
EvoComposer: An Evolutionary Algorithm
for 4-Voice Music Compositions

R. De Prisco robdep@unisa.it
Dipartimento di Informatica, University of Salerno, Fisciano (SA), 84084, Italy

G. Zaccagnino zaccagnino.gianluca@gmail.com
Dipartimento di Informatica, University of Salerno, Fisciano (SA), 84084, Italy

R. Zaccagnino rzaccagnino@unisa.it
Dipartimento di Informatica, University of Salerno, Fisciano (SA), 84084, Italy

https://doi.org/10.1162/evco_a_00265

Abstract
Evolutionary algorithms mimic evolutionary behaviors in order to solve problems.
They have been successfully applied in many areas and appear to have a special re-
lationship with creative problems; such a relationship, over the last two decades, has
resulted in a long list of applications, including several in the field of music.

In this article, we provide an evolutionary algorithm able to compose music. More
specifically we consider the following 4-voice harmonization problem: one of the 4
voices (which are bass, tenor, alto, and soprano) is given as input and the composer
has to write the other 3 voices in order to have a complete 4-voice piece of music with
a 4-note chord for each input note. Solving such a problem means finding appropriate
chords to use for each input note and also finding a placement of the notes within each
chord so that melodic concerns are addressed. Such a problem is known as the unfig-
ured harmonization problem.

The proposed algorithm for the unfigured harmonization problem, named EvoCom-
poser, uses a novel representation of the solutions in terms of chromosomes (that allows
to handle both harmonic and nonharmonic tones), specialized operators (that exploit
musical information to improve the quality of the produced individuals), and a novel
hybrid multiobjective evaluation function (based on an original statistical analysis of
a large corpus of Bach’s music). Moreover EvoComposer is the first evolutionary al-
gorithm for this specific problem. EvoComposer is a multiobjective evolutionary algo-
rithm, based on the well-known NSGA-II strategy, and takes into consideration two
objectives: the harmonic objective, that is finding appropriate chords, and the melodic
objective, that is finding appropriate melodic lines. The composing process is totally
automatic, without any human intervention.

We also provide an evaluation study showing that EvoComposer outperforms other
metaheuristics by producing better solutions in terms of both well-known measures of
performance, such as hypervolume, � index, coverage of two sets, and standard mea-
sures of music creativity. We conjecture that a similar approach can be useful also for
similar musical problems.

Keywords
Evolutionary algorithms, automatic music composition, evolutionary music.

1 Introduction

Since the invention of the computer, both computer scientists and artists have been
considering the use of computers for the production of artifacts. Music is one of the

Manuscript received: 16 May 2018; revised: 30 May 2019 and 10 July 2019; accepted: 4 October 2019.
© 2019 Massachusetts Institute of Technology Evolutionary Computation xx(x): 1–42

https: doi.org/10.1162/evco_a_00265
2019 by

mailto:robdep@unisa.it
mailto:zaccagnino.gianluca@gmail.com
mailto:rzaccagnino@unisa.it
Delfina Malandrino
Rectangle

Rectangle

Rectangle

Rectangle

Rectangle

Rectangle

Delfina Malandrino
“This is an Accepted Manuscript of an article published by MIT Press in [Evolutionary Computation] Journal on [01 Sept 2020] available at [https://doi.org/10.1162/evco_a_00265]. It is deposited under the terms of the Creative Commons Attribution 3.0 or 4.0 License (CC BY). The CC BY license permits unrestricted use, distribution, and reproduction in any medium, provided the original work is fully cited”.

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

arts that has most benefited from such a possibility. Computer music is as old as the
computer itself: the ILLIAC suite described in Hiller and Isaacson (1958) is the first
piece of music composed by a digital computer. The field of computer music encom-
passes many aspects across music and computer science, including sound synthesis,
real-time performances, digital instruments, music notation software, and much more.
In this article, we are concerned with the aspect of automatic music composition; that
is, we focus our attention on the problem of composing music by means of a computer
program. Computer-assisted composition is an active area of musical, technical, and
humanistic research. The user interaction that computer-assisted music composition
systems offer ranges from marginal help to fully automated systems (in which the user
provides only the input). In this work we focus on algorithmic music composition, that
is, the production of music through an algorithm that takes an input and, without any
human intervention, produces new music. As an historical note, we remark that even
“automatic composers” dating back to well before the computer era can be considered
algorithmic (see, for example, Mozart’s dice game1).

In the design of a music composition algorithm we need to take into account the
fact that music composition is a process that must satisfy a set of functional (music the-
ory/harmonization rules, genre-stylistic restrictions) and aesthetic (preferred patterns,
style, motifs, etc.) goals. The functional goals are related to the specific music genre that
the composition follows (classic, jazz, pop, etc.) and can be coded as formal constraints
(e.g., parallel fifths are not allowed in classical music). The aesthetic goals are related to
specific composers, and sometimes can violate functional goals. For example, despite
the fact that parallel fifths are forbidden in classical music, Bach sometimes deliberately
used this type of voices movement in his compositions. As we will see, in our approach
we strive for both functional and aesthetic goals; the former are taken into account by
explicitly coding the formal rules while the latter derive from the use of weights ob-
tained through a statistical analysis of Bach’s chorales.

Automatic composition of music could be seen, assuming the existence of a pre-
cisely defined evaluation metric, as a combinatorial problem that consists in placing a
finite number of notes in a finite grid (the music sheet). Unfortunately (or fortunately?)
such a metric does not exist, but we can exploit harmonic and melodic rules to evaluate
a piece of music. Combinatorial problems often are characterized by an immense search
space: many algorithms that work quite well in other settings, are not helpful since ex-
ploring the search space would take too long a time. Moreover, providing clever ways
in order to guide an algorithm toward a good solution, can be difficult due to the na-
ture of the problem. In fact, a small perturbation can lead to a wrong part of the search
space completely disorienting the algorithm (e.g., Jacob, 1994). Adding heuristics that
can improve the efficiency by restricting the exploration in significantly smaller search
spaces (see, for example, Gartland-Jones and Copley, 2003).

Apart from locating a single optimum solution in a complex search space, an algo-
rithm designed to solve creativity problems has an even greater task to undertake: to
locate multiple solutions where “optimum” can be represented by terms like “interest-
ing,” “satisfying,” and so on. In most traditional problems of physics or mathematics,
this would make no sense, but from the aesthetics point of view, one single, unique,
and global optimum might not exist; Bentley (2000) states the following: “The goal is to
identify new and interesting solutions, normally more than one is desirable, and these

1For an explanation see https://en.wikipedia.org/wiki/Musikalisches_Würfelspiel.

2 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

https://en.wikipedia.org/wiki/Musikalisches_W
Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

solutions must be good. However, finding global optima may be undesirable, imprac-
tical, or even impossible.”

In this context, evolutionary computation (EC), and specifically evolutionary algo-
rithms (EA), appear to work quite well and present an opportunity to explore extremely
large search spaces in order to locate multiple optimal solutions (Papadopoulos and
Wiggins, 1998) related to the problem domain (Goldberg, 2002), while combining explo-
ration and optimization (Goldberg, 1989, 2002; Holland, 1975). According to Goldberg
(2002), this is achieved primarily by a continual innovation, as the result of the evolution-
ary operators (selection, crossover, mutation) and their impact on the population.

1.1 Contributions of This Work

In this article, we focus on the unfigured harmonization problem. A related harmoniza-
tion problem is the figured harmonization problem for which the input contains also the
chords that have to be used. The figured harmonization problem is quite easier because
the algorithm has only to find the voicing (relative positions of the notes of the chord)
in each chord.

In this section, we provide a discussion about the motivations; then we give an
overall description of the proposed strategy, and we explain the contribution of this
article, discussing also its significance in the general context of EC and music.

Motivations The unfigured harmonization problem is a generalization of the so-called
unfigured bass harmonization problem. In the traditional unfigured bass harmonization
problem the composer is given a bass line as input and it has to compose other 3 voices
to make a complete 4-voice piece of music (for further details refer to Buck, 1922 and
Piston and DeVoto, 1987).

Such a problem is very important in classical music education. It is often given as
a basic exercise in music composition classes. Formidable examples of 4-voice chorales
are those composed by J.S. Bach, about three centuries ago. These chorales play a very
important role in classical music education because they have served and continue to
serve today as models for the study of harmony and counterpoint. They demonstrate
Bach’s incomparable mastery in combining harmony and melody in a coherent and
beautiful whole.

Here we consider a generalization of the unfigured bass problem in the sense that
the input can be any of the four voices, not just the bass line. This generalization derives
from the observation that the composition can start from other lines too, notably from
the melodic one2 (Buck, 1922).

Proposed strategy We present a novel evolutionary algorithm, EvoComposer, for the
unfigured harmonization problem. The main novel technical aspects of the proposed
algorithm are the following (see Section 4):

• we use an hybrid multiobjective approach that allows to consider simultaneously
both the harmonic and the melodic aspects;

• we introduce specialized operators that exploit musical information to im-
prove the quality of the produced compositions;

• we introduce a representation that allows handling also of nonharmonic tones;

2Bach himself used to start the composition of a chorale from the melody.

Evolutionary Computation Volume xx, Number x 3

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

• we use an evaluation function based on weights derived from a statistical anal-
ysis of the corpus of Bach’s chorales. As far as we know, a statistical analysis of
Bach’s chorales is not available in the literature and so, in order to obtain such
a statistical analysis, we had to write a program able to analyze chorales. This
tool was partially developed in Parisi (2013). Using this tool we derived tables
of weights for chords and tonality changes.

We remark that the algorithm manages the four voices equivalently and thus it
can compose taking as input any of the four voices. This might seem surprising at first
glance, especially if the bass line contains more information about the composition (e.g.,
the bass often plays the root of the chord). However, since in our approach we do not
have, and thus do not use, such extra information, the four voices are equivalent and
the outputs are similar in terms of harmonic and melodic quality.

To find good solutions, the algorithm considers two objectives: the harmonic objec-
tive, that is, to find chords and the melodic objective, that is, to find an appropriate place-
ment of the notes within each chord. It is important to find a good compromise between
these objectives, so we use a multiobjective approach.

Our contributions Adistinctive characteristic that makes EvoComposer different from
other algorithms is the use of specialized variations of the well-known NSGA-II strat-
egy. As detailed in Section 4, such variations concern: (1) a novel representation of the
solutions in terms of chromosomes that allows handling of both harmonic and nonhar-
monic tones, (2) novel specialized operators that exploit musical information to improve
the quality of the produced individuals and in particular (3) the definition of a novel
hybrid multiobjective evaluation function.

In fact, to evaluate the produced music, usually, automatic composition systems use
an objective function, according to either existing rules from music theory (e.g., Assayag
et al., 1999; Geis and Middendorf, 2007; Herremans and Sörensen, 2013) or by learning
from a corpus of existing music (e.g., Moray and Christopher, 2004). Although every musi-
cal genre has its own rules, these are usually not formally defined, and this represents a
serious obstacle to the applicability of the first approach (e.g., Moore, 2001). The second
strategy can be used to overcome such a problem, by automatically learning stylistic
rules from existing music. In this work, we propose a novel hybrid approach: we define
an evaluation function that, on one hand, adheres to classical music rules, and on the
other hand, extracts statistical information from a corpus of existing music, to assim-
ilate a specific composer’s style. Specifically, we extracted statistical information from
a large corpus of J.S. Bach’s chorales and used it to guide the harmonic aspect of the
composition process.

The main contribution of our work to the files of EC and music is that EvoComposer
represents one of the first attempts to show that an evolutionary strategy based on a hy-
brid evaluation function and on customized operators based on musical information,
allows the definition of, in a “very simple” way, an automatic music composition pro-
cess able to satisfy both functional and aesthetic goals.

Thus, this work opens up new perspectives on the use of customized EC techniques
in the field of musical creativity (and, maybe, also in other fields).

Concerning the evaluation of the algorithm, we compared the music produced by
EvoComposer, with its predecessor EvoBassComposer (De Prisco, Zaccagnino et al.,
2010) and with music produced by several well-known metaheuristics strategies, which
are intelligent strategies used to design and improve general heuristic procedures with

4 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

a high performance, and which have been already used for several other problems (e.g.,
Melián et al., 2003). As described in Section 5, in order to use other metaheuristics we
have applied, when possible, similar customization in terms of representation of the
solutions, evaluation function, and so on. The result is that our composer outperforms
them by producing better solutions in terms of both well-known measures such as hy-
pervolume, � index, coverage of two sets, and measures of music creativity obtained
by interviewing music experts (Section 5). Furthermore, we also carried out an evalu-
ation of the similarity of the compositions produced by EvoComposer with the corpus
of Bach’s chorales used to extract statistical information. We remark that the aim of this
work is to produce “novel” music, not necessarily as close as possible to that of Bach.
The analysis of the output, however, opens new perspectives for future work about
music styles reproduction.

EvoComposer is totally automatic since it does not require any human intervention.
Finally, we remark that the description of EvoComposer provided in this article is

very detailed and includes an in-depth description of all the aspects of the genetic al-
gorithm (pseudocode, chromosome representation, crossover and mutation operators,
fitness function and weights used, initial population, and configurations of the exper-
iments). This allows any interested reader to actually implement the algorithm: this,
usually, is not the case with other similar papers that provide evolutionary algorithms
for music problems.

2 Related Work

The last decade has seen impressive advances in artificial intelligence (AI). Research
studies have produced powerful applications that have a wide practical impact. Machine
creativity is a recent trend in AI: it allows the design of improved engineering solutions
at a lower cost. In this context, EC is likely to play a central role. A good recent survey of
problems solved with evolutionary creativity is provided by Lehman et al. (2018). We
refer the reader to such a survey for further references. All these successful applications
of evolutionary creativity suggest that the approach can be useful also for “artistic”
problems, as, for example, problems in the field of music. In this section, we review
work concerning evolutionary music creativity.

This section is organized into two subsections. In the first one, we describe the use
of EC in the field of music and arts in general, while in the second one, we consider
the specific problem of music harmonization, which is the subject of this article. In each
of the subsections we first discuss related papers and then we describe the approach
followed in this article, highlighting the differences with previous works.

2.1 Music Problems and EC

2.1.1 State of the Art
Several recent papers deal with creativity and EC and are focused on evolving art. Al-
though they concern other domains, such as painting, some of these overlap, with re-
spect to the creative aspect, with our music context (see Nguyen et al., 2015). Many of
these works focus on evolving artificial intelligence and study how evolution produced
complex, intelligent, diverse life on this planet by trying to computationally recreate it.
A major focus is on evolving large-scale, structurally organized neural networks (net-
works with millions of connections that are modular, regular, and hierarchical). Some
of these also investigate other bio-inspired AI techniques, such as deep learning. From
the point view of the art, most of them concern the automatic production of images and
games (e.g., Hastings et al., 2009, Donnelly and Sheppard, 2011, and Risi et al., 2015).

Evolutionary Computation Volume xx, Number x 5

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

In the last years, the interest of composers and musicologists for evolving music has
considerably increased. Indeed, it provides way to investigate musical ideas which is
new but which is also “natural” in the sense that it follows the “evolutionary nature” of
the compositional process, which, similarly to the evolutionary paradigm, goes through
a generation of musical ideas and a selection of the most promising one for further
iterated refining (Miranda and Biles, 2007). Moreover, music problems have intrinsically
huge solutions spaces, which makes EC a natural approach.

Several EA have been proposed in this context and some of these consider different
music problems (not the 4-voice harmonization). As an example, in Hofmann (2015)
the authors proposed an automatic composer inspired by genetic programming which
uses a tree-based domain model of compositions. The purpose is to overcome some
limitations inherent in genetic representations of previous works in which the evolution
is focused on only one or few musical aspects, such as pitch or rhythm. The model
represents musical pieces as a set of constraints changing over time, creating musical
contexts that allow us to compose, reuse, and reshape musical fragments.

Jeong et al. (2017) present a multiobjective evolutionary approach for automatic
melody composition in order to produce a variety of melodies at once. To this end, two
fitness evaluation functions are defined to evaluate a melody: stability and tension.

Lopes et al. (2017) present evolutionary methods for automatic melody composi-
tion based on two fitness functions, one defined using Zipf’s law (1949) and the other
defined using Fux’s rules (Fux and Mann, 1965). The first one is defined using 14 phe-
nomena (explained in Jensen, 2011) that represent different ways to evaluate music and
calculate a fitness value as follows: (1) count how many times an event of that phe-
nomenon occurs and order each pair (event, occurrence) by the number of occurrences in
ascending order obtaining a list of pairs, (2) calculate the mean square error of the linear
regression of the corresponding list of points divided by the amount of different events,
and (3) sum all such values (multiplied by −1). Instead, the second one, that is the fit-
ness function based on the Fux’s rules, is a simple sum of seventeen values derived from
counterpoint rules.

Scirea et al. (2016) describe MetaCompose, a music composition framework based
on an evolutionary technique combining a feasible/infeasible two-population method
(Kimbrough et al., 2008) and a multiobjective optimization. The composition generator
produces music in multiple steps: (1) create a chord sequence, (2) evolve a melody fitting
this chord sequence, and (3) create an accompaniment for the melody/chord sequence
combination. Given a chord sequence, melodies are produced by generating a variable
number of notes for each chord. These notes will evolve without duration information,
according to several features divided into constraints and objective functions. Once the
sequence of notes is created, it generates the duration of the notes randomly.

Liu and Ting (2015) explore the composition styles by miming music patterns of a
specific composer. The patterns are used as genes and the composition styles are used
for the generation of new music. To smooth the progression between phrases, a fitness
function based on music theory is used.

2.1.2 EvoComposer
Obviously, the main difference between this article and the work cited earlier is the
specific problem considered. Jeong et al. (2017) and Lopes et al. (2017) compose only
melodies (one voice). The music produced by MetaCompose (Scirea et al., 2016) con-
sists of a sequence of chords, a melody, and an accompaniment; that is, the composer
does not produce a complete score. So, it does not provide a solution to the unfigured

6 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

harmonization problem. The work of Liu and Ting (2015) considers pop music and han-
dles only chords indication and the melody; again this is not what is required in the
unfigured harmonization problem. The composer described in Hofmann (2015) targets
general music so it is not a composer of chorale music.

Our approach aims at producing 4-part harmonizations in the style of Bach’s
chorales and exploits well-known music rules and also statistical information extracted
from Bach’s chorales. The papers mentioned earlier do not consider any constraint on
style, genre, or theoretical rules in order to produce music that is coherent with a given
style (except for the work of Liu and Ting (2015) for which patterns from songs of a
specific pop singer are used).

For example, in Hofmann (2015), the authors define a list of statistical (Table 1 of
Hofmann, 2015) and structural (Table 2 of Hofmann, 2015) fitness functions, on the basis
of subjective considerations, such as dissonance, duration of notes, and pauses, using
criteria defined by the authors.

Also in Scirea et al. (2016), the constraints and objective functions are based on sub-
jective choices. For example, there are three constraints which are not related to any
style or music theory: a melody should (i) not have leaps bigger than a fifth, (ii) contain
at least a minimum amount of leaps of a major second, and (iii) each note pitch should
be different than the preceding one.

In Liu and Ting (2015), the fitness function is based on evaluation rules and weights
which represent personal choices of the authors (Table V of Liu and Ting, 2015). The
weights we use in our fitness functions are derived from a statistical analysis of Bach’s
chorales.

In Jeong et al. (2017), the fitness functions measure the psycho-acoustic effects of
the produced music, in terms of sound stability and tension, judged on a subjective
basis. The fitness functions used in our work, instead, measures the produced music
with respect to music composition rules and adherence to the chorale style.

In Lopes et al. (2017), the authors do use a subset of formal counterpoint rules to
define the fitness function. However, the goal is not that of producing (polyphonic)
music in counterpoint style. The produced music is monophonic (only one voice) and
its quality is measured through a questionnaire about its pleasantness.

2.2 Music Harmonization

2.2.1 State of the Art
The specific problem of producing music harmonization has been faced in several ways
and music genres. Automatic, or almost automatic, music composers can be found, for
example in Cope (1996, 2000); Cope and Hofstadter (2004); Chuan and Chew (2007); Mi-
randa (2000, 2003); Gimenes et al. (2005); Anders and Miranda (2008, 2011); De Prisco
et al. (2010); and De Prisco et al. (2011a, 2011b). Among the techniques used in these
works there are formal grammars, cellular automata, fractals, neural networks, Markov
chains, evolutionary algorithms, and evolutionary music (DNA and protein-based mu-
sic). The book by Miranda (2001) contains a good survey.

In the specific context of 4-voice music composition several automatic composers,
that do not use an evolutionary approaches, have been proposed. For example Ebcioglu
(1986) and Schottstaedt (1984) describe automatic composers based on rules and expert-
systems. Another system capable of composing 4-voice chorales (and not only) is the
EMI system by Cope (1996); the EMI system uses a combination of various techniques,
such as formal grammars, rules, music analysis, and pattern matching. Gang et al.
(1997) use an approach based on neural networks. Phon-Amnuaisuk and Wiggins (1999)

Evolutionary Computation Volume xx, Number x 7

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

investigated the use of heterogeneous cellular automata. Evans et al. (2014) described
a system, AutoChorusCreator, capable of producing, in real time, a variety of 4-part
harmonies starting from an input voice line and from the chords to be used; that is, the
problem considered is actually the figured harmonization problem. The system is based
on a approach of generating 4-part music with variations by incorporating two tech-
niques, one based on statistical rules and another based on dynamic programming.

There are very few evolutionary algorithms that compose 4-voice music. For ex-
ample, Jacob’s (1994), which uses an interactive evolutionary approach (i.e., it needs
human intervention) is based on evolutionary agents: the composer, the ear, and the
arranger modules. The composer module produces music, the ear module filters out
unsatisfactory material, and the arranger module imposes an order on whatever is left.
The human operator judges the agents on their ability to produce pleasing music, and
recombines successful agents to produce better agents.

Horner and Ayers (1995) have published a two-page abstract announcing an evolu-
tionary algorithm to compose 4-voice music. No details are given, but from the overall
description we understand that they approach the problem in two steps: in the first one,
all possible chords for each note of the input are identified (using an enumeration) and
then, in the second step, a genetic algorithm is used to find the “best” chord sequence.
The fitness function used is very simple: it just counts the number of violations of the
leading voice constraints (the set of constraints considered is not specified). The fitness
function is the only detail provided about the genetic algorithm.

In Munoz et al. (2016), the authors use an adaptive multiagent memetic platform
comprising various metaheuristics to tackle the unfigured harmonization problem. The
platform is set up with the chromosome representation, the operators and the fitness
functions, including the tables of weights, originally given in De Prisco, Eletto et al.
(2010) and Zaccagnino (2012); a collection of experimental studies on Bach’s 4-voice
chorales showed that the cooperation among different optimization strategies yields
improved performance over the conventional and hybrid evolutionary algorithms. No-
tice that the evaluation is solely about the performance of the algorithm, and it does not
consider at all the quality of the produced music.

2.3 EvoComposer

EvoComposer is the result of a project that we started several years ago: in De Prisco
and Zaccagnino (2009) we provided the “first version” of EvoComposer.3 In that pa-
per, the algorithm was able to solve the figured bass problem: that is, the input already
contains the chords to be used and, thus, the algorithm has to find only the position
of the voices for each chord in the input. In a PhD thesis, Zaccagnino (2012) tackled
the more general problem of inputs without chords indications, that is the unfigured
harmonization problem. His work produced the “second version” of the algorithm; a
two-page extended abstract announcing the algorithm (without details) was published
in De Prisco, Zaccagnino et al. (2010). Such a second version of the algorithm used ta-
bles of weights for chords and tonality change with arbitrary and only partially justified
weights. This is a major drawback of the second version that (along with other aspects)
we have improved in the version presented in this article.

3For previous versions of the algorithm we have used the name “EvoBassComposer.” We have called
this new version EvoComposer because while previous versions used the bass line as input, this new
version is able to compose taking as input any of the four voices.

8 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

Comparing EvoComposer with other algorithms for 4-voice harmonization based
on evolutionary techniques, we notice a big difference with the work of Jacob (1994):
our composer is completely automatic while the other needs a substantial interaction
with the user.

With respect to the work of Horner and Ayers (1995) the main difference is due
to the use of musical information in the evolution process. Our chromosome represen-
tation, operators, and fitness function exploit specific musical information (rules from
music theory, statistical data from Bach’s music) while the approach of Horner and Ay-
ers (1995) uses the standard evolutionary technique. Unfortunately, we cannot make a
direct comparison with their algorithm. However, we remark that we ended up exploit-
ing musical information because without it, the outputs of the composer were poor. In
other words, in the very first attempts of this work we have tried with the standard ap-
proach and later on we have augmented it with customized choices based on musical
information. We also remark that the published abstract in Horner and Ayers (1995) is
very short and no details are provided. For example, it is not clear what the individu-
als of the population represent, nor what are the crossover and mutation operators (not
mentioned).

With respect to AutoChorusCreator (Evans et al., 2014) there is a huge difference in
the problem solved: EvoComposer solves the unfigured harmonization problem while
AutoChorusCreator solves the figured harmonization problem. Moreover, AutoChor-
usCreator uses a set of heuristic rules which seems derived more from subjective musi-
cal taste rather than from standard classical rules or from statistical analysis of existing
music in the intended style, as done, instead, for EvoComposer. We also remark that the
paper does not provide many details (for example only 2 out of the 13 heuristic rules are
explained) and that we have tackled basically the same problem, the figured bass problem,
in an earlier paper (De Prisco and Zaccagnino, 2009).

With respect to Munoz et al. (2016), a big difference is the use of the statistical
information extracted from Bach’s chorales. We notice that this is a fundamental dif-
ference. Indeed the algorithm in Munoz et al. (2016) is basically equivalent to EvoBass-
Composer (De Prisco, Zaccagnino et al., 2010) because it uses exactly the same approach
(chromosome representation, fitness functions, including the tables of weights, and the
operators). As we show later in the evaluation section, the music produced by Evo-
Composer is by far better than that produced by EvoBassComposer; indeed the algo-
rithm presented in this article is the result of many improvements made over the version
presented in De Prisco, Zaccagnino et al. (2010) while the work of Munoz et al. (2016)
is heavily based on De Prisco, Zaccagnino et al. (2010) and Zaccagnino (2012). In Sec-
tion 5.2.2, we report the comparison with EvoBassComposer.

3 Background

In this section, we briefly recall the needed background to understand the rest of the
article. We provide a brief music background section that recalls the needed music con-
cepts (tonality, chords, harmony rules, etc.). Then we provide a brief section about the
basic concepts of multiobjective evolutionary algorithms. We assume that the reader is
already familiar with evolutionary algorithms.

3.1 The Unfigured Bass Harmonization Problem

We focus our attention on music composed in four voices; unparalleled examples of
such type of compositions are J.S. Bach’s chorales. A chorale consists of four indepen-
dent voices: bass, tenor, alto, and soprano. Music is written in a sequence of measures,

Evolutionary Computation Volume xx, Number x 9

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

Table 1: Chords considered and examples.

Chord Root note Set of notes

Major triad C C, E, G
Minor triad C C, Eb, G
Major seventh C C, E, G, B
Minor seventh C C, Eb, G, Bb
Dominant seventh C C, E, G, Bb
Half-diminished seventh C C, Eb, Gb, Bb

each consisting of a given number of beats. In each beat the four voices play (or sing) a
note. It is also possible that in a beat a voice plays more than one note; in this case, the
first note is typically the one that is part of the chord, while the other notes are passing
tones. Thus we always have four notes in each beat that make up a chord. The chords
that we consider are described in Table 1 (for each chord we give one example with C
as root note for each chord).

The sequence of chords used to compose music is obviously decided by the com-
poser. However, there are rules established by the theory of harmony. According to these
rules there are some combinations of chords that work better than others, and there are
particular chord sequences (e.g., cadences) that have specific musical functions.

Besides rules about chord sequences, there are also rules about melodic lines. Such
rules aim at avoiding single- and two-voice errors. The rules can refer to the movement
of a single voice (for example, normally a jump bigger than an octave is not allowed;
jumps within the notes of the scale are preferred to jumps to notes not part of the scale)
or also to the movements of two voices (for example, two voices that proceed by parallel
fifths are not allowed).

Chords are built on the degrees of the scale of the tonality used. For example, if the
tonality is D Major, which has two sharps, the scale is D,E,F�,G,A,B,C�,D. To abstract
from the specific tonality used, the degrees of the scale are indicated with roman nu-
merals: I,II,III,IV,V,VI,VII. On each degree we can build a chord. It is common notation
to use such numerals to indicate the corresponding chord using capital letters for major
chords, and small letters (i,ii,iii,iv,v,vi,vii) for minor chords.

The interested reader should refer to a standard textbook on harmony, like Piston
and DeVoto (1987), for more information about music concepts, notation, and further
explanations.

The specific composition problem that we consider in this article is the following:
the composer is given an input line (voice) and has to compose the other three voices. An
example is provided in Figure 1. Part a of the figure provides the input: only a bass line;
part b provides a solution: the same bass line with the other three voices. As explained
before, EvoComposer works also if the input line is the tenor, the alto, or the soprano
line (obviously, it composes the missing three voices).

3.2 Multiobjective Evolutionary Algorithms

Most optimization problems encountered in practice involve multiple criteria that need
to be considered. These so-called objectives are often conflicting and no single solution
is usually simultaneously optimal with respect to all of them (usually trying to maxi-
mize one of the functions will inevitably lower the value of the other functions). Mul-
tiple objectives, thus, can produce a set of optimal solutions instead of a single optimal

10 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

Figure 1: Unfigured bass harmonization example.

solution, because no single solution can be optimal for multiple conflicting objectives.
A solution s1 that is better than a solution s2 with respect to all the objectives is clearly
preferable. Such a solution s1 “dominates” solution s2 (and vice versa s2 is dominated by
s1). A nondominated solution is an optimal solution. The set of nondominated solution
is called the Pareto-front (see Fonseca and Fleming, 1995, 1993). Multiobjective evolu-
tionary algorithms are a class of search methods that approximate the Pareto-front; that
is, instead of guaranteeing to find the Pareto-optimal solutions, they aim at finding so-
lutions as close as possible to the optimal ones. Once multiple such solutions are found,
usually, higher-level decision-making strategies are adopted to pick a single solution
from the Pareto-front.

In EvoComposer, we measure the goodness of a solution using a novel harmonic
objective, to evaluate the sequence of chords, and a novel melodic objective, to evaluate
the melodic lines. Hence we get a 2-objective evolutionary algorithm. As we already
said, it might be impossible to maximize both objectives simultaneously. Hence we will
have to find solutions that achieve good compromises amongst the objectives.

4 The EvoComposer Algorithm

In this section, we present our algorithm that we call EvoComposer. The algorithm takes
as input a voice line and produces a complete 4-voice harmonization of the input line.

4.1 Algorithm Description

In this section, we describe the details of the algorithm. We start by providing high-level
motivations and an overall description and then proceed to explain the details.

4.1.1 Choices and Motivations
To develop EvoComposer, first we have chosen a reference multiobjective evolution-
ary strategy, and then we have customized the strategy to work with specific musi-
cal choices regarding the chromosome representation, the operators, and the fitness

Evolutionary Computation Volume xx, Number x 11

https: doi.org/10.1162/evco_a_00265
2019 by

https://www.mitpressjournals.org/action/showImage?doi=10.1162/evco_a_00265&iName=master.img-000.jpg&w=265&h=199
Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

function. Thus, the evolutionary process (composition process) is obtained by running
the chosen algorithm, with the addition of our customized musical choices.

The strategy chosen as reference is NSGA-II (Deb et al., 2002). We made such a
choice for several reasons. From a practical point of view these reasons are (1) its popu-
larity among practitioners and the vast available body of peer-reviewed material about
it, (2) its proven efficiency on both benchmarks and real-word engineering problems,
and (3) its clear algorithmic design and ease of implementation. NSGA-II has the ad-
vantage to incorporate techniques that could reflect in a natural way some music com-
position habits: the elitism and diversity maintenance. Elitism consists in maintaining an
external population of all nondominated solutions; these are individuals with charac-
teristics that we wish to keep in the final solution. As we will see, in the specific context
of the unfigured harmonization problem it is important to preserve solutions having
specific music harmonic and melodic properties, and use them during the composition
process. Diversity is an important aspect of an evolutionary multiobjective optimiza-
tion since it improves the coverage of the search space and allows for the exploration
of different evolutionary paths leading to the trade-off surface. In the specific music
composition context, the diversity of compositions used for producing new music al-
lows avoidance of harmonic and melodic flattening and, so, to obtain always new ideas
during the composition process.

Furthermore, to better shape the compositional music process as an evolutionary
process we have defined a chromosome representation which, as we will see, reflects
the structure of a chorale, and then we have added specialized operators guided by
a fitness function built using statistical information extracted from a corpus of music
written by Bach.

Pseudocode We assume that the reader is already familiar with NSGA-II concepts
which are the basis of EvoComposer. Further details can be found in Deb et al. (2002).
Here we provide a brief description.

Algorithm 1 shows the pseudocode for EvoComposer. The algorithm takes as input
a voice line line, the size of the population psize, the crossover and mutation probabilities
pc, pm, and the maximum number of generations maxgen. It returns a set of solutions P ,
where each solution is a 4-voice chorale.

The first step is that of creating the initial population and this is done in line 1,
function InitializePopulation(). Section 4.6 provides the details of this step.

Line 2, function Evaluate(), assigns to each element of the initial population its fit-
ness values; this step is accomplished by applying the harmonic and melodic evaluation
function that will be explained later in Sections 4.3–4.5.

The third step, in line 3, FastNonDominatedSort(), orders the elements of the initial
population with respect to the nondominated relation.

At this point the evolution of the population starts. In each generation, that is each
cycle of the for loop, the following happens. In line 5, a new population Mate is obtained
from P using the usual binary tournament selection, function SelectParentsByRank().

Then, in lines 6–7, we apply the evolutionary operators, which will be explained in
Section 4.7, on the selected population of parents Mate.

In line 8 the set U is constructed by simply merging the two populations P and
Mate.

Line 9 generates the set F = (F1, F2, . . .) that consists of the nondominated fronts
of the set U ; this is computed by the standard crowded-comparison operator, function
FastNonDominatedSort().

12 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

In the foreach loop, at lines 12–18, elements of the sets Fj are sorted according to the
the standard function CrowdingDistanceAssignment() and then inserted, if possible, in
the new population P .

Finally, in lines 19–21, for the set FL that could not be inserted in its entirety, only
the best solutions are inserted into the new population P .

The above is the standard NSGA-II strategy. Next we describe the specific choices
that we have made for EvoComposer: (1) chromosome and gene representation in Sec-
tion 4.2, (2) multiobjective evaluation function in Sections 4.3–4.5, (3) initial population
procedure in Section 4.6, and (4) evolutionary operators in Section 4.7.

4.2 Chromosome and Gene Representation

The population in our evolutionary algorithm is made up of individuals (chromosomes)
that are harmonizations of the given input line. As we can see in Figure 2, each chorale
is organized in a sequence of measures, and each measure is organized in a sequence
of beats. We consider as a basic time unit the length of the beats, and for each beat we
have the set of notes for each voice in such a beat.

A chromosome, that is an individual of the population, is represented as a sequence
of genes. Each gene represents a beat of the music and contains the notes used by the
voices in that beat; we remark that since we consider also nonharmonic tones, each
voice corresponds to one or more notes. To handle nonharmonic tones each gene is
actually represented as a matrix of 4 rows and a fixed number N of columns: the columns

Evolutionary Computation Volume xx, Number x 13

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

Figure 2: Chorale structure.

Figure 3: Chromosome example.

correspond to the notes. Thus an entire chromosome is an array C with 4 rows and N · V ,
where V is the number of beats of the voice line (given in input) and N is a parameter
that determines the maximum number of notes that can be placed in each beat (we set
N = 16). When a gene contains more than one note for a specific voice, only one of the
note, typically the first one (see Figure 3), is part of the chord (harmonic tone); other
notes are non-harmonic notes.

Formally, a chromosome C is a sequence C = [G1, . . . ,GV] where each Gi is a gene
and comprises the set of notes for the ith beat for each voice. We denote with Bi , Ti , Ai ,
and Si the list of notes of the bass, tenor, alto, and soprano, respectively. Figure 3 shows
the genes for the harmonization provided in part b of Figure 1.

4.3 The Multiobjective Evaluation Function

EvoComposer uses two objective functions: an harmonic objective function fh and a
melodic objective function fm. Both functions have the following general form:

f =
∑

i

ah
i wh

i , (1)

14 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

https://www.mitpressjournals.org/action/showImage?doi=10.1162/evco_a_00265&iName=master.img-001.jpg&w=292&h=128
https://www.mitpressjournals.org/action/showImage?doi=10.1162/evco_a_00265&iName=master.img-002.jpg&w=257&h=179
Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

Table 2: Typical harmonic chord passages in a major tonality (see Piston and DeVoto,
1987). The symbol − means that there is no chord in the corresponding class.

Major Cadence

Degree often sometimes seldom never

I → I, IV , V vi ii, iii vii◦

ii → ii, V IV, vi I, iii vii◦

iii → iii, vi IV I, ii, V vii◦

IV → IV, V I, ii iii, vi vii◦

V → I, V IV, vi ii, iii vii◦

vi → ii, V , vi iii, IV I vii◦

vii◦ → I, iii, vii◦ vi ii, IV , V −

where ah
i are the coefficients and wh

i are weights. This is a general approach that many
evolutionary algorithms use. As examples, we cite the fitness function that evaluates
harmonized choral melodies and instrumental solos in Wiggins et al. (1998) or the fitness
function that evaluates the aesthetic qualities of a wide range of melodies in Towsey
et al. (2001).

The weights, wi , are used to express the objective part of the evaluation while the
coefficients are used to express a subjective component. The coefficients ai are normally
obtained with a statistical analysis of known data.

As both functions require a considerable amount of description, we provide them
in separate subsections.

4.4 The Harmonic Function

The harmonic function fh(C) is defined as follows:

fh(C) =
n−1∑
i=1

aiwi, (2)

and evaluates the harmonic quality of a chorale C = (c1, . . . , cn) by considering all pairs
of consecutive chords ci, ci+1. The objective is to maximize fh(C). In our approach the
coefficients represent the style of Bach while the weights represent well-known rules
from the theory of harmony. More specifically we consider the following three possible
cases:

1. ci and ci+1 are chords in the same major tonality

2. ci and ci+1 are chords in the same minor tonality

3. ci+1 is identified as a modulation change, that is, ci belongs to the previous tonal-
ity while ci+1 belongs to a new tonality (regardless of the mode, major or minor).

For each of these cases, we have defined a set of coefficients and weights.

• Weights. We relied upon well-known rules from the theory of harmony. We
used as reference the description of the major harmonic progressions given by
(Piston and DeVoto, 1987, page 17). Table 2 summarizes the “rules” for chord
passages in a major tonality.

Evolutionary Computation Volume xx, Number x 15

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

Table 3: Weights for chord passages in a major tonality.

Major Degree

Degree I ii iii IV V vi vii◦

I → 0.266 0.025 0.025 0.266 0.266 0.150 0.002
ii → 0.025 0.400 0.025 0.075 0.400 0.075 0
iii → 0.016 0.016 0.400 0.150 0.016 0.400 0.002
IV → 0.075 0.075 0.025 0.400 0.400 0.025 0
V → 0.400 0.025 0.025 0.075 0.400 0.075 0
vi → 0.050 0.266 0.075 0.075 0.266 0.266 0.002
vii◦ → 0.400 0.016 0.016 0.400 0.016 0.150 0.002

To compute the weights, wi , we need to define a probability distribution
for the classes “often,” “sometimes,” and “seldom” appearing in Table 2.
These weights are subjective parameters; in order to make an educated
choice we have tried several possibilities. More specifically, we tried values
for Xof ten ∈ {60, 65, 70, 75, 80, 85, 90}, Xsometimes ∈ {10, 15, 20, 25, 30, 35, 40},
Xseldom ∈ {5, 10}, with the obvious constrain that the sum be 100. For each of
such choices we have run several experiments, by fixing the number of itera-
tions k ∈ {10, 50, 100, 500, 750, 1000, 2500, 5000, 7500, 10000}, and the max size
pmax ∈ {10, 50, 100, 500, 750, 1000}. For each experiment, that is a combination
of (Xof ten, Xsometimes, Xseldom) and a specific choice of k and pmax we ran 5 execu-
tions of EvoComposer and observed the structure of the generated solutions.
We say that a chorale is well-formed if it starts with a I degree and ends with the
cadence V − I . This is a typical condition of well-composed chorales. Thus, we
computed the average number of well-formed music compositions, obtaining
the following results: for d = (80, 15, 5), 87% of the solutions were well-
formed; for d = (85, 10, 5), 81%; for d = (70, 20, 10), 76%; for d = (60, 25, 15),
73%; for d = (50, 40, 10), 69%. So, we set (Xof ten, Xsometimes, Xseldom) = (80,
15, 5) as the probability distribution used for the experiments which will be
described in Section 5.

Notice that since there can be more than one possible ending chord in each
class, we need to split up the percentage of the class among the chords. For
example, if ci is chord I , then the coefficient for ci+1 will be 0.8/3 � 0.26 for
each one of I, IV and V , it will be about 0.26 for vi and 0.05/2 = 0.025 for
ii and iii. Table 3 shows all the weights for chord passages within a major
tonality.

Similarly, we obtained the weights for chord passages within a minor tonal-
ity. Table 4 summarizes the typical chord passages suggested by Piston and
DeVoto (1987). The passages are very similar to the ones in a major tonality
with some differences due to the possibility of using the V II chord in a minor
tonality. Table 5 shows the corresponding weights. Notice that for the row of
chord vii◦, there are no chords in the “sometimes” class; hence for this row we
use a split of 95%–5% among the “often” and the “seldom” class.

To assign the weights for consecutive chords when a change of tonality oc-
curs, we used the distance in the circle of fifths (see Figure 4), between the
starting and the ending tonality. More specifically the weight wModulation(S,E)

16 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

Table 4: Typical harmonic chord passages in a minor tonality (see Piston and DeVoto,
1987). The symbol − means that there is no chord in the corresponding class.

Minor Cadence

Degree often sometimes seldom never

i → i, iv, V V I ii◦, I II, vii◦ V II

ii◦ → ii◦, V IV, V I i, III vii◦

III → III, V I iv i, ii◦, V vii◦

iv → iv, V i, ii◦ III, V I vii◦, V II

V → i, V IV, V I ii◦, I II vii◦, V II

V I → ii◦, V , V I III, iv i vii◦, V II

vii◦ → i − vii◦ −
V II → III, V II V I iv i, ii◦, V , vii◦

Table 5: Weights for chord passages in a minor tonality.

Minor Degree

Degree i ii◦ III iv V V I vii◦ V II

I → 0.266 0.016 0.016 0.266 0.266 0.150 0.016 0
ii◦ → 0.025 0.400 0.025 0.075 0.4 0.075 0 0
III → 0.012 0.012 0.400 0.150 0.120 0.400 0 0.120
iv → 0.075 0.075 0.025 0.400 0.400 0.025 0 0
V → 0.400 0.025 0.025 0.075 0.400 0.075 0 0
vi → 0.050 0.266 0.075 0.075 0.266 0.266 0 0
vii◦ → 0.950 0 0 0 0 0 0.050 0
V II → 0 0 0.400 0.050 0 0.150 0 0.400

Figure 4: Circle of fifths.

Evolutionary Computation Volume xx, Number x 17

https: doi.org/10.1162/evco_a_00265
2019 by

https://www.mitpressjournals.org/action/showImage?doi=10.1162/evco_a_00265&iName=master.img-003.jpg&w=234&h=209
Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

Table 6: Coefficients for consecutive chords in the same major tonality.

Major Degree

Degree I ii iii IV V vi vii◦

I 8.1 2.5 0.5 0.7 18.5 1.7 0.3
ii 0.9 0.6 0.4 0.2 10.4 0.2 0.2
iii 0.9 0.3 0.6 0.5 0.8 0.6 0.1
IV 0.6 0.5 0.1 0.3 5.3 0.1 0.2
V 22.5 0.6 1.5 0.8 10.8 2.0 0.1
vi 0.4 0.6 0.6 0.4 2.2 0.7 0.1
vii◦ 0.3 0.0 0.0 0.1 0.1 0.1 0.1

is the length of the shortest path from the starting tonality S to the end-
ing tonality E. For example, the distance between D major and C minor is 5
because we can go from D major to C minor either counterclockwise using 5
steps or clockwise using 7 steps. As before, the weights for the chord passages
are computed by defining a distribution for the classes “often,” “sometimes,”
and “seldom,” and so the values are always between 0 and 1. The weights for
the modulations, instead, are computed as the distance on the circle of fifths of
the tonalities. Thus, in order to maintain such weights in a comparable range
with the weights for chord passages (between 0 and 1), we normalize the above
distance over the maximum possible value, that is 6. For example, the (normal-
ized) harmonic distances from C to G, D and A are, respectively 1/6, 2/6, and
3/6; the (normalized) harmonic distances from C to B�, E� and A� are, 2/6, 3/6,
and 4/6 respectively; the (normalized) harmonic distances from A� to B� minor,
D� minor and G� minor are, 1/6, 2/6, and 3/6, respectively.

• Coefficients. The coefficients have been obtained by performing a statistical
analysis over a large corpus of Bach’s chorales. More precisely, we have written
a program that analyzes chorales and that extracts information from the used
harmonization. In particular, we looked for adjacent chords and we counted
the percentage of passages from one chord to the subsequent one. We analyzed
a corpus of Bach’s chorales, ranging from chorale BWV 253 through chorale
BWV 306 and from chorale BWV 314 to chorale BWV 438, for a total of 177
chorales.

Tables 6, 7, and 8 summarize the result of the analysis. Notice that the sum
of all the percentages in Tables 6 and 7 is smaller than 100 because there have
been cases where our program was not able to identify the chords; those cases
have not been classified, but simply ignored. In Table 8, many entries are zero
because those specific changes of tonality were not encountered.

As an example, let us consider the music fragment shown in Figure 1. The
chromosome that represents the music fragment, which is in the tonality of
F major, is C = I-I-V-I-I-IV-I-I-I. Thus, the harmonic value: f (C) = fh(I, I) +
fh(I, V) + fh(V, I) + fh(I, I) + fh(I, IV) + fh(IV, I) + fh(I, I) + fh(I, I) =
8.1 ∗ 0.266 + 18.5 ∗ 0.266 + 22.5 ∗ 0.4 + 8.1 ∗ 0.266 + 0.7 ∗ 0.266 + 0.6 ∗ 0.075 +
8.1 ∗ 0.266 + 8.1 ∗ 0.266 = 2.1546 + 4.921 + 9 + 2.1546 + 0.1862 + 0.045 +
2.1546 + 2.1546 = 22.7706.

18 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

Table 7: Coefficients for consecutive chords in the same minor tonality.

Minor Degree

Degree i ii◦ III iv V V I vii◦ V II

I 17.1 0.7 1.4 6.4 15.6 1.4 2.1 1.4
ii◦ 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0
III 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
iv 2.3 0.2 0.2 1.4 9.5 0.4 0.3 0.3
V 22.6 0.0 0.0 0.8 8.0 0.0 0.0 0.1
V I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
vii◦ 0.5 0.0 0.1 0.2 0.4 0.0 0.0 0.0
V II 1.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0

Table 8: Coefficients aModulation for change of tonalities. Major tonalities are shown in
boldface.

C C# D D# E F F# G G# A A# B Cm C#m Dm D#m Em Fm F#m Gm G#m Am A#m Bm

C - 0.1 2.95 4.6 0.1 1.48
C# -
D - 3.2 2.4 1.15
D# - 1.85
E - 1.9
F - 2.7
F# 2.4 - 1.1
G 4.5 2.9 - 1.65
G# - 1.2
A 2.87 -
A# 2.5 - 1.6
B 1.9 -
Cm -
C#m -
Dm -
D#m -
Em 1.7 -
Fm -
F#m -
Gm 1.4 -
G#m -
Am 1.5 -
A#m -
Bm 1 -

4.5 The Melodic Function

The melodic function fm(C) evaluates the melodic quality of a chromosome C by per-
forming an “exception analysis” to identify stylistic anomalies and errors. We decided
to classify the exceptions in two severity classes: “warning” and “error.” A warning ex-
ception is intended to highlight a feature that might be stylistically unusual; an error
exception indicates a problem that should be corrected. We assign the weights to an
exception on the basis of its severity level: 2 for errors and 1 for warnings.

Evolutionary Computation Volume xx, Number x 19

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

Table 9: Single voice and two voices errors: weights and coefficients.

Exception Class wm am Meaning

Motion exceptions
parallel octaves 2 0.05 consecutive octaves, same two voices
direct octaves 1 0.01 octaves by similar leap, any two voices
parallel fifths 2 0.14 consecutive fifths, any two voices
direct fifths 1 0.02 fifths by similar leap, any two voices
parallel unisons 2 0.01 consecutive unisons, any two voices
direct unisons 1 0.01 unisons by similar leap, any two voices

Voice exceptions
voice jump 1 6.9 average motion, any voice
voice crossing 1 0.19 voice crossing, any pair
voice overlap 1 0.04 voice overlap, any pair
voice range 1 0.08 voice out of normal vocal range
voice spacing 1 0.14 wider that an octave, upper voices

We consider two exception classes: motion exceptions and voicing exceptions. For
each class we define a certain number of subtypes (see Table 9). We remark that many
other categories and subtypes exceptions are possible and the rule system adopted by
our algorithm can be easily expanded.

The coefficients have been obtained with a statistical analysis of a large corpus of
Bach chorales, as done for the harmonic fitness function.

Given a chromosome C, its melodic value is given by

fm(C) =
∑

i

am
i wm

i ,

where the index i runs over all errors and the values of ai and wi are reported in Table 9.
The objective is to minimize fm(C). Notice that, in order to make uniform the type

of objective functions, in term of maximization or minimization, we consider f ′
m(C) =

1
fm(C) , which is a function to maximize. Thus, we have to maximize fh(C) and f ′

m(C).
Let’s consider an example and again take the one presented in Figure 1. There is a

direct fifth in the first measure, a direct fifth and a direct octave in the second measure.
So fm(C) = 1 × 0.01 + 1 × 0.01 + 1 × 0.02 = 0.04. So f ′

m(C) = 1
0.04 = 2.5.

4.6 Initial Population

We start from an initial population P of psize individuals. We have done experiments
using two approaches for the initial population:

1. Random individuals: we obtain psize chromosomes by selecting a random chord
for each input note and choosing random positions for the notes in each chord.

2. In-tonality individuals: we select psize individuals by choosing again random
chords but with the constraint that the chords be chosen only in the starting
tonality. If for some input note it is not possible to select such a chord, then we
choose a random chord without restriction.

Recall that Bj , Tj , Aj , Sj are the lists of notes for Gi and that one of them (e.g., Bj)
is fixed by the input. Initially the voices not fixed by the input (e.g., Tj , Aj , and Sj , if the

20 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

bass line is the input) contain only one note and the duration of each note is assumed
to be equal to that of a beat; that is, the note fills the entire beat. The mutation operator
can introduce additional notes within each beat.

We have run tests using both choices. The tests with in-tonality initial populations
provided better solutions. The data we report have been obtained using in-tonality ini-
tial populations.

4.7 Evolutionary Operators

We remark that the objective functions for our specific problem are defined on sequence
of genes, that is, are calculated by checking the harmonic and melodic features of the
genes of a chromosome. This property allows us to locate for each chromosome, the ar-
eas in which the characteristic of the genes are not good. We use this aspect to guide the
evolutionary operators by fitness information: the operators, instead of operating in ran-
domly selected points of the chromosomes, carefully choose such points to be the “worst
areas” of the chromosome. This approach differentiates EvoComposer from many evo-
lutionary algorithms, but reflects a natural way of approaching the music composition
task. In fact, when musicians compose music, they usually operate in the worst points of
their compositions, making changes, replaying patterns and so on, until they feel they
have achieved a satisfying result.

It’s common to fix the number of crossover points at a very low constant value of 1
or 2. We use a double-point crossover during the reproduction phase. In order to let the
population evolve, we apply the following evolutionary operators: harmonic crossover
and mutation operators and melodic crossover and mutation operators. Moreover, in
order to implement the elitism technique we select at each generation those chromosomes
that have at least one of the following characteristics: (1) first and last chords are in the
starting tonality, (2) there exists at least one subsequence of chords that matches an har-
monic “favored” sequence. The particular set of favored sequences that we have used
in our algorithm is V-I, I-IV, II-V-I, IV-V-I, I-II-III, III-II-I, V-VI-VII-I. These sequences
are very common. Notice that since we use a multiobjective fitness function the best
individuals are given by those in the Pareto front, that is, the set of all nondominated
chromosomes. Thus, among all individuals in the Pareto front we choose the solution
which has the best harmonic value. This is justified by the fact that, being forced to make
a choice, the harmonic aspect can be considered more important.

In the following, we describe the details of the crossover and mutation operators.
We remark that the harmonic and melodic crossover and mutation operators were intro-
duced in our previous paper on EvoBassComposer (De Prisco, Zaccagnino et al., 2010)
while the classic and rhythmic melodic mutation are introduced in this article.

Harmonic and Melodic Crossover Let us consider the harmonic crossover. For
each chromosome C1 = [G1, . . . ,GV] ∈ Mate selected for recombination, let (Gi,Gi+1)
and (Gj,Gj+1), with 1 ≤ i < j < V , the two points of C1 such that the values
fh(Gi,Gi+1) and fh(Gj,Gj+1) are lowest among all pairs. These points are the
crossover points considered for the harmonic recombination operator. Then, the al-
gorithm looks at the chromosome C2 = [G′

1, . . . ,G
′
V] ∈ Mate with the best value for

fh(G′
i , G

′
i+1) and fh(G′

j ,G
′
j+1) among all chromosomes in Mate. So we apply to

C1 and C2 the harmonic crossover operator to produce a new chromosome C3 =
[G1, . . . ,Gi,G

′
i+1, . . . ,G

′
j ,Gj+1, . . . ,GV].

The melodic crossover works similarly (just substitute fh with fm).

Evolutionary Computation Volume xx, Number x 21

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

Harmonic and Melodic Mutation Let us consider the harmonic mutation. In the fol-
lowing, we use the notation key(G) to indicate the tonality of chord G, scale(G) to in-
dicate the scale associated to key(G), position(n, scale(G)) to indicate the degree of the
note n in the scale(G), pitch(n) and duration(n) to indicate the pitch value and the dura-
tion of n, respectively; so key(G′) = key(G′′) means that G′ and G′′ are chords in the same
tonality. For each chromosome C ∈ Mate selected for mutation, we consider the pair
(Gi,Gi+1) of genes with the worst value of fh(Gi,Gi+1). Given a such pair (Gi,Gi+1),
the harmonic mutation operator generates four new individuals:

1. Generate a new pair of genes (G′
i , G

′
i+1) such that fh(G′

i , G
′
i+1) > fh(Gi,Gi+1).

Then a new chromosome C ′ is generated by replacing (Gi,Gi+1) with (G′
i , G

′
i+1);

2. Generate a new gene G′
i such that fh(G′

i , Gi+1) > fh(Gi,Gi+1) and key(G′
i) =

key(Gi+1). Then a new chromosome C ′ is generated by replacing (Gi,Gi+1) with
(G′

i , Gi+1). This mutation is biased toward keeping the tonality of Ci+1;

3. Generate a new gene G′
i+1 such that fh(Gi,G

′
i+1) > fh(Gi,Gi+1) and key(G′

i+1) =
key(Gi). Then a new chromosome C ′ is generated by replacing (Gi,Gi+1) with
(Gi,G

′
i+1). This mutation is biased toward keeping the tonality of Ci ;

4. Generate a new pair of genes (G′
i , G

′
i+1) such that fh(G′

i , G
′
i+1) > fh(Gi,Gi+1)

and key(G′
i) = key(G′

i+1). Then a new chromosome C ′ is generated by replac-
ing (Gi,Gi+1) with (G′

i , G
′
i+1). This mutation is biased toward keeping the two

chords in the same tonality.

For the melodic mutation, we consider two types of operators given a chromosome
C = [Gi, . . . ,GV] ∈ Mate selected for mutation:

1. Classic mutation: we consider each gene Gi of C where a melodic exception
labeled as “error” occurs. Then, for each of such gene Gi the algorithm generates
a new gene G′

i that does not contain melodic exceptions classified as “error” and
at the same time with fewer melodic exceptions classified as “warning.” The
melodic mutation operator produces from C a new chromosome C ′ where each
gene Gi is replaced by the new gene G′

i as stated above.

2. Rhythmic mutation: the objective of this operator is to create rhythmic variety in
each chromosome generated by inserting nonharmonic tones: passing tones, appog-
giatura tones and suspension tones (see Piston and DeVoto, 1987 for more details).
For the list of notes in each voice, which includes as the last note also the first note
of the next beat, the rhythmic mutation operator chooses, uniformly at random,
a nonharmonic type of tone, and adds it if possible. More specifically:
• Passing tone (this is not always possible): Let nj , nj+1 be a pair of consecu-

tive notes and let key(Gi). If octave(nj) == octave(nj+1) and |position(nj) −
position(nj+1)| = 2 (nj and nj+1 have distance 2 in the scale), then the
operator adds the note n′

j in between nj and nj+1, that is, position(n′
j) is

such that |position(nj) − position(n′
j)| =|position(n′

j) − position(nj+1)| = 1
and octave(n′

j) = octave(nj). Notice that the insertion of n′
j after nj involves

a redistribution of the original duration of nj , which we split evenly (half to
each) between the two notes nj and n′

j .

• Appoggiatura tone (this is always possible): let nj be a note in the list; the
operator adds a note n′

j before nj in the list. The new note is such that
pitch(n′

j) = pitch(nj) + 1. Appoggiatura tones do not have a duration but

22 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

are treated in a special way. We use a flag that specifies that the note is an
appoggiatura tone; from a practical point of view the note will ”take away” a
little bit of the duration of nj .

• Suspension tone (this is always possible): let nj be a note in the list;
set duration(nj) = duration(nj) + duration(nj+1)/2 and duration(nj+1) =
duration(nj+1)/2.

5 Experimental Analysis

In this section, we report the results of tests that we have carried out to evaluate Evo-
Composer. We analyzed the music quality of the produced compositions from two points
of view: (1) performance, by computing well-known measures such as hypervolume, �

index, coverage of two sets, and (2) musical creativity, by interviewing music experts.
In the experiments we compared EvoComposer with the earlier system EvoBass-

Composer (De Prisco, Zaccagnino et al., 2010), and with other composers based on the
following three multiobjective meta-heuristics:

• Tabu Search for Multiobjective Optimization: MOTS (see Hansen, 1997)

• A Simulated Annealing-Based Multiobjective Optimization Algorithm:
AMOSA (see Bandyopadhyay et al., 2008)

• Multiobjective Particle Swarm Optimization: MOPSO (see Coello and
Lechuga, 2002).

Clearly, and as we explain later, we have implemented our approach in each above
frameworks. So in the experiments we considered five composers, EvoComposer,
EvoBassComposer, and the above meta-heuristics.

As we will see in Section 5.1, we have run extensive tests by using a dataset of 20
of Bach’s chorales (arbitrarily chosen). For each experiment we (1) selected a chorale in
such a dataset, (2) selected as input one of the four voices of the chosen chorale, and
(3) set the parameters (number of iterations, size of the population, etc.). Then, each of
the five composers was run 10 times.

Next we describe the details of each experiment.

5.1 Configuration of the Experiments

We denote with maxgen the number of iterations and with psize the maximum size of the
population. We fix the number maxgen of iterations in the set K = {10, 50, 100, 500, 750,
1000, 2500, 5000, 7500, 10000}, and the max size psize in the set P = {10, 50, 100, 500, 750,
1000}.

Thus, given a line line, for each pair (maxgen, psize) we performed the following
steps:

1. We ran 10 executions of EvoComposer, EvoBassComposer, and each composer
implementing one of the meta-heuristics. Each composer takes as input: (1) the
bass line line, (2) the number of generations maxgen, (3) the size of the initial
population psize, (4) the chromosome definition, and (5) the fitness functions.

2. For EvoComposer, we followed the standard experimental setup for NSGA-II
(see Deb et al., 2002): The crossover rate is pc = 0.9; the mutation rate is pm = 1/n

Evolutionary Computation Volume xx, Number x 23

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

where n is the number of beats for each input bass line and binary tournament
as selection operator.

3. For each experiment and for each composer, we computed the average harmonic
and melodic values.

In total, for each composer we have |K| × |P | × 20 experiments and in the following
section we report the results of the comparison.

For the implementations MOTS, AMOSA, and MOPSO we have used the same set-
tings, fitness functions, chromosome representation, and operators (when possible) de-
fined in Sections 4.2–4.7. In the following, we give details about the implementations. To
ease the reader who wishes to check the references about MOTS, AMOSA, and MOPSO,
in the following description, we have also reported the actual variable names used in
the original papers.

• MOTS. Each individual is represented by using the chromosome defined in
Section 4.2. We used the harmonic and melodic objectives defined in Section
4.3; the sample size was equal to the size of the population fixed for the experi-
ment; for the tabu list length we used the values {0, 2, 4, 6, 8, 10} (as suggested
in the experiment described in Section 6 of Hansen, 1997). As stop criterion we
used the number of iterations fixed for the experiment; as the s∗ function (re-
quired by MOTS) we used the weighted Tchebycheff distance described in Sec-
tion 1.2 of Hansen (1997).

• AMOSA. Each individual is represented by using the chromosome defined in
Section 4.2; we used the harmonic and melodic objectives defined in Section
4.3. The perturbation operation was obtained by randomly selecting one of the
mutation operators defined in Section 4.7. The perturbation has been applied
with probability 1/n, where n is the length of the voice line used as input for
the experiment; the minimum, Tmin, and maximum, Tmax, values of the tempera-
ture; the number of iterations at each temperature, chosen so that total number of
fitness evaluations becomes approximately equal to the number of iterations
fixed for the experiment; the maximum size SL of the Archive, chosen as the
double of the size of the population fixed for the experiment. The minimum
size HL of the Archive has been set to the size of the population fixed for the
experiment. (The choice of such minimum and maximum size of the Archive
is justified by the fact that such sizes are sufficient to handle the size of the pop-
ulation for the experiment and the size of the set of nondominated solutions
generated by EvoComposer).

• MOPSO. As for the other cases, each individual is represented by using the
chromosome defined in Section 4.2 and the harmonic and melodic objectives
are those defined in Section 4.3. The size of the population array POP, of the
velocity array VEL, of the nondominated array REP and of the best position ar-
ray PBEST, were chosen to be equal to the size of the population fixed for the
experiment. The value of the inertia weight W was set to 0.4 (as suggested in
Section 3 of Coello and Lechuga, 2002).

We also analyzed the differences among the five composers using the following
studies. Concerning the performance, we studied the difference using nonparametric
Friedman tests. Regarding the music creativity, we studied the correlations among the

24 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

composers, for all the analyzed independent variables, through nonparametric Spear-
man’s rho tests. We remark that, for both of the above nonparametric tests, the p-value is
used, in the context of null hypothesis testing, in order to quantify the statistical signif-
icance: the smaller the p-value, the larger the significance. The Shapiro–Wilk goodness-
of-fit test (Shapiro and Wilk, 1965) was used to assess the normality of the data. To assess
the internal consistency reliability among multi-item scales, we have used Cronbach’s
alpha (1951).

The output of the experiments has also been the subject of a questionnaire adminis-
tered to music experts according to the Consensual Assessment Technique, CAT (Am-
abile, 1982). The details of such a questionnaire will be given later in Section 5.2.2. The
responses were analyzed using SPSS4 (version 20).

5.2 Results

In this section, we describe the results of the comparison we carried out to identify the
best composer in terms of performance and of music creativity.

5.2.1 Performance Metrics
Over the years, many performance metrics have been introduced for evaluating the
quality of the nondominated fronts for multiobjective optimization problems. In this
work, we focus on: (1) the minimization of the distance of the resulting nondominated
front to the Pareto-optimal front, (2) the search of a desirable distribution of the solu-
tions, and (3) the maximization of the spread of the obtained nondominated front. Thus,
in our comparison we evaluated the considered composers by using the following:

• Hypervolume (see Zitzler and Thiele, 1999): this metric takes into consider-
ation the size of the dominated volume in the objective space. In the two-
dimensional case, this metric is mathematically described as:

H =
{∑

i

Si |xi ∈ P

}
,

where P is the nondominated solution set under evaluation and Si is the area
dominated by the solution xi . The areas Si are computed with respect to a ref-
erence point in the objective space which typically is assumed to be composed
of the maximum value for each objective. A greater value of H indicates both
a better convergence and as well a good coverage of the evaluated front (see
Minella et al., 2008).

• � index (see Deb et al., 2002): this metric is based on a distance and includes
information about both spread and distribution. The � index is computed as:

� = df + dl + ∑|P |−1
i=1 |di − d|

df + dl + (|P | − 1) · d
,

where P is the front to be evaluated, df and dl are Euclidean distances between
the extreme solutions and the solutions, and the boundary solutions of P , d is
the average of all distances di , i = 1, . . . , |P | − 1, representing the Euclidean
distance between consecutive solutions.

4Retrieved from https://www.ibm.com/it-it/analytics/spss-statistics-software

Evolutionary Computation Volume xx, Number x 25

https: doi.org/10.1162/evco_a_00265
2019 by

https://www.ibm.com/it-it/analytics/spss-statistics-software
Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

Figure 5: Average metrics indicator for each MO algorithm.

• Coverage of two sets (see Zitzler and Thiele, 1999): this binary metric is com-
puted by considering two fronts to be compared one against the other. It is
computed as:

C(A,B) = |{y ∈ B : ∃x ∈ A, x ≤ y}|
|B| ,

where A and B are the two fronts to be compared and ≤ represents the weak
dominance relation. Values of the C function range in interval [0,1] (C(A,B) =
1 means that all solutions in B are dominated by A, and as opposite C(A,B) = 0
means that none of the solutions in B is dominated by the front A). We say that
A outperforms B if C(A,B) > C(B,A).

Figure 5 shows the average hypervolume value, and the average � index value re-
spectively, for each algorithm by using a boxplot diagram. Each boxplot shows the av-
erage median value, the average first (Q1) and the average third (Q3) quartile, and the
average upper (UW) and average lower (LW) whiskers. Values outside the whiskers
represent experiments whose result deviated significantly from the median; the cir-
cle indicates outliers, that is, values outside the whiskers; the asterisk indicates ex-
treme outliers, that is, values very far from the whiskers (specifically points lower than
Q1 − 3(Q3 − Q1) or greater than Q3 + 3(Q3 − Q1)). For example, for EvoBassComposer,
experiments 2 and 4 gave a result that deviated moderately from the median, while ex-
periments 1 and 3 gave a result that deviated significantly from the median. As we can
see, EvoComposer provides the best performance among all compared multiobjective
algorithms. Indeed the median of the average hypervolume values and of the average
� index values is greater than the corresponding medians of the others. We also found
out significant statistical differences between the algorithms for both the average hy-
pervolume and the �-index indicator (p-value < 0.0001).

Furthermore, in Table 10 we report the average coverage metric over the 800 exper-
iments. As we can see, also in this case the value for EvoComposer is greater than the
values for each of the other composers.

As an example in the online folder (https://goo.gl/swM6V9) we provide the Pareto
front for one of the experiments where we have used maxgen = 10000 and psize = 1000.
The set has size 30; the average size of the Pareto fronts observed during the experiments
is about 43.

26 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

https://www.mitpressjournals.org/action/showImage?doi=10.1162/evco_a_00265&iName=master.img-004.jpg&w=44&h=109
Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

Table 10: Average coverage metric.

EvoBassComposer EvoComposer TabuSearch SimulatedAnnealing ParticleSwarm

EvoBassComposer 1 0.32 0.54 0.46 0.61
EvoComposer 0.96 1 0.87 0.91 0.92
TabuSearch 0.71 0.77 1 0.84 0.79
SimulatedAnnealing 0.66 0.83 0.79 1 0.81
ParticleSwarm 0.73 0.84 0.87 0.90 1

5.2.2 Music Creativity
Measuring creativity, and generally any inherently subjective perception of a work, is a
difficult task. In our specific domain, the assessment of musical creativity poses many
methodological and technical challenges. A common way to deal with these issues
consists of proposing both a definition of creativity and a method for its assessment.
Among these, the product-based assessment is a common way to evaluate musical cre-
ativity. The music pieces produced by the algorithm are evaluated by experts, through
a questionnaire. The opinions of the experts are then often scored using the Consensual
Assessment Technique, CAT for short (Amabile, 1982). CAT, also known as the “Gold
Standard” of creativity assessment, is one of the most effective tools for measuring
creative work. In this term, creativity is the ability to produce something that is both
new/original and valuable/appropriate to the task or the domain (Amabile, 1996).

More specifically, this technique measures creativity using judges, who assess cre-
ativity works individually and in isolation. Judges are individuals who are experts in
the reference field, so that the analysis of their opinions produces robust results.

Numerous studies have been proposed about the evaluation of musical creativity
and many of these have demonstrated the ability of the CAT to obtain reliable subjective
assessments (e.g., Amabile, 1996; Hennessey and Amabile, 2010; Baer et al., 2004; Boden,
1994, 1998, 2009; Hickey, 2001; Lubart et al., 2010; Pearce and Wiggins, 2001; Runco, 2004;
Phon-Amnuaisuk et al., 2006; Wiggins, 2006; Langheinrich, 2001). Agres et al. (2016)
argue that CAT is a valid assessment tool for the evaluation of music compositions.

Thus we use CAT to evaluate the quality, in terms of creativity, technical quality, and
expressiveness, of the compositions produced in the experiments that we presented in
Section 5.

Method An important factor when using CAT to analyze creativity is selection of cred-
ible judges. Our judges were 20 domain experts, either conservatory teachers or profes-
sional musicians. Ten music teachers, whose teaching experience ranged from 15 to 25
years, were recruited from two conservatories, that is, the “Carlo Gesualdo da Venosa”
Conservatory in Potenza and the “Giuseppe Martucci” Conservatory in Salerno, Italy.
The remaining participants were professional musicians, recruited through word-of-
mouth advertising. They all had experience in classical music.

Our experts supplied their responses individually (independently and without in-
fluencing one another’s judgment in any way) and received instructions verbally and
in writing. Eleven judges declared high familiarity with the chorale genre, while the
remaining nine were moderately familiar. Judges were not compensated for their par-
ticipation and worked approximately for one hour. To build our dataset we selected the
5 best compositions produced by each system (as described in Section 5), for a total of
25 compositions. Each composition was created from a different input voice line and
is long about 16 measures. The generated melodies were recorded as MIDI files and

Evolutionary Computation Volume xx, Number x 27

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

Table 11: Consensual Assessment Technique questions.

Criteria

Creativity
C1 Does the composition show original and imaginative musical ideas?
C2 Does the composition show coherent and organized musical ideas?

Technical Quality
T1 How successful is the composition as a chorale form?
T2 Do the harmonic elements show technical correctness respect to classical rules?
T3 Do the melodic elements show technical correctness respect to classical rules?

Expressiveness
E1 Is the composition musically expressive and reflects aesthetic sensitivity to music?
E2 How do you evaluate the listenability of the composition?

were presented (1) over stereo headphones from a laptop computer running a software
media player, and (2) as printed score. The compositions were assessed using a seven-
point Likert scale in three independent series for three criteria based on Amabile (1996);
Hickey (1999); and Auh (1997): (1) Creativity (degree of both originality and coherence
of the composition); (2) Technical quality (degree to which the harmonic and melodic
elements in a composition show technical correctness respect to classical music rules);
and (3) Expressiveness (degree to which the composition is musically expressive and re-
flects aesthetic sensitivity to music). The judges’ agreement and therefore the inter-rater
reliability was measured using Cronbach’s (1951) alpha coefficient.

Procedure We asked judges to listen to and rate the 25 chorales as well as to analyze the
corresponding music scores. They had to listen to each entire chorale before answering
the seven questions included in the consensual assessment form. The questions, orga-
nized in the three different criteria before described, are shown in Table 11.

The compositions were presented in random order—subject to the constraints that
no two compositions generated by the same system, or based on the same chorale, were
presented sequentially. A reverse counterbalanced design was used, with half of the
judges listening to the melodies in one such order and the other half listening to them
in the reverse order.

Finally, judges filled out a questionnaire in which we asked them to provide demo-
graphic information, that is, name, age, and gender and their experience in the music
field, and specifically the years of experience in music and the familiarity with chorale
genre (low, medium, high).

The questionnaires submitted to music experts are available online.5

Results Results of the creativity analysis are shown in Table 12. As one can see, Evo-
Composer outperforms the other approaches with respect to all criteria, and thus also
with respect to the mean of all criteria, with a 5.58 mean evaluation over a 7-point Likert
scale. We also notice that, for all composers, the best rate was achieved in question T3:
“Do the melodic elements show technical correctness respect to classical rules?” highlighting

5Retrieved from https://goo.gl/swM6V9

28 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

Table 12: The mean ratings for each question aggregated by composers. The questions
labeled with C correspond to the questions about the Creativity criteria, those labeled
with T to the Technical Quality, while those labeled with E to the Expressiveness criteria.
Ratings on a 7-point Likert scale.

Composer C1 C2 T1 T2 T3 E1 E2 Mean

EvoBassComposer 3.21 3.37 3.77 3.73 4.17 3.79 3.17 3.60
EvoComposer 5.19 5.41 5.74 5.72 6.12 5.72 5.13 5.58
TabuSearch 4.20 4.36 4.78 4.74 5.16 4.79 4.21 4.60
SimulatedAnnealing 3.80 3.99 4.36 4.33 4.77 4.38 3.77 4.20
ParticleSwarm 3.41 3.56 3.97 3.93 4.35 3.99 3.42 3.80

Table 13: Analysis of correlations among the analyzed questions. Correlation significant
at level 0.01 (**) and at level 0.05 (*).

C1 C2 T1 T2 T3 E1 E2

C1 α 1.000 .623** .727** .699** .701** .626** .712**

p-value .003 .000 .001 .001 .003 .000

C2 α .623** 1.000 .848** .678** .509* .594** .623**

p-value .003 .000 .001 .022 .006 .003

T1 α .727** .848** 1.000 .907** .499* .858** .932**

p-value .000 .000 .000 .025 .000 .000

T2 α .699** .678** .907** 1.000 .624** .907** .926**

p-value .001 .001 .000 .003 .000 .000

T3 α .701** .509* .499* .624** 1.000 .649** .495*

p-value .001 .022 .025 .003 .002 .027

E1 α .626** .594** .858** .907** .649** 1.000 .875**

p-value .003 .006 .000 .000 .002 .000

E2 α .712** .623** .932** .926** .495* .875** 1.000
p-value .000 .003 .000 .000 .027 .000

how domain experts were positively impressed by the melodic aspect of the generated
compositions. The highest value was given for EvoComposer (M = 6.12, SD = 0.32).
It is worth to note that, for EvoComposer, the originality of the composition (Question
C1: “Does the composition present original and imaginative musical ideas?”) was rated highly
positively (M = 5.19, SD = 0.56).

As mentioned before, responses submitted by judges were then analyzed for inter-
judge reliability using the Cronbach’s alpha coefficient. For each of the criteria analyzed,
an alpha of good reliability is achieved in all cases (0.80 or higher), with a best value of
0.92 for EvoComposer.

Finally, the correlations among the different items are presented in Table 13. As we
can see, all independent variables were significantly correlated.

Evolutionary Computation Volume xx, Number x 29

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

Figure 6: Test results: harmonic similarity with Bach’s compositions.

5.3 Stylistic Considerations

As explained before, we have also evaluated EvoComposer by looking at how it per-
formed compared, with respect to the harmonic aspect, to the original compositions
used to extract statistical information (the chorales by Bach). As we will see, the re-
sults highlight EvoComposer’s ability to produce very similar music with respect to the
other approaches. We remark although the goal of EvoComposer is not that of mimick-
ing Bach’s style, the analysis shows that the algorithm can be also fine tailored for such
a goal. More specifically, we have selected a large body of Bach’s chorales (more than
200) and we have run each composer for each of the chorales giving as input the bass
line. Then we compared the output composition to the original chorale written by Bach.
The comparison has been made in terms of harmonization, that is, we have looked at
the chords used for each beat and we have measured how much the automated com-
position differs from the one written by Bach. The overall measure is the percentage of
chords where the automated composition matches the original Bach’s composition: a
composition that uses exactly the same chords used by Bach would get a score of 100%.
Figure 6 shows the scores for the (over) 200 tests that we have performed.

For each composer we report the maximum, the minimum, and the mean scores.
As we can see, EvoComposer outperforms the others’ composers in terms of similar-
ity, with a minimum of 56.2%, a maximum of 92.2%, and a mean score of 76%. This
means that on average EvoComposer made the same harmonic choices made by Bach
in about 3 out of 4 cases. We also remark that such a percentage of harmonic similarity
with Bach’s work is only an indication and does not necessarily mean that a composi-
tion with a higher percentage of similarity is better than another with a lower percent-
age of similarity. For example, we like more the solution provided by EvoComposer,
for Chorale BWV 11.6, with a 72.4% harmonic similarity with Bach’s harmonization,
than the solution provided for Chorale BWV 6.6, with a 92.2% harmonic similarity with

30 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

Figure 7: Bass line from Chorale BWV 11.6.

Bach’s original harmonization. Such compositions are available online (https://goo.gl
/swM6V9).

5.3.1 Chorale BWV 6.6 Example
As an example, we provide the output obtained for a specific chorale, namely BWV
6.6. Figures are in the Appendix. Figure 9 shows the original Bach’s chorale, while Fig-
ures 10–13 provide the output obtained for four different executions of the EvoCom-
poser, each one using a different voice as input: Figure 10 shows the output obtained
using the bass line as input, Figure 11 shows the output obtained using the tenor line as
input, Figure 12 shows the output obtained using the alto line as input, and Figure 13
shows the output obtained using the bass soprano as input.

5.3.2 Chorale BWV 11.6 Example
We also provide the full score of one specific composition obtained by using Evo-
Composer with the (input) bass line from Chorale BWV 11.6. The bass line is shown
in Figure 7. The composition provided by EvoComposer is shown in Figure 8. We
asked a string quartet to play the Chorale BWV 11.6 as composed by EvoComposer
(the one shown in Figure 8). The execution has been filmed and is available online
(https://goo.gl/swM6V9).

6 Conclusions

In this article, we have designed and implemented a totally automatic music composer
using an evolutionary algorithm. The algorithm can handle music in 4 parts and can
take as input any one of the 4 voices and produce as output the remaining 3 voices. The
algorithm uses a novel representation for the chromosomes, and customized operators,
which exploit specific musical information to improve the quality of the produced in-
dividuals and exploits weights obtained from a statistical analysis of a large corpus of
Bach’s chorales. The algorithm uses a multiobjective fitness function in order to consider
simultaneously both the harmonic and the melodic aspects.

We have provided an in-depth description of the algorithm so that it is possible to
implement it.

A performance study shows that our composer outperforms other meta-heuristics
by producing better solutions in terms of both well-known measures such as hyper-
volume, � index, and coverage of two sets. Moreover, a qualitative evaluation was
performed to measure the creativity of the chorales produced by all the analyzed com-
posers. By applying standard mechanisms to evaluate creativity we found out that the
experts involved in the study rated the compositions produced by our algorithm very
original and expressive, as well as technically correct.

Evolutionary Computation Volume xx, Number x 31

https: doi.org/10.1162/evco_a_00265
2019 by

https://goo.gl/swM6V9
https://www.mitpressjournals.org/action/showImage?doi=10.1162/evco_a_00265&iName=master.img-005.jpg&w=376&h=77
Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

Figure 8: EvoComposer’s harmonization for the bass line of Chorale BWV 11.6.

We have successfully applied the evolutionary computation approach to the music
problem of 4-part harmonization, more specifically, the composition of 4-part chorales
in the style of Bach, starting from one voice as input. Beside showing that the evolution-
ary approach can be effective for this specific music problem, this article suggests also
that the use of musical information in the chromosome representation of customized
operators and of statistical information in the fitness function could be useful for other
music applications. Although this is unusual for evolutionary algorithms, it proved to
be effective for this particular problem. We believe that this is due to the specific na-
ture of the problem, for which the use of musical information helps the evolution of the
solutions.

Future work might investigate the use of a similar approach to other musical prob-
lems, for example, targeting other classic composers and musical genres, such as jazz
or pop music and tailor the algorithm on those composers/genres. Perhaps such an
approach might be useful also for other EC problems.

32 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

https://www.mitpressjournals.org/action/showImage?doi=10.1162/evco_a_00265&iName=master.img-006.jpg&w=374&h=364
Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

Concerning the algorithm itself, future work can be targeted at improving several
aspects. EvoComposer uses as metrics for the measurement of the quality of a compo-
sition only harmonic and melodic considerations. It would be interesting to consider
also other aspects, such as rhythmic considerations and an evaluation of the overall
structure of the composition.

Acknowledgments

We would like to thank Matteo Parisi for having contributed with his thesis work to the
development of the software tool that allowed us to analyze a large corpus of Bach’s
chorales to obtain the weights used in the algorithm. We also thank the anonymous
referees who helped us to considerably improve the article with their comments.

References

Agres, K., Forth, J., and Wiggins, G. A. (2016). Evaluation of musical creativity and musical
metacreation systems. Computers in Entertainment, 14(3):3:1–3:33.

Amabile, T. M. (1982). The social psychology of creativity: A consensual assessment technique.
Journal of Personality and Social Psychology, 43(5):997–1013.

Amabile, T. M. (1996). Creativity in context. Nashville, TN: Westview Press.

Anders, T., and Miranda, E. R. (2008). Constraint-based composition in realtime. In Proceedings of
the 2008 International Computer Music Conference.

Anders, T., and Miranda, E. R. (2011). Constraint programming systems for modeling music the-
ories and composition. ACM Computing Surveys, 43(4):30:1–30:38.

Assayag, G., Rueda, C., Laurson, M., Agon, C., and Delerue, O. (1999). Computer-assisted com-
position at IRCAM: From PatchWork to OpenMusic. Computer Music Journal, 23(3):59–
72.

Auh, M.-S. (1997). Prediction of musical creativity in composition among selected variables for
upper elementary students. Bulletin of the Council for Research in Music Education (133):1–8.

Baer, J., Kaufman, J. C., and Gentile, C. A. (2004). Extension of the consensual assessment tech-
nique to nonparallel creative products. Creativity Research Journal, 16(1):113–117.

Bandyopadhyay, S., Saha, S., Maulik, U., and Deb, K. (2008). A simulated annealing-based mul-
tiobjective optimization algorithm: Amosa. IEEE Transactions on Evolutionary Computation,
12(3):269–283.

Bentley, P. J. (2000). Exploring component-based representations—The secret of creativity by
evolution? In I. Parmee (Ed.), Evolutionary design and manufacture, pp. 161–172. London:
Springer.

Boden, M. A. (1994). Creativity: A framework for research. Behavioral and Brain Sciences, 17(3):558–
570.

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence, 103(1):347–356.

Boden, M. A. (2009). Mind as machine (extract) and the creative mind: Myths and mechanisms
(extract). In M. Boden, M. D’Inverno, and J. McCormack (Eds.), Computational creativity: An
interdisciplinary approach, number 09291 in Dagstuhl Seminar Proceedings. Dagstuhl, Ger-
many: Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Germany.

Buck, P. C. (1922). Unfigured harmony: A short treatise on modulation, harmonization of melodies, un-
figured basses, inner melodies, canons and ground basses. Oxford: Clarendon Press.

Evolutionary Computation Volume xx, Number x 33

https: doi.org/10.1162/evco_a_00265
2019 by

https://www.mitpressjournals.org/action/showLinks?crossref=10.1145%2F1978802.1978809&citationId=p_5
https://www.mitpressjournals.org/action/showLinks?system=10.1162%2F014892699559896&citationId=p_6
https://www.mitpressjournals.org/action/showLinks?crossref=10.1207%2Fs15326934crj1601_11&citationId=p_8
https://www.mitpressjournals.org/action/showLinks?crossref=10.1145%2F2967506&citationId=p_1
https://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2FTEVC.2007.900837&citationId=p_9
https://www.mitpressjournals.org/action/showLinks?crossref=10.1017%2FS0140525X00035986&citationId=p_11
https://www.mitpressjournals.org/action/showLinks?crossref=10.1037%2F0022-3514.43.5.997&citationId=p_2
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2FS0004-3702%2898%2900055-1&citationId=p_12
Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

Chuan, C.-H., and Chew, E. (2007). A hybrid system for automatic generation of style-specific ac-
companiment. In Proceedings of the 4th International Joint Workshop on Computational Creativity,
pp. 57–64.

Coello, C. A. C., and Lechuga, M. S. (2002). MOPSO: A proposal for multiple objective particle
swarm optimization. In Proceedings of the Conference on Evolutionary Computation, Vol. 2, pp.
1051–1056.

Cope, D. (1996). Experiments in musical intelligence. Middleton, WI: A-R Editions.

Cope, D. (2000). The algorithmic composer. Middleton, WI: A-R Editions.

Cope, D., and Hofstadter, D. R. (2004). Virtual music: Computer synthesis of musical style. Cambridge,
MA: MIT Press.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika,
16(3):297–334.

De Prisco, R., Eletto, A., Torre, A., and Zaccagnino, R. (2010). A neural network for bass functional
harmonization. In Proceedings of Applications of Evolutionary Computation, Part II, pp. 351–360.

De Prisco, R., Zaccagnino, G., and Zaccagnino, R. (2010). EvoBassComposer: A multi-objective
genetic algorithm for 4-voice compositions. In Proceedings of Genetic and Evolutionary Compu-
tation Conference (GECCO), pp. 817–818.

De Prisco, R., Zaccagnino, G., and Zaccagnino, R. (2011a). A genetic algorithm for dodecaphonic
compositions. In Proceedings of Applications of Evolutionary Computation, pp. 244–253.

De Prisco, R., Zaccagnino, G., and Zaccagnino, R. (2011b). A multi-objective differential evolution
algorithm for 4-voice compositions. In 2011 IEEE Symposium on Differential Evolution, pp. 65–
72.

De Prisco, R., and Zaccagnino, R. (2009). An evolutionary music composer algorithm for bass
harmonization. In EvoWorkshops, pp. 567–572. Lecture Notes in Computer Science, Vol. 5484.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic
algorithm: NSGA-II. Transactions in Evolutionary Computation, 6(2):182–197.

Donnelly, P., and Sheppard, J. (2011). Evolving four-part harmony using genetic algorithms. In
EvoApplications 2011, Part II, pp. 273–282, Berlin, Heidelberg: Springer.

Ebcioglu, K. (1986). An expert system for harmonizing four-part chorales. In Proceedings of the
1986 International Computer Music Conference.

Evans, B. L., Fukayama, S., Goto, M., Munekata, N., and Ono, T. (2014). Autochoruscreator: Four-
part chorus generator with musical feature control, using search spaces constructed from
rules of music theory. In Proceedings of the International Computer Music Conference.

Fonseca, C. M., and Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization: For-
mulation, discussion and generalization. In Proceedings of the 5th International Conference on
Genetic Algorithms, pp. 416–423.

Fonseca, C. M., and Fleming, P. J. (1995). An overview of evolutionary algorithms in multiobjec-
tive optimization. Evolutionary Computation, 3(1):1–16.

Fux, J. J., and Mann, A. (1965). The study of counterpoint from Johann Joseph Fuxs Gradus Ad
Parnassum—1725. New York: Norton.

Gang, D., Lehmann, D., and Wagner, N. (1997). Harmonizing melodies in real-time: The connec-
tionist approach. In Proceedings of the International Computer Music Association, pp. 27–31.

Gartland-Jones, A., and Copley, P. (2003). The suitability of genetic algorithms for musical com-
position. Contemporary Music Review, 22(3):43–55.

34 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

https://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fevco.1995.3.1.1&citationId=p_31
https://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2F4235.996017&citationId=p_26
https://www.mitpressjournals.org/action/showLinks?crossref=10.1080%2F0749446032000150870&citationId=p_34
https://www.mitpressjournals.org/action/showLinks?crossref=10.1007%2FBF02310555&citationId=p_20
Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

Geis, M., and Middendorf, M. (2007). An ant colony optimizer for melody creation with
baroque harmony. In Proceedings of the IEEE Congress on Evolutionary Computation, pp. 461–
468.

Gimenes, M., Miranda, E. R., and Johnson, C. (2005). Towards an intelligent rhythmic generator
based on given examples: A memetic approach. In Digital Music Research Network Summer
Conference, pp. 41–46.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning, 1st ed. Boston:
Addison-Wesley.

Goldberg, D. E. (2002). The design of innovation: Lessons from and for competent genetic algorithms.
Norwell, MA: Kluwer.

Hansen, M. P. (1997). Tabu search for multiobjective optimization: MOTS. In Proceedings of the
Thirteenth International Conference on Multiple Criteria Decision Making, pp. 6–10.

Hastings, E. J., Guha, R. K., and Stanley, K. O. (2009). Automatic content generation in the galac-
tic arms race video game. IEEE Transactions on Computational Intelligence and AI in Games,
1(4):245–263.

Hennessey, B. A., and Amabile, T. M. (2010). Creativity. Annual Review of Psychology, 61(1):569–
598.

Herremans, D., and Sörensen, K. (2013). FuX, an android app that generates counterpoint. In
IEEE Symposium on Computational Intelligence for Creativity and Affective Computing, pp. 48–
55.

Hickey, M. (1999). Assessment rubrics for music composition. Music Educators Journal, 85(4):26–
33.

Hickey, M. (2001). An application of AMABILE’s consensual assessment technique for rating
the creativity of children’s musical compositions. Journal of Research in Music Education,
49(3):234–244.

Hiller, L. A., and Isaacson, L. M. (1958). Musical composition with a high-speed digital computer.
Journal of the Audio Engineering Society, 6(3):154–160.

Hofmann, D. M. (2015). A genetic programming approach to generating musical compositions.
In 4th International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and
Design, pp. 89–100. Lecture Notes in Computer Science, Vol. 9027.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: The University of
Michigan Press.

Horner, A., and Ayers, L. (1995). Harmonization of musical progressions with genetic algorithms.
In International Computer Music Conference.

Jacob, B. L. (1994). Composing with genetic algorithms. Technical Report. University of Michigan.

Jensen, J. H. (2011). Evolutionary music composition: A quantitative approach. Masters thesis.
Institutt for datateknikk og informasjons vitenskap.

Jeong, J., Kim, Y., and Ahn, C. W. (2017). A multi-objective evolutionary approach to automatic
melody generation. Expert Systems Applications, 90(C):50–61.

Kimbrough, S. O., Koehler, G. J., Lu, M., and Wood, D. H. (2008). On a feasible–infeasible two-
population (FI-2pop) genetic algorithm for constrained optimization: Distance tracing and
no free lunch. European Journal of Operational Research, 190(2):310–327.

Langheinrich, M. (2001). Privacy by design? Principles of privacy-aware ubiquitous systems. In
International Conference on Ubiquitous Computing, pp. 273–291.

Evolutionary Computation Volume xx, Number x 35

https: doi.org/10.1162/evco_a_00265
2019 by

https://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2FTCIAIG.2009.2038365&citationId=p_40
https://www.mitpressjournals.org/action/showLinks?crossref=10.1146%2Fannurev.psych.093008.100416&citationId=p_41
https://www.mitpressjournals.org/action/showLinks?crossref=10.2307%2F3399530&citationId=p_43
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.ejor.2007.06.028&citationId=p_52
https://www.mitpressjournals.org/action/showLinks?crossref=10.2307%2F3345709&citationId=p_44
Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

Lehman, J., Clune, J., Misevic, D., Adami, C., Altenberg, L., . . . et al. (2018). The surprising cre-
ativity of digital evolution: A collection of anecdotes from the evolutionary computation and
artificial life research communities. CoRR. Retrieved from http://arxiv.org/abs/1803.03453

Liu, C. H., and Ting, C. K. (2015). Music pattern mining for chromosome representation in evo-
lutionary composition. In 2015 IEEE Congress on Evolutionary Computation, pp. 2145–2152.

Lopes, H. B., Martins, F. V. C., Cardoso, R. T. N., and dos Santos, V. F. (2017). Combining rules and
proportions: A multiobjective approach to algorithmic composition. In 2017 IEEE Congress
on Evolutionary Computation, pp. 2282–2289.

Lubart, T., Pacteau, C., Jacquet, A.-Y., and Caroff, X. (2010). Children’s creative potential: An em-
pirical study of measurement issues. Learning and Individual Differences, 20(4):388–392.

Melián, B., Moreno, J., and Moreno, J. (2003). Metaheurísticas: Una visión global. Inteligencia Ar-
tificial, Revista Iberoamericana de Inteligencia Artificial, 7(19):7–28.

Minella, G., Ruiz, R., and Ciavotta, M. (2008). A review and evaluation of multiobjective algo-
rithms for the flowshop scheduling problem. INFORMS Journal on Computing, 20(3):451–471.

Miranda, E. R. (2000). On the music of emergent behaviour: What can evolutionary computa-
tion bring to the musician? In Conference on Genetic and Evolutionary Computation (GECCO),
pp. 140–142.

Miranda, E. R. (2001). Composing music with computers (music technology). Waltham, MA: Focal
Press.

Miranda, E. R. (2003). On the evolution of music in a society of self-taught digital creatures. Digital
Creativity, 14(1):29–42.

Miranda, E. R., and Biles, J. A. (2007). Evolutionary computer music. Berlin, Heidelberg: Springer.

Moore, A. F. (2001). Categorical conventions in music discourse: Style and genre. In Music & Let-
ters, Vol. 82, pp. 432–442.

Moray, A., and Christopher, K. I. W. (2004). Harmonising chorales by probabilistic inference. In
L. K. Saul, Y. Weiss, and L. Bottou (Eds.), Advances in neural information processing systems,
pp. 25–32. Cambridge, MA: MIT Press.

Munoz, E., Cadenas, J. M., Ong, Y. S., and Acampora, G. (2016). Memetic music composition. IEEE
Transactions on Evolutionary Computation, 20(1):1–15.

Nguyen, A., Yosinski, J., and Clune, J. (2015). Innovation engines: Automated creativity and im-
proved stochastic optimization via deep learning. In Proceedings of the 2015 Conference on
Genetic and Evolutionary Computation (GECCO).

Papadopoulos, G., and Wiggins, G. (1998). Agenetic algorithm for the generation of jazz melodies.
In Proceedings of STEP 98, pp. 7–9.

Parisi, M. (2013). Un analizzatore armonico automatico per composizioni musicali a 4 parti.
Thesis (in Italian). Retrieved from http://music.di.unisa.it/Musimatica/Download_files
/tesi-parisi.pdf

Pearce, M., and Wiggins, G. (2001). Towards a framework for the evaluation of machine composi-
tions. In Proceedings of the AISB Symposium on AI and Creativity in Arts and Science, pp. 22–32.

Phon-Amnuaisuk, S., Smaill, A., and Wiggins, G. (2006). Chorale harmonization: A view from a
search control perspective. Journal of New Music Research, 35(4):279–305.

Phon-Amnuaisuk, S., and Wiggins, G. A. (1999). The four-part harmonization problem: Acompar-
ison between genetic algorithms and a rule-based system. In AISB99 Symposium on Musical
Creativity.

36 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

http://arxiv.org/abs/1803.03453
http://music.di.unisa.it/Musimatica/Download_files/tesi-parisi.pdf
https://www.mitpressjournals.org/action/showLinks?crossref=10.1076%2Fdigc.14.1.29.8812&citationId=p_62
https://www.mitpressjournals.org/action/showLinks?crossref=10.1076%2Fdigc.14.1.29.8812&citationId=p_62
https://www.mitpressjournals.org/action/showLinks?crossref=10.1080%2F09298210701458835&citationId=p_71
https://www.mitpressjournals.org/action/showLinks?crossref=10.1093%2Fml%2F82.3.432&citationId=p_64
https://www.mitpressjournals.org/action/showLinks?crossref=10.1093%2Fml%2F82.3.432&citationId=p_64
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.lindif.2010.02.006&citationId=p_57
https://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2FTEVC.2014.2366871&citationId=p_66
https://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2FTEVC.2014.2366871&citationId=p_66
https://www.mitpressjournals.org/action/showLinks?crossref=10.1287%2Fijoc.1070.0258&citationId=p_59
Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

Piston, W., and DeVoto, M. (1987). Harmony. New York: Norton.

Risi, S., Lehman, J., D’Ambrosio, D., Hall, R., and Stanley, K. (2015). Petalz: Search-based proce-
dural content generation for the casual gamer. Transactions on Computational Intelligence in
Games, 8:244–255.

Runco, M. A. (2004). Creativity. Annual Review of Psychology, 55(1):657–687.

Schottstaedt, B. (1984). Automatic species counterpoint. Technical Report. CCRMA, Stanford, CA.

Scirea, M., Togelius, J., Eklund, P. W., and Risi, S. (2016). Metacompose: A compositional evolu-
tionary music composer. In Proceedings of the 5th International Conference on Evolutionary and
Biologically Inspired Music, Sound, Art and Design, pp. 202–217.

Shapiro, S. S., and Wilk, M. B. (1965). An analysis of variance test for normality (complete sam-
ples). Biometrika, 52(3/4):591–611.

Towsey, M. W., Brown, A. R., Wright, S. K., and Diederich, J. (2001). Towards melodic extension
using genetic algorithms. Educational Technology & Society, 4(2):54–65.

Wiggins, G., Papadopoulos, G., Phon-amnuaisuk, S., and Tuson, A. (1998). Evolutionary methods
for musical composition. In International Journal of Computing Anticipatory Systems.

Wiggins, G. A. (2006). Searching for computational creativity. New Generation Computing,
24(3):209–222.

Zaccagnino, R. (2012). Music composition algorithms and musical gestures recognition.
PhD thesis. Retrieved from http://music.di.unisa.it/Musimatica/Download_files/Rocco
ZaccagninoTesi.pdf

Zipf, G. K. (1949). Human behaviour and the principle of least effort. Reading, MA: Addison-Wesley.

Zitzler, E., and Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case
study and the strength Pareto approach. Transactions in Evolutionary Computation, 3(4):257–
271.

Evolutionary Computation Volume xx, Number x 37

https: doi.org/10.1162/evco_a_00265
2019 by

http://music.di.unisa.it/Musimatica/Download_files/RoccoZaccagninoTesi.pdf
https://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2F4235.797969&citationId=p_84
https://www.mitpressjournals.org/action/showLinks?crossref=10.2307%2F2333709&citationId=p_78
https://www.mitpressjournals.org/action/showLinks?crossref=10.1007%2FBF03037332&citationId=p_81
https://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2FTCIAIG.2015.2416206&citationId=p_74
https://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2FTCIAIG.2015.2416206&citationId=p_74
https://www.mitpressjournals.org/action/showLinks?crossref=10.1146%2Fannurev.psych.55.090902.141502&citationId=p_75
Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

Appendix: Examples of Output

Figure 9: Chorale BWV 6.6.

38 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

Figure 10: Output of EvoComposer on input the bass line of Chorale BWV 6.6.

Evolutionary Computation Volume xx, Number x 39

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

Figure 11: Output of EvoComposer on input the tenor line of Chorale BWV 6.6.

40 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions

Figure 12: Output of EvoComposer on input the alto line of Chorale BWV 6.6.

Evolutionary Computation Volume xx, Number x 41

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

R. De Prisco, G. Zaccagnino, and R. Zaccagnino

Figure 13: Output of EvoComposer on input the soprano line of Chorale BWV 6.6.

42 Evolutionary Computation Volume xx, Number x

https: doi.org/10.1162/evco_a_00265
2019 by

Rectangle

Rectangle

Rectangle

Rectangle

