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Abstract

The dynamical reconfiguration of photovoltaic panels is a useful approach for
fighting the detrimental effects of mismatching on their power production.
The practical implementation of the method has been recently optimized by
means of efficient and reliable relays. However, two problems remain still
open. The first is to determine the optimal electrical connection among the
panels that ensures the maximum power produced at the actual irradiance
conditions, while the latter is to constrain the computation time of such
optimal configuration to fit the need of real time applications.

We present an evolutionary approach to the first problem. It is designed
for allowing a straightforward porting to an embedded system and it is aimed
at reconfiguring photovoltaic panels, thus not modules like some other ap-
proaches do in literature. Simulation results confirm the reliability and con-
vergence capabilities of the proposed method and encourage further work
for the adoption of the algorithm in real time applications. The problem of
minimizing the computation time is also addressed.
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1. Introduction

The efficiency of a PhotoVoltaic (PV) panel is actually about 15%, but in
real applications this figure is even lower because of many reasons. One of the
reasons, occurring especially in urban context is the mismatched operating
conditions at which the panels forming a PV plant work [10]. As some panels
are connected in series in order to reach a voltage level that fits with the
input specifications of the commercial inverters, the presence of a partial
shadowing affecting some cells or other inhomogeneity among the parameters
of the cells, e.g., due to aging, failures or manufacturing tolerances, might
cause a significant drop in the power production [24]. Producers usually
install bypass diodes in the panels for mitigating the power loss in case of
mismatching, but these diodes greatly change the voltage vs. current (V-
I) characteristic of the PV array. When the diodes enter into conduction
for compensating a current mismatching among the cells of the string, the
voltage vs. power (V-P) characteristic of the array shows more than one
Maximum Power Point (MPP).

To obtain the MPP, the inverter control system is usually equipped with
a Maximum Power Point Tracking (MPPT) algorithm and many methods
have been proposed in literature with the aim to find the MPP, including
Fuzzy Logic and Neural Networks [23, 29]. Unfortunately, such approches
lack in versatility in that PV panels operate in conditions that vary with
time. As a consequence, methods like Neural Networks, have to be trained
periodically to guarantee an optimal MPP tracking. Moreover, while such
methods perform well under uniform irradiance conditions in which only a
single MPP is present, partial shading conditions described above cannot
be managed by the MPPT algorithm, so that a further power drop might
occur [10]. The problem can be solved by a distributed MPPT architecture,
but at the price of a power processing that is active also when mismatched
conditions do not occur or of an increased plant cost [2, 20, 31, 32, 33].

Dynamical reconfiguration of the electrical connection among the modules
reduces the detrimental effect of the mismatching among modules and also
allows to implement monitoring, diagnosis and prognosis functions.

Very few are the systems available on the market that allow to dynam-
ically change the series/parallel connection among the panels in order to
maximize the power produced by the PV field, as the one described in [34].
In the very recent literature, instead, some methods and techniques have been
proposed, this being the confirmation of the interest of the scientific commu-



nity into an approach that is very promising with respect to the existing ones
(e.g. [19, 30]). Some recent patents have also appeared (e.g. [26]).

Some algorithms are based on the estimation of the irradiance at which
the panels in the PV field work. Such methods are inaccurate, because they
cannot take into account the real operating conditions of the panels and
also the possibility that some of their sections work differently. Thus, such
methods do not allow to implement an effective monitoring of the field. Other
approaches assume that detailed measurements are periodically performed
on each panel. This approach allows to determine more accurately the new
configuration to be entered and to collect data on which a diagnostic method
for determining the panels state of health can be devised [6]. The drawback
is the need of acquiring the electrical data concerning the panels behavior
periodically. Nevertheless, the power loss deriving from the above drawback
can be greatly reduced by suitably optimizing the measurement process.

The method proposed in this paper aims at maintaining high efficiency
of the PV system in any conditions, including partial shading. The recon-
figuration procedure has a first step consisting in the acquisition of the V-I
characteristic of each panel in the PV field by means of a suitably controlled
dc/dc converter. Once such characteristics are available, an optimization pro-
cedure determines the new connection among the PV panels ensuring that
the maximum power is extracted from the PV field. Finally, a processor
controls a set of switches for settling the new electrical configuration of the
PV panels. The whole procedure is repeated periodically.

The first step needs few milliseconds per panel, this time having a lower
bound depending on the internal capacitance of the cells the panel is made
of. The third step depends on the type of relays used, but it is not expensive
in terms of time. Instead, the second step, devoted to the computation of
the best configuration to enter, might be very time consuming because the
number of possible connections among the panels is be very high. The price
to pay for a long computation time is that the PV field remains in an electrical
configuration that is not the best one for the actual operating conditions of
the panels, e.g., for the actual shading pattern affecting the PV field. The
computation of the new configuration would not be a prohibitive task for
a personal computer, but on-field applications require low costs and, thus,
the employment of embedded systems, e.g. micro-controller, digital signal
processors or field programmable gate arrays.

We propose the use of an Evolutionary Algorithm (EA) for implement-
ing the second step, i.e., to determine the best configuration of the panels
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of the PV field. The algorithm has been studied and designed for requiring
low amount of memory and computation resources, with a high convergence
capability and repeatability, so that it can be implemented on an embed-
ded system almost straightforwardly. The algorithm is validated through
the use of V-I characteristics obtained by PV panels physical models. The
performances of the algorithm are documented by using a number of differ-
ent scenarios occurring in real conditions. redAnyway, the minimization of
computation time is only addressed and it will be extensively treated in a
forthcoming paper.

To the best of authors’ knowledge, EAs have been mainly used either to
solve the MPPT problem under partial shading conditions for different PV
fields fixed topologies [28, 22, 8, 18] or to design under static conditions large
photovoltaic systems as well as hybrid energy systems [13, 16], including a
number of renewable and classical energy sources, like wind or diesel.

The motivation behind the use of EAs for dynamical reconfiguration of
PV fields is that they perform well when the objective function is non-linear,
as occurs to the output characteristic of PV fields when their modules work
under mismatched conditions. The problem complexity increases since each
energy source has its own operating constraints and no deterministic algo-
rithm could be effectively used to find the optimal solution in practical com-
putation times.

2. Dynamical Reconfiguration of PhotoVoltaic Panels

2.1. PV field topology

Before discussing the PV panels reconfiguration process, we have to in-
troduce the PV field topology we refer to. To this aim, we assume that each
PV panel is made of a number of cells connected in series. Such cells are
divided into a number of groups, named modules, each one having a bypass
diode connected in anti parallel for minimizing the mismatching effects. Al-
though the panels are physically arranged into a matrix, as shown in Figure
1, the electrical connection among them can be of different types. Here, the
electrical topology of the PV field is assumed to be of series-parallel type. In
other words, some panels are series—connected, forming strings, in order to
reach a voltage complying with the inverter input specifications. Then, the
PV strings are parallel-connected in order to increase the generated current
and meet the inverter specifications in terms of power. As a consequence, a
series-parallel topology composed by N, panels organized into Ny electrically
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Figure 1: PV panel: 1(a) reference model and 1(b) its electrical scheme.

parallel connected strings is considered. Thus, a PV panel belongs to one and
only one string or, under particular irradiation conditions, it is disconnected
from the PV field. According to the above topology, each arrangement of the
panels into the strings represents a configuration of the PV field.

2.2. Photovoltaic panels reconfiguration process

The reconfiguration process adopted takes place periodically during the
day and consists of three phases as follows:

1. in the first phase a suitably controlled dc/dc converter allows the ac-
quisition of the V-I characteristic of each panel in the PV field. In
particular, to the aim of computing the new electrical configuration to
be settled in order to let the PV field produce the maximum power,
it is assumed that a shading pattern for each PV panel is given. The
shape of the shadow is defined and, by means of a simple and intuitive
geometrical algorithm, the irradiance condition for each PV cell of each
panel is calculated.

In order to assign a unique irradiance value to each cell, the following
assumptions have been done.



Shadow

Figure 2: Example of shading pattern. In this example, there are three groups of cells:
non-shaded cells, fully shaded cells and partially shaded cells. The first group is subjected
t0 Gy = 1000W / m?. The coefficient SO has been fixed at 0.75, so that the fully shadowed
cells work at G = (1 —0.75-1.0) - 1000 = 250W /m?. The two partially shadowed cells work
at an irradiance level equal to G = (1 —0.75-0.8) - 1000 = 400W /m?.

The solar irradiance of partially shaded cells Ggo has been related
to the irradiance received by the non-shadowed cells, to the shading
percentage and to the shadow opacity, as follows:

Geell = (1—50-SP) - Ginax (1)

where Gpax is the irradiance received by no-shadowed cells, SP is de-
fined as the percentage of the cell area subjected to shading and SO is
defined so that SO =1 when the irradiance is zero and SO = 0 when
the irradiance is equal to Gpax. Figure 2 shows an example of shading
pattern for a number of cells.
Once the cell irradiance values are evaluated, the V-I characteristic
of each panel is computed by applying, for each cell, the single-diode
model including the Bishop contribution [5, 21].
After that the V-I characteristic of each PV panel is computed, it is
possible to compute the same characteristic for the whole field, if a PV
field series-parallel electrical structure is assigned, as discussed in the
previous subsection.

2. In the second phase, an optimisation procedure looks for the best con-
nection among the PV panels by computing the resulting electrical
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Figure 3: The absolute maximum of V-P characteristic (red circle).

power of the proposed solutions on the basis of the V-I characteristics
previously obtained. The electrical power is determined under the given
solar irradiance conditions by analyzing the acquired V-I characteris-
tics of each panel and ensuring that the maximum power is extracted
from the PV field.

The computation is executed through the following steps:

(a) once all panels characteristics have been acquired, the V-I charac-
teristic of each string is obtained by doing a current sweep over a
fixed number s of samples of the characteristics of all the panels
belonging to that string;

(b) a voltage sweep is operated on the string V-I characteristics in
order to obtain the V-I characteristic of the whole PV field;

(c) finally, the absolute maximum of the PV field V-P characteristic
is computed:

Prax = max{Py,...,P;,...,P_1} (2)

where P; =V;-1; is the power of the i~th sample of the PV plant
characteristics. An example of V-P characteristic and its maxi-
mum is reported in Figure 3.

3. Finally, in the last phase, a processor controls a set of switches for
settling the new electrical configuration of the PV panels.

It should be noted here that, in real conditions, the reconfiguration pro-
cess takes place every 30-40 minutes. However, although the optimization
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of this time interval represents a challenging task deserving further research
activity [7], it is out the scope of this paper. As a consequence, our aim is to
achieve the optimal solution in the shortest time.

In the following section, the proposed evolutionary approach for searching
the best configuration of the PV field is introduced and discussed with par-
ticular emphasis to the main implementation aspects related to the problem
at hand.

3. Evolutionary approach to photovoltaic panels reconfiguration

Evolutionary Algorithms [4, 3] are based upon neo-Darwinian principles of
evolution. They are population-based metaheuristic optimization approaches
to problem-solving where multiple candidate solutions are maintained in par-
allel. Genetic search mechanisms are applied to breed high-quality solutions
as subsequent generations are created using fitness-based selection. The fit-
ness of a candidate solution is related to the objective function of the problem
at hand and represents a measure of its quality at solving that problem.

The advantage of EAs compared to other optimization methods is that
they makes only few assumptions about the underlying objective functions.
Furthermore, the definition of objective functions usually requires only few
information about the structure of the problem space. Finally, they are able
to provide a good solution in a reasonable time. As a consequence, EAs
perform consistently well in many different problem domains.

All Evolutionary Algorithms proceed in principle according to the follow-
ing scheme:

1. initially, a fixed-size population of individuals with a random genome
(the encoding that is adopted by each member of the population to
solve a specific problem type) is created;

2. the values of the objective function are computed for each solution can-
didate in the current population. Depending on the problem at hand,
this evaluation may incorporate complicated simulations and compu-
tations;

3. with the objective function, the utility of the different features of the
solution candidates have been determined and a fitness value can now
be assigned to each of them;

4. a subsequent selection process filters out the solution candidates with
bad fitness and allows those with good fitness to enter the mating pool



with a higher probability. Without loss of generality, if the fitness is
subject to maximization, the higher the fitness values are, the higher
is the (relative) utility of the individuals to whom they belong;

5. in the reproduction phase, offspring is created by varying or combining
the genotypes of the selected individuals by means of genetic operators.
These offspring are then subsequently integrated into the population;

6. finally, if a termination criterion is met, the evolution stops, otherwise,
the algorithm continues at step 2.

Among all the EAs, Genetic algorithms (GAs) [12] are well suited for
facing the optimal arrangement of the panels among the photovoltaic strings,
in that GAs are a subclass of EAs where the elements of the search space
(genotypes) are binary strings or arrays of other elementary types. The
genotypes are used in the reproduction operations, whereas the values of the
objective functions are computed on basis of the phenotypes in the problem
space which are obtained via a genotype-phenotype mapping.

In the context of dynamic reconfiguration of the PV field, the crucial
tasks are the choice of the encoding [25], of the fitness function and of the
genetic parameters to be used.

3.1. Encoding

The simplest representation of the individual is an array of N, integers
g=I[g1,"",&i, " ,&n,]- The generic integer g; belongs to the interval A =
[0,N], where N is equal to the number of PV strings under consideration
and the value 0 means that the panel does not belong to any string, i.e., it is
disconnected from the PV field. In fact, since each panel can be connected
to only one string or be disconnected from the PV field, each symbol value
can be set as follows:

- JJje€ll,--+,Ng] if the i-th panel is connected to the j-th string
8= 0, if the i~th panel is disconnected

Since any possible combination of integers belonging to the set A is valid,
the total number of solutions is equal to (1 -+ Ny)™r.

3.2. Fitness Function

In order to compute the fitness of a solution, the proposed GA firstly maps
a genotype g to the corresponding electrical configuration of the panels, then
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it computes the resulting electrical power under given solar irradiance condi-
tions by analyzing the acquired V-I characteristics of each panel as described
in the subsection 2.2. In other words, we adopt as fitness function the maxi-
mum electrical power as computed by the eq. (2). In order to obtain feasible
values for the fitness, a minimum voltage boundary is required to power on
the inverter. On the other hand, the highest voltage boundary depends on
safety standards. As a consequence, any electrical configuration for which
inverter voltage constraints aren’t respected is discarded by assigning to it a
fitness value equal to zero. Thus, the fitness function becomes:

CI)(g) _ {Pmax if VInv 6 [VIII?\I/H7 Ilrlllsx] (3)

0 otherwise

3.3. Genetic Parameters

As regards the selection scheme and the genetic operators to be used we
have chosen the tournament selection, the uniform recombination and the
bit—flip mutation.

Tournament selection is one of the most popular and effective selection
schemes. According to it, Ty (tournament size) elements are picked from
the population and compared with each other in a tournament. The winner
of this competition will then enter mating pool. Although being a simple
selection strategy, it is very powerful and therefore used in many practical
applications. In fact, tournament selection leads to a lower selection pressure
over population individuals. By this way, couples of individuals having very
different chromosomes are more likely to be chosen for recombination.

Once a couple of individuals (g;,g;) is selected, uniform recombination
generates an offsring o as follows:

ke[l, - Ny

gt, with probability p,
op=1"°%
‘ g1, with probability (1— p,)

Finally, a bit—flip mutation operator is applied to the offspring by simply
flipping integers in the genotype o with a probability p,,.

3.4. Problem complexity

According to both the enconding and the fitness function chosen, it should
be noted that among all configurations, only a few number could be consid-
ered as good candidates for being the optimal one, since they achieve a high
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power and, at the same time, they respect the inverter voltage boundaries
discussed above. Given a fixed number of panels, the chosen representation
leads to increase the space of solutions with the number of strings consid-
ered. Anyway, different solutions having the same maximum generated power
value might be obtained. These solutions can be defined as ‘equivalent’. In
particular, two different classes of equivalence exist:

1. in the first class of equivalence, a solution is equivalent to another one
if all the panels belonging to a couple of strings are mutually swapped;

2. in the second class of equivalence, solutions are equivalent if couples
of panels assigned to different strings have the same V-I characteristic
and are swapped among the strings they belong to.

While the number of equivalent solutions belonging to the first class depends
only on the number of strings, the number of equivalent solutions belonging
to the second class depends on the actual shape of V-I characteristics of PV
panels and it cannot be estimated a priori. For this reason, the quantity:

(14 Ny)V
N

represents an upper bound for the number of unique solutions, once the
number of panels and strings have been assigned.

It should be stressed that this redundancy, while seems to be advanta-
geous, can lead to a serious drawback in getting the optimal solution. In fact,
the problem gets an additional twist if it is considered that, given a solution,
either deactivating one panel or assigning it to a different string can deeply
influence the behaviour of other panels (epistasis [9]) and, consequently, can
lead to a rugged fitness landscape, i.e., unsteady or fluctuating (ruggedness
15)).

In biology, epistasis [9] is defined as a form of interaction between different
genes, while in optimization, it is the dependency of the contribution of one
gene (to the value of the objective function) on the state of other genes.
Obviously, a problem is maximally epistatic when no proper subset of genes
is independent of any other gene. Epistasis is mainly an aspect of the way
in which the genome and the genotype-phenotype mapping are defined and
has a strong influence on the search effectiveness. If one gene can turn off or
affect the expression of other genes, a modification of this gene will lead to
a large change in the features of the phenotype. Hence, the causality will be
weakened and ruggedness ensues in the fitness landscape. As a consequence,
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it becomes complex to define search operations with both good explorative
and exploitive characters. In fact, optimization algorithms generally depend
on some form of gradient in the fitness function. The landscape should be
continuous and exhibit low total variation, so the optimizer can descend the
gradient easily. When fitness functions are rugged, as in the case under study,
it becomes complex for the optimization process to find the right directions
to proceed to. The more rugged a function gets, the harder it becomes to
optimize it.

Hence, although the problem of the rearrangement of photovoltaic pan-
els seems at a first glance straightforward, from the above considerations it
follows that it is very challenging in that we deals with both an epistatic
genome and a rugged landscape.

4. Simulations

The proposed GA, developed in ANSI C language, has been tested on the
4 different solar irradiance scenarios realized by means of a simulator. After
a preliminary tuning phase, throughout all the simulations execution the
parameters have been set as summarized in Table 1. To better evaluate the
effectiveness and the efficiency of the proposed method in facing the problem
at hand, it is important to compare its results against those achieved by
a top performing algorithm as the Random Mutation Hill Climber (RMHC)
[11, 17]. In RMHC, a solution is chosen at random and its fitness is evaluated.
The solution is then mutated at a randomly chosen single locus, and the new
fitness is evaluated. If the mutation leads to an equal or higher fitness, the
new solution replaces the old string. This procedure is iterated until the
optimum has been found or a maximum number of function evaluations has
been performed. This simple algorithm significantly outperforms GAs on
many difficult problems as it is reported in [11, 17]. Aiming at carrying out
this comparison, the RMHC has been implemented and run on the same
scenarios allowing the same number of evaluations as for the GA. All the
simulations for both the algorithms have been carried out on an Apple iMac
equipped with 16 GB of memory and Intel i7 Quad-core CPU running at 3.4
GHz.

4.1. Simulation framework

To investigate the effectiveness of the proposed approach, Axitec AC-
250M/156-60S panel [1] has been considered for the simulations. The panel
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Table 1: Genetic Algorithm simulation parameters.

Population size 100
Number of generations | 200
Tournament size 10%
Mutation rate 0.042
Recombination rate 0.9

Number of runs 20

Table 2: Photovoltaic cell parameters calculated from Axitec AC-250M/156-60S panel
characteristics [1].

N D Nj Jsat R; n Ry, Vir m a
24 1 2 [126nA | 1mQ | 15| 1kQ |[-15V | 3 |0.002

is 991mm x 1665mm sized and it has three series-connected modules, each one
protected by a bypass diode, as shown in Figure 1(b). All modules have 20
cells in series organized into two vertical lines of 10 cells, so that the panel
is a 10 x 6 matrix of PV cells. The parameters of the PV plant, of the solar
cells and of the Bishop model used in the simulations are listed in Table 2.

A simulator has been used for defining graphically the shadowing pattern
affecting the 24 panels, physically organized in two rows, and for obtaining
the V-I characteristics of the panels themselves. As in practical applications,
a reasonable number of (I,V) samples for each PV panel curve has been set
equal to 100. Moreover, the operating constraints for the inverter voltage to
be used in the fitness function (3) are V{0in =200V and V18 = 700V.

Five different cases, each one corresponding to a different scenario, have
been taken into account by considering the most likely shading causes, such
as buildings, poles and cables, clouds, birds dropping, frost or dust.

In all scenarios, SO appearing in (1) has been fixed to 0.75, while SP
depends on the percentage the cell area shaded. Finally, for each case, the
following plots have been produced: i) solar irradiance chart of all cells of PV
plant. Here, all panels have been separated by a bold vertical segment. The
cells are represented as a grid; ii) V-I characteristics of each panel. These
characteristics have been produced by using the method in [21], with the
parameters values summarized in Table 2.
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4.1.1. Shadows having a sharp shape: case 1

Buildings or the same PV panels could generate shadows having a sharp
shape on some panels. Here, partial shading of one of the two PV panels
is considered. In this case, quite all partially shaded panels have a strongly
reduced current since the sharp shadow cover all their modules. In particular,
only one partially shaded panel has only one shaded module. For this reason,
there are six panels that generate a low current at any voltage value. Instead,
the unique panel having only one shaded module works at a voltage that
strongly depends on the current. The solar irradiance chart is shown in
Figure 4(a) (left), while the V-I characteristics in Figure 4(a) (right).
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0.0 0 4 I 1 . L . 1 . d
0 10 20 30 40 50

[\
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(a) Sharp shadowing. Solar Irradiance and voltage-current characteristics of PV panels.
Shadow affects partially 7 panels of a row, strongly reducing solar irradiance.

Figure 4: Shadows having a sharp shape. Top pane: first case. Bottom pane: second case.

4.1.2. Diagonal shadowing: cases 2 and 3

The presence of light poles or cables generates, during some hours of
the day, undesirable shadows which reduce the amount of the generated PV
power. Also in this case, two different cases have been considered: shadow
of a pole and shadow due to a cable. In the first one, a 3-4 cells wide
shadow diagonally covers the simulated PV field, as shown in Figure 5(a).
Even if this shadow could not be very wide, it covers all modules of partially
shaded panels. For this reason, all these panels generate a very low current
independently of their voltage. The V-I characteristics can be divided in
three groups, with a high and with a low short circuit current having one
MPP and with more than one MPP, respectively. This is shown in Figure
5(a) right.
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Another case is the shadow of a cable or any linear thin obstacle covering
a PV field. The main difference with respect to the previous scenario is the
lack of a sharp shading. In Figure 5(b) (left), the shaded cells have very
different solar irradiance values, due to the absence of fully shaded cells. In
fact, no cell has an irradiance equal to minimum value, since the shadow is
always thinner than the cell width.

In this case, only two of six partially shaded panels, due to the vertical
orientation of modules, lead to a V-I characteristic having a unique current
level. Instead, the voltage-current curves of the other shaded panels have
two or three different current levels (see Figure 5(b) right).
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(a) Shadow of a pole. Solar Irradiance and voltage-current characteristics of PV panels.
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(b) Shadow of a cable. Solar Irradiance and voltage-current characteristics of PV panels.

Figure 5: Diagonal shadowing. Many panels, even if only partially shaded, cannot generate
an high current due to the vertical orientation of their modules. Top pane: third case.
Bottom pane: fouth case.

15



4.1.3. Gradual shadowing: case /

This scenario can occur in presence of transient clouds having a hetero-
geneous density or when the panels are mounted on bended surfaces.

When dealing with an asymmetrical gradual shadow, the effects of both
different levels of solar irradiance and a heterogeneous density obstacle (such
as a tree or a cloud) have been considered. In Figure 4.1.3 (left), in both pan-
els rows, all left-sided panels have been affected by a homogeneous shadow,
similarly to the second scenario discussed above. Moreover, an heterogeneous
shadow has been added to the second panels row (blue colored cells). All the
panels interested by an heterogeneous solar radiation exhibit more than one
MPP (see Fig. 4.1.3).

(Al

Figure 6: Asymmetrical Gradual Solar Irradiance. Solar Irradiance and voltage-current
characteristics of PV panels. The left-sided panels of the two rows receive a different
amount of solar energy.

4.1.4. Spot shadowing: case 5

As final case, the effects of dust, frost or birds dropping on PV panels
has been analyzed. If an obstacle covers a cell, the current generated by the
module containing that cell is inexorably reduced. For this reason, the size
of shadow affects the V-I characteristics of each photo-voltaic panel.

The solar irradiance chart in Figure 7 (left) exhibits many shadow spots
of different opacity and size. Generally, these kinds of shadows happen very
often, especially when the cleaning of panels is not performed on a regular
basis. Even if the percentage of shading of each panel is low, a considerable
mismatching of PV panel characteristics has been verified (see Fig. 7 right).
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Figure 7: Spot shadowing: case 5.

4.2. Results

First of all, the best configurations chosen by GA are compared with to
the default configuration, i.e., the static configuration in which all the panels
are connected and arranged according to two separated strings. In Table
4.2 the power values obtained by the default and the best configurations
chosen by GA are reported. The cases under examination have been sorted
by increasing complexity of the reconfiguration problem and by fixing the
shadow strength to 75%. As it is evident, the best configuration chosen
by GA increases the power generation in all cases, especially when the two
panels rows work under asymmetric conditions or the shadow doesn’t exhibit
a well-defined geometrical scheme, as it occurs for gradual or random solar
radiance scenarios.

It is worth noting that a prediction of the power gain/loss ensured by
the reconfiguration process is complex to be given. Indeed, it depends on
the sequence adopted for disconnecting the panels from the strings in order
to measure their V-I curve, to the frequency of the reconfiguration process,
to the time needed for setting up the new calculated configuration, to the
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type and permanence of the shadow, on the actual irradiance level (shiny
or cloudy day). For instance, as for the procedure adopted for measuring
the panels V-I curves, it is reasonable to assume that one panel at a time
is disconnected, its V-I curve measured, and the same panel reconnected for
doing the same with another panel. The worst case, assuming that all the
panels are disconnected at the same time, is very unpractical because of the
problems it should give to the inverter behavior. Indeed, in this case, the risk
is that the inverter switches off because of the null power sensed at its input
for a long time interval. As a consequence, in practical cases, the energy loss
due to the reconfiguration process is negligible with respect to the energy
gain ensured by the entering of the optimal configuration.

Case ID(ZZF;u[l‘tA)Z] PO‘(NSIA[)W] Variation | CPU Time
Sharp shadowing 2372.24 2748.52 +15.86% s
Pole shadowing 2187.76 2258.59 +3.24% «wTls
Cable shadowing 2993.32 3007.69 +0.48% «61s
Asymmetric 1510.00 2199.98 145.69% 2675
gradual shadowing
2362.02 +7.66%
Spot shadowing 2194.03 2365.44 +7.81% 2965
2407.85 +9.74%

Table 3: Comparison among power values of default and best configurations.

For each algorithm and for each problem Table 4 reports the best final
value @, achieved after 20 runs with different random number generator
initializations, the average value (®,) over the 20 final values, and the related
standard deviation 6. With reference to such indexes, the table shows in
bold the algorithm with the best value for each problem. As a first remark,
the superiority of the GA with respect to RMHC in terms of performance
is evident. In fact, the proposed GA outperforms RMHC in terms of all
the indexes. The reason behind the poor performance of the RMHC is that
once a good solution has been found, the time to discover a better one can
be very longer, since many of the function evaluations are wasted on testing
deleterious mutations of the actual solution due to the ruggedness of the
fitness landscape. In other words, the probability of being trapped in a local
optimum becomes very high. This problem does not take place for the GA for
several reasons. First of all, GAs are implicit parallel [14], i.e., each individual
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H GA [ ®RwHC |

Case @b <¢’b> Oop (I)b <CI>b> O
1 2333.70 | 2333.70 0 2308.71 | 2300.72 | 5.40
2258.59 | 2258.59 0 2253.66 | 2241.51 | 9.76
3007.69 | 3007.69 0 2992.53 | 2924.92 | 58.08

2212.06 | 2196.41 | 31.74 || 1888.21 | 1845.05 | 52.18
2407.85 | 2397.08 | 19.16 || 2241.99 | 2186.72 | 41.27

(SN NGV )

Table 4: Experimental findings.

in the population is an instance of many different schemas of solution, and
if the population is large enough, a large number of such different schemata
are being sampled in parallel. Secondly, selection should conserve instances
of such schemas during the evolution. Finally, a high crossover rate should
quickly combine good blocks on different genotypes to create new solutions
with higher fitness. The behaviour just described is more evident as the
landscape ruggedness increases, as in the cases 3, 4 and 5. In fact, when the
number of V-I characteristics evidenced by the PV field is higher (see Figure
6 and 7), the landscape ruggedness increases too and the differences between
the performance of the two algorithms become larger.

Nevertheless, a statistical analysis to assess which algorithm is the best
one in terms of average fitness has been performed: the results are reported
in the next subsection.

The CPU time required to execute a single run of the GA depends on the
case faced and ranges from a minimum of about 10 seconds in the best case to
a maximum of about 300 seconds in the worst case. Anyway, except for the
spot shadowing scenario, in all the cases under examination the GA is able to
provide the best solution in about 20 generations, which means a CPU time
of few seconds. RMHC shows very similar CPU times, the differences being
related to the different genetic mechanisms between the algorithms. Even
if GA performances are really appreciable, the time required to compute a
fitness value, i.e., the most time-consuming part of the algorithm, is actually
significant. In fact, the amount of time needed for this computation strongly
depends on the number of samples we use for sampling the voltage-current
characteristics of PV panels. So, in the worst case a run can last even many
minutes, before evolution can found a suitable solution. This time is too
long to quickly react to temporary shading phenomenons. Moreover, during
this very long time interval, even if a shadow persists on PV plant, the
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environmental conditions could be changed. So, after this time, the solution
found could be not suitable for the new conditions.

Yet, execution time must be further reduced, to the aim of porting the
GA on an embedded system, by improving the fitness computation time. To
this end, we have performed pilot experiments with the aim to reduce the
number of samples in V-I characteristics of panels by means of an optimized
point decimation method following [6]. Preliminary results show that in the
worst case (case 6) a single GA run takes about 7 seconds. This means that
on an embedded system like a Beagle Board XM the required time for each
GA execution is close to 1 minute.

4.2.1. Statistical analysis

To compare the GA and the RMHC from a statistical point of view, a
classical approach based on nonparametric statistical tests has been carried
out, following [27]. in particular, the Wilcoxon Signed Rank test is a non-
parametric test used to determine whether two matched groups of data are
different. The Wilcoxon Signed Rank test is robust in that it does not require
the data to have a Gaussian distribution. As is common with hypothesis
testing in general, it has been start out with a Null Hypothesis, which can be
thought of as our default assumption. The Null Hypothesis for the Wilcoxon
Signed Rank test is that the two groups of data are not different. Based on
the W statistic, which is calculated from the data, it is determined whether to
accept or reject the Null Hypothesis. In presence of a large enough number
of samples (over 25), it is possible to use the calculated p-value to either
accept or reject the Null Hypothesis. For a smaller sample size, it is read
off the critical value of W from a table, and if the calculated W statistic is
below the critical W value the Null Hypothesis is rejected. The p-value is
the probability of obtaining either the observed difference or a more extreme
value of the difference between the two groups, purely based on chance. If the
p-value is below a threshold value, the Null Hypothesis is rejected and the
result is considered significant. On the other hand, if the p-value is greater
than the threshold value, the Null Hypothesis is accepted.

The statistic for Wilconxon p-value is 28.0 with 1 and 5 degrees of free-
dom. The p-value for Wilconxon is 0.015625. The W-value is 0, while the
critical value of W for 7 at p <0.05 is 2. Therefore, the result is significant at
p <0.05; i.e., the Null Hypothesis is rejected. In other words, the statistical
analysis confirms that the proposed GA outperforms the RMHC.
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4.3. Case analysis

In order to discuss in detail the simulation results, for each scenario, we re-
port the graphical synopsis of the optimal solution, where the panels assume
a different color according to the string they belong to (red means string 1,
green string 2 and white means that a panel is disconnected), the V-P char-
acteristic of the optimal solution and, finally, the evolution of the best fitness
for each generation averaged over all the 20 runs and its standard deviation.
It should be evidenced here that we discuss only the results provided by the
GA because those provided by RMHC never get better configurations.

4.3.1. Shadows having a sharp shape

Case 1 (see Fig. 4(a)). The GA produces, at the end of all the 20 runs,
always the same electrical configuration. A graphical representation of this
solution is shown in Figure 8(a). It is evident that the best configuration is
obtained by disconnecting all the shadowed panels. The remaining panels are
arranged into two identical strings. Since all the panels forming the optimal
solution have exactly the same V-I characteristic, there are many equivalent
ways to arrange them in the two PV strings having the same identical V-P
characteristic.

The V-P characteristic of the optimal configuration shows only one MPP,
as shown in the Figure 8(b), corresponding to a power equal to 2748.53W @
Vinpp 380.81V, while the MPP value is equal to 2372.24W @ V,,,,, 528V for
the default configuration.

This solution is obtained in a very few amount of generations, as shown in
Figure 8(c), where for each generation the best fitness (MPP) value averaged
over the 20 runs (blue solid line) and its standard deviation (red dotted line)
are plotted.

The highest maximum power is obtained at the end of all the twenty runs
in less than 20 generations. In fact, after the 20th generation, the standard
deviation collapses to zero.

4.3.2. Diagonal shadowing

Case 2. (see Fig. 5(a)). The proposed GA disconnects all the partially
shaded panels as occurs in previous scenario.

The remaining panels are re-distributed among the two photovoltaic strings
(see Figure 9(a)). The decision taken by the GA leads to a V-P characteris-
tic having one MPP corresponding to 2258.59W @ V,,,, 312.00V, while the
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Figure 8: Partial shading of one of the two PV panels rows. Top pane (a): Voltage-Power
characteristics of the PV field. Best solution obtained by the GA (blue line), default
configuration (black line). Top pane (b): evolution of the best fitnesses averaged over 20
runs. Mean fitness (blue line) 4+/— standard deviation (red dotted line). Bottom pane
(c): electrical configuration chosen by the GA.

standard configuration shows a MPP equal to 2187.76W @ 305.1V, as shown
in Figure 9(b).

As in previous scenarios, the fitness trend is very abrupt (see Figure
9(c)), i.e. the optimal solution has been found in less than 20 generations,
or equivalently in less then 2000 evaluations of the fitness function.

Case 3. (see Fig. 5(b)). In this case, due to the vertical orientation of
modules, only two of six partially shaded panels have only one current level
in their V-I characteristics. Instead, the V-I characteristics of the remaining
shaded panels have two or three different current levels (see Figure 10(b)).

In the best configuration, the solution proposed by the GA disconnects
only the panels having all modules covered by the cable shadow.

As in the previous scenario, in order to obtain a symmetrical solar ir-
radiance pattern on two rows, the panels are arranged as shown in Figure

10(a).
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Figure 9: Pole shadow. Top pane (a): Voltage-Power characteristics of the PV field. Best
solution obtained by the GA (blue line), default configuration (black line). Top pane
(b): evolution of the best fitnesses averaged over 20 runs. Mean fitness (blue line) +/—
standard deviation. Bottom pane (c): electrical configuration chosen by the GA.

The effect of partially shaded panels determines V-P characteristic of the
field exhibiting many local MPPs (see Figure 10(b)). The global maximum
power value is equal to 3007.69W @ V,,,, 418.54V, while the standard con-
figuration shows a MPP equal to 2993.32W V,,,, @ 416.5V.

Only 20 generations are required in order to obtain the desired solution,
as shown in the fitness evolution graph (Figure 10(c)). The same fitness
evolution is always obtained, so standard deviation (red dotted) and average
fitness (blue) lines overlap.

4.3.3. Gradual shadowing

Case 4. (see Fig. 4.1.3). As expected, the most shaded panels have been
disconnected by the proposed GA (see Fig. 11(a)). The optimal electrical
configuration is, again, obtained by disposing the equal radiated panels in
the same string.

The default configuration is really inefficient when this kind of solar ra-
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Figure 10: Cable shadow. Top pane (a): Voltage-Power characteristics of the PV field.
Best solution obtained by the GA (blue line), default configuration (black line). Top pane
(b): evolution of the best fitnesses averaged over 20 runs. Mean fitness (blue line) +/—
standard deviation. Bottom pane (c): electrical configuration chosen by the GA.

diance scenario occurs. In fact, the V-P characteristic of the default config-
uration exhibits many different local MPPs and the maximum power that
can be extracted is equal to 1510W @ V,,,, 431.5V. The V-P characteristic
of the best solution, illustrated in Figure 11(b), exhibits some unimportant
lower MPP close to the global one having a power value equal to 2199.98W
Q V,,pp 461.87V. In comparison with the symmetrical gradual shadow, only
an optimal solution has been found, so, in the fitness evolution plot (see Fig.
11(c)), the standard deviation is expected to be zero after the highest fitness
has been reached. The best optimal configuration is obtained after only 20
generations.

4.3.4. Spot shadowing

Case 5. (see Fig. 7). Since there is not a precise geometrical solar ir-
radiance pattern, in this case it is very difficult to predict which electrical
configuration could be the optimal one. For this scenario, three different so-
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Figure 11: Asymmetrical gradual shadow. Top pane (a): Voltage-Power characteristics of
the PV field. Best solution obtained by the GA (blue line), default configuration (black
line). Top pane (b): evolution of the best fitnesses averaged over 20 runs. Mean fitness
(blue line) +/— standard deviation. Bottom pane (c): electrical configuration chosen by

the GA.

lutions have been found by the GA during the 20 runs. In all these solutions,
no panels have been disconnected.

With reference to the default configuration, whose V-P characteristic ex-
hibits a maximum power peak value equal to 2194.035W @ 497.545 V, the
solutions chosen by GA improves the power generation at least by 7%.

In fact, for the first configuration (see Figure 12(a)), the maximum power
is equal to 2362.02W @ Vmpp: 472.20V. The corresponding V,,,, voltage
value is lower than those in the other two solutions and a higher mismatch has
been verified in the correspondent voltage power characteristic (Fig. 13(a),
green line). Instead, a different arrangement of the panels (see Figures 12(b)
and 12(c)) increases both the voltage and the generated power (Fig. 13(a),
blue and red lines). In Fig. 13(a), the difference between the global power
peaks of the blue and red V-P characteristics, as well as that of their Vi,
values, is not significant. In fact, the MPPs values are respectively equal to
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Figure 12: Spot shadowing. The three electrical configurations chosen by GA.

2365.44W @ V,,;,, 506.28V and 2407.85W @ V,,,, 505.28V.

The trend of fitness evolution appears very abrupt, as shown in Figure
13(b), but, for this scenario, the number of generations required to achieve
the best configurations is much greater than other case studies.

In fact, the average fitness (blue line) clearly increases during all the 200
generations. So, in this case, an higher number of generations (i.e. 150) is
required to find the optimal solution.

5. Conclusions

In this paper an evolutionary based approach to the dynamical recon-
figuration of photovoltaic fields is presented. The algorithm is designed by
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Figure 13: Spot shadowing. Left Pane: Voltage-Power characteristics of the PV fieldSpot
shadowing. Right Pane: evolution of the best fitnesses averaged over 20 runs. Mean fitness
(blue line) +/- standard deviation.

having as a final target the implementation on an embedded system for on-
field applications. The approach has been validated by means of a large
number of simulated scenarios reproducing real cases. The genetic algorithm
is robust and it is able to achieve the optimal solution in a small percentage
of the number of generations run, this being a feature for its on-field use. The
evaluation of the fitness function represents the main computational burden
of the algorithm. This limitation is overcome by a suitable pre-processing of
the panels characteristics by means of an algorithm that is able to extract
their fingerprints, thus reducing very greatly the number of samples needed
for describing the electrical behavior of each panel. This further step allows
the final porting of the algorithm on an embedded device with a computation
time not greater that 1 minute.
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