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Abstract

To distinguish objects from non-objects in images in real-time, a suitable solu-

tion is to employ a cascade detector that consists of a sequence of node classifiers

with increasing discriminative power. However, among the millions of image

patches generated from an input image, only very few contain the searched

object. When trained on these highly unbalanced data sets, the node classi-

fiers tend to have poor performance on the minority class. Thus, we propose

a learning strategy aimed at maximizing the node classifiers ranking capability

rather than their accuracy. We also provide an efficient implementation yielding

the same time complexity of the original Viola-Jones cascade training. Exper-

imental results on highly unbalanced real problems show that our approach is

both efficient and effective when compared to other node training strategies for

skewed classes.

Keywords: pattern recognition, image processing, object detection, cascade,

unbalanced data, ranking

1. Introduction1

Detecting objects in images and videos is a crucial task in many real-world2

problems, ranging from face detection in images to pedestrian detection on3
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roads, from biomedical image analysis to videosurveillance applications. From4

the pattern recognition point of view, object detection can be cast as a classi-5

fication problem in which one has to distinguish between the object class and6

the “non-object” class. The difficulty is that the “non-object” class actually7

contains all the patches in the images that are not instances of the searched8

object and this makes very challenging this apparently simple problem.9

First, whereas the object class is quite precisely defined, the non-object class10

can be very inhomogeneous, since it includes several subclasses of other objects11

very different each other. In real scenes, the searched objects are embedded in12

a cluttered background containing various kinds of non-objects, some of which13

are very different from what we are searching for, whereas others can be very14

similar. As an example, when detecting faces in an office scene, it would be15

simple to distinguish between a face and a chair, but it could be more complex16

to distinguish between a face and a cartoon.17

The second issue is that almost every real-world detection task requires18

processing a huge number of pixels and this could involve a computational load19

not easy to bear, specially if a complex classifier architecture is used.20

The last point is related to the skewed class priors: in a typical detection21

problem, the vast majority of image locations do not contain the searched ob-22

ject and this makes detection a severely unbalanced classification problem. As23

a consequence, learning an effective classifier is very difficult since classifiers24

trained on highly unbalanced data sets tend to have poor performance on the25

minority class.26

In this regard, a commonly adopted solution, originally proposed by Viola27

and Jones [22], is to employ an ensemble of classifiers structured as a cascade28

of dichotomizers with increasing complexity. Such an approach allows each di-29

chotomizer in the cascade to deal with only a part of the non-object class, thus30

parting the complexity of the whole problem among the classifiers. In particular,31

the first stages of the cascade are built to reject the most distinguishable back-32

ground regions, while the last stages are specialized to discriminate between33

actual object and the most confusing background patches (see Fig. 1). This34
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Figure 1: Scheme of the cascade structure with N nodes

aims at reducing the number of false positives produced by the detector and35

concentrate the computational complexity of the system on the last classifiers36

of the cascade.37

Such approach is a valid solution to the first two issues. Indeed, whereas38

a monolithic classifier would hardly ensure both a good sensitivity and a good39

specificity and, in any case, typically requires an excessive computational bur-40

den, the cascade of dichotomizers provides a high constant sensitivity and a41

growing specificity through the stages at a reasonable computational cost. This42

is obtained by connecting classifiers that provide high sensitivity and sufficient43

specificity on the subproblem they face and are sufficiently simple to ensure a44

real-time response. To this end, a commonly used learning algorithm is Ad-45

aBoost [9] that allows both effective feature selection and proficient classifica-46

tion.47

However, the original Viola-Jones approach does not deal well with the class48

imbalance problem. In fact, even though each dichotomizer in the cascade is49

trained to discriminate between the object class and a part of the non-object50

class, the problem is asymmetric anyway since the object class is still much less51

numerous. In this regard, AdaBoost is not able to effectively face the asymmetry52

between the classes since it minimizes a quantity related to classification error,53

that is significantly biased by skewed class priors. To address this problem, some54

new approaches have been developed. In particular, Viola and Jones proposed55
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a new algorithm, AsymBoost [23], that handles the unbalanced classes through56

an asymmetric weight updating mechanism of the samples in the training set.57

Starting from this approach, Visentini et al. [24] proposed AsymBoost* that58

extended the AsymBoost cascade algorithm by introducing a reactive control59

of the asymmetry at both cascade and node learning level. Both these ap-60

proaches modify the learning strategy of the dichotomizer without abandoning61

the beneficial AdaBoost scheme that simultaneously selects features and builds62

the classifier.63

Other approaches alter the Viola-Jones standard framework: for example, a64

multiexit cascade is proposed in [13], where the ith node combines the scores65

from the first i − 1 dichotomizers, while [28] decouples the feature selection66

process and the node classifier, which is designed to explicitly address the class67

asymmetry. In [25] the two previous approaches are combined. All such solu-68

tions, however, do not guarantee that the benefits of the original cascade frame-69

work are still provided: in fact, the multiexit cascade increases the complexity70

and the computational load of the single node whereas the separated feature71

selection process could not make the optimal feature choice for the subsequent72

classifier learning.73

In this paper we address the problem of class imbalance within the Viola-74

Jones standard cascade framework where we introduce a new learning algorithm75

for the node classifiers aimed at maximizing their ranking capability rather than76

their accuracy. Although employed by all the techniques described before, accu-77

racy is not a correct measure for handling rare cases that have less impact than78

common cases [27]. As a consequence, learning algorithms based on accuracy79

lead to poor minority-class performance [26]. A common way to alleviate this80

problem is to adopt a cost-sensitive learning method that assigns a higher cost81

to the errors made on the minority class (as in AsymBoost and AsymBoost* ).82

The difficulty of this approach lies in correctly defining the cost matrix: a com-83

mon choice is to set the ratio of the error costs equal to the ratio of the prior84

probabilities of the two classes, but it is not always possible to reliably estimate85

such value. Another possible approach is to attempt to balance the class distri-86
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butions by undersampling the majority class or by oversampling the minority87

class, but both solutions present serious drawbacks. Whereas undersampling88

can potentially remove important examples of the majority class, the samples89

artificially generated and added to the minority class in oversampling can pro-90

duce an unfaithful training set [12].91

Our approach is to use rank metrics instead of accuracy metrics for train-92

ing the single dichotomizer in the cascade. More specifically, rank metrics are93

more concerned with the relative ordering of cases than with making absolute94

predictions for cases and thus place more emphasis on learning to distinguish95

classes than on learning the internal structure of classes [3]. To this end, the96

training of the node dichotomizers is based on a reformulation of RankBoost for97

bipartite ranking problems [8], suitably modified to be embedded in a cascade98

structure. This solution allows the detector to take advantage of the benefits99

of the standard cascade framework and to effectively face the asymmetry still100

present in each node classifier training. A partial and preliminary presentation101

of this approach has been made in [2], whereas in this paper we extend the theo-102

retical framework and consider other significant detection problems in the exper-103

iments. In particular, the cascade trained with rank-based node dichotomizers104

is compared with the original Viola-Jones method, with AsymBoost and with105

AsymBoost*. Moreover, we have also considered a cascade of dichotomizers106

trained with RUSBoost [18], a boosting-based learning algorithm that faces the107

class imbalance by undersampling the majority class. As real-world applica-108

tions, we have examined in our experiments a face detection problem and two109

medical imaging problems: the detection of microcalcifications on digital mam-110

mograms (to extend the preliminary comparison in [2]) and the detection of111

microaneurysms in digital fundus images. All the examined applications are112

characterized by a considerable class imbalance and the obtained results show113

that the proposed approach provides performance similar or better than the114

other algorithms thus confirming its effectiveness.115

The rest of this paper is organized as follows: Section 2 recalls some previ-116

ously proposed learning strategies for the node classifier, while in Section 3 we117
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describe the rank-based learning algorithm for the node dichotomizer. Section 4118

provides an efficient implementation of the proposed approach. In Section 5 the119

results of an extensive experimental comparison are reported and discussed.120

Finally, Section 6 draws some conclusions and outlines directions for future121

research.122

2. Accuracy-based node learning strategies for skewed classes123

To point out the drawbacks of accuracy-based node training in the original124

Viola-Jones framework, let us briefly recall the AdaBoost approach. A weak125

learner hτ (·) is selected in each of a series of rounds τ = 1, 2, . . . , so as to126

minimize the weighted exponential loss
∑
j Dτ (j) exp (−yjhτ (xj)), where Dτ (j)127

is the weight on the jth sample xj and yj ∈ {−1, 1} is the class label of xj . It is128

easy to see that, in the case of highly skewed classes, such sum is dominated by129

the error produced on the majority class and thus the choice of the weak learner130

is not optimal for predicting the minority class. The approaches proposed so far131

to alleviate such problem can be attributed to two different groups: cost-based132

strategies and sampling-based strategies.133

2.1. Cost-based strategies134

This category includes the methods that employ the Adaboost learning pro-135

cedure, with a cost assigned to false negatives greater than to false positives.136

Both AsymBoost and AsymBoost* follow this way. In AsymBoost, each sample137

xj is pre-weighted at each round with an asymmetric cost exp
(

1
T yj log

√
k
)

138

where T is the total number of rounds of the dichotomizer. The parameter k139

estimates how much more false negatives cost than false positives and its choice140

should bias the classifier to perform well on the minority object class. The dif-141

ference between AsymBoost and AsymBoost* is in the value of k that is fixed142

in AsymBoost whereas it is automatically tuned at each round in AsymBoost*.143

Other cost-sensitive boosting algorithms have been proposed in the literature144

[11, 7, 21, 19]. The problem common to all these methods is that specific cost145

information is rarely available or hard to estimate, as well as the ratio between146

the costs.147
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2.2. Sampling-based strategies148

Another popular solution is to modify the original distribution of the data so149

as to obtain an artificially balanced training set. This approach can be accom-150

plished by two means: undersampling the majority class by eliminating data151

points until it reaches the size of the minority class or oversampling the minor-152

ity class by adding artificially generated data points until the desired balance153

is achieved. An algorithm introducing data undersampling into the AdaBoost154

procedure is RUSBoost [18] that applies a random undersampling of the major-155

ity class for building a balanced training set at each iteration of the boosting156

algorithm. On the other hand, SMOTEBoost [5] applies oversampling to Ad-157

aBoost according to SMOTE [4], an algorithm that oversamples the minority158

class by introducing new, non-replicated minority-class examples. Even though159

very popular, such approach is hardly applicable when dealing with high dimen-160

sional feature spaces, as in the case of the Viola-Jones framework. Moreover, in161

particular applications (e.g. medical imaging) it could be unsafe to add artifi-162

cially generated samples that do not correspond to real situations.163

3. Ranking-based node learning164

In this section we draw a ranking-based learning strategy to train the cascade165

dichotomizers. The dichotomizer Hi(x) added at the ith stage is based on a166

reformulation of RankBoost for bipartite ranking problems [8], suitably modified167

to be embedded in a cascade structure. It consists of a linear combination of168

weak learners hi,τ (x) ∈ {0, 1} (0 for the negative class, 1 for the positive one)169

weighted by αi,τ ∈ R and added in subsequent rounds τ = 1, 2, . . . so that after170

t rounds we obtain171

Hi,t(x) =

t∑
τ=1

αi,τhi,τ (x). (1)
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To simplify the notation, let us omit the subscript i throughout this section. A172

weak learner hτ (x) consists of a simple decision stump given by173

hτ (x) =

1 if ϕτ (x) > θτ

0 if ϕτ (x) ≤ θτ
(2)

where ϕτ (x) ∈ F is the feature selected at round τ from the feature set F and174

θτ is the threshold selected at round τ in the range
(

min
x∈T

ϕτ (x), max
x∈T

ϕτ (x)
)

,175

with T being the training set. Differently from the original RankBoost, such176

weak learners do not abstain and are {0, 1}-valued so as to preserve the or-177

dering information provided by the feature while ignoring its specific scoring178

information.179

To maximize the ranking capability of the dichotomizer, let us consider the180

crucial pairs (p,n), defined as all the sample pairs made by a positive sample p181

and a negative sample n. A crucial pair is correctly ranked when Ht(n) < Ht(p).182

Therefore, our goal is to minimize the ranking loss Rt, defined as the number183

of misranked crucial pairs and given by1
184

Rt =
∑
(p,n)

[Ht(n) ≥ Ht(p)] (3)

A weight distribution wt(p,n) is maintained over the crucial pairs so that the185

misranked crucial pairs will be more influential in the following rounds. The186

weight update rule is given by187

wt+1(p,n) =
wt(p,n)exp (αt (ht(n)− ht(p)))

Wt
(4)

where Wt is a normalization factor so that
∑

p,n wt+1(p,n) = 1. Assuming188

αt > 0, the update rule decreases the weight of crucial pairs in case of correct189

ranking (i.e., ht(p) = 1 and ht(n) = 0) and increases the weight otherwise.190

Combining Eq. 3 with Eq. 4, the goal becomes to minimize the weighted number191

1the notation [pr] (Iverson bracket) is defined to be 1 if predicate pr holds and 0 otherwise.
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of misranked crucial pairs Rwt (weighted ranking loss) given by192

Rwt =
∑
(p,n)

wt(p,n)[Ht(n) ≥ Ht(p)] (5)

from which ht(·) (i.e., ϕt(·) and θt) and αt can be chosen by193

(ht, αt) = arg min
h,α

∑
(p,n)

wt(p,n)[Ht−1(n) + αh(n) ≥ Ht−1(p) + αh(p)] (6)

In fact, αt can be found directly by minimizing an upperbound of Rwt as in [8],194

which yields195

Rwt ≤
√

1− r2
t (7)

by choosing196

αht =
1

2
ln

(
1 + rt
1− rt

)
(8)

where197

rt =
∑
p,n

wt(p,n)(ht(p)− ht(n)) (9)

Then, combining Eq. 6 with Eq. 7, the choice of ht(·) at round t becomes198

ht = arg max
h

|rt| (10)

In summary, at each round t, the choice of the weak learner ht(·) and sub-199

sequently the selection of the feature ϕt(·) is made to maximize the correct200

pairwise ranking. An example of the training process described so far is shown201

in Fig. 2.202

4. Efficient implementation of ranking-based training203

The training procedure presented in the previous section is embedded in a204

Viola-Jones standard cascade structure which is constructed as follows. Let P205

and N denote the sets of positive and negative samples. The node classifiers206

Hi(x) are added in subsequent stages i = 1, 2, . . . until the desired false positive207

rate Ftarget is reached or N = {Ø}. To construct the ith node classifier Hi(x),208

P and N (hereafter referred to as pool) are used to form a training set Ti and209
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Figure 2: An example of the training process for a node classifier. At each round t (t = 3 in
the depicted graph), a new weak learner which is restricted to use a single feature is added.
The resulting classifier function is then used to rank the samples in the node training set. The
sum of weights of misranked crucial pairs (highlighted with a gray box) is evaluated and the
feature minimizing this quantity is selected and added to the current node.

a validation set Vi, respectively to train and to set the decision threshold Θi of210

the ith node classifier Hi(x) so as to meet the node learning goals d (detection211

rate) and f (false positive rate) (see Algorithm 1, lines 13-14).212

A naive implementation of this approach may result in a computational213

workload not easy to sustain in the training phase, especially when dealing with214

millions of negative samples, as in the case of many object detection problems.215

Indeed, there are three major issues that make it challenging to efficiently im-216

plement the proposed learning strategy: (i) the high computational complexity217

of weak learner selection in Eq. 10; (ii) the computation of features throughout218

training; and (iii) the need of a criterion to control the number of training rounds219

in a node. Each of these problems is discussed in the following subsections. The220

pseudocode of the overall training procedure is provided in Algorithm 1 along221

with the list of used symbols.222

4.1. Reducing the time complexity of weak learner selection223

From Eq. 10, the time-per-round requirements are O(|T p
i | · |T n

i | · |H|), where224

T p
i is the subset of Ti containing only positive samples p, T n

i is the subset of Ti225

containing only negative samples n and H is the set of candidate weak learners226
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h(·). To improve this, as suggested in [8] we maintain only a one-argument227

weight distribution vi,t(x) under the constraint228

wi,t(p,n) = vi,t(p)vi,t(n) (11)

Then, omitting i, t subscripts we obtain from Eq. 9229

r =
∑
p,n

w(p,n)
(
h(p)− h(n)

)
=

∑
p

∑
n

v(p)v(n)
(
h(p)s(p) + h(n)s(n)

)
=

∑
p

(
v(p)

∑
n

v(n)
)
h(p)s(p) +

∑
n

(
v(n)

∑
p

v(p)
)
h(n)s(n)

=
∑
x

π(x)h(x) (12)

where230

s(x) =

+1, if x ∈ T p
i

−1, if x ∈ T n
i

(13)

and231

π(x) = s(x)v(x)
∑

x′:s(x)6=s(x′)

v(x′) (14)

is referred to as the potential π(x) and can be precomputed at the beginning of232

each round in only O(|T p
i | + |T n

i |) = O(|Ti|) time. Combining Eqs. 2, 10 and233

12 we obtain the final solution234

hi,t = arg max
h

∣∣∣∣∣∣
∑

x:ϕ(x)>θ

πi,t(x)h(x)

∣∣∣∣∣∣ (15)

which has the reduced time complexity O(|Ti| · |H|). Remarkably, this is the235

same time complexity of the weak learner selection in the Viola-Jones standard236

cascade framework.237

4.2. On-line efficient features computation238

From Eq. 2, it follows that each candidate weak learner h(x) ∈ H relies239

on the evaluation of a feature ϕ(x) ∈ F on a sample x with respect to a240
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Algorithm 1 Ranking-based cascade training

Ftarget, F : desired and actual false positive rate of the cascade classifier
f, fi,t: desired and actual false positive rate of the ith node at round t
d: desired detection rate of each node
P, N : sets of positive samples p and negative samples n
Ti, Vi: training and validation sets of the ith node
T x
i , Vx

i : subsets of Ti, Vi containing only positive (x=p) or negative (x=n) samples
vi,t(x): weight of sample x at round t of the ith node
[pr]: defined to be 1 if pr holds and 0 otherwise (Iverson bracket)
s(x): function equal to +1 if x = p or to −1 if x = n
ϕ(x): a feature evaluated on a sample x
Hi(x): ith node classifier
Θi: decision threshold of the ith node classifier
hi,t(x): weak learner of the ith node at round t evaluated on the sample x
αi,t: the weight of hi,t(x)

1: i← 0; F ← 1.0;

2: while F > Ftarget ∧N 6= {Ø} do /* add a new node */

3: i← i+ 1; t← 0; fi,0 ← 1.0

4: precompute all candidate weak learners h(·) ∈ H on Ti
5: vi,0(p) = 1/ |T p

i |; vi,0(n) = 1/ |T n
i | /* initialize sample weights */

6: while fi,t > f ∧ ¬varstop do /* add a new weak learner */

7: t← t+ 1

8: πi,t(x) = s(x)vi,t(x)
∑

x′:s(x)6=s(x′) vi,t(x
′) /* precompute potentials */

9: hi,t = arg maxh |ri,t| /* find best weak learner */

αi,t = 1
2 ln

(
1+ri,t
1−ri,t

) ∣∣∣
h=hi,t

where ri,t =
∑

x:ϕ(x)>θ πi,t(x)h(x)

10: vi,t+1(x)|x=p,n =
vi,t(x)e−s(x)αi,thi,t(x)∑
x vi,t(x)e−s(x)αi,thi,t(x) /* sample weights update */

11: precompute weak learner hi,t on Vi and N
12: Hi,t(x)|x∈Vi =

∑t
τ=1 αi,τhi,τ (x) /* evaluate Hi,t(·) on Vi */

13: Θi : |{p ∈ Vi : Hi,t(p) ≥ Θi}| ≥ d |Vp
i | /* meet node learning goal d */

14: fi,t ← fi,t−1 |{n ∈ Vi : Hi,t(n) ≥ Θi }| /* update false positive rate fi,t*/

15: varstop← [V ar ({fi,τ}τ=t−∆,...,t) ≤ ε] /* stop criterion */

16: end while

17: output Hi(x) =
[∑t

τ=1 αi,τhi,τ (x) ≥ Θi

]
/* the final ith node classifier */

18: F ← F × fi,t /* update overall false positive rate */

19: if F > Ftarget then /* prepare Ti+1 and Vi+1 for a new node */

20: Ti+1 = Ti \ {n ∈ Ti : Hi(n) = 0} ; Vi+1 = Vi \ {n ∈ Vi : Hi(n) = 0}
21: N = {n ∈ N : Hi(n) = 1}
22: refill adequately both Ti+1 and Vi+1 by random sampling from N
23: end if

24: end while
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threshold θ. Being O(1) the per-feature evaluation time requirement [22], pre-241

calculating the features for all the samples used in the training phase would242

cost O
(
|F| (|P|+ |N |)

)
. Moreover, additional costs have to be considered when243

there is no available system memory to keep all these feature values at the same244

time, and a caching strategy is used instead. To cope with these problems, we245

draw an on-line features computation strategy aimed at minimizing the num-246

ber of needed features calculations and keeping feature values into memory until247

they are no longer needed. In fact, only three contributions are required to train248

the ith node: (i) |Ti| |F| feature values for finding the best weak learner on Ti249

(see Algorithm 1, line 9); (ii) t |Vi| feature values for evaluating the node clas-250

sifier Hi,t(x) on Vi (see Algorithm 1, lines 12 and 20); and (iii) t |N | feature251

values for evaluating the ith node classifier on N (see Algorithm 1, line 21).252

Therefore, we can pre-compute and keep into memory the |Ti| |F| feature values253

before training the ith node (see Algorithm 1, line 4) and do the same for each254

selected feature evaluated on Vi and N at each round (see Algorithm 1, line 11).255

When a node has been trained, we release the memory used for storing the fea-256

ture values calculated on the samples discarded from Ti, Vi and N . In this way,257

the time-per-node requirements for feature computation are only O (|Ti| |F|),258

where we supposed t (|Vi|+ |N |) � |Ti| |F| since |N | decreases exponentially259

throughout the cascade (see Algorithm 1, lines 21-22) and t can be supposed to260

be a relatively small number (as it will be discussed in the next paragraph).261

4.3. Determining the number of training rounds262

In principle, the training rounds for the ith node go on until the node learn-263

ing goals d and f are met. In fact, the decision threshold Θi of the ith node264

classifier Hi(x) is always chosen at each round so as to meet d, hence the number265

of rounds is governed only by whether the condition fi,t ≤ f is satisfied, being266

fi,t the actual false positive rate of the ith node achieved at round t. How-267

ever, when the classification task is getting more and more complex throughout268

the cascade, it could be too difficult to satisfy such a condition, thus causing269

several unnecessary features to be added without substantially reducing fi,t.270
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To solve this problem, we add new features until a significant reduction of fi,t271

can be achieved. Let ψi(∆) = {fi,τ}τ=t−∆,t−∆+1,...,t be the latest ∆ achieved272

false positive rates of the ith node. Then, we define a stopping criterion being273

varstop = [V ar (ψi(∆)) ≤ ε] so that new features are added until the condition274

fi,t > f ∧ ¬varstop holds (see Algorithm 1, lines 6,15).275

5. Experiments276

To evaluate the performance of the proposed approach, we have considered277

three different real problems with highly unbalanced classes. The first is face de-278

tection that represents a well-known topic in scientific literature and a historical279

problem for the cascade approach as it was used in the seminal paper of Viola280

and Jones [22]. The other two problems belong to the field of medical image281

analysis. In particular, we examined the detection of microcalcifications (MC)282

on digital mammograms for the automated early detection of breast cancer, and283

the detection of microaneurysms (MA) on digital ocular fundus images, that is284

an important task in computer aided diagnosis of diabetic retinopathy.285

In all the experiments, Haar-like features were used to describe the regions to286

be detected. These features are simple and computationally efficient and have287

been successfully used in face detection and classification problems. As in [10],288

we considered the set of (i) edge features; (ii) line features; (iii) center-surround289

features; (iv) and special diagonal line features. All features have been scaled290

and separately translated across all possible combinations on the subwindow,291

thus obtaining tens of thousands of features.292

To verify the effectiveness of our approach (hereafter referred to as Rank-293

ingCascade) we also analyzed the behavior of other methods proposed in the294

literature. In particular, we implemented and evaluated the performance of295

different cascades that represent different solutions for facing class imbalance:296

• AsymBoost-based Cascade (hereafter abbreviated as Asym). AsymBoost297

[23] is a cost-sensitive variant of AdaBoost that uses a parameter k to298

estimate the balance between the errors on the positive (False Negative299
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Rate, FNR) and the negative class (False Positive Rate, FPR). The value300

of k is usually chosen equal to the imbalance level, i.e., the ratio between301

the cardinality of the negative and the positive sets.302

• AsymBoost* (hereafter abbreviated as Asym* ). This method, proposed in303

[24], is a variant of Asym and introduces two principal changes: a dynamic304

optimization of the FPR in each stage of the cascade and a control of the305

FNR in each round so as to avoid an exponential increment of the false306

positives.307

• RUSBoost-based Cascade (hereafter abbreviated as RUS ). This approach308

is based on the random undersampling of the majority class. To this end,309

we implemented in each node of the cascade the RUSBoost classifier [18].310

The training data in input at each stage are undersampled so as to obtain311

a ratio of 35 : 65 (positive:negative).312

For the sake of comparison, we have also considered the original Viola-Jones313

cascade detector (hereafter abbreviated as Ada), where the node stage is built314

with an AdaBoost dichotomizer.315

The detectors have been evaluated in terms of Receiver Operating Charac-316

teristics (ROC) curve by plotting True Positive Rate (TPR) against FPR for317

a series of thresholds on the confidence degree associated to each sample. In318

this case not all the ROC curve is of interest since only low values of FPR are319

acceptable. For this reason, our analysis was focused on the initial portion of320

the curve and, subsequently, we considered as performance measure the partial321

Area Under the ROC Curve (pAUC) defined as pAUC(x) =
∫ x

0
TPR dFPR322

where [0, x] is the range of interest for FPR [30].323

To determine if RankingCascade performs significantly different from the324

other approaches we applied the bootstrap procedure [17]. The test set was325

sampled with replacement 2,000 times so that each new set of sampled data326

contained the same number of examples as the original set. We considered327

two different FPR ranges [0, 10−3] and [0, 10−4] which are close to practical328

application requirements for all the problems considered. For each range, the329
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Table 1: Performance differences between the compared detectors for a pAUC evaluated at
10−3 on the face detection problem.

Methods Mean Differences p-value
Ada 2.19 · 10−5 < 0.001
Asym −4.68 · 10−6 0.842
Asym* 6.42 · 10−7 0.430
RUS 2.05 · 10−5 < 0.001

Table 2: Performance differences between the compared detectors for a pAUC evaluated at
10−4 on the face detection problem.

Methods Mean Differences p-value
Ada 6.33 · 10−6 < 0.001
Asym 3.29 · 10−6 0.001
Asym* 1.07 · 10−6 0.081
RUS 1.98 · 10−5 < 0.001

differences in pAUC between RankingCascade and the other detectors were330

computed. Resampling 2,000 times resulted in 2,000 values for each performance331

difference. To compare the performance of our approach against the other 4332

methods we evaluated the p-value, defined as the fraction of the corresponding333

pAUC differences that were negative or zero. The statistical significance level334

was α = 0.01 but, due to the number of comparisons, we applied the Bonferroni335

correction [6] and thus, performance differences were considered significant if336

p < 0.0025, (i.e., p < α/4).337

5.1. Face Detection338

Face detection is the first analyzed problem. Following a common procedure339

in the literature [22, 23, 28], two different data sets have been created to train340

and test the cascades. The positives samples for the training phase were 1,600341

subwindows extracted from the frontal faces of the well-known FERET database342

[14] and scaled in a standard format of 24 × 24 pixels. The negative samples343

were 22,906,769 subwindows, all of size 24 × 24, taken from the 9,028 images344

of a publicly available non-face dataset [28] at different scales. The positive345

samples were equally parted between training and validation set. The negative346

samples were divided in three data sets: training set, validation set and pool347

respectively of 20,000, 60,000 and 22,826,769 samples. As test set we adopted348
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the MIT+CMU database [20, 16] that consists of 180 images containing 734349

faces. The negative set has been taken from 1,417 images randomly extracted350

from different categories (abbey, forests, greenhouse, shipyard, skyscraper) of351

the publicly available SUN database [29] for a total of 21,181,195 samples.352

The cascade detectors were built using d = 0.999 and f = 0.300. The353

training stage produced 4 nodes for all the cascades except Asym* that was354

composed by 6 stages. The total number of features considered at each stage355

was 116,544.356

Results of the comparisons between detectors are reported in Tables 1 and357

2 for the two FPRs considered in the pAUC evaluation. In both tables, the358

second column shows the mean difference between the pAUC of the proposed359

approach and the compared detectors while for each comparison the p-value is360

given in the third column. Statistically significant differences are listed in bold.361

In Table 1 the performance of the proposed method is compared to the362

other cascades for an FPR lower than 10−3. RankingCascade reveals to be363

significantly better than Ada and RUS. The differences, instead, are not statis-364

tically significant when compared to Asym* and Asym. When looking at Table365

2, i.e., for a pAUC evaluated between 0 and 10−4, results are even better since366

the performance of our method becomes statistically higher than those of Asym.367

The difference with Asym*, instead, is again not statistically significant. As a368

final remark, it is worth noting that Asym is a parametric approach whereas369

Asym*, using a dynamic optimization of the FPR in each stage, tends to a370

classification system with a higher number of stages and a higher number of371

features per stage, so increasing the computational complexity of the cascade.372

5.2. Microcalcification Detection373

The second experiment deals with the problem of detecting microcalcifica-374

tions on digital mammograms. Microcalcifications appear as bright small cir-375

cular spots in the image and represent a subtle sign of breast cancer in women.376

A private full-field digital mammographic database of 198 images has been ex-377

ploited to extract 8,000 microcalcifications (positive samples) and 22,760,320378
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Table 3: Performance differences between the compared detectors for a pAUC evaluated at
10−3 on the microcalcifications detection problem.

Methods Mean Differences p-value
Ada 2.82 · 10−5 < 0.001
Asym 8.81 · 10−6 < 0.001
Asym* 2.74 · 10−5 < 0.001
RUS 9.52 · 10−5 < 0.001

Table 4: Performance differences between the compared detectors for a pAUC evaluated at
10−4 on the microcalcifications detection problem.

Methods Mean Differences p-value
Ada 5.61 · 10−6 < 0.001
Asym 3.51 · 10−6 < 0.001
Asym* 4.64 · 10−6 < 0.001
RUS 1.69 · 10−5 < 0.001

background regions (negative class), all of size 12 × 12. Ten-fold cross vali-379

dation has been performed considering 9 folds for training set, validation set380

and pool and the remaining fold as test set. In each cross validation step we381

used 7,200 positive samples equally parted between training and validation sets382

and 20,484,351 negative samples subdivided in 20,000, 60,000 and 20,404,351383

respectively for training set, validation set and pool.384

The cascade detectors were built using d = 0.99 and f = 0.30. The training385

stage consists in ten different cross validation runs and thus, for each method,386

ten different cascades were obtained. The number of stages for the RankingCas-387

cade was equal to 5 for all the runs while for the other approaches varied among388

4 and 6 according to the cross validation step considered. The total number of389

features considered at each stage was 14,709.390

The results of the comparisons for the two different FPRs used in pAUC391

evaluation (i.e., 10−3 and 10−4) are reported respectively in Tables 3 and 4. In392

both cases the RankingCascade exhibits higher performance than all the other393

approaches even with a high statistical significance as proved by the very low394

p-values.395

The effectiveness of the approach on this particular problem has been also396

confirmed by the results obtained in [1], where it has been employed in a397
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Table 5: Performance differences between the compared detectors for a pAUC evaluated at
10−3 on the microaneurysm detection problem.

Methods Mean Differences p-value
Ada 2.82 · 10−5 < 0.001
Asym 8.81 · 10−6 < 0.001
Asym* 2.74 · 10−5 < 0.001
RUS 9.52 · 10−5 < 0.001

Table 6: Performance differences between the compared detectors for a pAUC evaluated at
10−4 on the microaneurysm detection problem.

Methods Mean Differences p-value
Ada 5.61 · 10−6 < 0.001
Asym 3.51 · 10−6 < 0.001
Asym* 4.64 · 10−6 < 0.001
RUS 1.69 · 10−5 < 0.001

Computer-Aided Detection and Diagnosis (CAD) system that revealed to be398

competitive with the state-of-the-art commercial CAD systems.399

5.3. Microaneurysm Detection400

The third experiment deals with the problem of detecting microaneurysms401

on digital ocular fundus images. Microaneurysms appear as a dark small cir-402

cular spots in the image and represent a subtle sign of retinopathy. A pub-403

lic database [15] of 50 digital ocular fundus images has been used to extract404

2,890,972 patches of size 15×15 pixels, 1,997 containing microaneurysms (pos-405

itive samples) and 2,888,975 containing background tissue (negative samples).406

Ten-fold cross validation has been performed considering 9 folds for training407

set, validation set and pool and the remaining fold as test set. In each cross408

validation step we used 1,797 positive samples equally parted between training409

and validation sets and 2,620,077 negative samples subdivided in 10,000, 10,000410

and 2,600,077 respectively for training set, validation set and pool.411

The cascade detectors were built using d = 0.95 and f = 0.30. The training412

stage consists in ten different cross validation runs and thus, for each method,413

ten different cascades were obtained. The number of stages for all the methods414

considered varied among 14 and 16 according to the cross validation step con-415

sidered, except for RUSBoost where it varied among 3 and 5. The total number416
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Table 7: Average execution time (in seconds) for selecting a weak learner

Face Detection MC Detection MA Detection
RankingCascade 22.6 3.5 3.7
Ada 104.7 9.1 12.4
Asym 89.6 11.6 15.8
Asym* 92.2 10.6 15.4
RUS 19.1 3.1 3.3

Table 8: Average execution time (in seconds) for building a node classifier

Face Detection MC Detection MA Detection
RankingCascade 360.0 49.4 103.0
Ada 830.7 107.0 306.2
Asym 1030.1 135.9 400.3
Asym* 1625.6 150.9 509.2
RUS 248.4 34.1 67.5

of features considered at each stage was 43,172.417

The results of the comparisons for the two different FPRs used in pAUC418

evaluation (i.e., 10−3 and 10−4) are reported respectively in Tables 5 and 6. In419

both cases the RankingCascade exhibits higher performance than all the other420

approaches even with a high statistical significance as proved by the very low421

p-values.422

5.4. Computational time423

To confirm the effectiveness of the implementation proposed in Section 4, for424

each performed experiment we report in Table 7 the average execution time for425

selecting a weak learner and in Table 8 the average execution time for building426

a node classifier. All the considered methods have been implemented in C++427

with multi-threading and run on a workstation equipped with two Intel Xeon428

E5520 and 96.0 GB of RAM. Remarkably, RankingCascade performed faster429

than all the other learning strategies except RUS, which takes advantage of430

undersampling to drastically reduce the number of calculations (at the cost of431

worse detection performance, as shown before).432
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6. Conclusions433

In this paper we have addressed the problem of class imbalance in the node434

classifier learning within the standard Viola-Jones cascade framework and pro-435

posed a new learning strategy aimed at maximizing the node classifiers ranking436

capability rather than their accuracy. Such approach revealed to be an effective437

solution to the class asymmetry problem and provided good performance in ex-438

periments when compared with other approaches. In particular, when tested on439

three real-world severe detection problems, our learning strategy provided simi-440

lar or better results than methods, such as AsymBoost and AsymBoost*, which441

rely on a cost-based approach to face class imbalance. In this regard, it is worth442

mentioning that our method (as well as AsymBoost* ) does not introduce any443

further parameter to the original cascade whereas AsymBoost requires a cost444

ratio to be specified. In the same experiments, the proposed approach showed445

significantly better results also when compared with a cascade using RUSBoost,446

so demonstrating that the ranking-based strategy in node classifier learning447

performs better than undersampling. In summary, the experimental results448

supported the rationale on which our method is based, i.e., that ranking-based449

learning is effective in facing class imbalance and allows the construction of pro-450

ficient cascade detectors. Possible directions for future work include evaluating451

the effectiveness of the proposed approach also in other cascade architectures452

which extend the standard Viola-Jones framework.453
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