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HIGHLIGHTS 

• An SOFC system dynamic model has been used to simulate normal and faulty conditions. 

• An available Fault Signature Matrix based on Fault Tree Analysis has been improved. 

• Missed fault and false alarm probabilities have been taken into account. 

• Five faults have been simulated at stack and balance of plant level. 

• Two threshold-dependent Modified Fault Signature Matrices have been obtained. 
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ABSTRACT 

 

The paper focuses on the design of a procedure for the development of an on-field diagnostic algorithm for solid oxide 

fuel cell (SOFC) systems. The diagnosis design phase relies on an in-deep analysis of the mutual interactions among all 

system components by exploiting the physical knowledge of the SOFC system as a whole. This phase consists of the Fault 

Tree Analysis (FTA), which identifies the correlations among possible faults and their corresponding symptoms at system 

components level. The main outcome of the FTA is an inferential isolation tool (Fault Signature Matrix - FSM), which 

univocally links the faults to the symptoms detected during the system monitoring. In this work the FTA is considered as a 

starting point to develop an improved FSM. Making use of a model-based investigation, a fault-to-symptoms dependency 

study is performed. To this purpose a dynamic model, previously developed by the authors, is exploited to simulate the 

system under faulty conditions. Five faults are simulated, one for the stack and four occurring at BOP level. Moreover, the 

robustness of the FSM design is increased by exploiting symptom thresholds defined for the investigation of the quantitative 

effects of the simulated faults on the affected variables. 

Keywords: Solid Oxide Fuel Cell, Diagnosis, Model-based Modelling, Fault Simulation, Fault Signature Matrix. 

 

1. INTRODUCTION 
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Nowadays the increasing interest on renewable energies drives the researchers activity towards new energy power 

systems, like Solid Oxide Fuel Cells (SOFCs). It is well known in literature that SOFCs are one of the most promising 

energy conversion systems due to several positive features: (i) high energy conversion efficiency, (ii) pollutants and green-

house-gases emissions are limited as compared to other energy conversion systems, such as internal combustion engines, 

(iii) high flexibility and modularity, (iv) low acoustic emissions and (v) potential use in cogeneration applications, as a 

consequence of the high operating temperatures. Another important advantage is the possibility to exploit the internal 

reforming capabilities of SOFCs; therefore, simple pre-reformers can be implemented, thus allowing the more practical use 

of conventional fuels (e.g. Diesel, natural gas, methanol, propane, etc.), which in turn causes components manufacturing 

and system management costs reduction [1][2][3][4][5]. 

On the other hand, a wide commercial diffusion of these energy systems is hindered by materials and production costs 

and durability issues. It is well known that actual SOFC systems are characterized by low reliability of both stack and 

balance of plant (BOP), due to a large variety of possible degradation mechanisms and malfunctions that may occur in real 

world operation [1]. Indeed, degradation causes SOFC system lifetime not to be long enough with respect to durability 

requirements of either stationary (about 40,000 h with reference to e.g. residential or industrial Combined Heat and Power 

(CHP) systems [5]) or transportation (about 20,000 h with reference to e.g. Auxiliary Power Units – APUs [7]) applications 

[4][5]. In order to meet these lifetime targets, to improve degradation prevention capabilities and to optimize control 

actions, specific diagnosis methods are needed for real-time condition monitoring of the system. The development of an 

effective diagnostic algorithm, suitably coupled with adaptive control strategies, allows modifying the control laws while 

the system is running, thus resulting in both lifetime and performance improvement. Moreover, due to their intrinsic 

features, adaptive control algorithms require the development of dynamic models, with high prediction accuracy and fast 

computational time. The same characteristics are essential also for model-based diagnosis. This methodology entails 

developing a reliable and accurate model, which can simulate the monitored system in all operating conditions. Through the 

comparison between measured and simulated signals, a specific inference process leads to the estimation of the actual 

system status. Compared to traditional methods, like monitoring and automatic protection, the fault diagnosis supervision is 

the only one capable to detect incipient faults (early detection), with high accuracy both during steady and transient states 

and for several system components (process components, sensors, actuators, etc.) [8][9]. 

In the available literature, many publications deal with the development of physical models (i.e. lumped, 0-, 1-, 2- or 

even 3-D) of the SOFC stack and in some cases also the BOP. The use of a high order model (i.e. 2- or 3-D) usually 

guarantees high accuracy, but introduces undesired high computational burdens [1]. This latter feature is critical for on-
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board application of models to be embedded into either control or diagnostic tools. Wang et al. [10] proposed a review of 

several modelling approaches for SOFCs, mainly related to diagnostic purposes. The authors offer a thorough analysis of 

the main advantages and drawbacks of the considered approach and focus on the purposes they are more suitable for. Barelli 

et al. [11] and Martinez et al. [12] studied hybrid systems based on the combination of an SOFC stack and a gas turbine. An 

interesting work has been carried out by Hajimolana et al. [13], who developed a dynamic modelling of a tubular SOFC 

supplied with ammonia instead of pure hydrogen. Other papers focuses on SOFC-based combined-heat and gas (CHP) 

systems [14][15]. Focusing on diagnosis, some authors have presented model-based diagnosis for SOFCs [1][16][5] and 

PEFCs [17][18][19], while the problem is widely faced for conventional energy systems like internal combustion engines 

[8][20][21], gas turbines [9] and other complex systems [22][23][24][25].  

Furthermore, it is worth noticing that a certain number of models developed for diagnosis purposes are also based on 

equivalent circuit elements coupled with electrochemical impedance spectroscopy measurements, such as in [5][19][40][41] 

and [42], or on black-box modelling approaches, such as Neural Networks [43][44][45][46][47]. These argumentations well 

justify the need for a reliable and effective diagnostics able to quickly detect degradation behaviours and/or malfunction 

states in the whole system and to process an adaptive control strategy, to bring the system to optimal operation.  

Generally, ensuring safe operation of a complex system entails suitably accounting for the direct and indirect 

interactions among the different devices together with their possible faulty states, in addition to the optimal operating set-

points of the main variables and parameters. In this context, the availability of a reliable and accurate diagnostic algorithm 

enables checking and monitoring the system behaviour as well as inferring on its state of health, also allowing to perform 

on-board modification of system control laws. Focusing on diagnosis, it is well known that to prevent the failure of a 

generic system (e.g. mechanical and electric devices, energy conversion systems, etc.) the most obvious decision is to shut it 

down whenever an abnormal functioning is observed. Nevertheless, even if this action could seem the most logical one, in 

many cases it is not the most convenient or even feasible. In these cases, the remedial action must be taken while the system 

is in operation according to the specific time-constrains and the whole repairing costs [24]. Therefore, the capability to 

detect the occurrence of any faulty state and to identify its causes are critical tasks, which are strongly related to the design 

procedure of the diagnostic algorithm [4]. Indeed, the faulty states that can be detected in the system are only those included 

in the model and in the inference process [26]. 

Fault diagnosis activity typically involves three main processes [4][27] [28][17]: (i) fault detection, (ii) fault isolation 

and (iii) fault identification. The aim of the first process is to detect an undesired or faulty state of the monitored system. 

Then, the location of the fault can be determined into the system through the isolation process, identifying which is the 
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component (or the components) that is under undesired operating condition. Finally, the identification process leads to the 

evaluation of the fault size and its time-varying behaviour. 

The design of a reliable diagnostic algorithm requires the physical knowledge of the whole SOFC system and an in-

deep analysis of the mutual interactions among all system components. To achieve an effective diagnosis the design process 

has to be performed carefully and a key role is played by the identification of the correlations among possible faults or 

failures1 and their corresponding symptoms at system components level. This identification is performed through the so-

called Fault Tree Analysis (FTA) methodology, which is the starting point of the above mentioned design phase. The main 

outcome of the FTA is an inferential isolation tool (Fault Signature Matrix - FSM), which univocally links the faults to the 

symptoms detected during the on-line monitoring of the SOFC system. 

During the detection process, the information acquired through measurement devices is exploited to obtain significant 

indicators of the system state. The generation of these indicators strictly depends on which is the methodology used for the 

detection. In literature [27][28][39][40], several methodologies are proposed, namely model-based, signal-based and 

knowledge-based, but in this paper only the model-based approach is considered. This choice is mainly motivated by two 

distinctive features that characterize the methodology with respect to both knowledge- and signal-based approaches: i) the 

availability of a model allows reducing the need for extended experimental data-set [29] and ii) the greater generalizability 

of the methodology due to the expected higher physical content retained by the diagnostic tool. These two features make 

this approach appealing for diagnostic applications destined to SOFC systems, for whom experimental data are usually not 

easy to measure and whose system characteristics and configurations change from one manufacturer to another. On the 

other hand signal- and knowledge-based algorithms require a large amount of complex experiments to be conducted in 

faulty conditions to correlate either signals or derived information to the faulty states. In some cases experiments could not 

be performed due to the complexity or the lack of knowledge on the faults to be reproduced, such as electrochemical-

induced degradation processes. In such cases, an experiment that simulates or induces the fault may be set up for, e.g., 

catalyst or electrochemical performance degradation in fuel cells [30] or in other devices [31]. Therefore, experiments 

feasibility, costs and time issues may limit the development of signal- and knowledge-based diagnosis algorithms. 

The presented research originates from previous works on FTA [4] and model-based diagnosis methodology [16], 

remarking the direct and indirect dependences among the SOFC system components during several faulty operation states. 

The purpose of this study is to perform a deeper fault-to-symptoms dependency study through the exploitation of a dynamic 

                                                           
1According to the common nomenclature on fault diagnosis [27][28] the term fault denotes unacceptable deviation 
(malfunction) of at least one characteristic property from the standard conditions whereas a failure is a permanent event 
causing the interruption of a required function.  
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model, previously developed by the authors [1][2][3], thus enhancing the robustness of the FSM. These works were 

developed in the framework of the European Project GENIUS [48], whose results led to another outstanding paper authored 

by Sorce et al. [39], which deals with Fault Detection and Isolation (FDI) study for SOFC systems. 

The paper is structured as follows. Initially, an overview on the model-based diagnosis methodology is performed, 

highlighting the core features and the critical points, followed by a synthetic description of the FTA, mainly focusing on the 

process the development of the FSM is based on. Then, a brief description of the generic SOFC system, used for the FSM 

development, is given, accounting for the main components and their interactions. Afterwards, a theoretical explanation of 

the proposed SOFC system dynamic model is presented together with the description of the modifications introduced to 

simulate faulty states. Then, several malfunction behaviours are simulated and the arising symptoms are compared to those 

defined into the FSM, thus allowing to fully demonstrate the limitation of adopting a purely heuristic approach to develop 

an isolation tool.  

 

2. NOMENCLATURE 

 

Acronyms 

AC  Alternate Current 

APU  Auxiliary Power Unit 

BOP  Balance od Plant 

CHP  Combined Heat and Power 

CPR  Critical Pressure Ratio 

DC  Direct Current 

FT  Fault Tree 

FTA  Fault Tree Analysis 

FSM  Fault Signature Matrix 

MFSM Modified Fault Signature Matrix 

OC  Operating Condition 

PEFC  Polymer Electrolyte Fuel Cell 

PI  Proportional Integral 

SOFC  Solid Oxide Fuel Cell 
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Roman Symbols 

A  geometrical cell area [m2] 

AHE  pre-heater heat exchange area [m2] 

AREF  reformer heat exchange area [m2] 

C  fluid heat capacity [J K-1] 

cp  specific heat capacity at constant pressure [J Kg-1 K-1] 

D  diameter [m] 

Ė  energy flow [W] 

f  friction coefficient [-] 

F  Faraday constant [A mol-1] 

J  current density [A cm-2] 

K  solid heat capacity [J K-1] 

k  isentropic coefficient [-] 

L  length [m] 

ṁ  mass flow [kg s-1] 

M  molar mass [Kg mol-1] 

ṅ  molar flow [mol s-1] 

N  noise 

ncells  cells number [-] 

p  pressure [Pa] 

P  power [W] 

Q  thermal loss [W] 

r  residual 

R  universal gas constant [J mol-1 K-1] 

s  analytical symptom 

t  time [s] 

T  temperature [K] 

v  velocity [m s-1] 

V  voltage [V] 
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U  heat exchanger transfer coefficient [W m-2 K-1] 

Uf  fuel utilisation [-] 

X  input variables 

Y  measured system variables 

Ŷ  simulated system variables 

Greek Symbols 

β  pressure ratio [-] 

ε  fault magnitude [-] 

η  efficiency [-] 

λ  excess of air [-] 

ξ  fault magnitude [-] 

ρ  density [kg m-3] 

τ  threshold 

χ  fault magnitude [-] 

Subscripts and superscripts 

air  air at cathode side 

amb  ambient 

c  cold fluid 

CH4  methane 

CMP  compressor 

EM  electric motor 

F  faulty 

h  hot fluid 

H  hole 

H2O  water 

HE  air pre-heater 

in  inlet 

is  isentropic 

O2  oxygen 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 

out  outlet 

PB  post burner 

REF  reformer 

 

3. MODEL-BASED FAULT DIAGNOSIS 

 

The main aspects concerning the model-based fault diagnosis reside on the development of a numerical model able to 

simulate the monitored system in its global behaviour. The term global highlights the capability of the model to take into 

account both direct and indirect correlations among the system components, which is an essential aspect to perform a 

correct diagnosis [32]. This model can be exploited as a reference for the evaluation of the system status, implementing it in 

conjunction with the real system. According to a general model-based approach, the model can be run in parallel to the 

monitored system [8][20]. Thus, the real-time application of these numerical models requires, on one hand, high accuracy 

and reliability and, on the other hand, fast computational time. As represented in Figure 1, the main variables monitored on 

the real system (Y), affected by noise (N), are compared to those simulated by the process model, in order to generate a 

specific feature, called herein residual. A residual is defined as the difference between the output signals (Y) measured in 

the system and those (Ŷ) generated by the model [4][8][9][17][20][27][28] : 

 

YYr ˆ−=  (1) 

 

To distinguish between normal and faulty behaviour, the residual is compared to a reference tolerance range, characterized 

by a threshold levels τ. This comparison leads to the generation of an analytical symptom, which is representative of the 

system state: if the residual falls within the tolerance range, the symptom is 0, otherwise, when the residual overcomes the 

reference thresholds, it becomes 1, as shown below [20]: 
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When a symptom is active an undesired (faulty) state is occurring in the system. According to this definition, each 

monitored variable is simulated through the model and all drifts from normal behaviours are collected into a symptoms’ 

vector s. After having populated the symptoms’ vector, the detection process ends with the following status check: if the 

vector has all 0, the system is working in normal conditions, while, if one or more symptoms are 1, an undesired behaviour 

is occurring in the system. It is worth observing that other approaches concerning the detection process are available in the 

literature. As an example, in the paper of Sorce et al. [39], the detection is achieved by means of the residuals behaviour 

analysis during simulated faulty states, achieved through their own system model. The obtained residuals are gathered into 

several fault maps, which replace analytical symptoms and are then used for fault detection and isolation. Henceforth, the 

isolation of a specific fault is performed by analysing the graphical behaviours of measured residuals, obtained during real 

system monitoring, and comparing them to the developed fault maps. 

In the present paper, to identify the location of the malfunction, the symptoms’ vector is compared to reference 

information, describing the links between faults and symptoms. A direct approach would be to determine experimentally 

these correlations inducing undesired state in the system and collecting the related symptoms, thus obtaining an explicit 

knowledge base [8]. Nevertheless, an a priori knowledge can also be exploited to gain these correlations, avoiding carrying 

out complex experimental activities on the system. Indeed, in many cases the BOP components are widely known and an 

extensive literature explains their behaviours. Thus, a heuristic approach, such as the well-known Fault Tree Analysis, can 

set the causal relations among faults and symptoms, leading to the definition of a Fault Signature Matrix (FSM), as detailed 

in the following section.  

 

4. FAULT TREE ANALYSIS 

 

The Fault Tree Analysis (FTA) is an analytical deductive technique that can outline all the likely ways in which a 

malfunction or undesired behaviour can occur in the system. This methodology starts from a specific fault (which is the top 

event) and investigates, through a physical knowledge of the system and following a top-down approach, all the possible 

causes (which are the basic events, or symptoms), from which the considered fault can result [4]. It is worth noting that this 

methodology gives only a qualitative correlation between faults and symptoms; besides, it is not a model for all possible 
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faults or symptoms of the system, but it takes into account only those assessed by the analyst [32]. Therefore, the major 

drawback of the FTA is the inability to detect faults that are not considered into the analysis [23]. Overcoming the 

drawbacks of the FTA approach is out of the scope of the presented activity, since the focus is on the FSM. Indeed, the 

paper aims at demonstrating that, once the links between the system faults and the affected system variables (symptoms) are 

defined through the FTA and detailed into the FSM, the proposed methodology can improve these links following a 

quantitative analysis, not accounted for by the FTA. Through this analysis it is possible to highlight the sensitivity of each 

monitored variable to the considered faults. 

The main result of the FTA is the fault tree (FT), which is a graphic representation of the connections among a top 

event and all the related symptoms. These connections are expressed through Boolean operators (i.e. gates), which allow or 

prevent the fault flow through the tree from one level to another. The higher level of the FT is the top event (i.e. the fault or 

malfunction under study), while the other levels are represented by intermediate events, which are other minor faults that 

occur due to previous causes. The bottom level is represented by the basic events (the symptoms), which may also 

correspond to specific faults that are not further developable [32]. 

The drawing of several fault trees for most of the undesired events, which can occur into a complex system, such as 

SOFC systems, is particularly significant for the identification of the variables that must be measured or estimated (e.g. 

when a specific measurement device is not available or the variable is not physically measurable). This methodology leads 

to a robust selection of the monitored parameters, gained through a balance among variable significance (the number and 

type of faults whom is related to) and measurement costs and capability. 

Once all the fault trees for a specific system are gathered, the defined correlations between faults and symptoms can be 

merged into a matrix, the FSM. This matrix is a 2-D one, in whose rows are listed the possible faults considered into the 

study, while the columns list all the collected symptoms, each one referring to a specific monitored system variable. When a 

symptom is related to a fault, the corresponding element into the matrix is equal to 1, otherwise it is 0. It is worth noting that 

all the rows in the FSM must be different from each other, to allow the correct and univocal isolation of the faults within the 

system. 

In the following the main aspects of an FTA applied to an SOFC system, presented by the authors in a previous paper 

[4], are detailed: first the system and its main components are briefly described; then, a fault tree for one specific fault is 

highlighted; finally, the FSM is presented, which is used as starting point for the development of an improved one. 

 

4.1 Solid Oxide Fuel Cell (SOFC) system 
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An SOFC system is usually designed in such a way as to ensure normal stack operation to be reached through the 

proper configuration and the optimized control of the auxiliary components. Therefore, the behaviour of the entire system 

relies not only on the performance of the SOFC stack but also on that of the BOP, which is prone to malfunctions and 

failures due to the high number of mechanical and electronic components.  

A schematic representation of a generic SOFC system is presented in Figure 2 [1][4]. At the air side, the blower 

supplies the stack with the required amount of air, whose set-point temperature is achieved into the pre-heater. At the fuel 

side, the methane (or other hydrogen-rich fuels) is processed by the pre-reformer, which requires a specific amount of water 

and heat for the reforming process; the first one is stored in a water tank and its release is guaranteed by a controlled pump, 

while the heat is recovered from the post-burner exhaust gases. These latter, once they come out from the pre-reformer, are 

also used to heat up the air into the pre-heater and the remaining heat can be used for co-generation applications. Finally, the 

temperature of the gases exiting the SOFC stack is increased into the post-burner, to maximize the heat transfer among these 

gases and the fresh ones both at anode and cathode side. Furthermore, the electric power provided by the SOFC stack also 

requires power conditioning devices to convert the current from DC to AC and to boost the voltage. 

 

4.2 Fault Tree Analysis application and Fault Signature Matrix development 

 

The application of the FTA to the aforementioned SOFC system requires a deep knowledge of the interactions among 

the main components (Stack and BOP) and their complexity suggests analysing the faults at the component level [4]. An 

example of FT for the air blower is proposed in Figure 3. As previously stated, the air blower feeds the stack with the 

required amount of air. Due to the high volume flow usually required, the compressor is the most energy consuming device 

of the system [4] and it is prone to several types of faults and malfunctions, some of them listed in Figure 3. It is clear that 

both the increase in compressor motor friction (e.g. bearings wear malfunctions) and the excessive overheating (e.g. lack of 

lubricant) are linked to the air outlet temperature and compressor power increase, whereas, if an air leakage in the inlet 

compressor manifold occurs, both the downstream pressure and the air pipe flow are affected. 

Following the same approach for all the components, a set of FTs can be developed by taking into account the 

interactions among all the devices. From these FTs, a set of monitored variables can be drawn out, resolving a compromise 

among measurement costs, methodology robustness and reliability. Merging all the information obtained through the FTs, 

an FSM can be built, as shown in Table 1. According to this FSM, the faults taken into account in this work are: 
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• Fault f1: air blower fault induced by an increase in its mechanical losses; 

• Fault f2: air leakage in the pipeline linking the air blower to the air pre-heater; 

• Fault f3: temperature controller failure; 

• Fault f4: pre-reformer fault produced by its heat exchange surface corrosion; 

• Fault f5: stack fault caused by an increase in its polarization losses; 

 

From the FSM presented in [4] three modifications have been made. First of all, from the symptoms listed in that 

FSM, the current density has been removed. This choice is consistent with the assumption of taking the current density as a 

controlled input of the model; it is worth remarking that this variable is assumed as the ratio between the current load and 

the geometrical cell area, as detailed in section 6. Therefore, the number of symptoms is reduced from fifteen to fourteen. 

The second variation resides in the association of the pre-reformer fault (i.e. fault f4 in Table 1) to an undesired event caused 

by heat exchange surface corrosion rather than catalyst degradation. According to the pre-reformer fault tree presented by 

Arsie et al. [4], the variables (i.e. the symptoms) affected by these faults are the same except for a possible increase in the 

pressure drop. However, since this last variable is not monitored (i.e. not considered in the FSM), the symptoms’ vector 

proposed in [4] can be used as a reference for both the catalyst degradation and the heat exchange surface corrosion. The 

third modification consists in the association of the stack fault to an increase in the polarization losses, instead of a reduction 

in the surface active area, as considered instead by Arsie et al. [4]. According to the related fault tree, presented in [4], the 

only variation in the symptoms’ vector is linked to the current density symptom, which turns from 1 to 0. However, since 

the current density is no more a symptom, the symptoms’ vector proposed in [4] can be still used as a reference for the 

considered fault. 

It is worth noting that to have a robust fault detection process the rows of the FSM should be as much independent 

each other as possible, which requires a large number of symptoms. However, observing the two last symptoms’ vectors of 

the FSM of Table 1, they show the same pattern, hindering the univocal isolation of the two related faults. Nevertheless, as 

showed in the following paragraphs. this problem can be solved by performing a quantitative analysis on the relationships 

between faults and monitored variables. 
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5. THRESHOLD DESIGN 

 

The selection of the proper threshold levels, which lead to the generation of symptoms through the comparison with 

the residuals (see Eq. (1) and Eq. (2)), is a very critical task; indeed, these values must take into account model inaccuracy 

and disturbances (i.e. signal noise). In case of low noise levels, a simple threshold value can be used, while, for high noise 

levels, a more advanced approach (e.g. statistics, fuzzy-logic, Kalman filters, etc.) should be implemented [9][23]. On the 

other hand, the right choice of thresholds values must fulfil the trade-off between robust diagnosis and early detection [20]. 

The knowledge of the devices installed on the real system, along with accuracy and resolution of the associated measured 

signals are key parameters to fix the thresholds. If poor resolution is available for the measures (Y in Eq. 1) due to, e.g., 

cheap instruments or low sensitivity, the residuals could always overcome the thresholds, resulting in a continuous faulty 

state. On the other hand, the thresholds must be set as lower as possible to be able to detect incipient faults.  

An example of how a symptom arises is given in Figure 4: the comparison between the residual time behaviour r with 

the threshold level τ’  leads to the symptom time behaviour S’ (dotted line), in which two faulty states are detected; whereas 

if the residual is compared to the threshold τ” , the symptom time behaviour S” (straight line) shows only one faulty state. 

Focusing on Figure 4, it is important to highlight that the first faulty state of the symptom time behaviour S’ might not be a 

real faulty state but a false alarm. For this reason, another crucial aspect of the threshold selection is the capability to 

distinguish between false alarm and missed faults. The upper part of Figure 5 sketches the deterministic process followed 

for the symptoms generation process shown in Figure 4. 

Considering stochastic behaviours of the residuals, the probabilities of missing a fault or incurring into a false alarm 

can be set for each symptom. This can be achieved when the probabilistic distribution of the monitored variables both in 

normal and faulty state are available from dedicated experimental activities. Then, the threshold could be set according to 

different probabilities of missed fault or false alarm, as shown in the lower part of Figure 5. It is possible to correlate to each 

threshold level the probabilities of false alarm and misdetection, which can be obtained through the intersection between the 

threshold value and the probability density function of standard operation. Moreover, the risk of missing a fault can be 

evaluated by the intersection between the threshold value and the probability density function of faulty state [31]. 

From the above description it is possible to point out that a proper design phase is needed to develop a robust and 

reliable diagnostic algorithm. First of all, the development of an accurate and fast numerical model allows the detection of a 

wide range of faulty states and the implementation of the algorithm in real-time. Then, the reliability of the FSM depends on 

the knowledge on the physical behaviour of each system component, as well as the number of malfunctions that can be 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

related to the monitored variables. Finally, the choice of threshold levels must take into account several features, such as the 

capability to distinguish between false alarms and missed faults, the reliability of the measurement devices available on the 

system plant and the model uncertainty. 

The next paragraph focuses on the description of the mathematical model developed for the simulation of the SOFC 

system described in section 4.1. 

 

6. SOFC MODEL 

 

In this work a lumped-capacity model previously developed by the authors [1][2][3] has been exploited to simulate the 

behaviour of the SOFC system sketched in Figure 2. In the next sections a description of the main physical equations is 

given, but further details can be retrieved from the reference papers [1][2][3]. The hypothesis assumed for the development 

of the SOFC model are listed below: 

 

• the stack is considered planar and co-flow; 

• a lumped model approach is applied, without considering spatial variations; 

• electrochemical reactions and mass transfer are assumed instantaneous; 

• all the components are adiabatic. 

 

Furthermore, an important aspect that must be pointed out is the necessity to develop the model not only for simulating the 

system behaviour in different steady-states but also during transients, in order to avoid the risk of confusing them as faulty 

behaviours [32]. 

 

6.1 SOFC stack 

 

The stack is simulated by the following lumped capacity model equation: 
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( ) ( ) SOFCSOFC,outSOFC,outSOFC,inSOFC,in
SOFC,out

SOFC JAVTETE
dt

dT
K −−= &&

 
(3) 

 

in which KSOFC is the stack heat capacity, TSOFC,in and TSOFC,out are the inlet and outlet stack temperatures, respectively, J is 

the current density, and A is the geometrical cell area. The terms ĖSOFC,in(TSOFC,in) and ĖSOFC,out(TSOFC,out) are the inlet and 

outlet energy flows, respectively, function of the stack temperatures, and VSOFC is the stack voltage, evaluated through the 

following regression [2]: 
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where ncells is the number of cells, Uf is the fuel utilization and λ is the excess of air. It is worth remarking that equation (4) 

was obtained by curve-fitting virtual experiments, whose selection and generation were deeply described in a previous paper 

published by the authors [3]. In that paper, it is particularly emphasized how a hierarchical approach can be beneficial to 

enlarge the reference operating domain by adding operating points simulated by means of a more physical model (i.e. one 

dimensional), thus allowing to maximize the information content of the identification data-set. The latter is then exploited to 

derive the voltage black-box relationship via step-wise regression approach. In this way, the fuel cell stack can be simulated 

with significant reliability even in off-design conditions, thus making it possible to perform realistic faulty operation 

simulations. 

 

6.2 Air blower 

 

The air blower provides the stack with the necessary amount of air and it is the most energy consuming auxiliary 

device [4]. The required power is evaluated as follows: 
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where Tair,in is the inlet air temperature, cp is the specific heat at constant pressure, β is the pressure ratio, ηEM and ηCMP are 

the electric motor and blower efficiency, respectively, the latter being evaluated as a function of blower speed and pressure 

ratio through experimental efficiency maps [2]. The term ṁair (see Eq. 5) is calculated from stoichiometry assuming a 

constant excess of air λ: 

 

23304
2

.F

JAMn
λm Ocells

air =&  (6) 

 

6.3 Air pre-heater  

 

According to [1] and [2], the air pre-heater has co-flow configuration and it is modelled following a zero capacity 

model, whose equations are described below [34]: 

 

( ) ( ) ( ) ( )c,HEh,HEHEHEh,HE,outh,HE,outh,HE,inh,HE,in
h,HE

hHE TTAUTETE
dt

dT
CK −−−=+ &&  (7) 

 

( ) ( ) ( )c,HEh,HEHEHEc,HE,outc,HE,outc,HE,inc,HE,in
c,HE

c TTAUTETE
dt

dT
C −+−= &&  (8) 

 

The Eq. (7) refers to the hot fluid, which is the pre-reformer hot exhaust, while the equation (8) refers to the cold fluid, 

which represents the cathode inlet flow. KHE is the solid heat capacity, whereas Ch and Cc are the heat capacities of the hot 

and cold gas, respectively. The term UHEAHE is the product between the heat transfer coefficient UHE and the heat exchange 

surface AHE. 

 

6.4 Fuel pre-reformer 

 

As stated in [2], the fuel pre-reformer described in this work is a steam pre-reformer characterized by an evaporator 

and a reactor. Following the same approach used for the air pre-heater, the dynamics of both hot and cold fluid can be 

described by Eq. (7) and Eq. (8) respectively. The hot fluid is represented by the post-burner exhaust, whereas the cold fluid 
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is a mixture of methane and vapour, whose amount depends on the SOFC operating conditions. Considering a steam to 

carbon ratio equal to 2.5, the inlet molar flows can be computed as: 

 

f

cells
CH FU

JAn
n

84
=&  (9) 

 

42
52 CHOH n.n && =  (10) 

 

6.5 Post-burner 

 

To increase the temperature of the outlet stack gases, to be efficiently used to heat-up the inlet SOFC flows, the outlet 

anode gases are mixed with the cathode ones and burned into the post-burner, in which the combustion (assumed complete 

and adiabatic) of the residual molecules of H2 and CO of the anode exhaust takes place [1]. The outlet temperature TPB,out is 

evaluated iteratively solving the following energy balance [1][2]: 

 

( ) ( )PB,outPB,outSOFC,outPB,in TETE && =  (11) 

 

7. SIGNATURE MATRIX IMPROVEMENT THROUGH FAULTS SIMULATION 

 

As discussed in the previous paragraphs, the FSM presented in Table 1 was developed adopting a heuristic approach, 

which takes into account only qualitative relations between symptoms and faults. Indeed, the FTA connects a specific fault 

to several symptoms without considering their magnitude. For this reason, the direct use of the FSM as developed through a 

FTA may lead to a non-optimized isolation process. To be clearer, if the system is deviating from the normal behaviour, but 

still lying near the normal operating condition (i.e. incipient fault), some residuals move from zero, though it is not sure that 

they overcome the defined thresholds, due to the low magnitude of the fault. One solution could be the reduction of the 

thresholds levels, but, as previously stated, it could lead to an increase in the probability of false alarm. Another possibility 

is to use the developed model also to test the system sensitivity to different faults.  
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It is worth remarking that the aim of this paper is to give a guideline for the development of an improved FSM to be 

implemented into a comprehensive diagnostic algorithm. The study has been made with the only purpose of highlighting a 

plausible approach to design an improved diagnostic algorithm [32]. The considered mathematical model is exploited to 

reproduce both normal operating conditions and faulty states, without a specific reference to a real system and the related 

errors in the reproduction of the system behaviour. Since the references for the residuals evaluation are the values simulated 

by the model, those are deterministic in the sense that they are not associated to real measured values and the error is 

assumed zero. This assumption should be associated to the fact that the focus is not on the mere residual values but on the 

different sensitivity of the considered variables to a specific fault. A schematic representation of the guidelines of this 

approach is given in Figure 6. 

The idea of using a model to simulate systems also during undesired states is exploited by several authors. For 

example, Escobet et al. [17] improved a PEFC simulator model by including sub-models, which can simulate the increment 

in the compressor motor friction, the compressor overheating, the air leakage in the air supply manifold and the temperature 

controller failure. Ingimundarson et al. [18] developed a hydrogen leakage model for a PEFC stack, whereas Simani et al. 

[9] proposed a turbine prototype model, which includes sub-models that simulate the compressor blades failure, the 

reduction of the turbine efficiency and the thermocouple sensor and controller actuator faults. 

Therefore, the combination of model simulation and threshold levels definition can be helpful during both the 

monitoring and the FSM design. Particularly, the same model developed for the simulation of the SOFC system can be used 

to simulate both its normal and faulty conditions. To this purpose, the model is upgraded in such a way as to simulate the 

faults accounted into the FSM, at specific magnitude levels. 

 

7.1 Faults sub-models 

 

In the following, the description of the main equations developed to simulate the faults included into the FSM of Table 

1 is given. More details can be found in Appendix A. 

The fault f1 corresponds to an increase in the air blower mechanical losses, which results in the increase in the 

requested electric power and in the air outlet temperature, according to Eq. (12) and Eq. (13), respectively: 
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The coefficient ξ is related to the fault magnitude and it is limited to the range [0,1]: if the system is behaving normally (no 

fault) ξ is 0, whereas if the fault occurs in the system ξ is higher than 0. The fault magnitude can be expressed in percentage 

as ξ⋅100, and, according to Eq. (12) and Eq. (13), if ξ is equal to 1 the variables diverge (i.e. become infinite), meaning that 

a failure occurs and the system must be shut down. 

The fault f2 represents an air leakage between the air blower and the heat exchanger. This fault is simulated using a 

model of gas release through a hole (see Figure A.2), whose outlet flow is estimated as: 
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Thus, the air amount reaching the heat exchanger is reduced by a quantity equal to ṁH. 

The fault f3 is related to the failure of the temperature controller. In the modelled SOFC system, the stack temperature 

is controlled through a feedback PI controller, which reads the stack temperature signal and acts on the regulation of the 

excess of air (i.e. on the air blower outlet mass flow) to keep the stack temperature within a specific range [35]. The 

controller fault is simulated disabling the PI controller and changing right afterwards the load value: having removed the PI 

controller prevent the system from adapting to the new operating condition. 

The fault f4 consists in the pre-reformer heat exchange surface corrosion. To simulate this event, the product UREFAREF, 

considering Eq. (7) and Eq. (8) applied to the pre-reformer, is reduced according to the following equation: 
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( )χAUAU REFREFREF,FREF,F −= 1
 

(15) 

 

where the coefficient χ has the same definition of the coefficient ξ. 

The last fault (f5) is related to the increase in the stack polarization losses, which results in a sudden decrease in the 

stack voltage. Such a fault is simulated hereinafter by decreasing stack voltage (see Eq. 4) by a specific amount according to 

the following relationship: 

 

( )εVV SOFCFSOFC −= 1,  (16) 

 

where ε, as ξ and χ, is a coefficient varying in the range [0,1] and it is related to the fault magnitude.  

Since the purpose of the paper is to detect and isolate a fault at system level, rather than at stack level, the use of a 

simplified model for the stack voltage simulation is sufficient. Due to the mathematical approach here adopted, each 

coefficient of the mathematical regression accounts for several physical phenomena occurring in the stack, thus referring to 

the different polarization losses (i.e. ohmic, concentration and activation). Therefore, the introduction of a global 

multiplicative coefficient was considered enough suitable realistic to reproduce the effects of the considered fault. 

Through the simulation of the aforementioned faults at a specific magnitude level it is possible to derive quantitative 

relationships linking the monitored variables variation to the fault magnitude. The SOFC system model is exploited to 

simulate in parallel the system both in normal and faulty conditions. First of all, with respect to the model parameters listed 

in Table 2, the normal values of the monitored variables are generated for two different operating conditions, with a load of 

25 A and 40 A respectively (see Table 3). These values are taken as reference for the definition of the threshold values and 

for the evaluation of the residuals. It is worth stressing again that from each monitored variable a symptom can be derived, 

thus the list of monitored variables is directly linked to the list of symptoms of the FSM (see Table 1). The first operating 

condition (OC1 in Table 3) is taken as reference for all the faults except for the fault f3, which is referred to the second one 

(OC2 in Table 3). This choice is strictly related to the simulation procedure of the fault f3: as mentioned before, the PI is 

disabled and the load value is changed from 25 A to 40 A (i.e. increment of 60%). Thus, the residual must be computed 

referring to the operating conditions at 40 A, after the fault took place. 
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Afterward, the system is simulated in faulty conditions, obtaining a different set of variables values, through which the 

residuals can be computed. In the present case, residuals are not evaluated as shown in Eq. (1), but they are computed as 

relative values, as follows: 

 

100
ˆ

ˆ
⋅

−
=

Y

YY
r  (17) 

 

This gives for each monitored variable a uniform evaluation of the deviation from the normal conditions and the same 

choice of the thresholds values. Indeed, the thresholds are defined as a percentage of the normal variables values, which in 

turn depend on the current operating condition. Thus, instead of fixed thresholds, the authors assumed variable thresholds 

according to the current operating status. 

 

8. RESULTS AND DISCUSSIONS 

 

The faults described in the previous paragraph have been simulated assuming a fault magnitude of about 10%. For 

example, referring to the air leakage fault, the hole diameter size is set to 2.5 mm, which corresponds to an outlet mass flow 

through the hole of 2.526 kg/h, whereas air flow in normal operation equals 23.126 kg/h (see Table 3). With this diameter 

value, the leakage roughly corresponds to the 10% of the air mass flowing in normal conditions. The only exception is made 

for the simulation of fault f4, choosing a 50% magnitude size. The reasons for this assumption are explained in the 

following. 

Five simulations have been performed to reproduce the occurrence of all the considered faults, due to the hypothesis 

that only one fault at a time can occur in the system. This assumption is considered since the purpose of this work is to 

understand the effects of each fault on the entire system. Indeed, considering one or more faults happening simultaneously 

can induce cumulative effects which hinders a univocal fault isolation, which is the chief objective of the work. 

As an example, to simulate the increase in the air blower mechanical losses, the fault coefficient ξ is raised from 0 to 

0.1. This value may correspond to an incipient fault (i.e. magnitude of 10%). The effects consist in the increase in the 

blower power and in the temperature at the blower outlet, as expected from equations (12) and (13), herein presented in 

Figure 7. From Figure 7-a it is possible to notice that, when the fault occurs at 2500 s, the blower power suddenly diverges 

from 0.4692 kW, reaching at steady state a value of 0.5223 kW (i.e. a variation of about 11.3%). On the other hand, the 
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outlet temperature variation reported in Figure 7-b, consists in a rapid growth from 85.68°C to 89.42°C, corresponding to a 

variation of around 1% (evaluated in Kelvin) at steady state. 

Another example is here presented with respect to the simulation of the pre-reformer heat exchange surface corrosion. 

This fault is simulated reducing the characteristic pre-reformer surface according to equation (15). This event directly 

affects the pre-reformer outlet cold fluid temperature (see equation (8)), used as the reference pre-reformer temperature for 

the computation of the outlet fuel composition. The fault coefficient χ is risen from 0 to 0.5 at 2500 s, causing a reduction in 

the pre-reformer temperature to 604.41°C (Figure 8-a), which is about 9.8% less than the reference temperature (see Table 

3). This reduction causes a variation into the outlet fuel composition, as showed in Figure 8-b, where the hydrogen molar 

flow variation is depicted. 

The simulation results of all the considered faults in terms of residuals are presented in Figure 9 where each chart 

represents the residuals values (blue bars) computed through Eq. (17), after reaching a steady-state condition during the 

simulation process. On the x axes the numbers of each monitored variable are listed with reference to the order followed in 

Table 3. In this figure are also sketched two threshold values, fixed respectively to 1% and 5% of the values attained by 

each variable during normal operations (the first in red straight-dot line and the second in green dashed line respectively). 

The 1% threshold is assumed in order to highlight the minimum influence on certain variables, whereas the 5% threshold is 

then introduced to remark the effects on the diagnosis accuracy when setting a different level. Actually, when facing real 

system applications, the threshold choice is strictly related to the model accuracy, the resolution of the available 

measurement devices and the measurement noise. Moreover, the choice of the optimal threshold level should be a 

compromise between the capability of detecting incipient faults and reducing the probability of false alarms (see Figure 5). 

The symptoms’ vectors computed for each threshold value are collected in the Modified Fault Signature Matrixes (MFSMs) 

of Table 4 and Table 5. 

The two MFSMs are compared with the FSM of Table 1 and the differences with respect to the symptoms’ vectors of 

the FSM are highlighted in Table 4 and Table 5 using a grey background colour for the cells of the vectors. As a first 

remark, from Table 4 it can be asserted that, referring to those of the FSM of Table 1, two fault patterns (i.e. f2 and f4) are 

kept unchanged, whereas, in the MFSM of Table 5, at least one symptom is changed.  

For fault f1 (air blower) it is possible to point out that the modification in the MFSM of Table 4 occurs only to the 

symptom s10 (air temperature at cathode inlet), which is no more involved in the isolation process of this specific fault (i.e. is 

changed from 1 to 0). The motivation for this discrepancy resides in the small increment in the air flow (about 0.048 kg/h, 

barely visible in Figure 9 – symptom s12) induced by the controller to keep the stack temperature near the set-point. This 
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increment leads to the compensation of the temperature at the blower outlet, which could induce, in uncontrolled condition, 

an increase in the stack temperature. On the other hand, the symptoms’ vector related to a threshold level of 5%, presented 

in Table 5, differs from the one of the starting FSM of Table 1 not only in the air temperature at cathode inlet (symptom s10), 

as for the previous one, but also in the net electric power (symptom s3) and the temperature at the blower outlet (symptom 

s8), all changing from 1 to 0. However, this variation is motivated by the small residuals values of the aforementioned 

variables, which are all lower than 5%. 

The symptoms’ vector related to fault f2 (air leakage) does not present any variation with a threshold level of 1%, 

whereas for a threshold level of 5% the MFSM shows just one different symptom (i.e. the net power – symptom s3 – 

switches from 1 to 0). Indeed, the percent variation of the net electric power is about 1.9%, thus triggering a symptom only 

for the 1% threshold value. 

As mentioned before, the temperature controller failure does not require a specific sub-model, but it is induced by 

switching off the PI controller at a certain time and changing afterwards the required current. In this case, the detection of 

the fault is performed comparing the variables values obtained after the controller switch off to their expected values (i.e. 

obtained with the controller switched on) at the new operating condition. In this way, the controller failure can be identified 

considering the different adaptation of the monitored values. In the specific case, the load is changed from 25 A (i.e. OC1) 

to 40 A (i.e. OC2) and the variables values related to each operating condition are listed in Table 3. In this case, the 

presented results cannot be related to a specific fault magnitude because of the binary nature of the fault, i.e. the PI 

controller can be either on or off. For this reason, the amplification of the effects can only be affected by the current step 

change. From Figure 9, we can observe that all the residuals but two diverge from zero. This behaviour leads to the two 

symptoms’ vectors presented one in Table 4 for a threshold of 1% and one in Table 5 for a threshold of 5%. What emerges 

from the comparison of these symptoms vectors to that of the starting FMS of Table 1 is that both the two new symptoms’ 

vectors show several discrepancies. First of all, the fuel temperature at anode inlet (symptom s6) becomes 0 in both cases. 

This difference is due to its residual value lower than 1% (see Figure 9). However, the substantial differences belong to the 

blower power (symptom s2), the excess of air (symptom s5) and the air mass flow at cathode inlet (symptom s12), which 

become all 1. The explanation of these changes resides in the controller fault simulation process. Compared to the detection 

based on the FTA of Arsie et al. [4], the simulation entails a current demand variation, which is not considered by the FTA 

in [4]. The other differences, showed only by the symptoms’ vector for a 5% threshold, are due to the related low residuals 

values. 
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As observed for the fault f3, also the symptoms’ vectors related to the fault f4 show several discrepancies. What is 

important to remark is that the magnitude used to simulate this fault was set to 50%, due to the low influence of the fault on 

the related variables, as can be observed from Figure 9. Concerning the symptom vector for a threshold level of 1%, four 

symptoms change from 1 to 0: the blower power (symptom s2), the excess of air (symptom s5), the post-burner exhaust 

temperature (symptom s7) and the air mass at cathode inlet (symptom s12). However, the main significant difference resides 

in the post-burner exhaust temperature. Indeed, this variable seems not to be affected by this fault. The other symptoms 

changes are all due to the related low residuals values. The same conclusions can be extended also to the symptoms’ vector  

for a 5% threshold, which shows five more symptoms being zeroed.  

Finally, the symptoms’ vector for the fault f5 in Table 4 is exactly the same of the one in Table 1, whereas the 

symptoms’ vector in Table 5 differs from this latter by four symptoms, which are changed from 1 to 0, due to the small 

residual values compared to a 5% threshold.  

On the basis of the above results, the first observation which can be made on the FSM of Table 4 is that all the rows 

are different from each other, allowing the univocal identification of the considered faults, which cannot be performed with 

the starting FSM of Table 1. Furthermore, only two rows are rather modified (fault f3 and fault f4), whereas other two are 

kept unchanged (fault f2 and fault f5). On the other hand, the FSM of Table 5 is quite different from the starting FSM of 

Table 1, since all the rows have been changed. Only one row (fault f2) has only one symptom changed, whereas all the 

others present at least three different symptoms values. Moreover, the rows associated to the faults f1 and f2 present the same 

pattern hindering the possibility to exploit this FSM for an univocal isolation process. 

To deepen the effects of the operating conditions on the MFSMs development, all the faults considered in this work 

have been analysed also with respect to the operating condition OC2, with a current load set to 40 A (see Table 3). Under 

the hypothesis of one fault occurring at a time, a fault magnitude of about 10% has been considered for faults f1, f2 and f5, 

whereas a fault magnitude of 50% has been considered for fault f4, according to the same motivations previously depicted. 

Fault f3 has been simulated imposing a change of operating condition from OC2 to OC1, thus referring the obtained 

residuals to this latter operating condition. The results of the simulated residuals are presented in Figure 10. From the 

analysis of this figure, it is possible to observe that a change in the operating condition does not evidently affect the residual 

sizes, and in turn the MFSMs design. Indeed, assuming a 5% threshold, the same MFSM of Table 5 is obtained. On the 

other hand, if a 1% threshold is assumed, slight modifications in the MFSM occur. With respect to the MFSM presented in 

Table 4, three symptoms become 0: for fault f1, the air temperature at compressor outlet (symptom s8); for fault f5, the fuel 

temperature at anode inlet (symptom s6) and the hot fluid temperature at air pre-heater inlet (symptom s9). This symptoms 
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change is caused by the slight reduction in the residuals sizes, that are all below 1%. As an example, the residual related to 

symptom s8 for the fault f1 has a size of 0.99% with a fault magnitude of 10%. Although near the threshold, this value does 

not trigger the related symptom, hindering an univocal isolation process with the obtained MFSM. Indeed, the symptoms’ 

vector of fault f1 is in this case the same of fault f2 (as for the MFSM of Table 5 for OC1). This result underlines the need 

for setting a proper threshold value during the MFSMs design, which should take into account, on one hand, the accuracy of 

the model and the available measurement devices and, on the other hand, also the working conditions in which an SOFC 

system can operate. 

Concerning the effects of the fault magnitude, it is worth noting that the purpose of the present paper is to give a 

detailed description of the design procedure of a Fault Signature Matrix with main focus on incipient faults (i.e. with low 

magnitude). As already observed for fault f4 at OC1, a small fault magnitude does not induce a significant variation in the 

residuals values, triggering few symptoms even though with a 1% threshold level. As an example, with a magnitude of 10%, 

the simulation of fault f4 leads just one symptom (i.e. symptom s6) to hardly overcome the 1% threshold level (see Figure 

11). Indeed, its residual value is about 1.25%. Accordingly, small magnitude faults lead to a MFSM with mainly zeros. On 

the other hand, high magnitude faults lead to the opposite effect. In Figure 12, the residuals simulated with a fault 

magnitude at 50% are sketched. The comparison of these residuals with two threshold levels gives the MFSMs presented in 

Table 6 and Table 7, for 1% and 5% thresholds respectively. In these Tables, the modifications with respect to the FSM of 

Table 1 are highlighted using a grey background colour for the cells of the vectors, whereas the differences with the MFSMs 

of Table 4 and Table 5 are highlighted using black bold edges. Comparing the MFSM of Table 4 with that of Table 6, the 

latter shows three more symptoms becoming 1 with respect to the former. In the specific, symptoms s5 and s12 are triggered 

for fault f1, whereas, symptom s8 becomes one for fault f2. Nevertheless, comparing the MFSM of Table 7 with the one of 

Table 5, six symptoms differ: for fault f1, symptoms s3 and s8 become one; for fault f2, only the symptom s3 is further 

triggered; finally, for fault f5, symptoms s6, s7 and s10 become active. It is worth noting that both the MFSMs of table 6 and 

table 7 can be used for an univocal isolation of the proposed faults. According to this result, it is possible to point out that, 

considering a higher fault magnitude, the overlapping of the symptoms’ vectors related to faults f1 and f2 with a threshold 

level of 5% (see Table 5) can be avoided. However, rising the magnitude of the considered faults during the MFSM design 

process hinders the capability of detecting incipient faults, increasing the risk of system damage and performance losses 

when applied. 

After these comments some general remarks arise. First of all, it is worth recalling that the FSM was built via fault tree 

analysis, whereas the MFSMs were built by exploiting an SOFC system model with embedded faults simulations. The 
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former signature matrix building process depends on the available system knowledge and on the experience brought from 

either literature or on-field data. A lack of knowledge on the faulty processes as well as the difficulties of accounting 

multiple phenomena affecting each fault may limit the achievement of an effective fault isolation. On the other hand, the 

model-based FSM building process can enhance the fault isolation by introducing quantitative analysis. Moreover, complex 

non-linear interactions among processes are accounted for and, thus, a more complete study on the occurrence of each fault 

can be developed. Therefore, the design of any diagnosis tool can be accomplished with less experimental resources and in a 

more systemic way. As seen before, another advantage of the model-based approach is the possibility to solve the 

compromise among detection capability, number of measurement devices, risk of false alarm and misdetection, which are 

strategic issues in FDI algorithm design and implementation. However, developers must be aware of some problems that 

may arise when using models with low accuracy or poor fault process description. Another general remark has to be 

reported about the sensitivity of the isolation process with respect to the residuals generated when a fault occurs. It has been 

discussed above that a threshold below 5% has to be set to detect faults whose occurrence affect the performance of the 

faulty sub-system by 10%; this means that a sort of damping or a loss of information brought from the signal occurs in the 

detection process. Therefore, an improvement of the detection capability has to be considered to increase the sensitivity of 

the fault isolation process. Since the amount of derivable information depends on the number of installed measuring 

devices, one way to increase the sensitivity is to probe the input variables (both control and exogenous) and derive from 

them other features (i.e. residuals). Such an approach [21] may be awkward to implement because the monitoring model 

must reproduce the inverse process, which –in a more general sense– entails simulating the inputs as a function of the 

outputs. These aspects have to be considered when implementing new SOFC system diagnosis with improved faults 

isolation capabilities. 

 

9. CONCLUSIONS 

 

In this paper the design of a methodology to support the development of a diagnosis algorithm for Solid Oxide Fuel 

Cell (SOFC) systems has been presented. Basically, the fault isolation task has been addressed in the paper. This part of the 

diagnosis design process represents the main issue to be solved during diagnostic algorithm development. A model-based 

approach relying on the simulation of both normal and faulty behaviour of a monitored SOFC system has been described. 

The model is based on a dynamic (lumped) model developed in [1][2][3], which is enhanced by including further sub-

models for the simulation of five faults at system level. The faults simulation is useful to generate a robust reference 
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database, implemented during the isolation process. The first version of the initial reference information (i.e. Fault Signature 

Matrix – FSM) has been derived from the Fault Tree Analysis (FTA) performed by the authors in [4] and has been obtained 

through a heuristic approach, which takes into account only qualitative links between symptoms and faults. To implement a 

quantitative process, the mathematical model has been considered to simulate all the faults in a new FSM. For each fault, 

two threshold values has been considered at 1% and 5% of the normal operating values, respectively. Each threshold level 

led to a specific symptoms’ vector and this latter has been then compared to the FSM symptom vector of the same fault. 

Two different Modified Fault Signature Matrices (MFSMs) have been obtained and can be exploited for the diagnosis 

algorithm implementation. The influence of changing the operating conditions and the faults magnitude on the MFSMs 

development has been also investigated. 
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APPENDIX A 

 

A.1 Fault f1: Air Blower Fault 

 

The fault considered for the air blower consists of an increase in the mechanical losses, which leads to an upsurge of 

the compressor absorbed power and outlet temperature. In normal conditions, from the definition of the mechanical 

efficiency ηEM it is possible to define the absorbed power as function of the compressor power as: 
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 (A.1) 

 

where ṁcmp is the compressor mass flow, Tcmp,in is the compressor inlet temperature, cp is the specific heat capacity at 

constant pressure, ηis is the isentropic efficiency and β is the pressure ratio. Instead, the outlet temperature Tcmp,out can be 

evaluated as: 
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When the fault occurs in the system, the mechanical efficiency decreases according to the following law: 

 

( )ξηη EMEM,F −= 1  (A.3) 

  

where ξ is a coefficient limited into the range [0,1]. Thus, the absorbed power in faulty condition is: 
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The power increment compared with that in normal condition can be considered as a thermal loss Q: 
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To define the outlet temperature in faulty condition the following assumption is made: a fraction of this thermal loss (i.e. 

50%) is transmitted to the fluid as thermal power. Thus, it is possible to write: 
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 (A.6) 

 

and the outlet temperature in faulty condition is: 
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A.2 Fault f2: Air leakage between air compressor and pre-heater 

 

The connection between the air blower and the air pre-heater is guaranteed through the utilization of a pipe, which is 

assumed horizontal and with constant section (Figure A.1). In this figure the subscript air is neglected. Furthermore, the gas 

is considered perfect and all the heat exchanges between the pipe and the ambient are neglected (i.e. the pipe and the gas are 

considered isothermal). All these assumptions are fundamental for the purpose of reducing the computational burden. 

Considering the pipe of Figure A.1, the mass conservation equations can be written as follows: 

 

const.mmm air,outair,in === &&&
 

(A.8) 
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Accounting that for all the following equations the considered gas is air, all the subscripts will be written without the 

statement air. Under the assumption of constant section, the Eq. (A.8) becomes: 

 

const.ρvvρvρ outoutinin ===
 

(A.9) 

 

where v is the straight velocity (i.e. the component of vector in the direction of the flow – perpendicular to the pipe section). 

Differentiating the Eq. (A.9): 
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(A.10) 

 

and the gas state equation in isothermal conditions: 
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(A.11) 

 

and combining the Eq. (A.10) and Eq. (A.11) together, the following equation can be carried out: 
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Considering the mechanical energy equation in differential form (neglecting the height difference between pipe inlet and 

outlet): 
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where the last term corresponds to the friction losses, it is possible to substitute the Eq. (A.12) into the Eq. (A.13), 

obtaining: 
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(A. 14) 

 

Taking into account the perfect gas equation, the Eq. (A.14) can be written as: 
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Integrating the Eq. (A.15) on the entire pipe length: 
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With further mathematical passages, Eq. (A.16) can be written as [35]: 
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(A. 17) 

 

through which the outlet air pressure can be calculated, upon the knowledge of the pipe length L and diameter D and the air 

input conditions (i.e. density ρair,in, mass flow ṁair,in and inlet pressure pair,in). 

The air leakage can be simulated through the introduction of a hole with diameter DH, as sketched in Figure A.2. In 

this figure it is possible to identify three main control volume: the volumes 1 and 2, whose outlet properties are easily 

calculated through Eq. (A.8) and Eq. (A.17), and the middle volume of length DH, where the hole is located. The mass 

balance in this latter control volume can be written as: 
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Hair,out,air,in, mmm &&& −= 12  
(A. 18) 

 

where ṁH is the hole outlet flow, which can be calculated according to [34] and [38] using nozzle equations in choked and 

un-choked flows. To distinguish between these two different conditions, the Critical Pressure Ratio (CPR) must be 

considered: 
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When pamb/pair,out,1 > CPR the flow is subsonic (un-choked condition) and the outlet flow can be modelled as: 
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(A. 20) 

 

while, if pamb/pair,out,1 ≤ CPR, the flow is sonic (choked condition) and the outlet flow is computed as: 

 

( ) ( )[ ]121

1

2

1

2

4

−⋅+










+
=

airair kk

air
air,out,

air

airHD
H k

p
MRT

kDπC
m&

 

(A. 21) 

 

To evaluate the air properties after the hole, the assumption of a constant velocity is made (i.e. vair,out,1 = vair,in,2). 
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Faults  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

Air blower fault f1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 

Air leakage between air 
compressor and pre-heater 

f2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

Temperature controller 
failure 

f3 1 0 1 1 0 1 1 0 1 1 1 0 1 1 

Pre-reformer fault f4 1 1 1 0 1 1 1 0 1 1 1 1 0 0 

Stack fault f5 1 1 1 0 1 1 1 0 1 1 1 1 0 0 
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MODEL PARAMETER UNIT VALUE 

Geometrical cell area A cm2 100 

Cells number ncells - 150 

Stack heat capacity KSOFC J K-1 8234 

Fuel utilization Uf - 0.7 

Inlet air temperature Tair,in °C 25 

Inlet air pressure pamb Pa 105 

Blower pressure ratio β - 1.3 

Electric motor efficiency ηEM - 0.9 

Pre-heater heat exchanger transfer coefficient UHE W m-2 K-1 200 

Pre-heater heat exchange area AHE m2 0.3 

Pre-heater heat capacity KHE J K-1 316 

Reformer heat exchanger transfer coefficient UREF W m-2 K-1 200 

Reformer heat exchange area AREF m2 0.06 

Reformer heat capacity KREF J K-1 59 
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# MONITORED VARIABLE UNIT OC1 OC2 

1 Stack power kW 2.895 4.3095 

2 Compressor power kW 0.4692 0.7696 

3 Net power kW 2.4263 3.5399 

4 Stack Temperature °C 825.00 825.00 

5 Excess of air - 4.8124 5.1908 

6 Fuel temperature at anode inlet °C 700.01 707.64 

7 Post burner exhaust temperature °C 1065.6 1050.2 

8 Air temperature at compressor outlet °C 85.68 82.68 

9 Hot fluid temperature at air pre-heater inlet °C 862.32 856.28 

10 Air temperature at cathode inlet °C 700.22 683.63 

11 Current density A cm-2 0.25 0.40 

12 Stack voltage V 115.82 107.74 

13 Air mass at cathode inlet kg h-1 23.126 39.911 

14 Temperature at anode outlet °C 825.00 825.00 

15 Air temperature at cathode outlet °C 825.00 825.00 
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Figure Captions 

Figure 1 – Model-based fault detection scheme: X and Y are the control and the measured variables, 
respectively, N is the noise and Ŷ are the simulated variables. 

Figure 2 – SOFC system scheme, adapted from [1] and [4]. 

Figure 3 – Fault Tree for the SOFC air blower [4]. 

Figure 4 – Example of a symptom type behaviour at different threshold levels. 

Figure 5 – Threshold setting process according to false alarm and missed fault probability, adapted from 
[37]; comparison between deterministic (upper) and probabilistic (lower) residual evaluation process. 

Figure 6 – Integration of physical knowledge-based and model-based approaches for FSM robust 
development. 

Figure 7 – Increase in the blower power (a) and outlet temperature (b) due to the mechanical efficiency 
reduction of about 10%, with respect to OC1. 

Figure 8 – Variation of the pre-reformer temperature (a) and hydrogen molar flow (b) due to the heat 
exchange surface reduction, with respect to OC1. 

Figure 9 – Faults simulation results: comparison among the residuals and the defined thresholds at 1% (red 
straight-dot line) and at 5% (green dashed line) of the monitored variables values at normal conditions; all 
the considered faults but f3 have been simulated with respect to OC1, whereas the fault f3 residuals have been 
evaluated with respect to OC2. 

Figure 10 – Faults simulation results for operating condition influence analysis; all the considered faults but 
f3 have been simulated with respect to OC2, whereas the fault f3 residuals have been evaluated with respect to 
OC1. 

Figure 11 – Fault simulation result for fault f4 with a fault magnitude of 10%; the residuals have been 
evaluated with respect to OC1. 

Figure 12 – Faults simulation results for fault magnitude influence analysis: the fault magnitude here 
considered has been set to 50%; all the considered faults but f3 have been simulated with respect to OC1, 
whereas the fault f3 residuals have been evaluated with respect to OC2. 

Figure A.1 – Schematic representation of the pipe connecting the air blower and the air pre-heater. 

Figure A.2 – Schematic representation of the air leakage into the pipe from a hole of diameter DH. 
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