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ABSTRACT

The emergence of online social networks has revolutionized
the way people seek and share information. Nowadays, pop-
ular online social sites as Twitter, Facebook and Google+
are among the major news sources as well as the most effec-
tive channels for viral marketing. However, these networks
also became the most effective channel for spreading misin-
formation, accidentally or maliciously. The widespread dif-
fusion of inaccurate information or fake news can lead to un-
desirable and severe consequences, such as widespread panic,
libelous campaigns and conspiracies. In order to guarantee
the trustworthiness of online social networks it is a crucial
challenge to find effective strategies to contrast the spread
of the misinformation in the network.

In this paper we concentrate our attention on two prob-
lems related to the diffusion of misinformation in social net-
works: identify the misinformation sources and limit its dif-
fusion in the network. We consider a social network where
some nodes have already been infected from misinforma-
tion. We first provide an heuristics to recognize the set of
most probable sources of the infection. Then, we provide an
heuristics to place a few monitors in some network nodes in
order to control information diffused by the suspected nodes
and block misinformation they injected in the network be-
fore it reaches a large part of the network.

To verify the quality and efficiency of our suggested so-
lutions, we conduct experiments on several real-world net-
works. Empirical results indicate that our heuristics are
among the most effective known in literature.

CCS Concepts

eNetworks — Network dynamics; Network economics; Social
media networks;

Keywords

Social Network, Spread of Misinformation, Independent Cas-
cade Model, Maximum Spanning Arborescence, Unbalanced
Cut, Source Identification

Diodato Ferraioli
University of Salerno, Italy
dferraioli@unisa.it

Final Version. The final version of this paper is available at
https://www.ifaamas.org/Proceedings/aamas2017/pdfs/
p1323.pdf

1. INTRODUCTION

In recent years online social networks have revolution-
ized the way we communicate, seek and share information.
Nowadays, millions of people use popular online social sites
such as Twitter, Facebook and Google+ to publish, read,
and spread information and they rely on these networks as
their major news sources. The popularity of online social
networks comes from their incredible efficiency in informa-
tion dissemination and sharing based on trust relationships
built among their users. However, these trust relationships
can also be used to spread rumors, inaccurate or even fake
information. Thus, online social networks became the most
effective channel for spreading misinformation. Here, we
consider as misinformation both the inaccurate and not ver-
ified information accidentally diffused by users, and fake in-
formation created and spread by malicious users to mislead
people and obtain illicit profit. The diffusion of inaccurate
information or fake news can lead to undesirable and se-
vere consequences, such as widespread panic, libelous cam-
paigns against competitors, conspiracies, frauds. For exam-
ple, false rumors about an earthquake in Ghazni province
in Afghanistan in 2012 caused thousands of people to leave
their home for long time [7]. Similarly, a false rumor origi-
nated from Twitter in June 2011 about an injury suffered by
the former U.S. President Obama caused a temporary insta-
bility in financial markets [14]. Several other cases of mis-
information occurred recently, such as the diffusion of false
information about vaccinations that is causing many parents
to refrain from immunizing their children [18], or the panic
created by tweets establishing that Ebola was rampant in
US [20]. Threats related to misinformation on online social
networks attracted attention of the scientific community [6,
27] and the problem of finding effective strategies to guar-
antee the trustworthiness of online social networks has been
recognized as a priority [25]. In 2013 the World Economic
Forum recognized the issue of “misinformation spread” has
one of the top ten globally significant issues of the year [26].

The problem of contrasting the spread of misinformation
in an online social network is complex and multi-faceted.
We can identify three main steps: (i) recognize misinfor-
mation; (ii) identify misinformation sources; (iii) limit the
diffusion of misinformation. In this paper we concentrate



our attention on the last two points. We consider a scenario
where misinformation has already been diffused in the net-
work and administrators have been able to recognize it and
find the set of the infected users. We want to identify the
sources of misinformation and limit their ability to continue
in diffusing misinformation in the network.

Identifying its sources is crucial in contrasting misinfor-
mation, since it allows network administrators to under-
stand the ultimate goals of the misinformation, recognize
their targets, punish the guilty nodes or orchestrate effec-
tive strategies for containing its diffusion. Due to the size of
online social networks, to recognize misinformation sources
can be a very challenging task and in several scenarios it is
not possible to identify them for certain. For this reason, so-
cial network administrators are reluctant to ban users from
the network if they do not have incontrovertible evidence of
their misbehavior. A more pragmatic approach is to create a
list of “suspects” that can be monitored in order to recognize
the misinformation that they could inject in the network in
an early stage and thus reduce its effect.

The control can be performed through monitors placed on
users to parse all their activities, recognize misinformation
and block it. Monitors in social media as Twitter or Face-
book, could be implemented by a computer-aided accounts
whose duty is to recognize spam and other malicious infor-
mation, and to execute accurate fact checking in order to
validate information that goes through them. Monitoring
could be also realized by real users that will be paid for false
or malicious information that they recognize and block.

Given the huge number of users in online social networks
it may be impossible or too expensive to place monitors on
all users. On the other hand, it could be impossible or un-
desired to place monitors directly on suspect users, because
we cannot have access to them or we do not want to raise
their suspicions. Thus, we have to select a set of users to
monitor, distinct from the set of suspected sources, such
that we can guarantee misinformation injected into the net-
work will be intercepted. Clearly, we cannot guarantee that
misinformation is recognized as soon as it is created, but
we would like to take the number of users exposed to mis-
information small. Moreover, in several contexts we could
have specific users that must be protected from misinforma-
tion. For example, we want to protect young teenagers from
misinformation about violence.

Our Contribution. We model a social network as a directed
weighted graph G = (V, E, w), where V is the set of nodes
in the network, £ C V x V is the set of directed edges, and
w: E — [0,1] defines for each edge (u,v) the probability
that v will transmit its information to v.

We model the diffusion of (mis-)information on this net-
work through the Independent Cascade Model, that has first
investigated by Goldenberg et al. [10, 11] and by Kempe
et al. [15]. Given a set S C V of sources, let A(t) de-
note the set of nodes that have been infected at time ¢ and
Ay = Uy o, A(t') be the set of all nodes that have been in-
fected within time t. Then, the process works in steps as
follows. We start with A(0) = S. At each time step ¢,
for every u € A(t — 1) and every v € V' \ Ay_ if the edge
(u,v) exists then v will be infected with probability w(u,v).
The process ends after t* steps if no new node is infected in
step t* (i.e. A(t*) = 0). In the following we will omit the
subscript ¢ when it is clear from the context.

In this paper we consider two optimization problems:

Source Identification (SI) problem: given the graph G and
the set A of infected nodes, find a set S of nodes having
maximum probability to be the sources of the infection;
Monitor Placement (MP) problem: given G, the set S of
source nodes, the (possibly empty) set T of target nodes
and integer k, find the minimal set M of nodes, disjoint
from SUT, that is a cut of the graph completely separating
S and T such that the side of the graph containing S has at
most k nodes.

For both these problems we propose heuristic solutions.
Our heuristics build on graph-theoretic background. We re-
duce the SI problem to the Maximum Spanning Arbores-
cence/Branching problem, and our heuristics will be based
on the algorithms proposed in [3, 5] and [2]. The core of our
heuristic for the MP problem, instead, lies on the computa-
tion of a k—unbalanced cut [12].

We remark that we concentrate our attention on heuristics
since both the problems are provably hard. Indeed, Lappas
et al. [16] proved that, even if the number of sources k
is known, the Source Identification problem is NP-hard to
solve even on Direct Acyclic Graph and it is NP-hard even to
produce a S-approximation for this problem, for every 8 > 1.
Zhang et al. [28], instead, considered a slightly different
version of our Monitor Placement problem and proved it is
#P-complete. It is easy to prove that the problem in [28§]
can be polynomially reduced to our MP problem and so also
MP is # P-complete.

To verify the quality and efficiency of our heuristics we
conduct extensive experiments on three real-world networks:
Gnutella, Wiki-Vote and Epinions. The results indicate that
our heuristics sensibly outperform the most effective alter-
natives known in literature.

Related works. In recent years the issue of the spread of
misinformation in social media received great attention not
only by social and computer scientists but also by reporters,
economists, social media businessman and politicians. In
particular, research concentrated on three directions: how
to model the diffusion of misinformation, how to distinguish
misinformation from true information and how to limit its
spread in the network. Here, we only refer to works in the
third direction, that is the more relevant to this paper.
The first works on the source identification problem used
simple epidemics models: that is, they describe the informa-
tion diffusion process as an infection disease spreading over
the population. These works adopted centrality measures to
identify the sources of the diffusion process. In particular,
Comin and da Fontoura Costa [4] run several experiments
to compare degree, betweenness, closeness, and eigenvector
centralities in identifying the sources of the misinformation.
Along the same line of research, Shah and Zaman [24] pro-
posed a new centrality measure, named rumor centrality,
and showed that it outperforms all the previously consid-
ered centrality measures. Rumor centrality revealed to be
very influential and it has been largely used, and extensions
and generalizations have been proposed to identify sources
of epidemics spread in several different settings, varying in
the number of sources, the topology of the network and the
coarseness of information about the set of affected nodes
that is known to the algorithm. We refer interested readers
to the survey of Jiang et al. [13] and references therein.
Epidemics models assume that there exists a global pa-
rameter that describes the probability that a user is infected
by a neighbor. While this assumption simplifies the compu-



tational complexity of the model, it fails in describing real-
world situations where users are differently bent to accept in-
formation from their neighbors. To overcome this difficulty,
the Independent Cascade model has been proposed as a gen-
eralization of the epidemics model where each edge has its
specific activation probability. Clearly, this generalization
makes the problem extremely more complex to deal with.
Indeed, as discussed above, Lappas et al. [16] prove that
for the Source Identification problem with an Independent
Cascade model of diffusion it is NP-hard even to produce a
[B-approximation, for every 8 > 1.

This hardness result leaves us only two possible research
directions: either we focus on special network topologies or
we consider general heuristics with good experimental per-
formances. Lappas et al. in [16] follow the first direction and
study the Source Identification problem on tree networks.

Nguyen et al. [21], instead, follow the second direction and
propose efficient heuristics for identifying sources of misin-
formation in general networks. In this work we build upon
the contribution of [21]. We present a new heuristic ap-
proach whose performance turns out to be much better than
algorithms previously presented. Moreover, we remark that
both algorithms in [16] and [21] need to know in advance the
number k of sources to find. Our heuristic, instead, works
well even if the number of sources is not known.

A correct identification of sources can be very useful even
for limiting the diffusion of misinformation. Two main ap-
proaches have been proposed in literature to address this
problem. The first one, proposed by Budak et al. [1], re-
quires that a true information campaign is initiated from a
subset of highly influential nodes. In this way, the diffusion
of misinformation and true information proceeds in parallel,
except that nodes that have received the true information
will be immune to the misinformation and will not transmit
it. However, in order to have a true information campaign
that would be effective in the tentative of limiting misin-
formation, one must carefully choose the seeds from which
the diffusion starts. We remark that this approach requires
perfect knowledge of the sources of misinformation in order
to correctly selecting the seeds of the contrasting campaign.

Budak et al. [1] studied the computational complexity
of this problem and proposed some preliminary solutions.
A similar approach has been taken by Nguyen et al. in
[22] and [19]. They introduced the Node Protector prob-
lem which aims to find the smallest set of highly influential
nodes whose decontamination with good information helps
to contain the viral spread of misinformation. They give in-
approximability results and propose greedy approximation
algorithms. Variants of the problem have been also consid-
ered by Fan et al. [8], that focused on a community-based
network, and Zhang et al. [29] that, instead, not only aim to
minimize the spread of misinformation, but also to maximize
the diffusion of true information.

Zhang et al. [28] recently proposed a different approach
for limiting the spread of misinformation. Namely, they pro-
pose to place monitors over the network that are able to de-
tect misinformation and block it. A good monitor placement
should satisfy two requirements: on one side, we would like
to place as few monitors as possible, on the other side, we
would like that our monitors limit the number of nodes ex-
posed to misinformation. These two discording goals make
the problem very difficult. Indeed, Zhang et al. [28] proved
that the problem is # P-complete, and proposed an heuris-

tics for placing monitors so that misinformation is detected
with high probability before it reaches target nodes.

In this work, we strengthen the model [28] by putting more
stringent requirements on the number of nodes exposed to
misinformation and requiring that misinformation is always
detected (more details in Section 3). Nevertheless, experi-
ments show that our heuristics has performance comparable
or even better than the algorithm proposed in [28].

2. SOURCE IDENTIFICATION

We start by recalling the statement of the Source Identi-
fication problem. Here we are given a social network G =
(V,E,w) and a set A C V of nodes infected by misinfor-
mation. We assume that misinformation diffused in G ac-
cording to the Independent Cascade model starting from a
number k (maybe unknown) of sources. Our goal is to dis-
cover the sources of the misinformation.

To this aim, we consider the subgraph H4 of G induced by
A and w.l.o.g. we assume H 4 is connected. In the following
we will omit the subscript when it is clear from the context.

Our approach is built on the idea that the structure of
the network H can help to guess how the misinformation
diffused. In particular, we would like to find the most prob-
able path that misinformation went through, conditioned on
the fact that the set of infected nodes is A. We now discuss
how we implement this idea and how we use it to compute
a set of probable sources.

Warm-up: Single Source. Consider first the simpler case in
which the misinformation starts from a unique source.

Our approach is based on the concept of mazrimum span-
ning arborescence. An arborescence of the graph G is a
directed subgraph T on a subset V' C V of vertices of
G, such that there is a distinguished node r € V’, called
root, and a single directed path from r to every other ver-
tex in V’. A spanning arborescence of G is an arborescence
containing all the vertices of G. Roughly speaking, an ar-
borescence is a directed tree and a spanning arborescence
is a directed spanning tree. The weight of an arborescence
T = (V',E’) is the sum of the weights of the edges in T,
e, W(T) =3, ,yep w(u,v). The mazimum spanning ar-
borescence is a spanning arborescence of maximum weight.

Let T be a spanning arborescence of the subgraph H in-
duced by the set of infected nodes A and let r be its root. We
denote as E, 1 the event that misinformation spreads from
r according to T, i.e., if it occurs that in an information dif-
fusion process starting from r and proceeding according to
the Independent Cascade model each node v € H is infected
by its unique predecessor in T'.

Let T be the set of all the spanning arborescences of H
and let T* € T be a maximum spanning arborescence of H.
It is immediate to see that the following observation holds.

OBSERVATION 1. T* = arg maxret Pr (E, 7).

Consider indeed a spanning arborescence 7' with root r
and assume that misinformation spreads from r according
to T'. Then, at time 0 the root r is the unique infected node
and at the next time step only its children in 7" become in-
fected. Since in the Independent Cascade model each neigh-
bor is infected independently, then the probability that all
the children of r are infected at time step 1 is

Z Pr (r infects v | r is infected) = Z

(r,w)EE(T) (r,w)€E(T)

p(r,v).



By recursively repeating this argument on all the levels of
the arborescence T', and considering that for each node v of
H there exists a unique path in 7" from r to v, we can prove
that the probability that misinformation spreads from r ac-
cording to T is equal to W(T'). Thus, T* is the most proba-
ble spanning arboresence that misinformation went through
to infect nodes in A.

Notice that the probability that a node is the source of
the misinformation is the sum of the probabilities of all the
arborescences rooted in that node. But computing this prob-
ability is not computationally affordable. However, the root
of the maximum spanning arborescence T is a natural can-
didate to maximize this probability.

This simple observation then suggests a heuristic for iden-
tifying the single source of misinformation: to choose the
root of the maximum spanning arborescence of the subgraph
H induced by the set of infected nodes A.

Despite the simplifying assumptions, our approach has
some very interesting features. First, the problem of com-
puting spanning arborescences is a very well studied and a
lot of algorithms are known both for general networks and
for specific classes of graphs. In particular, it is possible to
efficiently compute the maximum spanning arborescence of
a graph through the Chu-Liu/Edmonds algorithm indepen-
dently proposed by Chu and Liu [3] and by Edmonds [5].
Moreover, even if the approach is so simple, it turns out
to perform very well in practice. In fact, in all the experi-
ments we run (see Section 4 for more details) our heurstic
was able to find the right source of misinformation in more
than 70% of the cases, largely outperforming perfomance of
the algorithm proposed in [21].

Multiple Sources. Clearly, the assumption that misinforma-
tion originated in only one source is too restrictive and in
this paragraph we show how to relax it.

The heuristic proposed for the single source case appears
to be hard to extend to the case of multiple sources because
it is based on spanning arborescences. Thus, if we assume
that misinformation diffuses along the edges of an arbores-
cence it is not clear how to select sources out of the root of
the arborescence. For example, if we select nodes that are
close to the root, we are implicitly limiting the influence of
the root node, but nodes that are far away from the root
may be scarcely influential.

However, the idea on which the heuristic for single source
is based can still be fruitful. Suppose that misinformation
starts from k different sources and proceeds as in k parallel
threads. Then we can model the diffusion process by sim-
ply considering multiple arborescences, up to one for each
source. Hence, if we can identify these diffusion trees, we
can choose their roots as natural candidates for misinforma-
tion sources. This motivates us to use branchings in places
of arborescences.

A branching of the graph G is a forest of disjoint arbores-
cences. In a natural way, we can define the maximum span-
ning branching of G as a set of disjoint arborescenses con-
taining all the vertices of G and such that the sum of their
edges’ weights is maximum.

Following the approach described for the single source
case, our heuristic computes a maximum spanning branch-
ing B for the subgraph H induced by the set A of infected
nodes and then take the sources of the arborescenses in B as
sources of misinformation. As for the case of arborescenses,
algorithms are known to efficently computing a maximum

spanning branching (see, e.g., [2]).

We would like to highlight that our approach does not
need to know the number of sources that must be identified.
In fact, it simply returns all the roots of the arborescenses
in the branching, regardless of their number.

Fixed Number of Sources. Suppose now that the number of
sources (or a bound to it) is given. Notice that this is the
problem studied in [21] and [16].

It is natural to ask if our approach can work also in this
case. Interestingly, the algorithm developed by Camerini et
al. [2] returns not only a maximal spanning branching, but
it also allows us to easily compute the next optimal branch-
ings through local transformations. Formally, once that the
best branching is given, one can compute the next maximal
branching by swapping a single edge in the branching with
a new edge that is actually not in the branching.

This property of the algorithm of Camerini et al. [2] sug-
gests the following approach for computing a given number
of misinformation sources: we compute a maximal spanning
branching and, if it has a number of arborescenses differ-
ent from k, continue to transform it and compute next best
branchings as long as the algorithm produces a branching
with exactly k roots.

We remark that this approach is consistent with the idea
adopted in previous cases: the returned branching is the
most probable set of arborescenses that model the diffusion
of misinformation from exactly k sources, and the roots of
its arborescenses are natural candidates as misinformation
sources. However, this approach has the drawback to be
potentially very time consuming. In fact, the property that
the next best branching differs from the previous one in ex-
actly one edge implies that it frequently occurs that the next
best branching will have the same roots as the previous one.
Hence, the number of changes that one need to make before
a branching with exactly k roots is found can be very large.

To address this issue, we adopt a different approach: let
S be the set of candidate sources we already found. We
distinguish two cases. If |S| < k, then we first construct
graph H' from H by removing all the nodes in S and their
adjacent edges and then compute a new maximum spanning
branching for H'. Then, we add the roots of this branching
to S and iterate until we obtain at least k& sources.

If, instead, |S| > k (either after the first branching com-
putation or after the addition of the roots of a newly com-
puted branchings), we proceed as follows: order the ar-
borescenses of the branching computed in the last iteration
in non-increasing order by their weight and take the roots
of the first k — £ arborescenses, where £ is the number of
sources found in previous iterations.

As for the single source case, we run extensive experiments
on our heuristic for the identification of multiple sources. In
particular, in order to compare our heuristic with other algo-
rithms proposed in literature we concentrated on the case of
a fixed number of sources. We run experiments for 2, 3 and
4 sources that show how our heuristic largely outperforms
[21]: in almost all the instances, our heuristic was able to
identify at least half of the sources and in more than 40% of
the instances it was able to identify all the sources.

3. MONITOR PLACEMENT

Having identified the misinformation sources we can now
consider the problem of limiting their capacity to continue



in diffusing misinformation.

In [28] Zhang et al. suggest to use monitors to limit the
spread of misinformation originated from a set of known
sources. The role of these nodes should be to filter the in-
formation they receive and block what they recognize as
misinformation. Their goal is to use as few monitors as pos-
sible and place them as close to the sources as possible to
limit the number of nodes reached by misinformation.

Specifically, Zhang et al. [28] considered the following
problem, named 7-Monitor Placement. Let G be a network
and let S be a set of misinformation sources and ¢ be a tar-
get node that we have to protect from misinformation. For
every path [ in the network, we denote by p; the probability
that (mis)information is transmitted along this path, i.e.,
o= H(u,v)el}o(u7 v). For a set L of paths we denote by L*
the event that for every path ¢ € L, the (mis)information
does not go through every node of L. A set of monitors
placed in a set M C V of vertices detects misinformation if
there is at least one path from a node in S to a node in M
on which there is a successful diffusion. Formally, if Lg a
denotes the set of all paths whose starting endpoints are in
S and the final endpoints are in M, then the probability
that the misinformation is detected turns out to be exactly
D(S,M) =1—"Pr(Ls ).

The 7-Monitor Placement problem asks for a subset M of
vertices chosen among the vertices at distance at most ¢ from
S, such that t ¢ Lsy and the misinformation detection
probability D(S, M) > 1—7. Zhang et al. proved that the 7-
Monitor Placement problem is # P-complete and presented
a heuristic to compute a monitor placement. Their solution
is based on the computation of a cut of the graph.

In this paper we consider a generalization of the 7-Monitor
Placement problem, called the MP problem. The extension
we consider is multifold. Indeed, we assume to have a set
T of target nodes to protect from misinformation and we
require that whenever misinformation spreads over the net-
work starting from the known set S of sources, then it will
be detected and blocked by monitors in M before it reaches
nodes in T, i.e. D(S,M) = 1. Moreover, in order to limit
more effectively the spread of misinformation, we put an
explicit bound on the number of nodes that can receive mis-
information before it is blocked by monitors. Specifically,
we require that the number of nodes in V'\ (S U M) that lie
in paths in Lg y is upper bounded by a parameter k. This
requirement generalizes and strengthens the request in [28]
of placing monitors in nodes within distance at most ¢ from
S: if the number of nodes close to S is small our require-
ment achieves the same effect as the 7-Monitor Placement
problem, but it allows to keep low the number of infected
nodes even if there are many nodes around the sources.

Clearly, the hardness result for the 7-Monitor Placement
problem given in [28] extends to our problem. Moreover,
since our problem is much more constrained than the 7-
Monitor Placement problem, we should expect that more
monitors will be required and their placement would be more
difficult to compute. However, we next propose an heuristic
for the MP problem and we show that its performances are
comparable, and in some cases even better, to [28] both in
terms of number of monitors and of computation time.
Monitors and Cuts. Let us start by considering a simple
setting where we have a network represented by the graph
G = (V,E,w), with w(u,v) = 1 for each edge (u,v) € E,
a single source s of misinformation and a single target ¢ to

protect. Let C be a (s,t)-cut of the graph G. By definition
of cut, if we remove from G all edges in C' then there will
be no paths from s to t. Thus, by placing monitors in the
endpoints of the edges in C' we can guarantee that all the
information diffused by s will be blocked before it reaches t.

Observe that the number of monitors required by this ap-
proach depends on the size of the cut. Then, to reduce
the number of required monitors we need an (s — t)-cut of
minimum size. However, our requirements are not only to
protect t from the misinformation but also to have a small
number of nodes exposed to misinformation. Observe that
a minimum cut does not give any guarantee on the number
of nodes that can be reached by the misinformation before
monitors detect it. Suppose, for example, that the mini-
mum cut contains only edges adjacent to ¢. In this case, by
placing monitors on the endpoints of these edges we have
that only the target node ¢ and the nodes hosting the mon-
itors are protected by the misinformation. Thus, we have
to impose another constraint to our cut: the set of nodes
reachable from s after the removal of the edges in the cut
must be small. To meet these additional requirement we will
consider unbalanced cuts.

Formally, given a graph G, a source s, a target t, and
an integer k, a k—unbalanced (s,t)-cut is a partition of the
nodes of the graph in two sets, L and R, such that s € L,
t € R, and |L| < k. The size of the cut (L, R) is given by the
number of edges that have an endpoint in L and the other
endpoint in R, i.e. W(L,R) = |{(u,v) € E: u € L,v € R}|.
A minimum k—unbalanced (s,t) cut is a cut (L*, R*) such
that VV(L*7 R*) = minL’R: s€L,teR,|L|<k W(L, R) Roughly
speaking, a minimum k—unbalanced (s,t)-cut is a (s,t)-cut
of minimum size among all the (s —t)-cuts where the source
side is bounded to contain at most k£ nodes.

Interestingly, a polynomial time algorithm is known for
computing a minimum k—unbalanced cut for every graph G
[9, 12]. The basic idea of this algorithm consists in finding a
minimum cut in a graph G“ obtained from G by adding
edges of weight a from all the nodes of the graph to t.
Clearly, if « = 0 then G* = G. If a > 0, instead, the
size of a cut (L, R) of G is given by the size of the same cut
in the original graph G plus an additive factor of «|L|. As
« increases the size of L becomes more and more relevant
with respect to the size of the cut. Hence, if « is sufficiently
large, then a cut of G* becomes a k—unbalanced cut of G.

Even if this algorithm seems to be very “expensive” in
computational terms (we could compute a lot of cuts to find
the correct value of @), Gallo et al. [9] proved that using the
parametric-flow technique we can efficiently build a new cut
on top of the previous one. Moreover, Gallo et al. [9] give a
procedure to compute the next « that rapidly converges to
a value that produces a minimum k—unbalanced cut.

The Heuristic. Even if the core of our solution is given by
the computation of an unbalanced cut, as described above,
there are still several aspects and optimizations that have to
be addressed in designing our heuristic.

First of all, the approach described above was designed
for a single source - single target scenario on an unweighted
graph (actually, we assumed that all edge weights are equal).
Here, we will explain how we can adapt our approach to
many sources - many targets scenarios on weighted graphs.
We address the problem of many sources and targets through
a source and target contraction. Let G = (V,E,w) be a
weighted graph representing our network and let S be the



set of sources and T' be the set of targets. Then we consider
a new graph G* = (V*,E*,w") in which we contract all
sources in a single node s*, and all targets in a single node
t*,ie., V* = (V\(SUT))U{s",t"} and E* = |J]_, E}, where
Ef = {(u,v): w,v € V*\ {s",t"}}, E5 = {(s",v): (y,v) €
E and u € S}, B3 = {(u,s"): (u,v) € Eandv € S}, Ej =
{(t*,v): (u,v) € Fand u € T}, and E5 = {(u,t*): (u,v) €
E and v € T}. As for the weights, we clearly set w* (u,v) =
w(u,v) for every (u,v) € Ef. For edges (s*,v) € E3, let
C(v) be the set of sources that are connected with v in the
original graph, ie., C(v) = {s € S: (s,v) € E}. Then,
w*(s*,v) = 1-]],cc(1=w(s,v)), that is the probability that
at least one of the source nodes transmit the misinformation
to v. Similarly, for edges (u,s*) € E3, let C(u) be the set
of sources at which w is connected in the original graph,
ie., C(u) = {s € S: (u,s) € E}. Then, w*(u,s") = 1—
[l.ec(I —w(s,v)). A similar approach can be taken for
edges in Ej and E3.

The graph G* has now a single source s* and a single
target ¢t*. Since this graph is weighted we need to specify
which cuts we should compute. A natural choice would be
to take minimum cuts (i.e. cuts that minimize the sum of
the weights of their edges). However, since an edge weight
represents the probability that information flows on that
edge, placing monitors on the endpoints of a minimum cut
would mean to place monitors on endpoints of edges where
it is unlikely that the misinformation spreads. Monitoring
these edges can then be a useless waste of resources.

We propose, instead, to place monitors on edges with large
transmission probability. This indeed would also help in
reducing the number of nodes infected by misinformation: in
fact, not only the monitor placement guarantees that target
nodes will not be reached by misinformation and there are
no more than k nodes reached by misinformation, but it
may be also the case the number of infected nodes is much
less than k since edges between nodes in L(S, M) have small
transmission probabilities. In order to achieve this goal, we
run the minimum k—unbalanced (s*,t")-cut procedure on
the graph G = (V*, E*, ), where edge weights are integers
and they are inversely proportional to their weights in G*.
We observe that the use of integer weights has the positive
side effect to make easier to compute the next « to use in
the computation of the unbalanced cut.

Another optimization is related to the placement of mon-
itors in the endpoints of the unbalanced cut’s edges. In our
informal discussion for the single source case we stated that
monitors can be placed on all the endpoints of the cut’s
edges. However, it is clearly unnecessary to place monitors
on all these nodes. Instead, we will use a more clever place-
ment algorithm in order to reduce the number of monitors.
Specifically, given a cut (L, R) of G, where L is the side of
the cut that contains s*, we consider the unweighted graph
C = (W, F) induced by the edges of (L, R), i.e, W = {u €
L: (u,v) € E*,v € R}U{v € R: (u,v) € E*,u € L} and
F = {(u,v) € E*:uw € L,v € R}. Then, we compute a
minimum vertex cover M of C and place monitors in all the
nodes in M. Notice that, since C' is a bipartite graph, it is
possible to compute its minimum vertex cover in polynomial
time (via a reduction to a problem of min cut/max flow).

Summarizing, our procedure works as described in Algo-
rithm 1. Notice that our heuristic may place a monitor in
s*. In this case, we simply replace s* with all its neighbors.

Input: Graph G, Sources S, Targets T', and integer k.
Output: Monitor vertices M.
1 G*,s%,t* = SourceContraction(G,S,T)

2 G = WeightConversion(G™)
3 (L, R) = UnbalancedCut (&, s*, t*, k)
4 C = BipartiteGraphFromCut(L, R)
5 M = VertexCover(C)
6 return M
Algorithm 1: Algorithm for monitoring placement

4. EXPERIMENTS

To validate our proposed heuristics and compare their
performances to other known solutions we conducted exten-
sive experiments on three real-world data sets: Wiki-Vote,
Gnutella08, Epinions. All these data sets are available at
[17] and differ with respect to size and density: Wiki-Vote
is a dense network with of 7115 nodes and 103689 edges;
Gnutella08 has comparable size, but it is much sparser,
since it has 6301 nodes, but only 20777 edges; finally, Epin-
ions is a large network of 75879 nodes and 508837 edges.

All these networks are directed and unweighted. To run
our experiments we need to define transmission probabil-
ities for all their edges. For Wiki-Vote and GnutellaO8,
these probabilities have been generated uniformly at ran-
dom in [0,1]. As for Epinions, we adopted the approach
described by Richardson et al. [23]: to each node u, it has
been assigned a quantity 7. € [0,1] chosen according to a
Gaussian distribution with mean 0.5 and standard deviation
0.25; then to an edge (u,v) it is assigned weight w(u,v) uni-
formly chosen from [max{yu+7»—1,0}, min{y, —v,+1,1}].
Source Identification. For sake of comparison with other
known solutions we run our experiments with a fixed num-
ber k of sources, with k ranging from 1 to 4. For every
graph, we first placed the k sources uniformly at random in
the network and then run an Independent Cascade diffusion
process starting from the k& sources. In this way we obtained
the set A of the infected nodes. Then the graph and the set
of infected nodes were given in input to our heuristic.

In order to test the heuristic’s performance with respect
to the number of infected nodes we grouped our experiments
in five groups, depending on the cardinality of A: [100, 250],
[500, 650], [1000,1200], [1500,1700], and [2100,2700]. To
force each test to be in one of these ranges, we choose a
random integer ¢ within that range, and we stop the cascade
process as soon as ¢ nodes have been infected by misinforma-
tion. For each of these experimental settings, i.e., for every
graph, each value of k, and each range, the experiment has
been repeated at least 15 times.

First, we tested our heuristic for single source identifica-
tion. As you can see in Figure 1, it was able to find the right
sources in approx. 70% of the experiments, with a slight de-
crease of the success rate only when the number of infected
nodes is very large. As a matter of comparison, we note
that the algorithm proposed by Nguyen et al. [21], run on
the same inputs, finds the correct source in less than 10% of
experiments, and it never finds the correct source when the
number of infected nodes is within the range [2100, 2700].

We also evaluated the performances of our heuristic with
multiple sources. In order to compare our approach to the
previous proposals, we considered only the case in which the
number of sources is known. Clearly, in this case an algo-
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Figure 1: Success rate of the single source identification
heuristic with respect to the number of infected nodes.

rithm can correctly identify all the sources or only part of
them. Figure 2 shows the rate of (partial) successes of our
heuristic when k& = 3 and when k = 4 (results for k = 2
are similar and we do not present here). As you can see, in
almost all the experiments our heuristic correctly identified
at least half of sources and in more than 70% of experiments
it correctly identified all sources except at most one. More-
over, it was able to correctly identify all the sources in at
least 40% of experiments, even if the success rate tends to
decrease as the number of infected nodes increases.

We remark that our success rate is more than five times
larger than the one achieved on the same inputs by Nguyen
et al. [21], and this rate is up to twenty times larger when
the number of infected nodes is large.

Monitor Placement. To test performances of our heuris-
tic for the MP problem we run experiments on Wiki-Vote,
Gnutella08 and on a subset of the Epinions network, named
SUB-Epinions, consisting of 7479 nodes and 25855 edges.
The network SUB-Epinions has been created by randomly
choosing an integer n between 7000 and 7500, selecting n
nodes at random from the largest strongly connected com-
ponent of Epinions, and considering the graph induced by
these nodes. Edge weights have been randomly assigned.

We decided to compare our heuristic with respect to the
algorithm MMSC proposed in [28]. For this reason, we followed
them in the choice of the sources of misinformation. We
considered a set S of sources, with |S| = 10,20, ..., 50, and
only one target node t. Sources are selected randomly among
the set of nodes with low outdegree that are neighbors of
the |S| nodes with the largest degrees. Target is selected
uniformly at random among nodes with low indegree. Here,
we say that the degree of node is low (high) if it is below
(above) the average degree of the network.

For each graph G and each set of sources S, we first con-
tracted sources in a single source (see Section 3 for details)
and then we run algorithm MMSC with parameters 7 = 0.1
and ¢ € {1,2} (here § denotes the maximum distance from
the source at which it is possible to place the monitors, thus
if we increase § we are allowing more nodes to be infected
by misinformation).

In order to make the results of the algorithms comparable,
we would like to have more or less the same expected num-
ber of nodes that are reached by misinformation. For this
reason, we run 100 separate executions of the Independent
Cascade diffusion process on the network G with sources
from S and monitors placed according to algorithm MMSC,
and let k be the average number of nodes infected by mis-
information in these executions. Then we run our heuristic

on input (G, S, t, k)

For each graph, each value of |S| and each value of § we
executed the experiment 10 times and evaluated both the
average number of monitors and the average number of ver-
tices reached by misinformation.

The results of our experiments show very different be-
haviors for the cases of 6 = 1 and § = 2. When § = 1 our
heuristic places a number of monitors that is slightly greater
than algorithm MMSC. In Figure 3a we show results only for
the Wiki-Vote network but we had similar results also for
the other two netowrks.

We remark that this slightly increase in the number of
monitors, never greater than 20%, is counterbalanced by the
much more stronger results of our heuristic in terms of limi-
tations to the spread of misinformation. In fact, our heuris-
tic guarantees complete protection of the target node from
misinformation while MMSC allows that ¢ could be reached
by misinformation with small probability. Moreover, with
our heuristic the average number of nodes that are reached
by misinformation even in presence of monitors is much less
than MMSC and the difference between the two algorithms
explodes as the number of sources increases. As above, We
show only the result for the Wiki-Vote network in Figure 3b,
since results for Gnutella08 and SUB-Epinions are similar.

When 6 > 1 our heuristic outperforms the MMSC algorithm
with respect to both the number of monitors placed and he
number of nodes exposed to the misinformation. As you
can see in Figure 4a, the number of monitors placed by our
heuristic remains almost unchanged regardless of the value
of 0, whereas the number of monitors placed by MMSC ex-
plodes. Moreover, as shown in Figure 4b, even if MMSC places
much more monitors, our heuristic has much better perfor-
mances with respect to the number of nodes that can be
reached by misinformation.

Finally, we compared running times of our heuristic and
the MMSC algorithm to check if the much better performances
of our heuristic could come at cost of a larger running time.
We run our experiments on a CPU Intel Core i7 860 2.8
GHz, 4 core with 8MB cache and 4GB RAM. Figure 5a and
Figure 5b show that the two algorithms run on Wiki-Vote
have comparable running times for 6 = 1, but our heuristic
becomes significantly faster when ¢ increases.

5. CONCLUSIONS AND FUTURE WORK

In this paper we considered the problem of contrasting the
spread of misinformation in an online social network. We
proposed two heuristics for first identifying the sources of
misinformation and then placing a set of monitors on nodes
of the network to limit the spread of misinformation.

Our heuristics are based on well-studied graph-theoretic
algorithms, such as the algorithm for computing the maxi-
mum spanning branching of a directed graph, or the algori-
htm to compute an unbalanced cut. Both our heuristics
can have arbitrarily large approximation guarantees, due
the previously known hardness results. However, they per-
formed very well in the extensive tests we run on real-world
networks and largely outperformed previously known algo-
rithms.

As shown in the paper, the Monitor Placement heuris-
tic obtains much better results while having comparable
(in some cases even better) running times with previously
known algorithms. Our solution to the Source Identification
problem, instead, takes much more time than the previously
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Figure 2: Success rate of the multiple source identification heuristic with respect to the number of infected nodes.
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known heuristics. We believe that it would be interesting
and useful to explore the possibility to either optimize our
approach or design alternative and more efficient algorithms
that achieve performances comparable with the ours in less
time.
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