarchies.
If a hierarchical key assignment scheme for G is secure in the
sense of IND-ST, then it is also secure in the sense of
STRONG-REC-ST.

Theorem 4.8 ([STRONG-REC-ST 6) IND-ST]). Let G be a
family of graphs corresponding to partially ordered hierarchies.
If there exists a hierarchical key assignment scheme for G which
is secure in the sense of STRONG-REC-ST, then there exists a
hierarchical key assignment scheme for G that is secure in the
sense of STRONG-REC-ST but which is not secure in the
sense of IND-ST.

The next result, which has already been proven in [32],
follows from Theorems 4.6, 4.1, and 4.3.

Theorem 4.9 ([IND-ST ) REC-ST]). Let G be a family of
graphs corresponding to partially ordered hierarchies. If a hier-
archical key assignment scheme for G is secure in the sense of
IND-ST, then it is also secure in the sense of REC-ST.

On the other hand, the next result holds [32].

Theorem 4.10 ([REC-ST 6) IND-ST]). Let G be a family of
graphs corresponding to partially ordered hierarchies. If there
exists a hierarchical key assignment scheme for G which is
secure in the sense of REC-ST, then there exists a hierarchical
key assignment scheme for G that is secure in the sense of
REC-ST but which is not secure in the sense of IND-ST.

From Theorems 4.5, 4.6, and 4.9, we obtain the next
result.

Theorem 4.11 ([STRONG-IND-ST ) REC-ST]). Let G be a
family of graphs corresponding to partially ordered hierarchies.
If a hierarchical key assignment scheme for G is secure in the
sense of STRONG-IND-ST, then it is also secure in the sense
of REC-ST.

Finally, from Theorems 4.5, 4.6, and 4.10, the next result
holds.

Theorem 4.12 ([REC-ST 6) STRONG-IND-ST]). Let G be a
family of graphs corresponding to partially ordered hierarchies.
If there exists a hierarchical key assignment scheme for G which
is secure in the sense of REC-ST, then there exists a hierarchi-
cal key assignment scheme for G that is secure in the sense of
REC-ST but which is not secure in the sense of STRONG-
IND-ST.



5 TOWARDS SECURITY AGAINST STRONG KEY

RECOVERY

As said in the previous section, the two notions of security
against key recovery and against strong key recovery
are separated, i.e., there exist hierarchical key assignment
schemes that are secure against key recovery but which are
not secure against strong key recovery. In this section, we
investigate the possibility of obtaining a scheme which is
secure with respect to the stronger notion, starting from any
scheme which is secure with respect to the weaker one.

The idea behind our construction is the following. Given
a graph G ¼ ðV;EÞ representing a partially ordered hierar-
chy, we construct another graph G0 which represents the
same hierarchy, but that has jV j additional classes. Then,
we use a hierarchical key assignment scheme to assign pri-
vate information and encryption keys to the classes of G0.
This assignment can be easily turned into an assignment
for the original graph G. Indeed, the private information
for each class in G is set equal to that assigned to the same
class in G0, whereas, the encryption keys for classes in G
are those assigned to the additional classes in G0. We will
show how the resulting hierarchical key assignment
scheme for G satisfies security against strong key recovery,
provided that the underlying scheme for G0 satisfies secu-
rity against key recovery.

Formally, let G be a family of graphs corresponding to
partially ordered hierarchies. For each graph G ¼ ðV;EÞ in
G we define a graph transformation, whose output, denoted
by G0 ¼ ðV 0; E0Þ, is called the extended graph for G. We denote

by G0 the family of extended graphs for elements in G. The
transformation works as follows:

� For each u 2 V , we place two classes u and u0 in V 0;
� For each class u 2 V , we place the edge ðu; u0Þ in E0;
� For each ðu; vÞ 2 E, we place the edge ðu; vÞ in E0.
Fig. 2 shows an example of the extended graph for

G ¼ ðV;EÞ, where V ¼ fa; b; c; dg and E ¼ fða; bÞ; ða; cÞ;
ðb; dÞ; ðc; dÞg.

Let G0 be the family of extended graphs for elements in G
and let ðGen0; Der0Þ be a hierarchical key assignment scheme

for G0. The proposed key assignment scheme for G works
as follows.

Algorithm Genð1t; GÞ
1) Construct the extended graph G0 ¼ ðV 0; E0Þ for

G ¼ ðV;EÞ;
2) Let ðs0; k0; pub0Þ be the output of Gen0 on inputs

ð1t; G0Þ;
3) For each class u 2 V , let su ¼ s0u;
4) For each class u 2 V , let ku ¼ k0u0 ;
5) Let s and k be the sequences of private information

and keys, respectively, computed in the previous
steps;

6) Output ðs; k; pubÞ.
AlgorithmDerð1t; G; u; v; su; pubÞ
1) Let k0v0 be the output of Der0 on inputs ð1t; G0;

u; v0; s
0
u; pub

0Þ;
2) Output kv ¼ k0v0 .
The next theorem states that if ðGen0; Der0Þ is secure

against key recovery, then ðGen;DerÞ is secure against
strong key recovery.

Theorem 5.1. If ðGen0; Der0Þ is secure in the sense of REC-ST,
then ðGen;DerÞ is secure in the sense of STRONG-REC-ST.

Proof. Assume by contradiction that the scheme ðGen;DerÞ
is not secure in the sense of STRONG-REC-ST. There-
fore, there exists a graph G ¼ ðV;EÞ in G and a class
u 2 V for which there exists a polynomial time adver-

sary STATu whose advantage AdvSTRONG�REC
STATu

ð1t; GÞ is non-
negligible. We show how to construct a polynomial-time
adversary which, by using STATu, is able to break the
security of the scheme ðGen0; Der0Þ in the sense of REC-
ST. Such an adversary, which we denote by STAT0u0 , on
inputs 1t , an extended graph G0, the public information
pub0, and the sequence corr0u0 of private information

held by corrupted users, constructs the inputs for STATu
as follows:

� First, STAT0u0 constructs the graph G from G0, so
thatG0 is the extended graph for G. This operation
simply involves the cancellation of all the classes
v0 2 V 0.

� Then, the adversary sets the public information
pub to be equal to pub0.

� Afterwards, the adversary extracts the sequence
corru from corr0u0 . Indeed, corr

0
u0

contains the pri-

vate information s0v for each class v 2 Fu.
� Moreover, the adversary constructs the sequence

keysu as follows: first, it extracts from the sequence
corr0u0 the private information s0v0 for each v 6¼ u.

Such values are then used to compute the sequence
of keys k0v0 for each v 6¼ u. These values are exactly

the elements of the sequence keysu.
Finally, STAT0u0 returns the same output as STATuð1t;

G; pub; corru; keysuÞ. Therefore, it is easy to see that

AdvREC
STAT0u0

ð1t; G0Þ ¼ AdvSTRONG�REC
STATu

ð1t; GÞ:

Since AdvSTRONG�REC
STATu

ð1t; GÞ is non-negligible, it follows
that the adversary STAT0u0 is able to break the security

of the scheme ðGen0; Der0Þ in the sense of REC-ST.
Contradiction. tu

Fig. 2. The graph G0 ¼ ðV 0; E0Þ, where V ¼ fa; b; c; dg and E ¼ fða; bÞ;
ða; cÞ; ðb; dÞ; ðc; dÞg.



6 CONCLUSIONS

In this paper we have explored the relations between all
security notions for hierarchical key assignment schemes
and, in particular, we have shown that security with respect
to strong key indistinguishability is not stronger than the one
with respect to key indistinguishability. We have also pro-
posed a general construction yielding a hierarchical key
assignment scheme offering security against strong key
recovery, given any hierarchical key assignment scheme
which guarantees security against key recovery.
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