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Abstract. We consider an optimal control problem associated to Dirichlet

boundary value problem for non-linear elliptic equation on a bounded domain
Ω. We take the coefficient u(x) ∈ L∞(Ω) ∩ BV (Ω) in the main part of the

non-linear differential operator as a control and in the linear part of differen-

tial operator we consider coefficients to be unbounded skew-symmetric matrix
Askew ∈ Lq(Ω; SNskew). We show that, in spite of unboundedness of the non-

linear differential operator, the considered Dirichlet problem admits at least

one weak solution and the corresponding OCP is well-possed and solvable. At
the same time, optimal solutions to such problem can inherit a singular char-

acter of the matrices Askew. We indicate two types of optimal solutions to

the above problem and show that one of them can be attained by optimal
solutions of regularized problems for coercive elliptic equations with bounded
coefficients, using the two-parametric regularization of the initial OCP.

1. Introduction. Optimal control in coefficients for partial differential equations
is a classical subject initiated by Lurie [25], Lions [23, 24], and Pironneau [29].
Since the range of such optimal control problems is very wide, including as well
optimal shape design problems, some problems originating in mechanics and oth-
ers, this topic has been widely studied by many authors. However, most of these
results and methods rely on linear PDEs with bounded coefficients in the main
part of elliptic operators, while only a few articles deal with with unbounded and
degenerate controls in coefficients, see [2, 8, 12, 20, 21]. The constrained optimal
control problem in the coefficients of the principle part of elliptic operator was first
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discussed in detail by Casas [3] in case of the classical Laplace equation, where the
scalar coefficient u in the div(u∇·) formulation was taken as control. The problem
of existence and uniqueness of the underlying boundary value problem and the cor-
responding optimal control problem was treated and an optimality system has been
derived and analyzed. Analogous results for the case of of the weighted p-Laplacian
div(u|∇y|p−2∇y) were recently obtained by Casas, Kogut, and Leugering in [5].
However, the principle questions related with the study of optimal control prob-
lems in coefficients for the general case of quasilinear elliptic operator div(a(u,∇·)
remain open.

In this article we treat the case of the perturbed p-Laplacian div(u|∇y|p−2∇y+
Askew∇y) with unbounded matrix of coefficients Askew. Namely, we study the
following optimal control problem (OCP) for a nonlinear elliptic equation containing
generalized p-Laplacian with unbounded coefficients in the linear part of the elliptic
operator:

Minimize

{
I(u, y) =

∫
Ω

|y − yd|2 dx+

∫
Ω

|∇y|pu dx
}
, (1)

subject to constrains

−div
(
u|∇y|p−2∇y

)
− div(Askew∇y) = −divf in Ω, (2)

u ∈ Aad ⊂ L∞(Ω) ∩BV (Ω), y ∈W 1,p
0 (Ω), (3)

where p ≥ 2, Aad is a class of admissible controls, yd ∈ L2(Ω) and f ∈ L2(Ω;RN )
are given distributions, Askew ∈ Lq(Ω;RN×N ) is a given skew-symmetric matrix,
q = p/(p− 1).

It is worth to emphasize that the first term in (1) is of the tracking-type, whereas
the second term in (1) refers to the energy of a system, described by the given
boundary value problem (for the details, we refer to the book [19]). So, the physical
motivation of the cost functional is as follows: the state of the system is being
driven as close to a target function yd as possible, while the energy term should be
minimal as well.

The characteristic feature of such optimal control problem is the unboundedness
of skew-symmetric matrix Askew ∈ Lq(Ω;RN×N ). As it was indicated in [12, 13,
14, 17, 37], this circumstance can lead to the existence of elements y ∈W p

0 (Ω) such
that y 6∈ L∞(Ω),∫

Ω

(
∇ϕn, Askew∇ϕn

)
RN dx = 0 ∀n ∈ N, and lim

n→∞

∫
Ω

(
∇ϕn, Askew∇y

)
RN dx 6= 0

where C∞0 (Ω) 3 ϕn → y strongly in W p
0 (Ω). As a result, the existence, uniqueness,

and variational properties of the weak solution to the Dirichlet problem (2)–(3)
usually are drastically different from the corresponding properties of solutions to
the elliptic equations with coercive L∞-matrices in coefficients (we refer to [6, 30,
31, 32, 34] for the details and other results in this field). However, it is worth to
emphasize that under some special restrictions on the skew-symmetric matrix Askew
that do not eliminate its local unboundedness property, the corresponding Dirichlet
boundary value problem (2)–(3) can admit a unique solution for each u ∈ Aad (see,
for instance, [7, 26, 28]).

The aim of this work is to study the existence of optimal controls to the problem
(1)–(3) under rather general assumptions on matrix Askew ∈ Lq(Ω;RN×N ) and
propose the scheme of their approximation. Using the direct method in the Calculus
of variations, we show in Section 3 that the original OCP admits at least one
solution (u0, y0) ∈ L∞(Ω) ×W 1,p

0 (Ω) such that y0 is a weak solution in the sense
of Minty to the corresponding Dirichlet problem (2)–(3). However, in this case it
is unknown whether the optimal state y0 is a weak solution to BVP (2)–(3) in the
sense of distributions. Besides, an important aspect in the study of any optimization
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problem is deriving of the corresponding optimality conditions. In the case of OCP
(1)–(3), one faces up a number of difficulties on this way concerned with degeneracies
the weighted p-Laplacian −div

(
u|∇y|p−2∇y +Askew∇y

)
as ∇y tends to zero and

also if u approaches zero. Moreover, when the term u|∇y|p−2I +Askew is regarded
as the coefficient of the Laplace operator, we also have the case of unbounded
coefficients. In order to avoid degeneracy and singularity in this case, we introduce
in Section 4 the regularization of the differential operator in the left-hand side of
equation (2) (see [5] for comparison) that leads to a sequence of monotone and
bounded operators

Aε,k,uy := −div(u(ε+ Fk(|∇y|2))
p−2

2 ∇y)− div(Akskew∇y),

where Akskew is an L∞-approximations of the unbounded skew-symmetric matrix
Askew. As a result, we deal with a two-parameter family of optimal control problems
in the coefficients for elliptic Dirichlet boundary value problems with coercive and
strictly monotone operators. We show that such OCPs with regularized p-Laplacian
are well-posed and have nonempty set of solutions in the classical space L∞(Ω) ×
H1

0 (Ω) for each k ∈ N and ε > 0. The main question we study in Section 5 is about
the asymptotic behaviour of optimal solutions to the approximate OCPs as k →∞
and ε → 0. We show that any sequence of optimal pairs

{(
u0
εn,kn

, y0
εn,kn

)}
n∈N

to

the approximate OCPs is compact with respect to the product of weak-∗ topology
of BV (Ω) and the weak topology of H1

0 (Ω). Moreover, all its cluster pairs belong

to (L∞(Ω) ∩BV (Ω)) × W 1,p
0 (Ω). As a main result of Section 5, we propose the

sufficient conditions under which some optimal solutions of the original optimal
control problem (1)–(3) can be attained through optimal solutions to regularized
problems. In the last section (Section 6) we focus on the deriving of the first order
optimality conditions to regularized OCPs.

2. Notation and preliminaries. Throughout the paper Ω is a bounded open
subset of RN , N ≥ 2, for which Poincaré’s inequality holds. For real numbers
2 ≤ p < +∞ and 1 < q < +∞ such that 1/p+ 1/q = 1, let W 1,p

0 (Ω) be the closure

of C∞0 (Ω) in the Sobolev space W 1,p(Ω) and W 1,p
0 (Ω) is endowed with the norm

‖y‖W 1,p
0 (Ω) =

(∫
Ω
|∇y|pRN

)1/p
. Let W−1,q(Ω) be the dual space of W 1,p

0 (Ω).

Let MN be the set of all N ×N real matrices. We denote by SNskew the set of all
skew-symmetric N × N -matrices C = [cij ]

N
i,j=1 and by SNsym the set of all N × N

symmetric matrices. Thus, if C ∈ SNskew then cij = −cji and, hence, cii = 0. By
matrix norm in MN (and for functions with values in SNskew as well) we mean a sub-
multiplicative norm ‖A‖ := sup

{
|Aξ|RN : ξ ∈ RN with |ξ|RN = 1

}
. It is worth to

note that, in the case of Euclidean norm | · |RN , the norm ‖A‖ can be computed as

the spectral norm ‖A‖ =
√
λmax(AtA), where λmax(AtA) is the largest eigenvalue

of the positive-semidefinite matrix AtA. Let Lq
(
Ω;SNskew

)
be the normed space

of measurable integrable with power q functions whose values are skew-symmetric
matrices.

Let χE be the characteristic function of a set E ⊂ RN and let |E| be its N -
dimensional Lebesgue measure. For any vector field v ∈ Lq(Ω;RN ), its divergence
is an element of the space W−1, q(Ω) defined by the formula

〈div v, ϕ〉W−1, q(Ω);W 1,p
0 (Ω) = −

∫
Ω

(v,∇ϕ)RN dx, ∀ϕ ∈W 1,p
0 (Ω). (4)

Here 〈·, ·〉W−1,q(Ω);W 1,p
0 (Ω) denotes the duality pairing between spaces W−1,q(Ω) and

W 1,p
0 (Ω), and (·, ·)RN denotes the scalar product of two vectors in RN .
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Functions with bounded variations. Let f : Ω→ R be a function of L1(Ω). Define

TV (f) : =

∫
Ω

|Df |

= sup
{∫

Ω

f (∇, ϕ)RNdx : ϕ ∈ C1
0 (Ω;RN ), |ϕ(x)| ≤ 1 for x ∈ Ω

}
,

where (∇, ϕ)RN =
∑N
i=1

∂ϕi

∂xi
.

According to the Radon-Nikodym theorem, if TV (f) < +∞ then the distribution
Df is a measure and there exist a vector-valued function ∇f ∈ L1(Ω;RN ) and a
measure Dsf , singular with respect to the N -dimensional Lebesgue measure LNbΩ
restricted to Ω, such that Df = ∇fLNbΩ +Dsf.

Definition 2.1. A function f ∈ L1(Ω) is said to have a bounded variation in Ω
if TV (f) < +∞. By BV (Ω) we denote the space of all functions in L1(Ω) with
bounded variation, i.e. BV (Ω) =

{
f ∈ L1(Ω) : TV (f) < +∞

}
.

Under the norm ‖f‖BV (Ω) = ‖f‖L1(Ω) + TV (f), BV (Ω) is a Banach space. For
our further analysis, we need the following properties of BV -functions (see [10]):

Proposition 2.1. (i) Let {fk}∞k=1 be a sequence in BV (Ω) strongly converging
to some f in L1(Ω) and satisfying condition supk∈N TV (fk) < +∞. Then

f ∈ BV (Ω) and TV (f) ≤ lim inf
k→∞

TV (fk);

(ii) for every f ∈ BV (Ω)∩Lr(Ω), r ∈ [1,+∞), there exists a sequence {fk}∞k=1 ⊂
C∞(Ω) such that limk→∞

∫
Ω
|f − fk|r dx = 0 and limk→∞ TV (fk) =

TV (f);
(iii) for every bounded sequence {fk}∞k=1 ⊂ BV (Ω) there exists a subsequence, still

denoted by fk, and a function f ∈ BV (Ω) such that fk → f in L1(Ω).

Admissible Controls and Generalized p-Laplacian. Let α, β, γ, and m be given
positive constants such that 0 < α ≤ β < +∞ and α|Ω| ≤ m ≤ β|Ω|. We define
the class of admissible controls Aad as follows

Aad =
{
u ∈ BV (Ω) ∩ L∞(Ω)

∣∣∣
TV (u) ≤ γ, ‖u‖L1(Ω) = m, α ≤ u(x) ≤ β a.e. in Ω

}
. (5)

Remark 2.1. Typically the controls in the coefficients of the principal part of
non-linear elliptic operator reflect the physical properties of materials or systems
such as conductivity, elasticity, and etc. From this point of view it is reasonable to
suppose that such coefficients are essentially bounded and strictly positive functions.
So, L∞(Ω) arguably looks as the natural functional space for the controls in this
case. However, the subtle point here is the choice of the appropriate topology
with respect to which each minimizing sequence is convergent. Moreover, since the
solvability of the considered optimal control problem strictly depends on properties
of the mapping L∞(Ω) 3 u 7→ y(u) ∈ W 1,p

0 (Ω) (this mapping must be at least
continuous), it follows from our further analysis that it would be reasonable to
consider the mapping u 7→ y(u) with respect to the strong topology of Lp(Ω) for

the controls and the weak topology of W 1,p
0 (Ω) for the corresponding states. This

is the main reason why we choose the control set to be bounded in the space of
BV -functions. In this case it can be shown (see Proposition 3.2 below) that the
set of admissible controls Aad given by the rule (5) is a nonempty convex and
compact subset of Lp(Ω) with an empty topological interior. Moreover, as it can
be seen further, in this case the the corresponding optimal control problem admits
a nonempty set of solutions.
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The optimal control problem we consider in this paper is to minimize the cost
functional (1), where yd ∈ L2(Ω) and y ∈W 1,p

0 (Ω) is a weak solution to the bound-
ary value problem (2) by choosing an appropriate function u ∈ Aad as control. Here

by ∆p : Aad ×W 1,p
0 (Ω) → W−1,q(Ω) we denote the generalized p-Laplacian which

can be defined by the rule

∆p(u, y) = −div
(
u(x)|∇y|p−2∇y

)
, where |∇y|p−2 := |∇y|p−2

RN =

(
N∑
i=1

∣∣∣∣ ∂y∂xj
∣∣∣∣2
) p−2

2

,

or via the paring

〈∆p(u, y), v〉W−1, q(Ω);W 1,p
0 (Ω) =

∫
Ω

u(x)|∇y|p−2 (∇y,∇v)RN dx, ∀ v ∈W 1,p
0 (Ω).

It is easy to see that for every admissible control u ∈ Aad, the operator ∆p(u, ·)
turns out to be strictly monotone, coercive, and semi-continuous, where the above
mentioned properties for the operator A : X → X∗ acting in a Banach space X
have the following meaning (see [11, 23, 33]):

〈Ay −Av, y − v〉X∗;X ≥ 0, ∀ y, v ∈ X; 〈Ay −Av, y − v〉X∗;X = 0 =⇒ y = v; (6)

〈Ay, y〉X∗;X
‖y‖X

→ +∞ provided ‖y‖X→∞; (7)

R 3 t 7→ 〈A(y + tv), w〉X∗;X is continuous ∀ y, v, w ∈ X, (8)

respectively. In what follows, we associate with Askew ∈ Lq(Ω;SNskew) the bilinear
skew-symmetric form

Φ(y, v) =

∫
Ω

(
∇v,Askew∇y

)
RN dx, ∀ y, v ∈ C∞0 (Ω). (9)

It is easy to see, that the form Φ(y, v) is unbounded on W 1,p
0 (Ω), since there is no

reason to assume that
(
∇v,Askew∇y

)
RN ∈ L1(Ω) for all y, v ∈W 1,p

0 (Ω), in general.

However, if we temporary assume that Askew ∈ L∞(Ω;SNskew), then the bilinear

form Φ(·, ·) becomes bounded for each y, v ∈W 1,p
0 (Ω).

In order to deal with the case Askew 6∈ L∞(Ω;SNskew), we notice that if Askew ∈

Lq
(
Ω;SNskew

)
then the integral

∫
Ω

(
∇ϕ,Askew∇y

)
RN dx is well defined for every

y ∈W 1,p
0 (Ω) and ϕ ∈ C∞0 (Ω). Indeed,

|Φ(y, ϕ)| :=
∣∣∣∣∫

Ω

(
∇ϕ,Askew∇y

)
RN dx

∣∣∣∣ ≤ ‖ϕ‖C1(Ω)

(∫
Ω

|Askew∇y|RN dx

)

≤ ‖ϕ‖C1(Ω)

(∫
Ω

∥∥Askew∥∥q dx)1/q (∫
Ω

|∇y|pRN dx

)1/p

≤ ‖ϕ‖C1(Ω)‖Askew‖Lq(Ω;SNskew)‖y‖W 1,p
0 (Ω) < +∞.

In what follows, we set

[y, ϕ]Askew
=

∫
Ω

(
∇ϕ,Askew∇y

)
RN dx ∀ y ∈W 1,p

0 (Ω), ∀ϕ ∈ C∞0 (Ω). (10)

Let Ik : Uk ×Yk → R be a cost functional, Yk be a space of states, and Uk be a
space of controls. Let min {Ik(u, y) : (u, y) ∈ Ξk} be a parameterized OCP, where

Ξk ⊂ {(uk, yk) ∈ Uk × Yk : uk ∈ Uk, Ik(uk, yk) < +∞}
is a set of all feasible pairs linked by some state equation. In what follows we make

a difference between the notations inf
(u,y)∈Ξk

Ik(u, y) and

〈
inf

(u,y)∈Ξk

Ik(u, y)

〉
. The

first one means the infimum m = inf {Ik(u, y) : (u, y) ∈ Ξk} of Ik over the set Ξk,
whereas by the second one, we mean the constrained minimization problem as an



6 OLHA P. KUPENKO AND ROSANNA MANZO

object being defined by the triplet (Ik,Ξk,Uk×Yk). Hereinafter we always associate
to such OCP the corresponding constrained minimization problem:

(CMPk) :

〈
inf

(u,y)∈Ξk

Ik(u, y)

〉
. (11)

Since each of constrained minimization problems (11) lives in variable spaces Uk ×
Yk, we assume that there exists a Banach space U × Y with respect to which a
convergence in the scale of spaces {Uk × Yk}k∈N is well defined (for the details, we
refer to [19, 36]). In the sequel, we use the following notation for this convergence

(uk, yk)
τ−→ (u, y) in Uk × Yk. Moreover, we assume that every bounded sequence

in variable space Uk×Yk is sequentially compact with respect to the τ -convergence.
In order to study the asymptotic behaviour of a family of (CMPk), the passage to

the limit in (11) as the parameter k tends to +∞ has to be realized. The expression
“passing to the limit” means that we have to find a kind of “limit cost functional” I
and “limit set of constraints” Ξ with a clearly defined structure such that the limit
object

〈
inf(u,y)∈Ξ I(u, y)

〉
could be interpreted as some OCP.

Following the scheme of the direct variational convergence [19], we adopt the
following definition for the convergence of minimization problems in variable spaces.

Definition 2.2. A problem
〈
inf(u,y)∈Ξ I(u, y)

〉
is the variational τ -limit of (11) as

k →∞, if and only if the following conditions are satisfied:

(d) If sequences {kn}n∈N and {(un, yn)}n∈N are such that kn → ∞ as n → ∞,

(un, yn) ∈ Ξkn ∀n ∈ N, and (un, yn)
τ−→ (u, y) in Ukn × Ykn , then

(u, y) ∈ Ξ; I(u, y) ≤ lim inf
n→∞

Ikn(un, yn); (12)

(dd) For every (u, y) ∈ Ξ ⊂ U × Y, there are an integer k0 > 0 and a sequence
{(uk, yk)}k∈N (called a Γ-realizing sequence) such that

(uk, yk) ∈ Ξk, ∀ k ≥ k0, (uk, yk)
τ−→ (û, ŷ) in Uk × Yk, (13)

I(u, y) ≥ lim sup
k→∞

Ik(uk, yk). (14)

Then the following result takes place [19].

Theorem 2.3. Assume that the constrained minimization problem〈
inf

(u,y)∈Ξ0

I0(u, y)
〉

(15)

is the variational τ -limit of (11) in the sense of Definition 2.2 and this problem has
a nonempty set of solutions

Ξopt0 :=

{
(u0, y0) ∈ Ξ0 : I0(u0, y0) = inf

(u,y)∈Ξ0

I0(u, y)

}
.

For every k ∈ N, let (u0
k, y

0
k) ∈ Ξk be a minimizer of Ik on the corresponding set Ξk.

If the sequence {(u0
k, y

0
k)}k∈N is relatively compact with respect to the τ -convergence

in variable spaces Uk ×Yk, then there exists a pair (u0, y0) ∈ Ξopt0 such that (up to
a subsequence)

(u0
k, y

0
k)

τ−→ (u0, y0) in Uk × Yk, (16)

inf
(u,y)∈Ξ0

I0(u, y) = I0
(
u0, y0

)
= lim
k→∞

Ik(u0
k, y

0
k) = lim

k→∞
inf

(uk,yk)∈Ξk

Ik(uk, yk). (17)

3. Setting of the optimal control problem. Let f : Ω → RN be a vector-
valued function such that f ∈ L2(Ω;RN ). The optimal control problem (1)–(3)
we consider in this paper is to minimize the discrepancy (tracking error) between
a given distribution yd ∈ L2(Ω) and a solution y of the Dirichlet boundary value
problem (2)–(3) by choosing an appropriate control function u(x) ∈ Aad.
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Definition 3.1. Let u ∈ Aad, Askew ∈ Lq(Ω; SNskew), and f ∈ L2(Ω;RN ) be given
distributions. We say that a function y = y(u,Askew, f) is a weak solution in the

Minty sense (weak Minty solution) to boundary value problem (2),(3) if y ∈W 1,p
0 (Ω)

and the inequality∫
Ω

u(x)|∇ϕ|p−2(∇ϕ,∇ϕ−∇y)RN dx+

∫
Ω

(Askew∇ϕ,∇ϕ−∇y)RN dx

≥
∫

Ω

(f,∇ϕ−∇y)RN dx (18)

holds for any ϕ ∈ C∞0 (Ω).

We note that by the initial assumptions and Hölder’s inequality, this definition
makes a sense because (Askew∇y) ∈ L1(Ω;RN ) for each y ∈W 1,p

0 (Ω).
It is worth to notice that the original boundary value problem (2)–(3) is ill-

possed, in general. Moreover, since the skew-symmetric form (9) can be unbounded

on W 1,p
0 (Ω), the existence of a weak solution in the Minty sense to (2),(3) for fixed

u ∈ Aad, Askew ∈ Lq(Ω;SNskew), and f ∈ L2(Ω;RN ) seems to be an open question.
Further, we restrict our analysis to the following set of feasible solutions for the

original optimal control problem. Namely, we indicate the set

Ξ =
{

(u, y)
∣∣∣ u ∈ Aad, y ∈W 1,p

0 (Ω), (u, y) are related by (18)
}
. (19)

Definition 3.2. We say that an element y ∈ W 1,p
0 (Ω) belongs to the set D ⊂

W 1,p
0 (Ω) if∣∣∣∣∫

Ω

(
∇ϕ,Askew(x)∇y

)
RN dx

∣∣∣∣ ≤ c(y)

(∫
Ω

|∇ϕ|p dx
)1/p

, ∀ϕ ∈ C∞0 (Ω) (20)

with some constant c(y) depending on y.

As a result, if y ∈ D then the mapping ϕ 7→ [y, ϕ]Askew
can be defined for all

ϕ ∈W 1,p
0 (Ω) using (10) and the standard rule

[y, ϕ]Askew
= lim
ε→0

[y, ϕε]Askew
, (21)

where {ϕε}ε>0 ⊂ C∞0 (Ω) and ϕε → ϕ strongly in W 1,p
0 (Ω). In particular, if y ∈

D, then we can define the value [y, y]Askew
and this one is finite for every y ∈

D, although the “integrand”
(
∇y,Askew∇y

)
RN needs not be integrable on Ω, in

general. We adopt the following hypothesis.

Hypothesis A. For each u ∈ Aad the following implication holds:

If (u, y) ∈ Ξ, then y ∈ D.

Remark 3.1. Assume y ∈ W 1,p
0 (Ω) is a weak solution to problem (2)–(3) in the

sense of distributions, i.e. in this case the integral identity∫
Ω

u|∇y|p−2(∇y,∇ϕ)RNdx+

∫
Ω

(Askew(x)∇y,∇ϕ)RN dx =

∫
Ω

(f,∇ϕ)RN dx (22)

holds for all ϕ ∈ C∞0 (Ω). Then, obviously, y ∈ D. Indeed,∣∣∣∣∫
Ω

(
∇ϕ,Askew(x)∇y

)
RN dx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

(f,∇ϕ)RN dx−
∫

Ω

u|∇y|p−2(∇y,∇ϕ)RNdx

∣∣∣∣
≤
(
‖f‖Lq(Ω;RN ) + β‖y‖p−1

W 1,p
0 (Ω)

)
‖ϕ‖W 1,p

0 (Ω), ∀ϕ ∈ C
∞
0 (Ω).

However, this property is not clear in the case of Minty weak solutions.
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As it follows from the definition of the bilinear form [y, ϕ]Askew
, in general, the

value [y, y]Askew
is not equal to zero and does not preserve a constant sign for all

y ∈ D. In particular, in the case p = q = 2 there can be found an element y0 ∈ D and
a matrix Askew ∈ L2(Ω; SNskew) such that

(
∇y(x), Askew(x)∇y(x)

)
RN is identical to

zero for a.e. x ∈ Ω whereas [yd, yd]Askew
< 0 (for the corresponding examples,

we refer to [37, 12, 18]). This fact does not allow us to derive a reasonable a
priory estimate in ‖ · ‖W 1,p

0 (Ω)-norm for Minty weak solutions. Moreover, if Askew ∈
Lq(Ω;SNskew), then the differential operator in the left-hand side of equation (2)
is neither monotone nor coercive, so two definitions of weak solutions, given by
(18) and (22) are not equivalent [27]. Besides, the mapping u 7→ y(u, f) can be
multivalued (see [13] for the details).

Here we make one more hypothesis, which is mainly motivated by the previous
reasonings.

Hypothesis B. The set of feasible solutions Ξ is nonempty.

Remark 3.2. It should be mentioned here that Hypotheses A and B are satisfied
provided the matrix Askew possesses some special BMO-properties (for the details
we refer to [7, 28]).

For our further analysis, we make use of some auxiliary results. We begin with
the following property.

Proposition 3.1. If uk → u in L1(Ω) and {uk}k∈N ⊂ Aad, then u ∈ Aad, uk → u

in Lr(Ω) for any r ∈ [1,+∞), and uk
∗→ u in L∞(Ω).

Proof. Since the estimate

‖uk−u‖rLr(Ω) ≤ vrai sup
x∈Ω

|uk(x)−u(x)‖r−1‖uk−u‖L1(Ω) ≤ (β−α)r−1‖uk−u‖L1(Ω)

holds true for any r ∈ [1,+∞), it follows that uk → u in Lr(Ω).

To deduce the weak-∗ convergence property uk
∗→ u in L∞(Ω), it is enough to

note that the strong convergence uk → u in L1(Ω) implies, up to a subsequence, the
convergence uk(x) → u(x) almost everywhere in Ω. Hence, by Lebesgue Theorem,
we have ∫

Ω

(uk − u)ϕdx→ 0, ∀ϕ ∈ L1(Ω),

that is uk
∗→ u in L∞(Ω). Since this conclusion is true for any weakly-∗ convergent

subsequence of {uk}k∈N, it follows that u is the weak-∗ limit for the whole sequence
{uk}k∈N.

As for the inclusion u ∈ Aad, this fact immediately follows from definition of the
set Aad, the pointwise convergence uk → u in Ω, and Proposition 2.1(i).

Proposition 3.2. Aad is a sequentially compact subset of Lr(Ω) for any r ∈
[1,+∞), and it is a sequentially weakly-∗ compact subset of L∞(Ω).

Proof. Let {uk}k∈N be any sequence of Aad. Then {uk}k∈N is bounded in BV (Ω)∩
L∞(Ω). As a result, the statement immediately follows from Propositions 3.1 and
2.1(iii).

Proposition 3.3. Assume Hypothesis B holds true. Then the set Ξ is sequentially
closed in the following sense: for any sequence {(uk, yk) ∈ Ξ}k∈N such that

uk
∗
⇀ u0 in BV (Ω), yk ⇀ y0 in W 1,p

0 (Ω), (23)

we have (u0, y0) ∈ Ξ, where y0 is a Minty weak solution to the Dirichlet boundary
value problem (2)–(3) with u = u0.
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Proof. Since uk ∈ Aad for every k ∈ N then in view of Proposition 3.1, we immedi-
ately get u0 ∈ Aad. Moreover, the Minty inequality∫

Ω

uk|∇ϕ|p−2(∇ϕ,∇ϕ−∇yk)RN dx

+

∫
Ω

(Askew∇ϕ,∇ϕ−∇yk)RN dx ≥
∫

Ω

(f,∇ϕ−∇yk)RN dx (24)

holds true for all ϕ ∈ C∞0 (Ω) and k ∈ N. Since uk|∇ϕ|p−2∇ϕ → u0|∇ϕ|p−2∇ϕ
strongly in Lq(Ω;RN ) (see Proposition 3.1) and ∇yk ⇀ ∇y in Lp(Ω;RN ), we can
pass to the limit in (24) as k →∞. As a result, we have∫

Ω

u0|∇ϕ|p−2
RN (∇ϕ,∇ϕ−∇y)RN dx

+

∫
Ω

(Askew∇ϕ,∇ϕ−∇y)RN dx ≥
∫

Ω

(f,∇ϕ−∇y)RN dx.

Therefore (u0, y) ∈ Ξ.

We are now in a position to establish the main result of this section.

Theorem 3.3. Assume that Hypothesis B is valid. Then, for given distributions
Askew ∈ Lq(Ω;SNskew), f ∈ L2(Ω;RN ) and yd ∈ L2(Ω), the optimal control problem
(1)–(3) admits at least one solution.

Proof. Since Ξ 6= ∅ and the cost functional is bounded from below on Ξ, it follows
that there exists a minimizing sequence {(uk, yk)}k∈N ⊂ Ξ such that I(uk, yk) −−−−→

k→∞
Imin ≡ inf(u,y)∈Ξ I(u, y) ≥ 0. Hence, supk∈N I(uk, yk) ≤ C, where the constant C is
independent of k. We have

sup
k∈N
‖yk‖pW 1,p

0 (Ω)
=

∫
Ω

|∇yk|p dx ≤ α−1

∫
Ω

(
uk|∇yk|p + y2

)
dx

≤ 2α−1

(
sup
k∈N

I(uk, yk) + ‖yd‖2L2(Ω)

)
≤ 2α−1

(
C + ‖yd‖2L2(Ω)

)
. (25)

Therefore, passing to a subsequence if necessary and taking into account Proposition
3.2, we may assume the existence of a pair (u0, y0) ∈ Aad ×W 1,p

0 (Ω) such that

uk
∗
⇀ u0 in BV (Ω), uk→u0 strongly in L1(Ω) (26)

∇yk ⇀ ∇y0 in Lp(Ω;RN ), (27)

I(u0, y0) < +∞. (28)

In remains to show that (u0, y0) is an optimal pair. Since uk → u strongly in
Lr(Ω) for every 1 ≤ r < +∞, {uk}k∈N is bounded in L∞(Ω) and uk(x) ≥ α for

almost all x ∈ Ω, using conditions (26)–(28), it is easy to check that ∇yku1/p
k ⇀

∇y0u
1/p
0 in Lp(Ω;RN ). Taking into account the property of lower semicontinuity

of the norms ‖ · ‖L2(Ω) and ‖ · ‖Lp(Ω;RN ) with respect to the the weak topologies of

L2(Ω) and Lp(Ω;RN ), respectively, we get

lim inf
k→∞

∫
Ω

|∇yk −∇yd|2 dx+

∫
Ω

|∇yk|puk dx

= lim inf
k→∞

[
‖yk − yd‖2L2(Ω) + ‖u1/p

k ∇yk‖
p
Lp(Ω;RN )

]
≥ ‖y0 − yd‖2L2(Ω) + ‖u1/p

0 ∇y0‖pW 1,p
0 (Ω)

=

∫
Ω

|∇y0 −∇yd|2 dx+

∫
Ω

|∇y0|pu0 dx.

Thus,

I(u0, y0) ≥ inf
(u,y)∈Ξ

I(u, y) = lim
k→∞

I(uk, yk) ≥ lim inf
k→∞

I(uk, yk) ≥ I(u0, y0),
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and, hence, the pair (u0, y0) is optimal for problem (1)–(3). The proof is complete.

4. Regularization of OCP (1)–(3). In this section we introduce the two-para-
meter regularization of the considered optimization problem for the case when the
term [∇y]2 may grow large or tend to zero. Moreover, in the approximating OCP
we consider an L∞-regularization of the unbounded matrix Askew ∈ Lq(Ω; SNskew).
As a result, we show that in suitable topologies optimal solutions of regularized
problems tend to some optimal solutions of the initial problem.

As was pointed out in [33], the p-Laplacian ∆p(u, y) provides an example of a
quasi-linear operator in divergence form with a so-called degenerate nonlinearity for
p > 2. In this context we have non-differentiability of the state y with respect to
the control u. As follows from Theorem 3.3, this fact is not an obstacle to prove
existence of considered optimal controls in the coefficients, but it causes certain
difficulties when deriving the optimality conditions for the considered problem. To
overcome this difficulty, we introduce a special family of approximating control
problems (see, for comparison, the approach of Casas and Fernandez [4] for quasi-
linear elliptic equations with a distributed control in the right hand side).

Let Akskew ∈ L∞(Ω; SNskew) be the sequence such that Akskew → Askew strongly
in Lq(Ω;SNskew) as k → ∞. Existence of such sequence is a well-known fact of
functional analysis as well as methods of its construction. Indeed, let for every
k ∈ N, Tk : R→ R be the truncation function defined by

Tk(s) = max {min {s, k} ,−k} . (29)

Then, for an arbitrary g ∈ Lq(Ω), we have (see, for example [16])

Tk(g) ∈ L∞(Ω) ∀ k ∈ N and Tk(g)→ g strongly in Lq(Ω). (30)

So, for a given matrix Askew ∈ Lq(Ω;SNskew), Askew = [aij ]
N
i,j=1, we can set up

Akskew = [Tk(aij)]
N
i,j=1.

In what follows we associate with the initial optimal control problem (1)–(3) the
following sequence of optimization problems (see, for comparison, [4])

Minimize

{
Iε,k(u, y) =

∫
Ω

|y − yd|2 dx+

∫
Ω

u
(
ε+ Fk

(
|∇y|2

)) p−2
2 |∇y|2 dx

}
,

(31)

subject to constrains

−div

(
u
(
ε+ Fk

(
|∇y|2

)) p−2
2 ∇y

)
− div(Akskew∇y) = −divf, (32)

u ∈ Aad ⊂ L∞(Ω) ∩BV (Ω), y ∈ H1
0 (Ω), (33)

Here, Aad is defined in (5), k ∈ N, ε is a small parameter, which varies within a
strictly decreasing sequence of positive numbers converging to 0, and Fk : R+ → R+

is a non-decreasing C1(R+)-function such that

Fk(t) = t, if t ∈
[
0, k2

]
, Fk(t) = k2 + 1, if t > k2 + 1, and

t ≤ Fk(t) ≤ t+ δ, if k2 ≤ t < k2 + 1 for some δ ∈ (0, 1),

F ′k(t) ≤ δ∗, if k2 ≤ t < k2 + 1 for some δ∗ > 1,

(34)

and the constants δ and δ∗ are independent of k ∈ N. In particular, if

Fk(t) =

 t, if 0 ≤ t ≤ k2,
(k2 − t)3 + (k2 − t)2 + t, if k2 ≤ t ≤ k2 + 1,
k2 + 1, if t ≥ k2 + 1.

then δ = 4/27 and δ∗ = 4/3 satisfy(34).



ON OPTIMAL CONTROLS IN COEFFICIENTS FOR ELLIPTIC BVPS 11

It is clear that the effect of such perturbations of ∆p(u, y) is in its regularization
around critical points and points where |∇y(x)| becomes unbounded. In particular,

if y ∈ W 1,p
0 (Ω) and Ωk(y) :=

{
x ∈ Ω : |∇y(x)| >

√
k2 + 1

}
, then the following

chain of inequalities

|Ωk(y)| :=
∫

Ωk(y)

1 dx ≤ 1√
k2 + 1

∫
Ωk(y)

|∇y(x)| dx

≤ 1√
k2 + 1

|Ωk(y)|
1
q

(∫
Ω

|∇y|p dx
) 1

p

=
‖y‖W 1,p

0 (Ω)√
k2 + 1

|Ωk(y)|
p−1
p

shows that the Lebesgue measure of the set Ωk(y) satisfies the estimate

|Ωk(y)| ≤
(

1√
k2 + 1

)p
‖y‖p

W 1,p
0 (Ω)

≤ ‖y‖p
W 1,p

0 (Ω)
k−p, ∀ y ∈W 1,p

0 (Ω), (35)

i.e. the approximation Fk(|∇y|2) is essential on sets with small Lebesgue measure.
The main goal of this section is to show that for each ε > 0 and k ∈ N, the perturbed
optimal control problem (31)–(33) is well posed and its solutions can be considered
as a reasonable approximation of optimal pairs to the original problem (1)–(3). To
begin with, we establish a few auxiliary results concerning monotonicity and growth
conditions for the regularized operator Aε,k,u : H1

0 (Ω)→ H−1(Ω)

Aε,k,u y = −div

(
u
(
ε+ Fk

(
|∇y|2

)) p−2
2 ∇y

)
− div(Akskew∇y) (36)

where u ∈ Aad is a fixed control.
For our further analysis, we make use of the following the notation

‖ϕ‖ε,k,u =

(∫
Ω

u
(
ε+ Fk(|∇ϕ|2)

) p−2
2 |∇ϕ|2 dx

)1/p

∀ϕ ∈ H1
0 (Ω).

Remark 4.1. For an arbitrary element y∗ ∈ H1
0 (Ω) let us consider the level set

Ωk(y∗) :=
{
x ∈ Ω : |∇y∗(x)| >

√
k2 + 1

}
. Then

|Ωk(y∗)| :=
∫

Ωk(y∗)

1 dx ≤ 1√
k2 + 1

∫
Ωk(y∗)

|∇y∗(x)| dx

≤ 1

k
|Ωk(y∗)| 12

(∫
Ωk(y∗)

|∇y∗|2 dx

) 1
2

=
1

k

(
1

ε+ k2 + 1

) p−2
4

(∫
Ωk(y∗)

(
ε+ Fk(|∇y∗|2)

) p−2
2 |∇y∗|2 dx

) 1
2

|Ωk(y∗)| 12

≤ 1

k
|Ωk(y∗)| 12 α− 1

2 ‖y∗‖
p
2

ε,k,u.

Hence, the Lebesgue measure of the set Ωk(y∗) satisfies the estimate

|Ωk(y∗)| ≤ α−1

k2
‖y∗‖pε,k,u, ∀ y∗ ∈ H1

0 (Ω). (37)

Now, we establish the following results.

Proposition 4.1. For every u ∈ Aad, k ∈ N and ε > 0, the operator Aε,k,u :
H1

0 (Ω) → H−1(Ω), defined in (36) is bounded, strictly monotone, coercive and
semi-continuous in the sense of relations (6)–(8) and

‖Aε,k,u‖ ≤
(
ε+ k2 + 1

) p−2
2 β + |Ω|kN.
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Proof. Boundedness. Following the definition of Fk, Akskew, and the boundedness
of u, we obtain

‖Aε,k,u‖ = sup
‖y‖

H1
0(Ω)
≤1

‖Aε,k,u y‖H−1(Ω) = sup
‖y‖

H1
0(Ω)

≤1

‖v‖
H1

0(Ω)
≤1

〈Aε,k,u y, v〉H−1(Ω);H1
0 (Ω)

= sup
‖y‖

H1
0(Ω)

≤1

‖v‖
H1

0(Ω)
≤1

∫
Ω

[
u
(
ε+ Fk(|∇y|2)

) p−2
2 (∇y,∇v)RN + (Akskew∇y,∇v)RN

]
dx

≤
(
β(ε+ k2 + 1)

p−2
2 + ‖Akskew‖L∞(Ω;SNskew)

)
≤
(
β(ε+ k2 + 1)

p−2
2 + |Ω|kN

)
.

Strict monotonicity. We make use of the following algebraic inequality, which is
proved in [22, Proposition 4.4]:((

ε+ Fk(|a|2)
) p−2

2 a−
(
ε+ Fk(|b|2)

) p−2
2 b, a− b

)
RN

≥ ε
p−2

2 |a− b|2, a, b ∈ RN .

With this, having put a := ∇y, b := ∇v we obtain〈
Aε,k,u y −Aε,k,u v, y − v

〉
H−1(Ω);H1

0 (Ω)
≥ ε

p−2
2

∫
Ω

u|∇y −∇v|2dx

+

∫
Ω

(
Akskew(∇y −∇v),∇y −∇v

)
RNdx ≥ αε

p−2
2 ‖y − v‖2H1

0 (Ω) ≥ 0,

as far as Akskew ∈ L∞(Ω;SNskew) and (Akskewξ, ξ)RN = −(ξ, Akskewξ)RN = 0 for all
ξ ∈ RN . Since the relation

〈
Aε,k,u y − Aε,k,u v, y − v

〉
H−1(Ω);H1

0 (Ω)
= 0 implies

y = v, it follows that the strict monotonicity property (6) holds true for each
u ∈ Aad, k ∈ N, and ε > 0.

Coercivity. The coercivity property obviously follows from the estimate〈
Aε,k,u y, y

〉
H−1(Ω);H1

0 (Ω)
≥ αε

p−2
2 ‖y‖2H1

0 (Ω). (38)

Semi-continuity. In order to get the equality

lim
t→0
〈Aε,k,u (y + tv), w〉H−1(Ω);H1

0 (Ω) = 〈Aε,k,u y, w〉H−1(Ω);H1
0 (Ω),

it is enough to observe that

u(ε+ Fk(|(∇y + t∇v)|2))
p−2

2 (∇y + t∇v)→ u(ε+ Fk(|∇y|2))
p−2

2 ∇y,(
Akskew(∇y + t∇v),∇w

)
RN →

(
Akskew∇y,∇w

)
RN

as t → 0 almost everywhere in Ω, and make use of Lebesgue’s dominated conver-
gence theorem.

The existence of a unique solution to the boundary value problem (32)–(33) fol-
lows from the following abstract theorem on monotone operators (see, for instance,
[23] or [35, §II.2]).

Theorem 4.1. Let V be a reflexive separable Banach space. Let V ∗ be the dual
space, and let A : V → V ∗ be a bounded, semicontinuous, coercive and strictly
monotone operator. Then the equation Ay = f has a unique solution for each
f ∈ V ∗. Moreover, Ay = f if and only if 〈Aϕ,ϕ− y〉 ≥ 〈f, ϕ− y〉 for all ϕ ∈ V ∗.

Indeed, applying the above theorem to the equation Aε,k,uy = divf with divf ∈
H−1(Ω), we arrive at the following assertion.
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Theorem 4.2. For each ε > 0, k ∈ N, u ∈ Aad, Askew ∈ Lq(Ω;SNskew), and
f ∈ L2(Ω;RN ), the boundary value problem (32)–(33) admits a unique weak solution
yε,k ∈ H1

0 (Ω) in the sense of distributions, i.e.∫
Ω

u(ε+ Fk(|∇yε,k|2))
p−2

2 (∇yε,k,∇ϕ)RN dx+

∫
Ω

(
Akskew∇yε,k,∇ϕ

)
RNdx

=

∫
Ω

(f,∇ϕ)RNdx, ∀ϕ ∈ C∞0 (Ω). (39)

Moreover, this solution satisfies the Minty inequality∫
Ω

u(x)(ε+ Fk(|∇ϕ|2))
p−2

2 (∇ϕ,∇ϕ−∇yε,k)RN dx

+

∫
Ω

(
Akskew∇ϕ,∇ϕ−∇yε,k

)
RNdx ≥

∫
Ω

(f,∇ϕ−∇yε,k)RNdx, ∀ϕ ∈ C∞0 (Ω).

(40)

and the energy equality∫
Ω

u(ε+ Fk(|∇yε,k|2))
p−2

2 |∇yε,k|2 dx =

∫
Ω

(f,∇yε,k)RNdx. (41)

Thus, as follows from Theorem 4.2, for every ε > 0 and k ∈ N, the set of feasible
pairs to problem (31)–(33)

Ξε,k =
{

(u, y)
∣∣ u ∈ Aad, y ∈ H1

0 (Ω), (u, y) are related by equality (39)
}

(42)

is always nonempty.
Now we are in a position to prove the existence result for regularized OCPs

(31)–(33).

Theorem 4.3. For every positive value ε > 0 and integer k ∈ N, the optimal
control problem (31)–(33) admits at least one solution.

Proof. Indeed, we have already established that the set Ξε,k is not empty. Let
{(ui, yi)}i∈N ⊂ Ξε,k be a minimizing sequence , i.e.

lim
i→∞

Iε,k(ui, yi) = inf
(u,y)∈Ξε,k

Iε,k(u, y), sup
i∈N

Iε,k(ui, yi) ≤ C.

Following the proof of Theorem 3.3 it is easy to see that there exists u0 ∈ Aad such

that ui
∗
⇀ u0 in BV (Ω) and ui→u0 strongly in L1(Ω). Also we have

sup
i∈N
‖yi‖2H1

0 (Ω) = sup
i∈N

∫
Ω

|∇yi|2 dx ≤ α−1ε
2−p

2 sup
i∈N

∫
Ω

ui
(
ε+ Fk(|∇yi|2)

) p−2
2 |∇yi|2 dx

≤ α−1ε
2−p

2 sup
i∈N

Iε,k(ui, yi) ≤ C

and, therefore, ∃ y0 ∈ H1
0 (Ω) such that, within a subsequence, yi ⇀ y0 in H1

0 (Ω) as
i→∞. Similarly to the proof of Proposition 3.3, we pass to the limit in the Minty
relation (see (40))∫

Ω

ui(x)(ε+ Fk(|∇ϕ|2))
p−2

2 (∇ϕ,∇ϕ−∇yi)RN dx

+

∫
Ω

(
Akskew∇ϕ,∇ϕ−∇yi

)
RNdx ≥

∫
Ω

(f,∇ϕ−∇yi)RNdx, ∀ϕ ∈ C∞0 (Ω),

as i→∞ and get the assertion (u0, y0) ∈ Ξε,k.
As follows from the direct method of the Calculus of Variations, the lower semi-

continuous property of the cost functional with respect to suitable topologies in
‘control-state’ space plays a crucial role in the proof of solvability of optimization
problems. However, in our case we make use of a weaker property, namely, we
establish the fulfilment of the inequality Iε,k(u0, y0) ≤ lim infi→∞ Iε,k(ui, yi) only
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for elements (ui, yi) ∈ Ξε,k of minimizing sequence. To this end, we proceed as in
the proof of Theorem 3.3. We have to show that the following relation∫

Ω

(ε+ Fk(|∇y0|2))
p−2

2 |∇y0|2u0 dx ≤ lim inf
i→∞

∫
Ω

(ε+ Fk(|∇yi|2))
p−2

2 |∇yi|2ui dx

is valid. In fact, this is an equality and it can be proved as follows. Since pairs
(ui, yi) and (u0, y0) satisfy (41), we infer from (41) that

lim
i→∞

∫
Ω

(ε+ Fk(|∇yi|2))
p−2

2 |∇yi|2ui dx = lim
i→∞

∫
Ω

(f,∇yi)RN dx =

=

∫
Ω

(f,∇y0)RN dx =

∫
Ω

(ε+ Fk(|∇y0|2))
p−2

2 |∇y0|2u0 dx.

Remark 4.2. It is worth to note that the cost functional (31) does not possess
the lower semicontinuity property on BV (Ω) × H1

0 (Ω) with respect to the weak-∗
convergence in BV (Ω) and the weak convergence in H1

0 (Ω), in general. As follows
from Theorem 4.3, this property is valid only on the set of feasible pairs Ξε,k ⊂
BV (Ω)×H1

0 (Ω).

For our further analysis, we need to obtain some appropriate a priory estimates
for the weak solutions to the problem (32)–(33). With that in mind, we make use
of the following auxiliary results (see for the comparison Proposition 4.2 in [5]).

Proposition 4.2. Let u ∈ Aad, k ∈ N, and ε > 0 be given. Then, for arbitrary
g ∈ L2(Ω;RN ) and y ∈ H1

0 (Ω), we have∣∣∣∣∫
Ω

(g,∇y)RNdx

∣∣∣∣ ≤ ‖g‖L2(Ω;RN )

[
α−

1
p |Ω|

p−2
2p ‖y‖ε,k,u + α−

1
2 ‖y‖

p
2

ε,k,u

]
. (43)

Proof. Let us fix an arbitrary element y of H1
0 (Ω). We associate with this element

the set Ωk(y), where

Ωk(y) :=
{
x ∈ Ω : |∇y(x)| >

√
k2 + 1

}
. (44)

Then, by Cauchy-Bunyakovsky inequality,∫
Ω

(g,∇y)RNdx ≤ ‖g‖L2(Ω;RN )‖∇y‖L2(Ω;RN )

≤ ‖g‖L2(Ω;RN )

(
‖∇y‖L2(Ω\Ωk(y);RN ) + ‖∇y‖L2(Ωk(y);RN )

)
. (45)

Using the fact that

‖∇y‖L2(Ω\Ωk(y);RN ) ≤ |Ω|
p−2
2p ‖∇y‖Lp(Ω\Ωk(y);RN )

≤ |Ω|
p−2
2p

(∫
Ω\Ωk(y)

(ε+ |∇y|2)
p−2

2 |∇y|2 dx

) 1
p

and

Fk(|∇y|2) = |∇y|2 a.e. in Ω \ Ωk(y), and

k2 ≤ Fk(|∇y|2) ≤ k2 + 1 a.e. in Ωk(y), ∀ k ∈ N,
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we obtain

‖∇y‖L2(Ω\Ωk(y);RN ) ≤ |Ω|
p−2
2p

(∫
Ω\Ωk(y)

(ε+ Fk(|∇y|2))
p−2

2 |∇y|2 dx

) 1
p

≤ |Ω|
p−2
2p α−

1
p ‖y‖ε,k,u, (46)

‖∇y‖L2(Ωk(y);RN ) ≤

(∫
Ωk(y)

(ε+ Fk(|∇y|2))
p−2

2 |∇y|2 dx

) 1
2

≤ α− 1
2 ‖y‖

p
2

ε,k,u.

(47)

As a result, inequality (43) immediately follows from (45)–(47). The proof is com-
plete.

Definition 4.4. Let {uε,k} ε>0
k∈N
⊂ Aad be an arbitrary sequence of admissible con-

trols. We say that a two-parametric sequence {yε,k} ε>0
k∈N
⊂ H1

0 (Ω) is bounded with

respect to the ‖ · ‖ε,k,uε,k
-quasi-seminorm if sup ε>0

k∈N
‖yε,k‖ε,k,uε,k

< +∞.

To conclude this section, let us show that for every u ∈ Aad and f ∈ L2(Ω;RN ),
the sequence of weak solutions to problem (32)–(33)

{
yε,k = yε,k(u,Akskew, f)

}
ε>0
k∈N

is

bounded with respect to the ‖ · ‖ε,k,u-quasi-seminorm in the sense of Definition 4.4.
Indeed, the integral identity (39) together with estimate (43) (for g = f) imme-

diately lead us to the relation

‖yε,k‖pε,k,u :=

∫
Ω

(
ε+ Fk(|∇yε,k|2)

) p−2
2 |∇yε,k|2u dx =

∫
Ω

(f,∇yε,k)RNdx

≤ ‖f‖L2(Ω;RN )

[
α−

1
p |Ω|

p−2
2p ‖yε,k‖ε,k,u + α−

1
2 ‖yε,k‖

p
2

ε,k,u

]
. (48)

As a result, it follows from (48) that

‖yε,k‖ε,k,u ≤ max

{
C

2
p

f , C
1

p−1

f

}
, ∀ ε > 0, ∀ k ∈ N, ∀u ∈ Aad, (49)

where Cf := C‖f‖L2(Ω;RN ) =
(
α−

1
p |Ω|

p−2
2p + α−

1
2

)
‖f‖L2(Ω;RN ). Moreover, taking

g = ∇y = ∇yε,k in (43) and using (49), we also have ∀ ε > 0, ∀ k ∈ N,

‖yε,k‖H1
0 (Ω) ≤ max

{
C2‖f‖L2(Ω;RN ), C

p
p−1 ‖f‖

1
p−1

L2(Ω;RN )

}
, ∀u ∈ Aad. (50)

5. Asymptotic analysis of the approximate OCP (31)–(33). Our main in-
tention in this section is to show that some optimal solutions to the original OCP
(1)–(3) can be attained (in certain sense) by optimal solutions to the approximate
problems (31)–(33). With that in mind, we make use of the concept of variational
convergence of constrained minimization problems (see Definition 2.2) and study
the asymptotic behaviour of a family of OCPs (31)–(33) as ε → 0 and k → ∞.
We begin with some auxiliary results concerning the weak compactness in H1

0 (Ω)
of ‖ · ‖ε,k,u-bounded sequences.

Lemma 5.1 (see [5]). Let {uε,k} ε>0
k∈N
⊂ Aad be an arbitrary sequence of admissible

controls with associated states {yε,k} ε>0
k∈N
⊂ H1

0 (Ω), yε,k = yε,k(uε,k). Then each

cluster point y of the sequence {yε,k} ε>0
k∈N

with respect to the weak convergence in

H1
0 (Ω), satisfies: y ∈W 1,p

0 (Ω).

Definition 5.1. We say that a sequence of pairs
{

(uk, yk) ∈ BV (Ω)×H1
0 (Ω)

}
k∈N

τ -converges to a pair (u, y) ∈ BV (Ω)×H1
0 (Ω)) if

uk
∗
⇀ u in BV (Ω); yk ⇀ y in H1

0 (Ω).
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Theorem 5.2. Let {εn}n∈N, {kn}n∈N, {un}n∈N ⊂ Aad, and {yn}n∈N ⊂ H1
0 (Ω) be

sequences such that

εn → 0, kn →∞, (un, yn) ∈ Ξεn,kn . (51)

Then, the sequence {(un, yn)}i∈N is τ -compact and for each its τ -cluster pair (u, y)
there exists a subsequence {(ui, yi)}i∈N ⊂ {(un, yn)}n∈N such that the following
assertions hold true

(u, y) ∈ Ξ, (52)

χΩ\Ωki
(yi)∇yi ⇀ ∇y in Lp(Ω;RN ), (53)

lim inf
i→∞

∫
Ω

(
εi + Fki(|∇yi|2)

) p−2
2 |∇yi|2ui dx ≥

∫
Ω

|∇y|pu dx, (54)

and the pair (u, y) satisfies the energy inequality∫
Ω

|∇y|pu dx ≤
∫

Ω

(f,∇y)RNdx. (55)

Where Ωki(yi) is defined by (44).

Proof. In view of Propositions 2.1 and 3.2, the sequence {un}nN ⊂ Aad is compact
with respect to the weak-∗ convergence in BV (Ω) and the strong convergence in
L1(Ω). Hence, as far as supn∈N ‖yn‖H1

0 (Ω) ≤ const (see (50)), using Lemma 5.1, we

can claim that there exists a subsequence {(ui, yi)}i∈N ⊂ {(un, yn)}n∈N and a pair

(u, y) ∈ Aad ×W 1,p
0 (Ω) such that (ui, yi)

τ−→ (u, y) in BV (Ω)×H1
0 (Ω).

The rest of proof is divided into three steps.

Step 1. On this step we prove that χΩ\Ωk(yi)∇yi ⇀ ∇y in Lp(Ω;RN ). Following
the definition of the sets Ωki(yi) and using (49), we obtain∫

Ω

|χΩ\Ωki
(yi)∇yi|

p dx =

∫
Ω\Ωki

(yi)

|∇yi|p dx

≤ α−1

∫
Ω\Ωki

(yi)

(
εi + Fki(|∇yi|2)

) p−2
2 |∇yi|2ui dx,

≤ α−1‖yi‖pεi,ki,ui
≤ C < +∞, ∀ i ∈ N.

Hence, taking a new subsequence if necessary, we infer the existence of a vector-
valued function g ∈ Lp(Ω;RN ) such that χΩ\Ωki

(yi)∇yi ⇀ g in Lp(Ω;RN ) as i→∞.

Since ui → u in Lq(Ω), we conclude that

lim
i→∞

∫
Ω\Ωki

(yi)

(∇yi,∇ϕ)ui dx =

∫
Ω

(g,∇ϕ)u dx, ∀ϕ ∈ C∞0 (Ω). (56)

On the other hand, in view of the weak convergence ∇yi ⇀ ∇y in L2(Ω;RN ),∫
Ω

(∇y,∇ϕ)u dx = lim
i→∞

∫
Ω

(∇yi,∇ϕ)ui dx

= lim
i→∞

∫
Ω\Ωki

(yi)

(∇yi,∇ϕ)ui dx+ lim
i→∞

∫
Ωki

(yi)

(∇yi,∇ϕ)ui dx.

(57)
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Since∣∣∣∣∣
∫

Ωki
(yi)

(∇yi,∇ϕ)ui dx

∣∣∣∣∣ ≤ β‖ϕ‖C1(Ω)|Ωki(yi)|
1/2

(∫
Ωki

(yi)

|∇yi|2 dx

)1/2

= β‖ϕ‖C1(Ω)|Ωki(yi)|
1/2 sup

i∈N
‖yi‖H1

0 (Ω)

by (37)

≤ β‖ϕ‖C1(Ω) sup
i∈N
‖yi‖H1

0 (Ω)

(
α−1

k2
i

‖yi‖pεi,ki,ui

)1/2 by (49)

≤ C̃

ki
→ 0 as i→∞,

it follows from (56) and (57) that∫
Ω

(g,∇ϕ)u dx =

∫
Ω

(∇y,∇ϕ)u dx, ∀ϕ ∈ C∞0 (Ω).

Hence, g = ∇y almost everywhere in Ω and χΩ\Ωk(yi)∇yi ⇀ ∇y in Lp(Ω;RN ).

Step 2. On this step we prove assertion (54). Since ui → u in Lr(Ω) for every 1 ≤
r < +∞, {ui}i∈N is bounded in L∞(Ω), and ui(x) ≥ α for a. a. x ∈ Ω, due to the

result of the previous step, it is easy to check that χΩ\Ωki
(yi)∇yiu

1/p
i ⇀ ∇yu1/p in

Lp(Ω;RN ). Using this convergence and lower semi-continuity of norm in Lp(Ω;RN )
we get

lim inf
i→∞

∫
Ω

(
εi + Fki(|∇yi|2)

) p−2
2 |∇yi|2ui dx

≥ lim inf
i→∞

∫
Ω\Ωki

(yi)

(
εi + Fki(|∇yi|2)

) p−2
2 |∇yi|2ui dx

by (34)

≥ lim inf
i→∞

∫
Ω\Ωki

(yi)

(
εi + |∇yi|2

) p−2
2 |∇yi|2ui dx

≥ lim inf
i→∞

∫
Ω

|χΩ\Ωki
(yi)∇yi|

pui dx ≥
∫

Ω

|∇y|pu dx. (58)

Step 3. Here we show that the pair (u, y) is admissible to the initial OCP (1)–(3).
Let us prove that y is a solution of (2)-(3) corresponding to the control function
u ∈ Aad. Let us fix an arbitrary test function ϕ ∈ C∞0 (Ω) and pass to the limit in
the Minty inequality∫

Ω

ui(x)(εi + Fki(|∇ϕ|2))
p−2

2 (∇ϕ,∇ϕ−∇yi)RN dx

+

∫
Ω

(Akiskew∇ϕ,∇ϕ−∇yi)RN dx ≥
∫

Ω

(f,∇ϕ−∇yi)RN dx, (59)

as i→∞. Taking into account that

(εi + Fki(|∇ϕ|2))
p−2

2 ∇ϕ→ |∇ϕ|p−2∇ϕ strongly in Lq(Ω;RN ), (60)

(Akiskew∇ϕ,∇ϕ)RN → (Askew∇ϕ,∇ϕ)RN strongly in L1(Ω;RN ). (61)

In view of the weak convergence ∇yi ⇀ ∇y in L2(Ω;RN ) and the strong conver-
gence ui → u in Lr(Ω), for all r < ∞, the boundedness of {ui}i∈N in L∞(Ω) and



18 OLHA P. KUPENKO AND ROSANNA MANZO

the fact that Akiskew → Askew strongly in Lq(Ω;SNskew), we obtain

lim
i→∞

∫
Ω

(εi + Fki(|∇ϕ|2))
p−2

2 (∇ϕ,∇ϕ)RN ui dx =

∫
Ω

|∇ϕ|p−2 (∇ϕ,∇ϕ)RN u dx,

lim
i→∞

∫
Ω

(εi + Fki(|∇ϕ|2))
p−2

2 (∇ϕ,∇yi)RN ui dx =

∫
Ω

|∇ϕ|p−2 (∇ϕ,∇y)RN u dx,

lim
i→∞

∫
Ω

(Akiskew∇ϕ,∇yi)RNdx =

∫
Ω

(Askew∇ϕ,∇y)RNdx. (62)

Let us explain two last relations in details. Indeed, we see that∫
Ω

(εi + Fki(|∇ϕ|2))
p−2

2 (∇ϕ,∇yi)RN ui dx−
∫

Ω

|∇ϕ|p−2 (∇ϕ,∇y)RN u dx

≤
∣∣∣∣∫

Ω

(εi + Fki(|∇ϕ|2))
p−2

2

(
∇ϕ, χΩ\Ωki

(yi)∇yi
)
RN

ui dx

−
∫

Ω

|∇ϕ|p−2 (∇ϕ,∇y)RN u dx

∣∣∣∣
+

∫
Ωki

(yi)

∣∣∣(εi + Fki(|∇ϕ|2))
p−2

2 (∇ϕ,∇yi)RN ui

∣∣∣ dx = I1 + I2.

In view of (60) and the weak convergence χΩ\Ωki
(yi)∇yi → ∇y in Lp(Ω;RN ), we

immediately get I1 → 0. As for I2, we have∫
Ωki

(yi)

∣∣∣(εi + Fki(|∇ϕ|2))
p−2

2 (∇ϕ,∇yi)RN ui

∣∣∣ dx
≤ β2

p−2
2

∫
Ωki

(yi)

(
ε

p−2
2 + |∇ϕ|p−2

)
|(∇ϕ,∇yi)RN | dx ≤ C1‖yi‖H1

0 (Ωki
(yi)) <∞.

Hence, this integrand is obviously equi-integrable. Equi-integrability property im-
plies that I2 → 0 as far as |Ωki(yi)| → 0. To get (62), the similar argumentation
can be used together with the estimate∫

Ωki
(yi)

(Akiskew∇ϕ,∇yi)RNdx ≤

(∫
Ωki

(yi)

|Akiskew∇ϕ|
2dx

)1/2

‖yi‖H1
0 (Ωki

(yi))

by (29)

≤
√
|Ωki(yi)|‖ϕ‖C1(Ω)kiN‖yi‖H1

0 (Ωki
(yi))

by (37) and (49)

≤ C2‖yi‖H1
0 (Ωki

(yi)) → 0 as i→∞.

Thus, passing to the limit in relation (59) as i → ∞, we arrive at the inequality
(18) for every ϕ ∈ C∞0 (Ω).

Step 4. On this step we prove energy inequality (55). For each i ∈ N, we have the
energy equalities∫

Ω

ui(εi + Fki(|∇yi|2))
p−2

2 |∇yi|2 dx =

∫
Ω

(f,∇yi)RN dx. (63)

Taking into account the weak convergence yi ⇀ y in H1
0 (Ω) and (54), after passing

to the limit in (63), we immediately arrive at the desired assertion.

As follows from the statement of Theorem 5.2, Hypothesis B can be eliminated
from Proposition 3.3 and Theorem 3.3.

Corollary 1. If Aad 6= ∅, then the set of feasible solutions Ξ to OCP (1)–(3) is
nonempty for every f ∈ L2(Ω;RN ) and yd ∈ L2(Ω).

Remark 5.1. As follows from Theorem 5.2, feasible solutions to the regularized
OCPs (31)–(33) always lead in the limit to some admissible solution (u, y) of the
original OCP (1)–(3). It is reasonable to call such pair attainable. However, up
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to now the structure of the entire set of all attainable pairs remains unclear. For
instance, it is unknown whether this set is convex and closed in Ξ. It is also unknown
whether all optimal solutions to OCP (1)–(3) can be attainable in such way.

Taking these observations into account, we make use of the following notion.

Definition 5.3. We say that a pair (û, ŷ) ∈ BV (Ω) × W 1,p
0 (Ω) is a variational

solution to OCP (1)–(3) if

I(û, ŷ) = inf
(u,y)∈Ξ

I(u, y), (û, ŷ ) ∈ Ξ, (64)

and (û, ŷ ) is related by energy equality∫
Ω

|∇ŷ|p û dx =

∫
Ω

(f,∇ŷ)RN dx. (65)

As a consequence of Theorem 5.2 and properties of the variational limits of
constrained minimization problems (see Theorem 2.3), we have the following result.

Proposition 5.1. Assume that initial OCP (1)–(3) is a variational τ -limit of the

sequence

〈
inf

(u,y)∈Ξε,k

I(u, y)

〉
ε>0
k∈N

of constrained minimization problems (31)–(33)

(see Definition 2.2). Let
{

(u0
ε,k, y

0
ε,k) ∈ Ξε,k

}
ε>0
k∈N

be a sequence of optimal solutions

to the corresponding regularized OCPs. Then this sequence is relatively compact with
respect to the τ -convergence and each its τ -cluster pair (û, ŷ ) ∈ BV (Ω)×W 1,p

0 (Ω)
is a variational solution to OCP (1)–(3) in the sense of Definition 5.3. Moreover,
up to a subsequence, we have

y0
ε,k → ŷ in H1

0 (Ω) and as ε→ 0, k →∞, (66)

lim
ε→0
k→∞

∫
Ω

(
ε+ Fk(|∇y0

ε,k|2)
) p−2

2 |∇y0
ε,k|2 u0

ε,k dx =

∫
Ω

|∇ŷ|p û dx, (67)

Proof. To begin with, we note that the τ -compactness property of the sequence{
(u0
ε,k, y

0
ε,k) ∈ Ξε,k

}
ε>0
k∈N

is a direct consequence of Theorem 5.2. In order to prove

the strong convergence (66), we make use of the main properties of the variational
convergence. Following Theorems 2.3, 3.3, and 5.2 (see also Corollary 1), we can
claim that OCP (1)–(3) is solvable and there exists an optimal pair (ũ, ỹ ) ∈ Ξ to
this problem such that

inf
(u,y)∈Ξ

I(u, y) = I (ũ, ỹ ) = ‖ỹ − yd‖2L2(Ω) +

∫
Ω

ũ|∇ỹ|p dx

= lim
ε→0
k→∞

inf
(uε,k,yε,k)∈Ξε,k

I(uk, yk) = lim
ε→0
k→∞

I(u0
ε,k, y

0
ε,k)

= lim
ε→0
k→∞

[∥∥y0
ε,k − yd

∥∥2

L2(Ω)
+

∫
Ω

u0
ε,k

(
ε+ Fk(|∇y0

ε,k|2)
) p−2

2 |∇y0
ε,k|2 dx

]
.

(68)

However, because of the lower semicontinuity of ‖ · ‖L2(Ω) and ‖ · ‖Lp(Ω;RN ) with

respect to the weak convergence, the convergence (u0
ε,k, y

0
ε,k)

τ→ (û, ŷ ) implies that

lim inf ε→0
k→∞

∫
Ω
u0
ε,k

(
ε+ Fk(|∇y0

ε,k|2)
) p−2

2 |∇y0
ε,k|2 dx ≥

∫
Ω
û|∇ŷ|p dx (see (58) and

Step 2 of the proof of Theorem 5.2), and, hence,

inf
(u,y)∈Ξ

I(u, y)
by (68)

= lim
ε→0
k→∞

[ ∫
Ω

u0
ε,k

(
ε+ Fk(|∇y0

ε,k|2)
) p−2

2 |∇y0
ε,k|2 dx

+
∥∥y0
ε,k − yd

∥∥2

L2(Ω)

]
≥ ‖ŷ − yd‖2L2(Ω) +

∫
Ω

û|∇ŷ|p dx. (69)
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Since the pair (û, ŷ ) is feasible for the problem (1)–(3) (see Theorem 5.2), it follows
that (û, ŷ ) is an optimal pair. Therefore, the last relation in (69) becomes equality.
The weak convergence y0

ε,k ⇀ ŷ in H1
0 (Ω) implies that yε,k → ŷ strongly in L2(Ω)

and, therefore, lim ε→0
k→∞

‖y0
ε,k − yd‖2L2(Ω) = ‖ŷ − yd‖2L2(Ω). Whence, we immediately

get (65).
To prove the energy equality (65) it is enough to pass to the limit in relation∫

Ω

u0
ε,k(ε+ Fk(|∇y0

ε,k|2))
p−2

2 |∇y0
ε,k|2 dx =

∫
Ω

(f,∇y0
ε,k)RN dx,

which holds for each ε and k. As a result, using (67), we finally have

0 = lim
ε>0
k∈N

[y0
ε,k, y

0
ε,k]Ak

skew
= − lim

ε>0
k∈N

∫
Ω

u0
ε,k(ε+ Fk(|∇y0

ε,k|2))
p−2

2 |∇y0
ε,k|2 dx

+ lim
ε>0
k∈N

∫
Ω

(
f,∇y0

k

)
RN dx = −

∫
Ω

|∇ŷ|p û dx+

∫
Ω

(f,∇ŷ)RN dx.

In fact, from (67) it follows that∫
Ω

û|∇ŷ|p dx = lim
ε>0
k∈N

∫
Ω

(
ε+ Fk(|∇y0

ε,k|2)
) p−2

2 |∇y0
ε,k|2u0

ε,k dx

≥ lim sup
ε>0
k∈N

∫
Ω\Ωk(y0

ε,k)

(
ε+ Fk(|∇y0

ε,k|2)
) p−2

2 |∇y0
ε,k|2u0

ε,k dx

by (34)

≥ lim sup
ε>0
k∈N

∫
Ω\Ωk(y0

ε,k)

(
ε+ |∇y0

ε,k|2
) p−2

2 |∇y0
ε,k|2u0

ε,k dx

≥ lim sup
ε>0
k∈N

∫
Ω

|χΩ\Ωk(y0
ε,k)∇y0

ε,k|pu0
ε,k dx ≥ lim inf

ε>0
k∈N

∫
Ω

|χΩ\Ωk(y0
ε,k)∇y0

ε,k|pu0
ε,k dx.

(70)

Using the weak convergence χΩ\Ωk(y0
ε,k)∇y0

ε,ku
0
ε,k

1/p
⇀ ∇ŷ û1/p in Lp(Ω;RN ) (see

the proof of Theorem 5.2, Step 2 for similar arguments), and (70), we get∫
Ω

û|∇ŷ|p dx ≥ lim sup
ε>0
k∈N

∫
Ω

|χΩ\Ωk(y0
ε,k)∇y0

ε,k|pu0
ε,k dx

≥ lim inf
ε>0
k∈N

∫
Ω

|χΩ\Ωk(y0
ε,k)∇y0

ε,k|pu0
ε,k dx ≥ ‖∇ŷû1/p‖p

Lp(Ω;RN )
=

∫
Ω

û|∇ŷ|p dx.

The weak convergence χΩ\Ωk(y0
ε,k)∇y0

ε,ku
0
ε,k

1/p
⇀ ∇ŷ û1/p and the convergence

of their norms ‖χΩ\Ωk(y0
ε,k)∇y0

ε,ku
0
ε,k

1/p‖Lp(Ω;RN ) → ‖∇ŷ û1/p‖Lp(Ω;RN ) imply the

strong convergence in Lp(Ω;RN ). Now, it is a simple exercise to check the strong
convergence χΩ\Ωk(y0

ε,k)∇y0
ε,k → ∇ŷ in Lp(Ω;RN ). Further, from here and (70) we

obtain

lim
ε>0
k∈N

∫
Ωk(y0

ε,k)

(
ε+ Fk(|∇y0

ε,k|2)
) p−2

2 |∇y0
ε,k|2u0

ε,k dx = 0 (71)

Applying (71), it is easy to deduce from this that

lim
ε→0
k→∞

∫
Ωk(y0

ε,k)

|∇y0
ε,k|2 dx

≤ 1

α
lim
ε→0
k→∞

∫
Ωk(y0

ε,k)

(ε+ Fk(|∇y0
ε,k|2))

p−2
2 |∇y0

ε,k|2u0
ε,k dx = 0.
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Combining this estimate and the strong convergence χΩ\Ωk(y0
ε,k)∇y0

ε,k → ∇ŷ in

Lp(Ω;RN ), we conclude that

∇y0
ε,k = χΩk(y0

ε,k)∇y0
ε,k + χΩ\Ωk(y0

ε,k)∇y0
ε,k → ∇ŷ strongly in L2(Ω;RN ).

Remark 5.2. As follows from Proposition 5.1 and Theorem 5.2, even if the OCP
(1)–(3) has a unique solution (u0, y0), it does not ensure that this pair is the vari-
ational solution to the above problem. In other words, the existence of Γ-realizing
sequence for the pair (u0, y0) ∈ Ξ (see Definition 2.2) is not established.

We are now in a position to discuss the existence of variational solutions to the
OCP (1)–(3).

Theorem 5.4. Assume that

• Hypothesis A holds true;
• for given matrix Askew ∈ Lq(Ω;SNskew), we have

[y, y]Askew
= 0 ∀ y ∈ D. (72)

Then OCP (1)–(3) has variational solutions for every f ∈ L2(Ω;RN ) and yd ∈
L2(Ω).

Proof. To begin with, we note that in this case every weak solution in the Minty
sense to the boundary value problem (2)–(3) satisfies energy equality (65). In-

deed, since, by Hypothesis A, every weak solution y = y(u) ∈ W 1,p
0 (Ω) such that

(u, y) ∈ Ξ, belongs to the set D, the energy inequality can be obtained, using the
argumentation similar to the so-called Minty trick (see Pastukhova [27]). Starting
from Minty inequality∫

Ω

u|∇ϕ|p−2(∇ϕ,∇ϕ−∇y)RN dx

+

∫
Ω

(Askew∇ϕ,∇ϕ−∇y)RN dx ≥
∫

Ω

(f,∇ϕ−∇y)RN dx, (73)

as a test functions in (73) we can take ϕ = y ± tv, where t ∈ RN , v ∈ D. Taking
into account, that (Askew∇ϕ,∇ϕ)RN = 0 and

(Askew∇ϕ,∇ϕ−∇y)RN = −(Askew∇ϕ,∇y)RN = (∇ϕ,Askew∇y)RN ,

and using the semi-continuity of ∆p(u, ·), after passing to the limit as t → 0 we
have

±
∫

Ω

u|∇y|p−2(∇y,∇v)RN dx+

∫
Ω

(Askew∇y,∇y)RN dx

≥ ±
∫

Ω

(f,∇v)RN dx, ∀ v ∈ D,

which yields in view of (72) the validity of the integral identity∫
Ω

u|∇y|p−2(∇y,∇v)RN dx =

∫
Ω

(f,∇v)RN dx, ∀ v ∈ D, (74)

and, taking v = y we get (65).
Further, our aim is to show that OCP (1)–(3) can be interpreted as the variational

limit of the sequence of constrained minimization problems (31)–(33) for ε > 0 and
k ∈ N. To do so, we have to verify the fulfilment of all conditions of Definition 2.2.
Let {(uε,k, yε,k) ⊂ Ξε,k} ε>0

k∈N
be a sequence in BV (Ω) × H1

0 (Ω) with the following

properties:

(a) (un, yn) ∈ Ξεn,kn for every n ∈ N, where {εn, kn}n∈N is a subsequence of {ε, k}
such that εn → 0, kn →∞ as n→∞;
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(aa) (un, yn)
τ→ (u, y) in the sense of Definition 5.1.

Then proceeding as in the proof of Theorem 5.2, it can be shown that the limit pair
(u, y) is feasible to the original OCP (1)–(3). Hence, this problem is solvable by
Theorem 3.3. Moreover, similar to (54), we have

lim inf
n→∞

∫
Ω

un
(
εn + Fkn(|∇yn|2)

) p−2
2 |∇yn|2 dx ≥

∫
Ω

u|∇y|p dx,

Hence, property (d) immediately follows from the relation

lim inf
n→∞

I(un, yn)

= lim inf
n→∞

[
‖yn − yd‖2L2(Ω) +

∫
Ω

un
(
εn + Fkn(|∇yn|2)

) p−2
2 |∇yn|2 dx

]
≥ ‖y − yd‖2L2(Ω) +

∫
Ω

u|∇y|p dx = I(u, y),

which holds true for any sequence
{

(un, yn) ∈ Aad ×H1
0 (Ω)

}
n∈N with properties

(a)–(aa).
We focus now on the verification of condition (dd) of Definition 2.2. Let (u], y])

be an arbitrary admissible pair to the original problem. We set {uε,k ≡ u]} ε>0
k∈N

and{
yε,k = y(uε,k, f, A

k
skew)

}
ε>0
k∈N

we choose as corresponding solutions to the regular-

ized boundary value problems (32)–(33). Then having applied the arguments of
the proof of Theorem 5.2, it can be shown that the sequence {yε,k} ε>0

k∈N
is uniformly

bounded in H1
0 (Ω) and there exists an element ŷ ∈ W 1,p

0 (Ω) such that ŷ ∈ D,
(u], ŷ) ∈ Ξ, and, up to a subsequence,

yε,k → ŷ in L2(Ω), ∇yk ⇀ ∇ŷ in L2(Ω;RN ). (75)

Our aim is to show that ŷ = y] and the following identity

I(u], y]) = lim sup
ε→0
k→∞

I(u]k, yk) (76)

holds true.
Indeed, since (u], y]) ∈ Ξ and (u], ŷ) ∈ Ξ, in view of preconditions of the theorem,

it follows that this pairs satisfy the integral identity (74)∫
Ω

u]|∇y]|p−2(∇y],∇v)RN dx =

∫
Ω

(f,∇v)RN dx, ∀ v ∈ D,∫
Ω

u]|∇ŷ|p−2(∇ŷ,∇v)RN dx =

∫
Ω

(f,∇v)RN dx, ∀ v ∈ D.

After subtraction and setting v = y] − ŷ (since the form [y, ϕ]Askew
is bilinear, it is

clear that the set D is a linear manifold), we get∫
Ω

u](|∇y]|p−2∇y] − |∇ŷ|p−2∇ŷ, y] − ŷ)RN dx = 0. (77)

The strict monotonicity of ∆p(u
], ·) and (77) immediately imply y] = ŷ. Moreover,

in view of preconditions of the theorem, for the limit pair (u], ŷ) instead of the
energy inequality (55) (see Theorem 5.2), we have the energy equality (73). Hence,
passing to a subsequence, if necessary, we have

lim
ε→0
k→∞

∫
Ω

(
ε+ Fk(|∇yε,k|2)

) p−2
2 |∇yε,k|2u] dx =

∫
Ω

|∇ŷ|pu] dx,
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i.e. desired condition (dd) obviously holds:

lim sup
ε→0
k→∞

I(uε,k, yε,k) ≥ lim
ε→0
k→∞

I(u], yε,k)

= lim
ε→0
k→∞

[
‖yε,k − yd‖2L2(Ω) +

∫
Ω

u]
(
ε+ Fk(|∇yε,k|2)

) p−2
2 |∇yε,k|2 dx

]
= ‖ŷ − yd‖2L2(Ω) +

∫
Ω

u]|∇y]|p dx=I(u], y]).

This concludes the proof.

Our next observation shows that variational solutions do not exhaust the entire
set of all possible solutions to the original OCP (1)–(3). With that in mind, we
adopt the following concept.

Definition 5.5. We say that a pair (u0, y0) ∈ Ξ is a non-variational solution to
OCP (1)–(3) if

I(u0, y0) = inf
(u,y)∈Ξ

I(u, y), (u0, y0) ∈ Ξ, and (78)∫
Ω

u0|∇y0|p dx 6=
∫

Ω

(f,∇y0)RN dx. (79)

Lemma 5.2. Assume that there exists an element u0 ∈ Aad, Askew ∈ Lq(Ω;SNskew)

and an element v ∈ D ⊂ W 1,p
0 (Ω) with property [v, v]Askew

> 0 and such that
|∇v|p−2∇v + Askew∇v ∈ L2(Ω;RN ). Then there are distributions f ∈ L2(Ω;RN )

and yd ∈W 1,p
0 (Ω) ⊂ L2(Ω) such that the optimal control problem

Minimize I(u, y) = ‖y − yd‖2L2(Ω) +

∫
Ω

u|∇y −∇yd|p dx (80)

subject to the constraints (2)–(3) (81)

has a non-variational solution in the sense of Definition 5.5.

Proof. Further we put

yd = v, f = u0|∇v|p−2∇v +Askew∇v. (82)

Since v ∈ D, it follows that yd ∈ W 1,p
0 (Ω), and in view of preconditions of the

lemma, f ∈ L2(Ω;RN ). Then, taking into account monotonicity of ∆p(u0, ·) and
the fact, that (Askew∇ϕ,∇v)RN = −(∇ϕ,Askew∇v)RN we have∫

Ω

u0(|∇ϕ|p−2∇ϕ,∇ϕ−∇v)RN dx+

∫
Ω

(Askew∇ϕ,∇ϕ−∇v)RN

−
∫

Ω

(f,∇ϕ−∇v)RN =

∫
Ω

u0(|∇ϕ|p−2∇ϕ− |∇v|p−2∇v,∇ϕ−∇v)RN dx

+

∫
Ω

(Askew∇ϕ−∇v,∇ϕ−∇v)RN ≥
∫

Ω

(Askew∇v,∇v) > 0, ∀ϕ ∈ C∞0 (Ω).

Hence, the distribution yd is a weak Minty solution to boundary value problem
(2)–(3). Moreover, using the fact that I(u0, yd) = 0, we can conclude: (u0, yd) is
the unique optimal pair to the above OCP. It remains to observe that in view of
condition [yd, yd]Askew

:= [v, v]Askew
> 0, the strict energy inequality∫

Ω

u0|∇yd|p dx <
∫

Ω

(f,∇yd)RN dx

takes place and, hence, (u0, yd) is a non-variational solution to the above problem.
The proof is complete.
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6. Optimality conditions for perturbed OCPs (31)–(33). In view of Propo-
sition 5.1 and Theorem 5.4 under fulfillment of Hypothesis A and condition (72),
some optimal solutions to initial OCP (1)–(3) can be attained through optimal so-
lutions to optimization problems (31)–(33). Mainly motivated by these reasoning
and for the sake of numerical computations, we focus on establishment of optimality
conditions to OCPs (31)–(33). Before deriving the optimality conditions for OCP
(31)–(33), we recall the well-known Ioffe & Tikhomirov theorem (see [15]) justifying
the Lagrange principle for well-posed boundary value problems.

Theorem 6.1. Let Y , U and V be Banach spaces. Let I : U × Y → R ∪ {+∞} be
a cost functional, F : U × Y → V a mapping, and U∂ a nonempty subset of U . Let
(u0, y0) ∈ U × Y be a solution to the following extremal problem

I(u, y)→ inf, F (u, y) = 0, u ∈ U∂ . (83)

Assume that for every u ∈ U∂ , the mappings y 7→ I(u, y) and y 7→ F (u, y) are
continuously differentiable for y ∈ O(y0), where O(y0) is some neighborhood of the
point y0. Let ImF ′y(u0, y0) be a closed subset of V and has a finite codimension in

V . Assume that for each y ∈ O(y0) the function u 7→ I(u, y) is convex, and the
mapping u 7→ F (u, y) is continuous from U to V and affine, i.e.,

F (γu1 + (1− γ)u2, y) = γF (u1, y) + (1− γ)F (u2, y), ∀u1, u2 ∈ U, γ ∈ R. (84)

Then there exists a pair (λ, µ) ∈ (R+ × V ∗)\{0} such that for the Lagrange function
to the problem (83), that is defined by the equality

Λ(u, y, λ, µ) = λI(u, y) + 〈µ, F (u, y)〉V ∗;V , (85)

we have 〈
Λ′y(u0, y0, λ, µ), h

〉
Y ∗,Y

= 0, ∀h ∈ Y, (86)

Λ(u, y0, λ, µ)− Λ(u0, y0, λ, µ) ≥ 0, ∀u ∈ U∂ . (87)

Moreover, if ImF ′y(u0, y0) = V , then we can assume that λ = 1 in (86)–(87).

In order to derive the optimality conditions to OCP (31)–(33), we begin with the
following result.

Lemma 6.1. Let u ∈ Aad be given control, and let y be any element of H1
0 (Ω).

Then the mapping Aε,k,u : H1
0 (Ω)→ H−1(Ω) given by the rule

y 7→ Aε,k,u(y) = −div

(
u
(
ε+ Fk

(
|∇y|2

)) p−2
2 ∇y

)
− div

(
Akskew∇y

)
is Fréchet differentiable at y for all ε > 0 and k ∈ N, its Fréchet derivative

(Aε,k,u)
′
F ∈ L

(
H1

0 (Ω), H−1(Ω)
)

is well defined on H1
0 (Ω) and takes the following implicit form:

(Aε,k,u(y))
′
F [h] = −div

(
u(ε+ Fk

(
|∇y|2

)
)

p−2
2 ∇h

)
−(p−2)div

(
u(ε+ Fk

(
|∇y|2

)
)

p−4
2 F ′k

(
|∇y|2

)
(∇y,∇h)RN ∇y

)
−div

(
Akskew∇h

)
.

(88)

Proof. To begin with, we note that for every u ∈ Aad, k ∈ N, and ε > 0, the
mapping y 7→ Aε,k,u(y) is bounded as an operator acting from H1

0 (Ω) in H−1(Ω)
(see Proposition 4.1). Let y, h ∈ H1

0 (Ω) be arbitrary distributions. Let us consider
the vector-valued function

g(t) := (ε+ Fk
(
|∇y + t∇h|2

)
)

p−2
2 (∇y + t∇h) +Akskew(∇y + t∇h) (89)
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Since this function is continuously differentiable and

g′(t) = Akskew∇h+ (ε+ Fk
(
|∇y + t∇h|2

)
)

p−2
2 ∇h+ (p− 2)×

× (ε+ Fk
(
|∇y + t∇h|2

)
)

p−4
2 F ′k

(
|∇y + t∇h|2

)
(∇y + t∇h,∇h)RN (∇y + t∇h) .

It follows that the mapping y 7→ Aε,k,u(y) has a Gâteaux derivative

(Aε,k,u(y))
′
G [h] = −div

(
u(ε+ Fk

(
|∇y|2

)
)

p−2
2 ∇h

)
−(p−2)div

(
u(ε+ Fk

(
|∇y|2

)
)

p−4
2 F ′k

(
|∇y|2

)
(∇y,∇h)RN ∇y

)
−div

(
Akskew∇h

)
,

(90)

and this derivative satisfies the following relation

lim
λ→+0

∥∥∥Aε,k,u(y + λh)−Aε,k,u(y)

λ
− (Aε,k,u(y))

′
G [h]

∥∥∥
H−1(Ω)

= 0.

As follows from (90), the Gâteaux derivative (Aε,k,u(y))
′
G is well defined in any

neighborhood of a given point y ∈ H1
0 (Ω) and is continuous at this point (for the

technical details we refer to [1]). As a result, the Gâteaux derivative implies the
existence of the Fréchet derivative and these derivatives coincide [9].

As an obvious consequence of this result and the fact that Fréchet differentiability
of operator y 7→ Aε,k,u(y) implies the existence of the gradient for the functional
ϕ : H1

0 (Ω)→ R, where

ϕ(y) = 〈Aε,k,u(y), µ〉H−1(Ω);H1
0 (Ω)

=

∫
Ω

u(ε+ Fk
(
|∇y|2

)
)

p−2
2 (∇y,∇µ)RN dx+

∫
Ω

(Akskew∇y,∇µ)RN dx,

we have 〈
ϕ′y(y), h

〉
H−1(Ω);H1

0 (Ω)
=
〈
(Aε,k,u(y))

′
F [h], µ

〉
H−1(Ω);H1

0 (Ω)
,

for all µ ∈ H1
0 (Ω), where (Aε,k,u(y))

′
F [h] is given by (90).

Similarly, for Iε,k(u, ·) : H1
0 (Ω)→ R, we have〈

I ′ε,ky (u, y), h
〉
H−1(Ω);H1

0 (Ω)

= 2

∫
Ω

(y − yd)h dx+ 2

∫
Ω

u
(
ε+ Fk

(
|∇y|2

)) p−2
2 (∇y,∇h)RN dx

+ (p− 2)

∫
Ω

u
(
ε+ Fk

(
|∇y|2

)) p−4
2 F ′k

(
|∇y|2

)
|∇y|2

(
∇y,∇h

)
RN dx.

As a result, we arrive at the following obvious result.

Corollary 2. Let u ∈ Aad, f ∈ L2(Ω;RN ), and yd ∈ L2(Ω) be given distributions.
Then, for arbitrary ε > 0 and k ∈ N, the mapping

y 7→ Λ(u, y, µ) := Iε,k(u, y) +

∫
Ω

u(ε+ Fk
(
|∇y|2

)
)

p−2
2 (∇y,∇µ)RN dx

+

∫
Ω

(Akskew∇y,∇µ)RN dx−
∫

Ω

(f,∇µ)RNdx
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is Fréchet differentiable at any y ∈ H1
0 (Ω) and its gradient Λ′y(u, y, µ) ∈ H−1(Ω)

exists and takes the form:〈
Λ′y(u, y, µ), h

〉
H−1(Ω);H1

0 (Ω)

= 2

∫
Ω

(
y − yd

)
h dx+ 2

∫
Ω

u
(
ε+ Fk

(
|∇y|2

)) p−2
2 (∇y,∇h)RN dx

+ (p− 2)

∫
Ω

u
(
ε+ Fk

(
|∇y|2

)) p−4
2 F ′k

(
|∇y|2

)
|∇y|2

(
∇y,∇h

)
RN dx

+

∫
Ω

u(ε+ Fk
(
|∇y|2

)
)

p−2
2 (∇µ,∇h)RN dx−

∫
Ω

(Akskew∇µ,∇h)RNdx

+ (p− 2)

∫
Ω

u(ε+ Fk
(
|∇y|2

)
)

p−4
2 F ′k

(
|∇y|2

)
(∇y,∇µ)RN

(
∇y,∇h

)
RN dx. (91)

Remark 6.1. In view of the equality (∇y,∇µ)RN ∇y = [∇y ⊗∇y]∇µ, the third
and the last term in (91) can be rewritten as follows

(p− 2)

∫
Ω

u(ε+ Fk
(
|∇y|2

)
)

p−4
2 F ′k

(
|∇y|2

) (
[∇y ⊗∇y]∇y,∇h

)
RN

dx,

(p− 2)

∫
Ω

u(ε+ Fk
(
|∇y|2

)
)

p−4
2 F ′k

(
|∇y|2

) (
[∇y ⊗∇y]∇µ,∇h

)
RN

dx.

Hence, using the notion of identity matrix IN := diag (1, . . . , 1) ∈ L(RN ;RN ), we
have〈

Λ′y(u, y, µ), h
〉
H−1(Ω);H1

0 (Ω)
= 2

∫
Ω

(
y − yd

)
h dx

+

∫
Ω

ρε,k(u, y) (Bε,k(y)∇y,∇h)RN dx+

∫
Ω

ρε,k(u, y) (Cε,k(y)∇µ,∇h)RN dx (92)

where the matrices Bε,k(y), Cε,k(y) ∈ L(RN ,RN ) and the scalar function ρε,k(u, y)
are defined as follows

Bε,k(y) =

(
2IN + (p− 2)

F ′k
(
|∇y|2

)
ε+ Fk (|∇y|2)

[∇y ⊗∇y]

)
, (93)

Cε,k(y) =

(
IN + (p− 2)

F ′k
(
|∇y|2

)
ε+ Fk (|∇y|2)

[∇y ⊗∇y]−Akskew

)
, (94)

ρε,k(u, y) = u(ε+ Fk
(
|∇y|2

)
)

p−2
2 . (95)

Therefore,〈
Λ′y(u, y, λ, µ), h

〉
H−1(Ω);H1

0 (Ω) = 2λ (y − yd, h)L2(Ω)

+ 〈−div (ρε,k(u, y)Bε,k(y)∇y) , h〉H−1(Ω);H1
0 (Ω)

+ 〈−div (ρε,k(u, y)Cε,k(y)∇µ) , h〉H−1(Ω);H1
0 (Ω) . (96)

We note that the matrices Bε,k(y), Cε,k(y) and the scalar function ρε,k(u, y),
given by (94)–(95), possess the following properties (see also (34)):

Bε,k(u, y) ∈ L∞(Ω;SNsym), Cε,k(u, y) ∈ L∞(Ω;RN ); (97)

2|η|2 ≤ (η,Bε,k(y)η)RN ≤ p δ∗|η|2 a.e. in Ω, ∀ η ∈ RN ; (98)

|η|2 ≤ (η, Cε,k(y)η)RN ≤ (p− 1) δ∗|η|2 a.e. in Ω, ∀ η ∈ RN ; (99)

ρε,k(u, y) ∈ L∞(Ω), and ρε,k(y) ≥ ε
p−2

2 α > 0. (100)

Indeed, properties (97), (98) and (99) follow from (94) and definition of the
C1(R+)-function Fk : R+ → R+ (here, F ′k

(
|∇y|2

)
= 0 a.e. on the set Ωk(y). As
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for the relation (100), it follows from

ε
p−2

2 α ≤ ρε,k(u, y) ≤ β(ε+ k2 + 1)
p−2

2 , ∀u ∈ Aad, ∀ y ∈ H1
0 (Ω). (101)

To prove the property (98) ( and (99) by analogy), it is enough to take into account
the definition of the class of admissible controls Aad and the following chain of
estimates

2|η|2 ≤ 2 (η, Iη)RN ≤ 2 (η, Iη)RN + (p− 2)F ′k
(
|∇y|2

)( ∇y√
ε+ Fk (|∇y|2)

, η

)2

RN

= (η,Bε,k(y)η)RN ≤ 2|η|2 + (p− 2)F ′k
(
|∇y|2

) ∣∣∣∣∣ ∇y√
ε+ Fk (|∇y|2)

∣∣∣∣∣
2

|η|2 ≤ p δ∗|η|2.

As a result, for every v ∈ H1
0 (Ω), we have

‖v‖2H1
0 (Ω) :=

∫
Ω

|∇v|2 dx ≤ α−1ε
2−p

2

∫
Ω

u
(
ε+ Fk

(
|∇y|2

) ) p−2
2 |∇v|2 dx

≤ α−1ε
2−p

2

∫
Ω

ρε,k(u, y) (∇v, Cε,k(y)∇v)RN dx

by (99), (101), and Friedrich’s inequality

≤ α−1ε
2−p

2 β(ε+ k2 + 1)
p−2

2 (p− 1)δ∗
∫

Ω

|∇v|2 dx = C(k, ε)‖v‖2H1
0 (Ω). (102)

We are now in a position to establish the main result of this section.

Theorem 6.2. For given ε > 0, k ∈ N, f ∈ L2(Ω;RN ), and yd ∈ L2(Ω), let
(u0
ε,k, y

0
ε,k) ∈ Ξε,k be an optimal pair to the perturbed problem (31)–(33). Then there

exists a distribution µε,k ∈ H1
0 (Ω) such that the triplet (u0

ε,k, y
0
ε,k, µε,k) satisfies the

following Euler-Lagrange system to the problem (31)–(33)

−div
(
ρε,k(u0

ε,k, y
0
ε,k)∇y0

ε,k

)
− div

(
Akskewy

0
ε,k

)
= −divf in Ω,

y0
ε,k = 0 on ∂Ω,

 (103)

−div
(
ρε,k(u0

ε,k, y
0
ε,k)Cε,k(y0

ε,k)∇µε,k
)

+ div
(
Akskew∇µε,k

)
= 2

(
yd − y0

ε,k

)
− div

(
ρε,k(u0

ε,k, y
0
ε,k)Bε,k(y0

ε,k)∇y0
ε,k

)
in Ω,

µε,k = 0 on ∂Ω,

 (104)

∫
Ω

ρε,k(û−u0
ε,k, y

0
ε,k)

(
∇y0

ε,k,∇µε,k
)
RN dx

+

∫
Ω

ρε,k(û− u0
ε,k, y

0
ε,k)|∇y0

ε,k|2 dx ≥ 0, ∀ û ∈ Aad.

 (105)

Proof. To deduce relations (103)–(105), we show that all assumptions of Theo-
rem 6.1 hold true. For given ε > 0 and k ∈ N, we set:

Y = H1
0 (Ω), V = H−1(Ω), U = BV (Ω), U∂ = Aad, (106)

and F (u, y) = Aε,k,u(y)− divf. (107)

As properties (97)–(100) indicate, the bilinear form aε,k : H1
0 (Ω) × H1

0 (Ω) → R,
where

aε,k[z, v] :=

∫
Ω

ρε,k(u0
ε,k, y

0
ε,k)

(
∇z, Cε,k(y0

ε,k)∇v
)
RN dx−

∫
Ω

(Akskew∇z,∇v)RN dx,
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satisfies all conditions of the Lax-Milgram theorem. Hence, the boundary value
problem

−div
(
ρε,k(u0

ε,k, y
0
ε,k)Cε,k(y0

ε,k)∇µ
)

+ div
(
Akskew∇µ

)
= g in Ω, µ = 0 on ∂Ω

admits a unique solution µ ∈ H1
0 (Ω) for every g ∈ H−1

0 (Ω). Following Lemma 6.1
and representation (93)–(95), we conclude that ImF ′y(u0

ε,k, y
0
ε,k) = V . Moreover,

the convexity of the function u 7→ I(u, y) and continuity of the mapping u 7→
F (u, y) : U → V together with its affine property (84) are obvious and immediately
follow from the choice rules (106)–(107). It remains to note that the continuous
differentiability of the mappings y 7→ I(u, y) and y 7→ F (u, y) for all y ∈ O(y0) is
guaranteed by Lemma 6.1 and its Corollary 2. Thus, all assumptions of Theorem 6.1
are satisfied.

Following these observations and taking into account that, for each ε > 0 and
k ∈ N, the mapping y 7→ Aε,k,u(y) acting from H1

0 (Ω) to H−1(Ω) is bounded (see
Proposition 4.1), we can define the Lagrangian to regularized OCP (31)–(33) by the
rule (85) with λ = 1, i.e.

Λ(u, y, µ) :=

∫
Ω

u(ε+ Fk
(
|∇y|2

)
)

p−2
2 (∇y,∇µ)RN dx

+

∫
Ω

u(ε+ Fk
(
|∇y|2

)
)

p−2
2 |∇y|2 dx+

∫
Ω

(y − yd)2 dx

+

∫
Ω

(
Akskew∇y,∇µ

)
RN dx−

∫
Ω

(f,∇µ)RN dx, (108)

where µ ∈ H1
0 (Ω) \ {0} is a Lagrange multiplier.

Then, by Theorem 6.1, there exists a distribution µ ∈ H1
0 (Ω) = V ∗ such that

the Lagrange function Λ satisfies relations (86) and (87). Moreover, in view of
representation (96), equality (86) takes the form (104). To conclude the proof, it
remains to note that inequality (87) coincides with (105).
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