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Abstract

Context: Software development effort estimation is a crucial manage-
ment task that critically depends on the adopted size measure. Several Func-
tional Size Measurement (FSM) methods have been proposed. COSMIC is
considered a 2nd generation FSM method, to differentiate it from Function
Point Analysis (FPA) and its variants, considered as 1st generation ones. In
the context of Web applications, few investigations have been performed to
compare the effectiveness of the two generations. Software companies could
benefit from this analysis to evaluate if it is worth to migrate from a 1st

generation method to a 2nd one.
Objective: The main goal of the paper is to empirically investigate if COS-
MIC is more effective than FPA for Web effort estimation. Since software
companies using FPA cannot build an estimation model based on COSMIC
as long as they do not have enough COSMIC data, the second goal of the
paper is to investigate if conversion equations can be exploited to support
the migration from FPA to COSMIC.
Method: Two empirical studies have been carried out by employing an
industrial data set. The first one compared the effort prediction accuracy
obtained with Function Points (FPs) and COSMIC, using two estimation
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techniques (Simple Linear Regression and Case-Based Reasoning). The sec-
ond study assessed the effectiveness of a two-step strategy that first exploits
a conversion equation to transform historical FPs data into COSMIC, and
then builds a new prediction model based on those estimated COSMIC sizes.
Results: The first study revealed that, on our data set, COSMIC was sig-
nificantly more accurate than FPs in estimating the development effort. The
second study revealed that the effectiveness of the analyzed two-step process
critically depends on the employed conversion equation.
Conclusion: For Web effort estimation COSMIC can be significantly more
effective than FPA. Nevertheless, additional research must be conducted to
identify suitable conversion equations so that the two-step strategy can be
effectively employed for a smooth migration from FPA to COSMIC.

Keywords: Web effort estimation; Functional Size measures; COSMIC;
IFPUG Function Point Analysis

1. Introduction

A crucial task for software project management is to accurately estimate
the effort required to develop an application, since this estimate is usually a
key factor for making a bid, planning the development activities, allocating
resources adequately, and so on. Indeed, development effort, meant as the
work carried out by software practitioners, is the dominant project cost, being
also the most difficult to estimate and control. Significant over- or under-
estimates can be very expensive and deleterious for the competitiveness of a
software company [1].

FSM methods are meant to measure the software size by quantifying the
”functionality” provided to the users. In particular, the Function Point Anal-
ysis (FPA) was the first FSM method, defined in 1979 [2]. Since then, several
variants have been proposed (e.g., MarkII and NESMA) with the aim of im-
proving the size measurement or extending the applicability domains [3]. As
a consequence, FSM methods are nowadays widely applied in the industrial
field for sizing software systems and then using the obtained functional size
as independent variable in estimation models. It is worth noting that all
the above methods fall in the 1st generation of FSM methods, distinguishing
them from COSMIC, which is considered a 2nd generation FSM method, due
to several specific characteristics. In particular, COSMIC was the first FSM
approach conceived to comply to the standard ISO/IEC14143/1 [4]. It is
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based on fundamental principles of software engineering and measurement
theory, and it was developed to be suitable for a broader range of application
domains [5].

In the context of Web applications, few investigations have been per-
formed to analyze and assess the use of FPA (e.g., [6][7][8]). A few studies
have also been carried out on the use of COSMIC for sizing Web applications
and estimating development effort [9][10][11][12][13]. However, no study com-
pared the effectiveness of using COSMIC with respect to the use of FPA for
Web effort estimation. Moreover, only few studies were based on industrial
experiences, also due to the lack of suitable data sets including information
about both COSMIC and FPA sizes, and effort data. Thus, there is the need
for more empirical studies in this context that can support software compa-
nies in the choice of one of these measurement methods. A possible empirical
evidence that COSMIC is more effective than FPA for effort estimation could
motivate those software companies that usually employ FPA to migrate to
COSMIC. It is evident that the migration from the 1st generation measure-
ment methods to the 2nd generation requires some additional costs. Indeed,
not only it is necessary to acquire new expertise within the company, but
there is also the need to compute again the size of the applications measured
in the past with FPA, in order to use them to build new effort estimation
models based on COSMIC [14][15] or for other purposes (e.g., productivity
benchmarking).

These issues motivated our investigation. Thus, the main aim of this
work is to assess whether COSMIC is more effective than FPA for the effort
estimation of Web applications. To this end, we investigated the following
research question:

RQ1a Is the COSMIC measure significantly better than FPs for estimat-
ing Web application development effort by using Simple Linear
Regression and Case Based Reasoning?

In the case we have indications that size in terms of COSMIC is more
informative than the size in terms of FPs, it would be interesting to highlight
which characteristics contribute more in such information [16]. Since for each
application we have data about the Base Functional Components (BFCs)
that give cumulatively the COSMIC size and FP sizes, we employed them
to investigate which BFCs are more informative for predicting the effort. To
this end, we investigated the following research question:
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RQ1b Which COSMIC and FP BFCs are significant in estimating Web
application development effort?

To answer RQ1a and RQ1b we performed an empirical study using data
from 25 industrial Web applications. In particular, for RQ1a we employed
two widely and successfully used techniques [17] for building effort estima-
tion models, namely Simple Linear Regression (SLR), that is a model-based
approach, and Case-Based Reasoning (CBR), that is a Machine Learning-
based solution, for predicting the development effort1. On the other hand,
to answer RQ1b, we verified the correlation between each BFC and the effort
and we have analyzed the distribution of the BFCs with respect to the final
size.

A positive answer to the first research question might motivate software
companies to migrate from FPA to COSMIC for sizing new Web applications,
but also raises the question on how to manage such a transition. Indeed, a
company would be interested in how to start using COSMIC for effort esti-
mation having only an internal database of past project measured with FPA,
thus without any suitable estimation model for the new measure. The sim-
plest strategy to estimate the effort of new applications, until there is not
enough historical data based on COSMIC, is to remeasure the past projects
with this method, but this requires a lot of time and effort and in soma cases
it cannot be possible due to the lack of appropriate information. Another
solution could be to exploit a (linear or non-linear) conversion equation pro-
posed in the literature to obtain COSMIC sizes from the old FPs ones [14].
This allows the company to exploit its historical FPs data using a two-step
estimation process (2SEP from here on) for building effort estimation models
as shown in Figure 1. In more details, the first step consists of applying a
conversion equation to each project in the historical data set, to get an es-
timated COSMIC size starting from the FP one. This gives to the software
company a new historical data set based on the estimated COSMIC. In the
second step, it is possible to exploit this data set and SLR (or another esti-
mation technique) to build a COSMIC based effort estimation model. This
model can be used to predict the effort of the new applications, now sized

1Notice that we did not take into account other estimation methods, e.g., Support
Vector Regression [18] [19], Search-based approaches [20], and Web-COBRA [10], or com-
bination of techniques, e.g., [21], since our focus was to compare FSM methods rather
than specific techniques.
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with COSMIC.
We are aware of the possibility that effort estimations based on estimated

sizes can be less accurate than the ones based on measured sizes. A company
would be interested in using 2SEP for a smooth migration if the obtained
effort predictions have an accuracy at least not significantly worse than that
obtained still using FPA. So, to analyze the effectiveness of 2SEP we inves-
tigated the following research question:

RQ2a Is the Web effort estimation accuracy obtained employing 2SEP,
with (linear and non-linear) external conversion equations, not
significantly worse than the accuracy achieved by exploiting FPs
in models built with SLR?

It is worth noting that another strategy for a software company could
be to remeasure a sample of projects with COSMIC and use that subset
to build an internal conversion equation that can be exploited in the first
step of 2SEP to get an estimated COSMIC size for all the other projects of
the historical data set. Nevertheless, this approach requires the extra effort
to remeasure in terms of COSMIC at least a sample of projects. In the
present paper we investigated also the effectiveness of 2SEP using conversion
equations built on a sample of the 25 projects by analyzing how good was
effort estimation using such company-specific equations. To this end, we
investigated the following research question:

RQ2b Is the Web effort estimation accuracy obtained employing 2SEP,
with (linear and non-linear) internal conversion equations, not
significantly worse than the accuracy achieved by exploiting FPs
in models built with SLR?

To answer RQ2a and RQ2b we performed a second empirical study em-
ploying the same data set of 25 Web applications used in the first one, some
external conversion equations and the internal conversion equations built
considering a small sample of Web applications. To the best of our knowl-
edge, the previous studies (e.g., [14] [22] [23]) investigating the conversion
from FPs to COSMIC sizes focused only on showing that it is possible to
build conversion equations, while the present study is the first that assesses
the effectiveness of the sizes obtained using some conversion equations for
effort estimation purposes.

The remainder of the paper is organized as follows. In Section 2 we
briefly describe the FSM methods employed in our study, namely FPA and
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Figure 1: The two-step process for building effort estimation models (2SEP).

COSMIC, and then we present related work on the use of FPA and COSMIC
for Web effort estimation. In Sections 3 and 4 we present the two performed
empirical studies. Threats to validity of both empirical studies are discussed
in Section 5, while Section 6 concludes the paper giving some final remarks.

2. Background

In the following, we provide a brief history of FSM methods and recall
the main notions of FPA and COSMIC.

2.1. A brief history of FSM methods

Software size measures can be grouped in two main families: the Func-
tional and Dimensional ones. A Functional Size Measure is defined as “a
size of software derived by quantifying the Functional User Requirements
(FURs)” [4]. Thus, FSMs are particularly suitable to be applied in the early
phases of the development lifecycle, when only FURs are available, being
the typical choice for tasks such as estimating a project development effort.
Moreover, they are independent from the adopted technologies, allowing com-
parisons among projects developed with different platforms, solutions, and so
on. Dimensional sizes basically count some structural properties of a software
artifact, such as LOCs, number of Web pages, and so on. They can be ap-
plied only after the artifact has been developed, they are strongly dependent
on the adopted technological solutions, and often a standard counting pro-
cedure is missing [24, 25]. The first FSM method proposed in the literature
was the FPA, introduced by Albrecht in 1979 [2] as a measure (the Function
Points) to overcome the limitations of LOCs, by quantifying the ”‘function-
ality”’ provided by a software, from the end-user point of view. Indeed, FPA
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can be seen as a structured method to perform a functional decomposition
of the system. In this way, its size can be considered as the (weighted) sum
of unitary elements (its FURs), that can be measured more easily than the
whole system. FPA has evolved in many different ways. The original formu-
lation was extended by Albrecht and Gaffney [26]. Then, since 1986 FPA is
managed by the International Function Point Users Group (IFPUG) [27] and
it is named IFPUG FPA (IFPUG, for short), which has been standardized
by ISO as ISO/IEC 20926:2009. Nevertheless, since FPA was designed from
the experience gained by Albrecht on the development of Management Infor-
mation Systems, the applicability of this method to other software domains
has been highly debated (e.g., [28, 29]). As a consequence, many variants
of FPA were defined for specific domains, such as MkII Function Point for
data-rich business applications, or Full Function Point (FFP) method for
embedded and control systems [3]. Since these methods are all based on the
original formulation by Albrecht, they are also known as 1st generation FSM
methods.

In the middle of the 90’s, some researchers highlighted important issues
in the foundations of FPA against the measurement theory. Indeed, in many
steps of the FPA process an improper use of different types of scales was
highlighted. Moreover, how the ”‘weights”’ were defined and used in the
method has been object of discussion in the literature (e.g., [30, 31]).

To overcome these issues, and also to define a broader measurement
framework able to tackle new IT challenges, at the end of the 90’s a group of
experienced software measurers formed the Common Software Measurement
International Consortium (COSMIC), whose result was the COSMIC-FFP
method, which is considered the first “2nd generation FSM method”. To
highlight this concept, the first version of the method was the 2.0. Many im-
portant refinements were introduced in 2007 in the version 3.0, named simply
COSMIC, and standardized as ISO/IEC 19761:2011. The current version of
COSMIC is 4.0.1, introduced in April 2015.

In the following we describe the main concepts underlying the IFPUG
and the COSMIC methods. Among the 1st generation methods, we analyze
IFPUG since it is the most widely used by software practitioners.

2.2. The IFPUG method

IFPUG sizes an application starting from its FURs (or by other software
artifacts that can be abstracted in terms of FURs).
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In particular, to identify the set of “features” provided by the software,
each FUR is functionally decomposed into Base Functional Components
(BFC), and each BFC is categorized into one of five Data or Transactional
BFC Types. The Data functions can be defined as follows:

• Internal Logical Files (ILF) are logical, persistent entities maintained
by the application to store information of interest.

• External Interface Files (EIF) are logical, persistent entities that are
referenced by the application, but are maintained by another software
application.

The Transactional ones are defined as follows:

• External Inputs (EI) are logical, elementary business processes that
cross into the application boundary to maintain the data on an Internal
Logical File.

• External Outputs (EO) are logical, elementary business processes that
result in data leaving the application boundary to meet a user require-
ments (e.g., reports, screens).

• External Inquires (EQ) are logical, elementary business processes that
consist of a data trigger followed by a retrieval of data that leaves the
application boundary (e.g., browsing of data).

Once the BFCs have been identified, the “complexity” of each BFC is as-
sessed. This step depends on the kind of function type and requires the
identification of further attributes (such as the number of data fields to be
processed). Once derived this information, a table provided in the IFPUG
method [27] specifies the complexity of each function, in terms of Unadjusted
Function Points (UFP).

The sum of all these UFPs gives the functional size of the application.
Subsequently, a Value Adjustment Factor (VAF) can be computed to take
into account some non-functional requirements, such as Performances, Reusabil-
ity, and so on. The final size of the application in terms of Function Points
is given by FP = UFP · V AF .

For more details about the application of the IFPUG method, readers
may refer to the counting manual [27].
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2.3. The COSMIC method

The basic idea underlying the COSMIC method is that, for many types of
software, most of the development efforts are devoted to handle data move-
ments from/to persistent storage and users. Thus, the number of these data
movements can provide a meaningful sight of the system size [5]. As a con-
sequence, the measurement process consists of three phases:

1. The Measurement Strategy phase is meant to define the purpose of
the measurement, the scope (i.e. the set of FURs to be included in
the measurement), the functional users of each piece of software (i.e.
the senders and intended recipients of data to/from the software to be
measured), and the level of granularity of the available artifacts.

2. The Mapping Phase is a crucial process to express each FUR in the
form required by the COSMIC Generic Software Model. This model,
necessary to identify the key elements of a FUR to be measured , as-
sumes that (I) each FUR can be mapped into a unique functional
process, meant as a cohesive and independently executable set of data
movements, (II) each functional process consists of sub-processes, and
(III) each sub-process may be either a data movement or a data ma-
nipulation. To measure these data movements, three other concepts
have to be identified. A Triggering Event is an action of a functional
user of the piece of software triggering one or more functional processes.
A Data Group is a distinct, non-empty and non-ordered set of data at-
tributes, where each attribute describes a complementary aspect of the
same object of interest. A Data Attribute is the smallest piece of in-
formation, within an identified data group, carrying a meaning from
the perspective of the interested FUR. As depicted in Figure 2, data
movements are defined as follows:

• An Entry (E) moves a data group from a functional user across
the boundary into the functional process where it is required.

• An Exit (X) moves a data group from a functional process across
the boundary to the functional user that requires it.

• A Read (R) moves a data group from persistent storage within
each of the functional process that requires it.

• A Write (W) moves a data group lying inside a functional process
to persistent storage.
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Figure 2: The four types of Data Movements, and their relationship with a Functional
Process [5]

3. The Measurement Phase, where the data movements of each functional
process have to be identified and counted. Each of them is counted as
1 COSMIC Function Point (CFP) that is the COSMIC measurement
unit. Thus, the size of an application within a defined scope is obtained
by summing the sizes of all the functional processes within the scope.

For more details about the COSMIC method, readers are referred to the
COSMIC Measurement Manual [5].

2.4. Related work

In the literature there is a number of studies on the assessment of FPA
and COSMIC methods for effort estimation. However, very few of them
investigate their effectiveness for Web applications. It is worth to mention
that besides Function Points and COSMIC, other size measures (e.g., di-
mensional measures like number of Web pages, media elements, client and
server side scripts, etc.) have been proposed in the literature to be employed
specifically for Web application development effort in combination with sev-
eral estimation techniques [32] [33] [34] [35] [36] [37]. However, since our
focus is on the use of FPA and COSMIC measurement methods, in the fol-
lowing we first report on investigations exploiting FPA (Section 2.4.1) and
then those employing COSMIC (Section 2.4.2), also considering their exten-
sions/adaptions.

We will discuss the main studies proposing conversion models from FPs
into COSMIC in Section 4.1. It is worth noting that the analysis about the
effectiveness of internal vs external conversion equations is related to the
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studies investigating the use of cross- vs within-company data sets for effort
estimation. This topic has been widely analyzed in the last years producing
different results (see e.g., [38]).

2.4.1. Using FPA and its extensions for Web effort estimation

FPA was employed by Ruhe et al. [39] to size 12 Web applications, such
as B2B, intranet or financial, developed between 1998 and 2002. The aim
was to compare the effort estimations obtained in terms of FPA with those
achieved exploiting a size measure introduced specifically for Web applica-
tions, namely Web Objects [40]. Web Objects method represents an exten-
sion of FPA provided by Reifer who added four new Web-related components
to the five function types of FPA, namely Multimedia Files, Web Building
Blocks, Scripts, and Links. The results reported by Ruhe et al. [39] showed
that the Web Objects-based linear regression model provided more accurate
estimates than those achieved using Function Points. Successively, Web Ob-
jects measure was also used as size metric in the context of Web-COBRA [41],
obtaining better results than those achieved with linear regression. Observe
that Web-COBRA is a composite estimation method obtained by adapting
COBRA [42] to be applied in the context of Web applications. The use of
Web Objects for effort estimation was also exploited in other studies [11]
[43]. In the first study [11], Web Objects were compared against COSMIC,
by considering linear regression as estimation method, and the analysis of a
data set of 15 Web applications revealed that the estimates achieved with a
COSMIC based model were better. The second study [43] can be considered
an extension of the previous one [11], by employing further applications in
the data set, a further estimation technique (i.e., CBR), and exploring a dif-
ferent validation method. In that study, Web Objects were also compared
against FPs. The results confirmed that Web Objects provided better results
than FPs.

Other works proposed adaptations/extensions of FPA to size Web appli-
cations and estimate the development effort. In particular, the OOmFPWeb
method [7] maps the FPs concepts into the primitives used in the conceptual
modeling phase of OOWS, which is a method for producing software for the
Web [44]. More recently, Abrahão et al. have also proposed a model-driven
functional size measurement procedure, named OO-HFP, for Web applica-
tions developed using the OO-H method [45]. The approach has been vali-
dated by comparing its estimation accuracy with the one achieved by using
the set of measures defined by Mendes et al. for the Tukutuku database
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[32]. The results of the empirical study were promising since the obtained
effort estimates were comparable with those obtained by using the Tukutuku
measures, thus revealing that the OO-HFP approach can be suitable to es-
timate the development effort of model-driven Web applications. Recently,
the accuracy of the estimates achieved with OO-HFP has been compared
with the accuracy of estimates obtained by employing a set of design mea-
sures defined on OO-H conceptual models [46]. By employing 30 OO-H Web
applications the analysis revealed that the linear regression model based on
two OO-H design measures provided significantly better estimates than the
linear model based on the OO-HFP measure, thus confirming that FPA can
fail to capture some specific features of Web applications [47] [6].

Another FPA based approach able to automatically obtain a size estima-
tion of Web applications from conceptual models produced with a model-
driven development method has been provided by Fraternali et al. [8]. In
particular, the software models were obtained by using WebML, a UML
profile proposed to model Web applications [48]. An initial validation of
the approach was performed by comparing the FPs counting computed au-
tomatically with the result achieved by two skilled analysts who manually
sized the applications. The analysis revealed that the average error between
the manual and the automated counting is in the range of the average error
reported for the FPs counting of the two analysts [8].

2.4.2. Using COSMIC and its extensions for Web effort estimation

The first investigations of COSMIC were presented in two studies that
exploited sets of Web applications developed by students [12] [9], obtaining
different and contrasting results. Mendes et al. applied the COSMIC to 37
Web hypermedia systems developed by postgraduate and MSc students of
the University of Auckland (NZ) [12]. However, the derived linear regression
model did not present reasonable prediction accuracy, and replications of the
empirical study were highly recommended. The second study [9] employed
information on 44 Web applications (mainly Web portals, e-commerce sites,
etc...) developed by academic students of University of Salerno (IT) and the
built linear regression models provided encouraging results. However, the
scientific literature has often debated on the industrial relevance of results
coming from empirical studies with students [49] [50].

Anyhow, two other studies exploiting industrial data sets were conducted
in the past to verify the effectiveness of the COSMIC measure as indicator of
development effort when used in combination with linear regression [11] [13],
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obtaining encouraging results that motivated the investigation we present in
this paper. In the first study [11], a preliminary investigation of COSMIC
based on 19 Web applications developed by an Italian software company was
performed and good results were obtained. On the other hand, the main
research question addressed by Di Martino and Gravino [13] was to analyze
differences in the results between an academic and an industrial data sets,
using previously used data sets [9] [11].

Adaptations of COSMIC have been also provided to apply the method in
specific contexts. In particular, a COSMIC-based size measurement proce-
dure, named OO-HCFP, for sizing model-driven Web applications developed
using the OO-H method has been presented by Abrahão et al. [51]. Several
mapping and measurement rules have been devised for automatically deriv-
ing the size measure from the OO-H conceptual models. Moreover, Buglione
et al. [16] investigated whether considering the COSMIC data movements
E, X, R, and W rather than the total functional size improves effort estima-
tion accuracy of models built with linear regression. The results showed that
the estimates obtained by considering the total functional size were better
(even if not statistically significant) than those achieved in terms of single
data movements. With the aim to provide early effort estimations for Web
applications in terms of COSMIC, De Marco et al. [52] investigated to what
extend some COSMIC-based approximate can be employed. In particular,
the number of COSMIC Functional Processes and the Average Functional
Process approach proposed by the COSMIC method documentation were
considered to obtain size approximations [53]. The results revealed that the
first counting provides estimations better than the Average Functional Pro-
cess approach but worse than the standard COSMIC method. De Marco et
al. [52] exploited the same data employed in the current investigation (note
that some summary measures were incorrectly reported in [52], this explains
the difference with those reported in this paper (i.e., Table 1), please refer
to the data reported in the current paper). As a consequence the effort esti-
mation model based on COSMIC measure is the same. In any case, the goal
of that investigation was completely different. Indeed, they investigated to
what extend some COSMIC-based approximations (e.g., the Average Func-
tional Process approach proposed by the COSMIC method documentation)
can be employed.

The analysis reported in the present paper differs in several aspects from
those of the above papers. First of all, the focus is on the comparison of two
functional size measurement approaches, i.e., FPA and COSMIC that are
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representative of 1st and 2nd generation methods, and on the assessment of a
two step approach for migrating from FPs to COSMIC. Moreover the design
of the empirical study is different. Indeed, in the present paper we employed
a further estimation technique, i.e., CBR, and further evaluation criteria and
statistical analyses, i.e., boxplot of residuals and z and effect size.

3. The First Empirical Study: Comparing COSMIC and FPA for
effort estimation

This section presents the empirical study we carried out to assess and
compare COSMIC and IFPUG2 measures for Web effort estimation.

In the following we first present the design of the study (Section 3.1), then
we report the achieved results (Section 3.2). The discussion of the results
(Section 3.3) concludes the section.

3.1. Design of the study

3.1.1. Data set

The data for our empirical study was provided by an Italian medium-
sized software company, whose core business is the development of enterprise
information systems, mainly for local and central government. Among its
clients, there are health organizations, research centers, industries, and other
public institutions. The company is specialized in the design, development,
and management of solutions for Web portals, enterprise intranet/extranet
applications (such as Content Management Systems, e-commerce, work-flow
managers, etc.), and Geographical Information Systems. It has about fifty
employees, it is certified ISO 9001:2000, and it is also a certified partner of
Microsoft, Oracle, and ESRI.

This company provided us information on 25 Web applications they devel-
oped. In particular, this set includes e-government, e-banking, Web portals,
and Intranet applications. All the projects were developed with SUN J2EE or
Microsoft .NET technologies. Oracle has been the most commonly adopted
DBMS, but also SQL Server, Access and MySQL were employed in some of
these projects.

2We employed the FPA formulated by IFPUG and in the rest of the paper we will refer
to this method as FPA or IFPUG
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As for the collection of the information, the software company used
timesheets to keep track of the Web application development effort. In par-
ticular, each team member annotated the information about his/her devel-
opment effort on each project every day, and weekly each project manager
stored the sum of the efforts for the team. Furthermore, to collect all the
significant information to calculate the values of the size measure in terms
of COSMIC, we defined a template to be filled in by the project managers.
All the project managers were trained on the use of the questionnaires. One
of the authors analyzed the filled templates and the analysis and design doc-
uments, in order to cross-check the provided information. The same author
calculated the values of the size measure. As for the calculation of the size
in terms of IFPUG, the company has always applied this FSM method to
measure its past applications. Further details on how these data have been
collected are discussed in Section 5.

Table 1 shows some summary statistics related to the 25 Web applica-
tions employed in our study3. The variables are EFF, i.e., the actual effort
expressed in terms of person-hours, CFP, expressed in terms of number of
COSMIC Function Points, and FP, expressed in terms of number of Function
Points. Furthermore, we have reported the variables denoting the BFCs for
COSMIC (Entry, Exit, Read, and Write), expressed in terms of number of
COSMIC Function Points, and Function Points (i.e., EI, EO, EQ, ILF, and
EIF), expressed in terms of number of unadjusted Function Points.

Figure 3 shows the boxplots of the distributions of these variables. We can
observe that the boxplot of FP has one outlier and the box length and tails
are more skewed than those of the boxplot of CFP. The figure also highlights
that EFF has a different distribution with respect to CFP and FP. As for
the single BFCs of COSMIC, we can note that the boxplots for Read and
Exit are more skewed than the boxplots of Entry and Write. They have no
outliers. Regarding the single BFCs of Function Points, the boxplots for EQ,
ILF, and EIF have outliers and are more skewed than the boxplots of EI and
EO.

3Raw data cannot be revealed because of a Non Disclosure Agreement with the software
company.
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Table 1: Descriptive statistics of EFF, CFP, FP, Entry, Exit, Read, Write, EI, EO, EQ,
ILF, and EIF

.

Var Obs Min Max Mean Median Std. Dev.
EFF 25 782 4537 2577 2686 988.14
CFP 25 163 1090 602.04 611 268.47
FP 25 89 915 366.76 304 208.65

Entry 25 31 227 121.7 122 57.07
Exit 25 27 316 122.3 110 71.99
Read 25 90 607 328.8 351 136.04
Write 25 0 120 29.2 20 31.86

EI 25 3 240 86.4 78 66.85
EO 25 24 203 100 94 57.37
EQ 25 21 323 129.2 105 84.83
ILF 25 0 271 40.88 31 61.61
EIF 25 5 142 43.33 32 37.68

3.1.2. Selected estimation methods

In our empirical analysis we employed as estimation techniques SLR, that
is a model-based approach, and CBR, that is a Machine Learning-based solu-
tion, since they have been widely and successfully employed in the industrial
context and in several researches to estimate development effort (see e.g.,
[12] [17] [37] [49] [54] [55] [56]).

SLR allows us to build estimation models to explain the relationship
between the independent variable, denoting the employed size measure, and
the dependent variable, representing the development effort. Thus, SLR
allows us to obtain models of this type:

EFF = a+ b ∗ Size (1)

where EFF is the dependent variable, Size is the independent variable (i.e.,
CFP or FP), b is the coefficient that represents the amount the variable EFF
changes when the variable Size changes 1 unit, and a is the intercept. Once
such a model is obtained, given a new software project for which an effort
estimation is required, the project manager has to size it using the same unit
of measure of the model, and to use this value in the regression equation to
get the effort prediction.

CBR is an alternative solution to SLR. It is a Machine Learning technique
that can be used for classification and regression. In the domain of effort
estimation, it allows us to predict the effort of a new project (target case)
by considering some similar applications previously developed, representing
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Figure 3: The boxplot of EFF (a) and FP, EI, EO, EQ, ILF, EIF, CFP, Entry, Exit, Read,
and Write (b)

the case base (see e.g., [56]). In particular, similarly to SLR, once the new
application is measured in terms of CFP or FP, the “similarity” between the
target case and the other cases is measured, and the most similar past project
(or more than one) is used, possibly with adaptations, to obtain the new effort
estimation. To apply CBR, the project manager has to select an appropriate
similarity function, the number of similar projects (analogies) to consider
for the estimation, and the analogy adaptation strategy for generating the
estimation.

In Sections 3.2.1 and 3.2.2 we provide the information on how we applied
SLR and CBR in our study.

3.1.3. Validation method and evaluation criteria

In our analysis, we carried out an assessment to verify whether or not the
obtained effort predictions are useful estimations of the actual development
effort. To this end, we applied a cross-validation, splitting a data set into
training and validation sets. Training sets are used to build the estimation
models with SLR or to represent the case base when applying CBR, and
validation sets are used to validate the obtained effort predictions. In par-
ticular, we exploited a leave-one-out cross-validation, which means that the
original data set is divided into n=25 different subsets (25 is the size of the
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original data set) of training and validation sets, where each validation set
has just one observation. This validation method is widely used in empirical
studies when dealing with small data sets. Furthermore, a recent study has
shown advantages of leave-one-out cross-validation with respect to K-fold
cross-validation to assess software effort models [57].

Regarding the evaluation criteria, we exploited Absolute Residuals (AR),
i.e., |Actual - Predicted |, where Actual is the actual effort and Predicted
is the estimated effort, and to have a summary measure to accomplish the
comparison among different estimation approaches we employed Median of
AR (MdAR) since it is less sensitive to extreme values with respect the Mean
of AR [58]. We also reported other summary measures, namely MMRE,
MdMRE, Pred(25), that have been widely employed for effort estimation.
However, they are reported only to allow for a comparison with previous
researches published in this context and they are not used for the assessment
of the achieved effort estimations. Indeed, the use of MMRE, and related
measures, has been strongly discouraged in recent simulation studies, showing
that MMRE wrongly prefers a model that consistently underestimates [59].

We also complemented the use of MdAR with the analysis of the box-
plots of z, where z = Predicted

Actual
, and boxplots of the residuals as suggested

by Kitchenham et al. in [60]. Boxplots are widely employed in exploratory
data analysis since they provide a quick visual representation to summarize
the data using five values: median, upper and lower quartiles, minimum and
maximum values, and outliers.

Moreover, we tested the statistical significance of the obtained results
by using absolute residuals, to establish if COSMIC provided significantly
better effort estimations than those achieved using FPA [60]. In particular,
we performed the T-test (and the Wilcoxon signed rank test when absolute
residuals were not normally distributed)[61] to verify the following null hy-
pothesis “the two considered populations of absolute residuals have identical
distributions”.

In order to have also an indication of the practical/managerial signifi-
cance of the results, we verified the effect size. Effect size is a simple way
of quantifying the standardized difference between two groups. It is a good
complement to the tests of statistical significance, since “whereas p-values
reveal whether a finding is statistically significant, effect size indicates prac-
tical significance” [62]. In particular, we employed the Cliffs d non-parametric
effect size measure because it is suitable to compute the magnitude of the
difference when a non parametric test is used [62]. In the empirical software
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engineering field, the magnitude of the effect sizes measured using the Cliffs
d can be classified as follows: negligible (d <0.147), small (0.147 to 0.33),
medium (0.33 to 0.474), and large (d >0.474) [62].

3.2. Results of the empirical study

We first report on the application of COSMIC and FPA in combination
with SLR (Section 3.2.1) to estimate Web application development effort and
then the results obtained using CBR as estimation technique (Section 3.2.2).

3.2.1. Empirical results with SLR

We performed the SLR analysis to build the effort estimation models
by using the data set of 25 Web applications of Table 1. To this end, we
first verified the linear regression assumptions, i.e., the existence of a linear
relationship between the independent variable and the dependent variable
(linearity), the constant variance of the error terms for all the values of
the independent variable (homoscedasticity), the normal distribution of the
error terms (normality), and the statistical independence of the errors, in
particular, no correlation between consecutive errors (independence).

In the following, we report on the analysis carried out to verify these
assumptions. Note that the results of all the performed tests are intended as
statistically significant at α=0.05 (i.e., 95% confidence level).

• Linearity. Figure 4(a) illustrates the scatter plot obtained by consid-
ering EFF and CFP. We can observe that the scatter plot shows a
positive linear relationship between the involved variables. The lin-
ear relationship was also confirmed by the Pearson’s correlation test
(statistic=0.932 with p-value <0.01) [63] and the Spearman’ rho test
(statistic=0.942 with p-value <0.01) [61]. As for FP, from the scat-
ter plot in Figure 4(b) we can observe a positive linear relationship
with the variable EFF. The linear relationship was also confirmed by
the Pearson’s correlation test (statistic=0.782 with p-value <0.01) [63]
and the Spearman’ rho test (statistic=0.8 with p-value <0.01) [61].
These results also allow us to verify that CFP is more monotonously
correlated with EFF than FP.

• Homoscedasticity. From the scatter plot shown in Figure 5 we can ob-
serve that the residuals fall within a horizontal band centered on 0, for
both CFP and FP. However, some outliers may be noted, e.g., observa-
tions 7 and 16 for CFP and observations 7, 20, and 22 for FP. Thus, we
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further investigated the homoscedasticity assumption by performing a
Breush-Pagan Test [64], with the homoscedasticity of the error terms
as null hypothesis. This assumption is verified for the CFP, since the
p-value (0.741) of the statistic (0.110) is greater than 0.05 and therefore
the null hypothesis cannot be rejected. As for the FP, the null hypoth-
esis cannot be rejected since p-value (0.44) of the statistic (0.596) was
greater than 0.05.

• Normality. The analysis of Normal Q-Q plot for CFP in Figure 6(a)
revealed that only some observations were not very close to the straight
line and they should get closer attention (“outliers”). As for FP, the
Normal Q-Q plot in Figure 6(b) was characterized by an S-shaped pat-
tern revealing that there are either too many or two few large errors in
both directions, i.e., the residuals have an excessive kurtosis [65]. Thus,
in order to verify the normality assumption, we also used the Shapiro-
Wilk Test [66], by considering as null hypothesis the normality of error
terms. The results of the test for CFP revealed that the assumption
can be considered to be verified since the p-value (0.389) of the statistic
(0.959) was greater than 0.05 and thus the null hypothesis cannot be
rejected. Differently, for FP the null hypothesis can be rejected since
the p-value (0.022) of the statistic (0.904) was less than 0.05.

• Independence. The uncorrelation of residuals for consecutive errors has
been verified by a Durbin-Watson statistic. For CFP the test provided
a value quite close to 2 (1.543) and p-value (0.109) greater than 0.05,
thus, we can assume that the residuals are uncorrelated. Differently,
in the case of FP the test highlighted minor cases of positive serial
correlation since a value not very close to 2 (1.207) was obtained with
a p-value (0.0128) less than 0.05.

Taking into account the results of the performed analysis to verify linear
regression assumptions (in particular, for the Normality and Independence)
we decided to apply a log transformation to the variables in order to avoid
an unfair comparison between CFP and FP in predicting development effort.
The variables log transformed are denoted as Log(CFP) and Log(FP).

We also verified the presence of influential data points (i.e., extreme val-
ues which might unduly influence the models obtained from the regression
analysis). As suggested in [67], we further analyzed the residuals plot and
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Figure 4: The scatter plot for EFF and CFP (a) and EFF and FP (b), resulting from the
SLR

used Cook’s distance to identify possible influential observations. In partic-
ular, the observations in the training set with a Cook’s distance higher than
4/n (where n represents the total number of observations in the training
set) were removed to test the model stability, by observing the effect of their
removal on the model. If the model coefficients remained stable and the ad-
justed R2 improved, the highly influential projects were retained in the data
analysis. Figure 5(a) suggests that two observations seemed to have a large
residual (i.e., observations 7 and 16). For observation 7, the Cook’s distance
was greater than 4/25, indicating that it was an influential observation, while
for 16 the distance was less than 4/25. To check the model’s stability, a new
model was generated without observation 7. In the new model the indepen-
dent variable remained significant, the adjusted R2 improved a little, and the
coefficient present similar value to the one in the previous model. Thus, the
observation was not removed [67].

We also verified the presence of influential data points for the variable
FP having residuals far from the horizontal band centered on 0 (see Figure
5(b)). This analysis revealed that observation 24 was characterized by a
Cook’s distance greater than 4/25. A new model was generated without
observation 24 in the data set, which presented a coefficient similar to the
one in the previous model and had a better adjusted R2. So, no observation
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Figure 5: The scatter plot for residuals and predicted values for CFP (a) and FP (b),
resulting from the application of SLR

was removed from the data set.
Table 2 shows some statistics about the model obtained with SLR by

considering Log(CFP) as independent variable. A high R2 value (and cor-
responding adjusted R2 value) is an indicator of the goodness of the model,
since it measures the percentage of variation in the dependent variable ex-
plained by the independent variable. Other useful indicators are the F -value
and the corresponding p-value (denoted by Sign. F), whose high and low
values, respectively, denote a high degree of confidence for the prediction.
Moreover, we performed a t-statistic and determined the p- and the t-values
of the coefficient and the intercept in order to evaluate their statistical sig-
nificance. A p-value less than 0.05 indicates that we can reject the null
hypothesis and the variable is a significant predictor with a confidence of
95%. As for the t-value, a variable is significant if the corresponding t-value
is greater than 1.5.

The equation of the regression model obtained for Log(CFP) is:

Log(EFF ) = 2.74 + 0.8 ∗ Log(CFP ) (2)

and when it is transformed back to the original raw data scale we obtain:

EFF = 15.53 ∗ CFP 0.8 (3)
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Figure 6: The Q-Q plot for residuals for CFP (a) and FP (b), resulting from the application
of SLR

Table 2: The results of the SLR analysis with COSMIC on Log(CFP)
Variable Value Std. Err t-value p-value
Coefficient 0.8 0.06 12.64 < 0.01
Intercept 2.74 0.4 6.87 < 0.01

R2 Adjusted R2 Std. Err F Sign. F
0.87 0.87 0.16 159.8 < 0.01

We can observe that the model described by Equation 2 is characterized
by a high R2 value (0.87), a high F value (159.8), and a low p-value (<0.01),
indicating that a prediction is possible with a high degree of confidence (see
Table 2). The t-values and p-values for the corresponding coefficient and
the intercept present values greater than 1.5 and less than 0.05, respectively.
Thus, the predictors can be considered important and significant.

Table 3 shows the results of the application of the SLR by considering
Log(FP) as independent variable. We can observe that the coefficient and the
intercept can be considered accurate and significant as from the t-statistic,
but the R2 and F values are lower than those obtained with Log(CFP).

To evaluate the prediction accuracy of the models obtained with SLR,
we performed the leave-one-out cross-validation, whose results are reported
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Table 3: The results of the SLR analysis with Function Points on Log(FP)
Variable Value Std.Err t-value p-value
Coefficient 0.56 0.12 4.53 <0.01
Intercept 4.47 0.73 6.12 <0.01

R2 Adjusted R2 Std. Err F Sign. F
0.47 0.45 20.55 0.33 <0.01

Table 4: The results of the validation for SLR
Variable MdAR MMRE MdMRE Pred(25)

CFP 180 0.12 0.07 0.92
FP 515 0.29 0.18 0.68

in Table 44. We can observe that the MdAR value achieved with the CFP
based model is more than two times lower than the one obtained with the
FP based model, thus highlighting much better results with COSMIC.

These results are confirmed by the boxplots of residuals and of z shown
in Figure 7. Indeed, even if the boxplot of residuals for CFP has two outliers,
its median is closer to zero. Moreover its box length and tails are less skewed
than those of the boxplot of residuals for FP (see Figure 7(a)). As for boxplots
of z, CFP has a median closer to 1 and again the box length and tails are
less skewed than those of FP (see Figure 7(b)).

This finding is corroborated by the tests on the statistical significance of
the results by using absolute residuals [49] [60]. In particular, the Wilcoxon
test revealed that the estimations obtained with CFP are significantly bet-
ter than those obtained with FP (p-value < 0.01) with a large effect size
(d=0.63). Observe that we applied the Wilcoxon test since the absolute
residuals obtained with CFP were not normally distributed, as highlighted
by the Shapiro test (p-value < 0.01).

3.2.2. Empirical results with CBR

Before applying CBR, we verified which one of the two variables FP and
CFP is more informative for EFF, by considering the correlation between
distance matrices. A high correlation between distances of EFF values and
distances of CFP values can indicate that projects similar according to COS-

4Notice that the original raw data scale models are used to obtain the effort predictions
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Figure 7: The boxplots of residuals (a) and z (b) obtained with SLR

MIC size are similar according to effort. To this end, we applied the Mantel
test [68], which checks the correlation between two distance matrices. It is a
non-parametric test that computes the significance of the correlation through
permutations of the rows and columns of one of the input distance matrices.
The test statistic is the Pearson product-moment correlation coefficient r.
The values for r can fall in the range of -1 to +1, where being close to -1
indicates strong negative correlation and +1 indicates strong positive corre-
lation. An r value of 0 indicates no correlation. In particular, we performed
the Mantel test by considering the null hypothesis that the two matrices,
i.e., the EFF distances and the CFP distances, are unrelated. Similarly, we
performed the test considering as matrices the EFF distances and the FP
distances. For both CFP and FP, the results of the test revealed that we can
reject the null hypothesis that the correlation matrices are unrelated since we
obtained p-values less than 0.05. In the case of EFF and CFP distances, we
obtained r = 0.824, while in the case of EFF and FP distances, the test was
characterized by r=0.579. Thus, the correlation matrix entries are positively
associated and CFP is more informative for EFF than FP.

In order to apply CBR we exploited the tool ANGEL [56] that implements
the Euclidean distance as similarity function using variables normalized be-
tween 0 and 1 and allows users to choose the relevant features/predictors,
the number of analogies, and the analogy adaptation technique for generat-
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ing the estimations. As for the predictors, we used the variables CFP and
FP. The selection of the number of analogies is a key task, since it refers to
the number of similar cases to use for estimating the effort required by the
target case. Since we dealt with a not so large data set, we used 1, 2, and 3
analogies, as suggested in many similar works (see e.g., [49]). To obtain the
estimation once the most similar cases were determined, we employed three
widely adopted adaptation strategies: the mean of k analogies, i.e., simple
average, the inverse distance weighted mean (see e.g., [49] [69]), and the
inverse rank weighted mean (see e.g., [56]). So, performing a leave-one-out
cross-validation, we obtained 25 estimations and the corresponding residuals,
for each selection of the number of analogies and of the analogy adaptation
techniques. Indeed, each estimate was achieved by selecting an observation
from the whole data set of 25 Web applications (in Table 1) as validation set
and employing the remaining observations (i.e., 24) as training set. This was
performed 25 times.

Table 5 shows the results obtained with CBR. We can observe that
the MdAR values achieved with CFP are much better than those achieved
with FP for all the considered configurations. Furthermore, the best result
achieved with CFP (i.e., with k=3 as number of analogies and mean of k
analogies as adaptation strategy) is two times lower than the best result
obtained with FP (i.e., with k=3 as number of analogies and inverse rank
weighted mean as adaptation strategy). Similarly to the SLR results, the
boxplots of residuals and z for CFP have box length and tails less skewed
than those of the boxplots of residuals for FP (see Figure 8(a) and (b)).

These results are corroborated by the tests on the statistical significance
of the results by using absolute residuals [49] [60]. In particular, we com-
pared the absolute residuals achieved with CFP using k=3 as number of
analogies and mean of k analogies as adaptation strategy and the absolute
residuals obtained with FP using k=3 as number of analogies and inverse
rank weighted mean as adaptation strategy. The results of the Wilcoxon test
revealed that the estimations obtained with CFP are significantly better than
those obtained with FP (p-value=0.03) with a small effect size (d=0.19).

Thus, the results with CBR confirm that CFP leads to better effort pre-
dictions than FP.

We can also observe that CBR provided slightly worse results than SLR,
in terms of MdAR (see Tables 4 and 5). This result is confirmed by the anal-
ysis of the boxplots of residuals and z. The statistical analysis performed on
absolute residuals revealed that the difference in the absolute residuals ob-
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Table 5: The results of the validation for CBR
CBR with MdAR MMRE MdMRE Pred(25)

Using CFP as predictor
k=1; mean of k analogies 362 0.17 0.12 0.80
k=2; mean of k analogies 245 0.16 0.12 0.80
k=3; mean of k analogies 218 0.15 0.10 0.84
k=1; inverse distance weighted mean 362 0.18 0.12 0.80
k=2; inverse distance weighted mean 262 0.16 0.11 0.88
k=3; inverse distance weighted mean 282 0.15 0.12 0.88
k=1; inverse rank weighted mean 362 0.18 0.12 0.80
k=2; inverse rank weighted mean 291 0.16 0.12 0.88
k=3; inverse rank weighted mean 286 0.15 0.12 0.88

Using FP as predictor
k=1; mean of k analogies 535 0.44 0.19 0.56
k=2; mean of k analogies 576 0.32 0.21 0.52
k=3; mean of k analogies 449 0.32 0.20 0.60
k=1; inverse distance weighted mean 535 0.44 0.19 0.56
k=2; inverse distance weighted mean 470 0.35 0.20 0.60
k=3; inverse distance weighted mean 468 0.35 0.20 0.64
k=1; inverse rank weighted mean 535 0.44 0.19 0.56
k=2; inverse rank weighted mean 435 0.35 0.18 0.68
k=3; inverse rank weighted mean 485 0.34 0.18 0.68

tained with the two techniques is not statistically significant (p-value=0.05),
with a small effect size (d = 0.23), when using CFP as independent vari-
able. However, note that the p-value is equal to the threshold 0.05. In the
case of using FP, the p-value obtained with the Wilcoxon test is 0.56, so the
difference in the absolute residuals achieved with the two techniques is not
statistically significant. The effect size in this case is negligible (d=0.06).

3.3. Answering RQ1a

The results reported in Tables 4 and 5 suggest that, on our data set, CFP
can be considered a good indicator of the development effort, when used
in combination with the two analyzed estimation methods (i.e., SLR and
CBR). Moreover, the effort estimates achieved with CFP are significantly
better than those obtained with FP, with an improvement of 65%5 in terms
of MdAR value and a large effect size in the case of SLR. Thus, the software
company involved in our study should profitably move from FPA to COSMIC
to improve the quality of its effort estimations.

5The average percentage improvement has been calculated as (MdAR of the FP based
model - MdAR of the CFP based model)/MdAR of the FP based model).
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Figure 8: The boxplots of residuals (a) and z (b) obtained with CBR

Summarizing, we can positively answer the first research question: COS-
MIC measure is significantly better than FPs for estimating Web application
development effort by simple linear regression and case based reasoning.

3.4. Answering RQ1b

To answer the second research question, we first verified the correlation
between each BFC and the effort. To this aim, we applied the Spearman rho
test, whose results are reported in Table 6.

We can observe that, as for COSMIC, all the four BFCs are statistically
significant correlated with EFF since the p-values are less than 0.01. In
particular, we can observe that three of them (i.e., Entry, Exit, and Read)
have a rho statistic greater than 0.8 that can be considered a good value
[61], while Write was characterized by a lower value. Among them, the Read
BFC resulted to be the more informative one for EFF, having the highest rho
statistic (0.919). This result is confirmed by the analysis of the distribution
of the BFCs with respect to the final size, whose results are reported in Table
6. These results are in line with the type of Web applications we dealt with.
Indeed, the applications in our data set mainly provide information to the
users, by requiring many queries to the persistent layers of the applications,
being counted in COSMIC as Reads.
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Table 6: Correlation among EFF and each BFC of the COSMIC and FPA method

BFC rho statistic p-value
Entry 0.823 <0.01
Exit 0.859 <0.01
Read 0.919 <0.01
Write 0.535 <0.01

EI 0.741 <0.01
EO 0.324 0.11
EQ 0.671 < 0.01
ILF 0.321 0.118
EIF 0.141 0.5

From these results we can conclude that: all the COSMIC BFCs are
significantly correlated with EFF and Read resulted to be the one more infor-
mative for predicting EFF.

The same kind of analysis has been performed for FPs, revealing that only
EI and EQ are statistically significant correlated with EFF (see the results of
the Spearman rho test reported in Table 6). In particular, EI resulted to be
the more informative for EFF (rho statistic = 0.741), but its statistic does
not reach the level of 0.8. The analysis of the distribution of the Function
Point BFCs with respect to the EFF suggests that the main contribution to
the final size comes from EQ, EO, and EI. This leads to the same kind of
observations done for COSMIC on the prevalent type of operations in the
considered Web applications. Nevertheless, these lower values confirm that
FPA is missing to fully capture the size of a Web application. Moreover,
these results further suggest that COSMIC, and its single BFCs, are more
informative for EFF than FPs and its single BFCs, for the considered kind
of Web applications

From these results we can conclude that: only EI and EQ are significantly
correlated with EFF among the FP BFCs and EI resulted to be the more
informative for predicting EFF.

4. The Second Empirical Study: Assessing the use of 2SEP

From the results of our first empirical study, it is clear that the software
company in our study can benefit from migrating to COSMIC, since on the
considered projects this method provided significantly better development
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Table 7: Distribution of the BFCs with respect to the final size in terms of CFP
FSM method Entry Exit Read Write

COSMIC 20% 19% 56% 5%

FSM method EI EO EQ ILF EIF
FPA 22% 25% 32% 10% 11%

effort estimates. Our second empirical study aims at understanding how eas-
ily this migration can be achieved. As mentioned in the introduction of this
paper, a company interested in the adoption of COSMIC has to build an
estimation model with this measure. This basically requires historical data
based on COSMIC that can be obtained by manually remeasuring all the ap-
plications previously developed. This task not only requires a lot of time, but
in some cases might not even be possible (e.g., due to the lack of appropriate
documentation). The reuse of data based on FPA could be very valuable to
address the problem, provided that there is a way to obtain the size in terms
of CFPs from the size in terms of FPs. As it was pointed out by Abran et
al. [53], FPA and COSMIC measures focus on different aspects of software
systems since they are based on different basic functional components. Thus,
“exact mathematically-based conversion formulae from sizes measured with
a 1st generation method to COSMIC sizes are impossible”. A possible way
to address the problem, also suggested in the COSMIC documentation [53],
is to search for some “statistically-based conversion formulae”.

Some researchers have been investigating the suitability and the effective-
ness of such an approach by trying to build conversion equations for different
data sets. In particular, linear and non-linear equations have been built on
the raw data and on the log-transformed data, respectively [14]. Also, more
sophisticated techniques, such as piecewise regression, have been employed
for building non-linear models [15].

The results reported in the literature [14] [15] [22] [23] [70] [71] [72] [73]
[74] reveal that a statistical conversion is possible, thus supporting the sugges-
tions provided in the COSMIC documentation [53]. The studies also showed
that both linear and non-linear models should be analyzed to identify the
best correlation. Furthermore, more complex techniques, such as piecewise
regression [15]), did not provide significantly better results, being at the same
time hardly applicable.

The aim of our second empirical study was to analyze whether it is possi-

30



ble to reuse the FP → CFP conversion equations proposed in the literature
(i.e., external conversion equations) to apply the two-step process shown in
Figure 1 (named 2SEP) for building effort estimation models. In other words,
we assessed if, given the size of past projects in terms of FPs, it is possible to
convert them by means of some equations into COSMIC measure to build an
effort estimation model. Furthermore, we also considered the use of conver-
sion equations built on a (small) data set of the company taken into account
(i.e., internal conversion equations).

In the following, before presenting the design (Section 4.3) and the results
(Section 4.4) of our second empirical study, we provide a brief description of
the external conversion equations we decided to employ (Section 4.1) and we
describe the construction of the internal conversion equations (Section 4.2).

4.1. External conversion equations from previous studies

In our study we took into account the results of two previous investiga-
tions that analyzed the relationship between the sizes expressed in terms of
FPs and of CFPs, namely [14] and [75].

The aim of Cuadrado-Gallego et al. [14] was to carry out a review of
previous investigations that mainly exploited linear regression analysis for
converting FPs into CFPs, i.e., by constructing an equation as:

CFPFP = a+ b ∗ FP (4)

where the dependent variable CFPFP represents the estimated COSMIC size
and the independent variable FP represents the size in terms of FPs.

Moreover, Cuadrado-Gallego et al. were also the first to propose an anal-
ysis on a non-linear relation between CFPFP and FP, by exploiting the log
transformation of the variables in the application of linear regression analysis.
Thus, the equation obtained is of this form:

Log(CFPFP ) = Log(a) + b ∗ Log(FP ) (5)

which, when transformed back to the original raw data scale, gives the equa-
tion:

CFPFP = a ∗ FP b (6)

For the evaluation, they employed nine publicly available data sets: six of
them were obtained from previous studies (i.e., named fet99 [76], fet99-2 [77],
ho99 [71], vog03 [77], abr05 [22], and des06 [23]). Three additional data sets

31



Table 8: Parameters of the equations in [14]
Linear

Data set fet99 fet99-2 ho99 vog03 abr05 des06 jjcg06 jjcg07 jjcg0607
b 1.12 1.14 1.03 1.2 0.84 1 0.82 0.86 0.69
a -6.23 -7.6 -6.6 -86.8 18 -3.23 -36.6 0.19 13.04
R2 0.98 0.97 0.98 0.99 0.91 0.93 0.7 0.86 0.85

Non-Linear
Data set fet99 fet99-2 ho99 vog03 abr05 des06 jjcg06 jjcg07 jjcg0607
b 1.11 1.12 1.14 1.18 0.96 1.07 1.17 1.02 0.9
a 0.64 0.62 0.52 0.28 1.08 0.67 0.27 0.75 1.26
R2 0.99 0.97 0.99 0.94 0.88 0.95 0.82 0.73 0.87

were included in the paper: the first two (named jjcg06 and jjcg07 ) contained
21 and 14 observations, respectively, and were obtained in two different stud-
ies conducted with academic students, while the third one (named jjcg0607 )
was obtained by merging the first two.

The parameters of the linear and non-linear conversion equations obtained
for the above data sets are reported in Table 86, respectively. In particular,
the tables show, for each employed data set, the equation parameters a and
b, and the R2 value. We can observe that the linear conversion equations re-
ported in Table 8 (top) are characterized by a coefficient quite close to 1, and
the non-linear equations (see Table 8 (bottom)) have the coefficient values
even closer to 1. These results seem to suggest that a conversion equation
based on the assumption of 1 CFP ∼= 1 FP could be possible. Cuadrado-
Gallego et al. argued that a 1 to 1 conversion factor cannot be attributed
to anything other than an influential coincidence. Indeed, even if both FPA
and COSMIC measure the functional size of the software, they are taking in
consideration different characteristics and also different counting procedures.
[14].

Lavazza [75] also exploited some of the data used in previous work [14][47]
to empirically assess and compare linear and non-linear models against Piece-
wise Linear Regression, with a special emphasis on the role of outliers. He
built 6 linear and 6 non-linear models, whose information can be found in

6Note that we applied the procedure employed in [14] for building the conversion equa-
tions exploiting the data sets that they published and in 5 cases (namely jjcg0607 linear
and non-linear, ho99 non-linear, vog03 non-linear) we found some differences in the ob-
tained models with respect to [14]. In the table we report the values we obtained.
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Table 9: Parameters of the equations in [75]
Linear

Data set vog03 des06 vanH07 jjcg06 jjcg07 jjcg0607
b 0.78 0.97 1.05 0.7 0.86 0.65
a -3.8 -5.9 -17.9 -2.4 0.2 19.07
R2 0.94 0.97 0.95 0.65 0.86 0.85

Non-Linear
Data set vog03 des06 vanH07 jjcg06 jjcg07 jjcg0607
b 1.2 1.03 1.09 1.62 1.12 0.97
a 0.28 0.84 0.61 0.27 0.46 0.87
R2 0.98 0.97 0.95 0.82 0.83 0.93

Table 9. These equations differ from the one in the work of Cuadrado-Gallego
et al. [14] since Lavazza eliminated from the data sets the outliers affecting
the models. As already mentioned at the beginning of Section 4, we did not
consider the Piecewise Regression since it did not provide significantly better
results than SLR, being at the same time hardly applicable [15].

4.2. Internal conversion equations built on our data set

To build internal conversion equations with SLR we first verified the
relationship between the dependent and independent variables CFP and
FP, respectively, by assessing linear regression assumptions, i.e., linearity,
homoscedasticity, normality, and independence. In particular, the Spear-
man’ rho test revealed that there was a positive linear relationship between
CFP and FP (statistic=0.848 with p-value <0.01), while the Breush-Pagan
Test showed that homoscedasticity assumption was verified since the p-value
(0.674) of the statistic (0.176) was greater than 0.05. On the other hand, the
normality assumption for the residuals cannot be considered to be verified
since the p-value (0.243) of the statistic (0.949) was greater than 0.05. As for
the independence, the Durbin-Watson statistic was not close to 2 (1.34). As
a consequence, we also applied a log-transformation of the data and we con-
sidered both linear and non-linear conversion equations as done in previous
investigations (e.g., [14], [75]).

Since we were interested to verify the possibility for the company involved
in our study to build its own convertibility equation using a small sample of
projects from their own organization instead of using someone else equations,
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we employed a data set of 5 observations7.

4.3. Design of the study

The empirical study performed to answer research questions RQ2a and
RQ2b employs the same data set used in the first empirical study (see Section
3.1.1), whose descriptive statistics are shown in Table 1.

For the application of 2SEP we have to select an FP → CFP conver-
sion equation and a model building technique to obtain the effort estimation
model. We employed both external and internal conversion equations. Re-
garding the model building technique, we used SLR since in the first empirical
study it performed better than CBR (see Section 3.3). We verified linear re-
gression assumptions for each built model and as a result we performed a
log transformation of the dependent and independent variables employed, as
done for the first research question.

When exploiting external conversion equations, we used those reported in
Tables 8 and 9. Moreover, given its immediate applicability, we also investi-
gated 2SEP using a 1 to 1 conversion factor (named from here on 1-1 Conv).
Thus, as first step of 2SEP, we exploited 15 linear, 15 non-linear and the 1-1
Conv conversion equations, to obtain 31 new data sets, where the 25 Web
applications are expressed in terms of estimated CFPs. Then, as second step
of 2SEP, we applied SLR on each of them and obtained estimation models
of this type: EFF = a ∗ (CFPFP )b, where EFF is the dependent variable
and CFPFP is the independent variable. As mentioned in previous section
CFPFP represents the estimated COSMIC size through the chosen FP →
CFP conversion equation.

Concerning the assessment of 2SEP with external conversion equations,
we used again a leave-one-out cross-validation for each of the employed con-
version equations. In particular, we simulated the situation where the com-
pany has a historical data set of 24 projects (i.e., the training set) sized
with FPA and the project manager is willing to estimate the effort for a new
project (i.e., the validation set) sized with COSMIC. This setting reflects
what could happen in reality in a software company willing to migrate from
FPA to COSMIC. Thus, the effort predicted of a new project is obtained by
giving as input to the estimation model EFF = a ∗ (CFPFP )b, built on the

7A rule of thumb in regression analysis is that 5 to 10 records are required for every
variable in the model [17]
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training set of 24 observations, the size of the new project (i.e., the observa-
tion in the validation set), manually counted in terms of COSMIC8. In our
investigation, we carried out this approach 25 times, each time selecting one
project as the new one and then evaluating the effort estimation accuracy.

To apply 2SEP with internal conversion equations, we first built the con-
version equation by using 5 of the 25 applications of the data set provided by
the company, then we applied this conversion equation on the remaining 20
applications, thus obtaining 20 estimated COSMIC sizes. As second step of
2SEP we applied SLR on the data set consisting of 5 applications measured
with the standard COSMIC method and 20 applications whose COSMIC size
was obtained with the internal conversion equation built in the first step. In
order to validate the obtained effort estimation models we considered again
the leave-one-out cross validation. To reduce selection biases, we repeated
the above procedure 5 times by obtaining 5 internal conversion equations
(i.e., one for each of the 5 data sets consisting of 5 randomly selected differ-
ent web applications from the original data set). To compare the accuracy
of the effort estimations obtained with 2SEP using internal conversion equa-
tions with respect to the accuracy of the effort estimations obtained with the
FP based model, we considered the mean of the 5 residuals obtained for each
observation (i.e., using the 5 effort estimation models built on the 5 data sets
by using each of the 5 internal conversion equations).

As for the evaluation criteria, we used again summary measures, boxplots
of residuals and of z, statistical tests and effect size as done in the first
empirical study (see Section 3.1.3 for their description).

4.4. Results

We applied SLR to build effort estimation models for each of the 31
data sets obtained by exploiting the 15 linear, 15 non- linear, and the 1-1
Conv conversion equations described in Section 4.1. Then, to evaluate the
prediction accuracy of these effort estimation models we performed a leave-
one-out cross validation as designed in the previous section.

The prediction accuracy in terms of MdAR (and other summary measures
reported just for comparison with previous studies) is shown in Table 10 for

8Clearly when using 1-1 Conv, the estimation model, built starting from the historical
data set of 24 projects sized with FPA, simply becomes EFF = a ∗ FP b. It differs from
the Function Points based model presented in Section 3.2 since the new project is not
sized in terms of FPA but COSMIC is exploited.
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each of the models built with 2SEP. To facilitate the comparison with the
results achieved by employing FP as size measure, in Table 10 we also report
the results achieved with the FP based estimation model.

We can observe that 2SEP leads to worse performances than the FP based
model in terms of MdAR in almost all the cases exploiting external conver-
sion equations. We also note that the estimates achieved with 1-1 Conv are
by far worse than those achieved with the FP based model, with an error
that is about 50%. Only four non-linear conversion equations provide bet-
ter results than FPs, namely fet99(NL), fett99-2(NL), and ho99(NL) among
those obtained from data sets provided in [14], and jjcg0607(NL) among the
conversion equations obtained from [75]. These results are also confirmed
by the boxplots of residuals and z reported in Figures 9, 10, 11 and 12. In-
deed, the median of the boxplots of residuals for fet99(NL), fett99-2(NL), and
ho99(NL) in Figure 9 and jjcg0607(NL) in Figure 11 is closer to zero than the
median of the boxplot for FP and the box length and tails of the boxplots of
residuals for fet99(NL), fett99-2(NL), ho99(NL), and jjcg0607(NL) are less
skewed than those of the boxplot for FP. Moreover, even if the box length
and tails of the boxplot of residuals for FP are more skewed than those of
boxplots obtained in the remaining cases, its median is closer to the zero
(see Figures 9 and 11). As for the boxplots of z, those obtained with the FP
and the fet99(NL), fett99-2(NL), ho99(NL), and jjcg0607 (NL) based models
have the median closer to 1 than the others.

Concerning the results achieved with 2SEP employing internal conver-
sion equations, we can note that both the linear and non-linear models are
characterized by an MdAR value better than the one obtained with the FP
based model. As expected, the internal conversion equations allowed us to
achieve better results than the external conversion equations. These results
are confirmed by the boxplots of residuals and z shown in Figure 13.

The results in terms of MdAR and boxplots of residuals and z are cor-
roborated by the tests on the statistical significance of the results by using
absolute residuals. In particular, the results of the Wilcoxon test reveal that
the estimations obtained with 2SEP are significantly worse (p-value <0.05)
than those obtained with the FP based model in 15 out of 31 cases consid-
ering external conversion equations, with a medium or large effect size. In
the other 16 cases, i.e., fet99 (L), fet99-2 (L), vog03 (L), des06 (L), fet99(NL),
fet99-2(NL), ho99(NL), and des06 (NL) for the models built taking into ac-
count the data sets provided in [14], vanH07(L), des06(NL), vanH07(NL),
jjcg06(NL), jjcg07(NL) and jjcg0607(NL) for the models built using the con-
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Table 10: Results about effort prediction achieved with 2SEP (for all the considered
conversion equations) and the FP based estimation model. (L) and (NL) denote linear
and non-linear models, respectively

Conversion equations from MdAR MMRE MdMRE Pred(25)

Cuadrado-Gallego et al. study [14]

fet99(L) 721 0.36 0.27 0.44
fet99-2(L) 698 0.35 0.25 0.48
ho99(L) 878 0.43 0.35 0.35
vog03(L) 874 0.43 0.30 0.40
abr05(L) 1144 0.57 0.52 0.04
des06(L) 902 0.45 0.37 0.28
jjcg06(L) 1444 0.71 0.65 0.04
jjcg07(L) 1202 0.58 0.54 0.04
jjcg0607(L) 1780 0.80 0.78 0.04
fet99(NL) 440 0.28 0.16 0.60
fet99-2(NL) 415 0.27 0.14 0.68
ho99(NL) 449 0.30 0.16 0.60
vog03(NL) 1121 0.55 0.44 0.16
abr05(NL) 1231 0.61 0.56 0.04
des06(NL) 826 0.41 0.31 0.36
jjcg06(NL) 1348 0.64 0.56 0.04
jjcg07(NL) 1226 0.59 0.54 0.04
jjcg0607(NL) 2135 0.91 0.90 0.04

Lavazza study [75]

vog03 (L) 1234 0.59 0.51 0.12
des06 (L) 821 0.41 0.34 0.40
vanH07(L) 717 0.37 0.29 0.48
jjcg06(L) 1444 0.69 0.60 0.08
jjcg07(L) 1025 0.50 0.43 0.24
jjcg0607(L) 1582 0.75 0.69 0.04
vog03(NL) 897 0.34 0.37 0.20
des06(NL) 693 0.27 0.29 0.36
vanH07(NL) 768 0.29 0.32 0.36
jjcg06(NL) 685 0.37 0.26 0.48
jjcg07(NL) 753 0.29 0.32 0.36
jjcg0607(NL) 452 0.19 0.17 0.80

1-1 Conv 750 0.39 0.31 0.44
Internal(L) 379 0.21 0.16 0.74

Internal(NL) 399 0.22 0.15 0.74
FP 515 0.29 0.18 0.68
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Table 11: Comparison among estimations achieved with CFPFP and FP based models.
(L) and (NL) denote linear and non-linear conversion equations, respectively

Conversion equations from T-Wilcoxon test p-value Effect size

Cuadrado-Gallego et al. study [14]

fet99(L) 0.85 0.05 (negligible)
fet99-2(L) 0.98 0.02 (negligible)
ho99(L) 0.17 0.28 (small)
vog03(L) 0.44 0.03 (negligible)
abr05(L) <0.01 0.71 (large)
des06(L) 0.07 0.34 (medium)
jjcg06(L) <0.01 0.69 (large)
jjcg07(L) <0.01 0.68 (large)
jjcg0607(L) <0.01 0.92 (large)
fet99(NL) 0.22 0.2 (small)
fet99-2(NL) 0.13 0.24 (small)
ho99(NL) 0.31 0.17 (small)
vog03(NL) <0.01 0.56 (large)
abr05(NL) <0.01 0.74 (large)
des06(NL) 0.24 0.22 (small)
jjcg06(NL) <0.01 0.72 (large)
jjcg07(NL) <0.01 0.68 (large)
jjcg0607(NL) <0.01 0.95 (large)

Lavazza study [75]

vog03(L) <0.01 0.83 (large)
des06(L) 0.02 0.42 (medium)
vanH07(L) 0.18 0.24 (small)
jjcg06(L) <0.01 0.92 (large)
jjcg07(L) <0.01 0.68 (large)
jjcg0607(L) <0.01 0.95 (large)
vog03(NL) 0.01 0.40 (medium)
des06(NL) 0.09 0.23 (small)
vanH07(NL) 0.06 0.27 (small)
jjcg06(NL) 0.34 0.13 (negligible)
jjcg07(NL) 0.06 0.26 (small)
jjcg0607(NL) 0.32 0.2 (small)

1-1 Conv 0.08 0.34 (medium)
Internal(L) <0.01 0.63 (large)

Internal(NL) <0.01 0.69 (large)
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Figure 9: The boxplots of residuals obtained with 2SEP approach with the different con-
version equations built using the data sets provided in [14], with the 1-to-1 conversion
approach, and with the FP based estimation model

version equations provided in [75], and 1-1 Conv. Indeed, in these latter
cases the p-value of the Wilcoxon test was greater than 0.05 with a negligible
or a small effect size.

As for the absolute residuals achieved in case of internal(L) and inter-
nal(NL), we can observe that the performed test revealed statistically signifi-
cant difference with the absolute residuals obtained with the FP based model
(see Table 11). Thus, 2SEP using internal conversion equations allowed us
to obtain significant better effort estimations than the FP based model.

4.5. Discussion

In our second empirical study we have assessed the accuracy of 2SEP and
the results reported in Tables 10 and 11 revealed interesting but somehow
contrasting results.

First of all we want to highlight that 1 − 1Conv does not work well
for the application of 2SEP since there are several external FP → CFP
transformations performing better. Thus, , the results we obtained with a of
industrial Web applications, we can confirm the findings of the other studies,
that the approach to just use Function Points without any conversion in a
2SEP leads to very poor estimations [14].
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Figure 10: The boxplots of z obtained with 2SEP approach with the different conversion
equations built using the data sets provided in [14], with the 1-to-1 conversion approach,
and with the FP based estimation model

Another clear trend is that all the FP→ CFP linear transformations em-
ployed with 2SEP using external conversion equations always lead to worse
results than the FP based estimation model. The difference was statistically
significant in all the cases, except for six (fet99, fet99-2, ho99(L), vog03(L),
and des06(L) considering the data sets provided in [14] and vanH07(L) con-
sidering the data sets provided in [75]).

The results obtained with non-linear conversion equations are not con-
clusive. Indeed, in four cases (i.e., fet99(NL), fet99-2(NL), and ho99(NL)
from [14] and jjcg0607 (NL) from [75]) the effort estimates achieved with
2SEP were even better than those obtained with the FP based model, but
the difference was not statistically significant. In six cases (i.e., vog03(NL),
abr05(NL), jjcg06(NL), jjcg07(NL), and jjcg0607(NL) considering the data
sets provided in [14] and vog03(NL) considering the data sets provided in
[75]) the FP based model provided significantly better estimates than those
achieved with the estimation models built with 2SEP. In the remaining cases,
the difference was not significant in the absolute residuals obtained with the
FP based model and with the estimation models built with 2SEP.

As for the internal conversion equations (both linear and non-linear ones),
the results are better than those achieved with the FP based model.
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Figure 11: The boxplots of residuals obtained with 2SEP approach with the conversion
equations provided in [75], with the 1-to-1 conversion approach, and with the FP based
estimation model

To summarize, we can conclude that the choice of the FP→ CFP conver-
sion equation to be employed in 2SEP results to be crucial. In particular, we
cannot positively answer RQ2a, i.e., Is the Web effort estimation accuracy
obtained employing 2SEP, with (linear and non-linear) external conversion
equations, not significantly worse than the accuracy achieved by exploiting
FPs in models built with SLR?, since 15 of the 31 considered external con-
version equations provided significantly worse predictions than the FP based
model, with 2SEP. On the other hand, we also cannot negatively answer
RQ2a, since for the remaining 16 external conversion equations the accuracy
obtained employing 2SEP was not significantly worse (for 4 of them is even
better) than the accuracy achieved by exploiting Function Points. Thus,
the 2SEP approach using external conversion equations could potentially be
exploited to carry out a smooth migration from FPA to COSMIC, neverthe-
less the choice of the FP → CFP conversion equation is crucial to get good
results.

Differently, we can positively answer RQ2b, i.e., Is the Web effort estima-
tion accuracy obtained employing 2SEP, with (linear and non-linear) internal
conversion equations, not significantly worse than the accuracy achieved by
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Figure 12: The boxplots of z obtained with 2SEP approach with with the conversion
equations provided in [75], with the 1-to-1 conversion approach, and with the FP based
estimation model

exploiting FPs in models built with SLR?, since both linear and non-linear
equations allowed us to obtain a prediction accuracy better than the one
achieved with the FP based model. So, the 2SEP approach with internal
conversion equations can be effective to support the migration from FPA to
COSMIC. The effort to remeasure a small sample set of applications (5 was
effective in our study) is rewarded by a better accuracy.

5. Threats to validity

It is widely recognized that several factors can bias the construct, internal,
external, and conclusion validity of empirical studies [49].

As for the construct validity, the choice of the size measures and how
to collect information to determine size measures and actual effort represent
a crucial aspect. Regarding the selection of the approach to size the Web
applications, we employed (IFPUG) FPA and COSMIC that represent ex-
amples of first and second generations of FSM methods. Thus, the number
of FPs and of CFP were calculated as measure of the Web application size.
Often, the collection of information about the size measures and actual ef-
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Figure 13: The boxplots of residuals (a) and z (b) obtained with 2SEP approach with
internal conversion, with the 1-to-1 conversion approach, and with the FP based estimation
model

fort represents the main difficulty to carry out this kind of study [78]. As
described in Section 3.1.1 we have supervised the procedure employed by the
involved software company to carefully collect the information we needed for
the empirical analysis. In particular, we tried to perform the data collection
task in a controlled and uniform fashion. Of course we have to take into
account that empirical studies do not ensure the level of confidence achieved
with controlled experiments.

Some factors should be taken into account for the internal validity: sub-
jects’ authoring and reliability of the data and lack of standardization [12]
[49] [60]. The managers involved in the study were professionals who worked
in the software company. No initial selection of the subjects was carried
out, so no bias has been apparently introduced. Moreover, the Web ap-
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plications were developed with technologies and methods that subjects had
experienced. Consequently, confounding effects from the employed methods
and tools should be excluded. As for the reliability of the data and lack
of standardization, the used questionnaires were the same for all the Web
applications, and the project managers were instructed on how to fill them
in, to correctly provide the required information. Instrumentation effects in
general did not occur in this kind of studies.

As for the conclusion validity, we carefully applied the estimation methods
and the statistical tests, verifying all the required assumptions.

With regard to the external validity, we are confident that the type of
the analyzed Web applications did not bias the validity of the achieved re-
sults, since for their functionalities, target platforms, and complexity they
can be considered representative samples of current Web applications. An-
other threat could be related to the fact that we considered Web applications
from one company. To the best of our knowledge, there is only one data set
that contains (Web and non-Web) applications from different company, i.e.,
ISBSG. However, in our analysis we were interested in analyzing the experi-
ence of a single company developing Web applications.

On the other hand, it is recognized that the results obtained in an indus-
trial context might not hold in other contexts. Indeed, each context might be
characterized by some specific project and human factors, such as develop-
ment process, developer experience, application domain, tools, technologies
used, time, and budget constraints [79].

6. Conclusions

Functional Size Measures are the typical choice for management tasks like
estimating a software project development effort, since they can be applied on
the Functional User Requirements. Many FSM methods have been proposed
in the last decades, that can be distinguished in 1st (e.g., FPA) and 2nd (i.e.,
COSMIC) generations. To the best of our knowledge, there is no empirical
comparison of COSMIC performances with respect to 1st generation methods,
such as FPA, for Web effort estimation. This is also probably due to the lack
of suitable industrial data sets containing information on Web application
measured with both FPA and COSMIC. The main goal of our work was
to empirically investigate whether COSMIC is more effective than FPA for
Web effort estimation, thus motivating the migration from 1st generation
FSM methods to the 2nd one. We were also interested in investigating the
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effectiveness of an approach to facilitate the migration from FPA to COSMIC.
Companies could apply a two-step estimation process (2SEP) that exploits
historical FPA data and a conversion equation to estimate COSMIC sizes
and use them to predict development effort, until enough COSMIC data has
been collected. In the case they would not spend effort and time in resizing
historical projects in terms of COSMIC, to be used for effort estimation, they
could employ external conversion equations, otherwise they could remeasure
a small sample data set in terms of COSMIC and build an internal conversion
equation.

We performed two empirical studies, both exploiting data from 25 in-
dustrial Web applications, and employing leave-one-out cross validation as
validation method.

The results of the first empirical study revealed that COSMIC outper-
formed Function Points as indicator of development effort by providing signif-
icantly better estimations, when used in combination with two different esti-
mation techniques (SLR and CBR). Thus, for the software company involved
in our empirical study, the decision of migrating from FPA to COSMIC is
positively supported by the results of the study presented here.

The results of the second empirical study revealed that the 2SEP ap-
proach could potentially be exploited to carry out a migration from FPA to
COSMIC. Anyhow, the choice of the FP → CFP conversion equation is cru-
cial to achieve good results. As expected, the internal conversion equations
allowed us to obtain effort predictions better than those achieved employ-
ing external conversion equations. However, employing internal conversion
equations requires re-measuring a sample of previous developed applications,
i.e., further effort by managers of the company. As for external conversion
equations, more investigations should be carried out to identify more accu-
rate conversion equations possibly relating them to specific types of software
systems.

The experimental results presented herein hold for the company involved
in our study and they should be assessed on further data as soon as it becomes
available. We have planned to collect information from other companies,
operating also in other industrial contexts, in order to compare the accuracy
of COSMIC and FPs for Web effort estimation and assess a two-step process
for building effort estimation models.
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Département dinformatique, Université du Quebec á Montréal, Canada,
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