
Distributed Simulation Optimization and Parameter
Exploration Framework for the CloudI

Michele Carilloa, Gennaro Cordascob, Flavio Serrapicaa, Vittorio Scaranoa, Carmine
Spagnuoloa,∗, Przemysław Szufelc

aUniversità degli studi di Salerno, Italy
bUniversità degli Studi della Campania ”Luigi Vanvitelli”, Italy

cWarsaw School of Economics (WSE - SGH), Poland

Abstract

Simulation models are becoming an increasingly popular tool for the analysis and op-

timization of complex real systems in different fields. Finding an optimal system de-

sign requires performing a large sweep over the parameter space in an organized way.

Hence, the model optimization process is extremely demanding from a computational

point of view, as it requires careful, time-consuming, complex orchestration of coordi-

nated executions. In this paper, we present the design of SOF (Simulation Optimization

and exploration Framework in the cloud), a framework which exploits the computing

power of a cloud computational environment in order to carry out effective and effi-

cient simulation optimization strategies. SOF offers several attractive features. Firstly,

SOF requires “zero configuration”, as it does not require any additional software in-

stalled on the remote node; only standard Apache Hadoop and SSH access are suffi-

cient. Secondly, SOF is transparent to the user, since the user is totally unaware that

the system operates on a distributed environment. Finally, SOF is highly customizable

and programmable, since it enables the running of different simulation optimization

scenarios using diverse programming languages – provided that the hosting platform

supports them – and different simulation toolkits, as developed by the modeler. The

IA preliminary version of this paper was presented at the 24th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP 2016), Heraklion, Crete, Greece, February 17 -
19, 2016.

∗Corresponding author
Email addresses: gennaro.cordasco@unicampania.it (Gennaro Cordasco),

vitsca@dia.unisa.it (Vittorio Scarano), cspagnuolo@unisa.it (Carmine Spagnuolo),
pszufe@gmail.com (Przemysław Szufel)

Preprint submitted to Simulation Modelling Practice and Theory

Delfina Malandrino
https://doi.org/10.1016/j.simpat.2017.12.005



tool has been fully developed and is available on a public repository1 under the terms

of the open source Apache License. It has been tested and validated on several private

platforms, such as a dedicated cluster of workstations, as well as on public platforms,

including the Hortonworks Data Platform and Amazon Web Services Elastic MapRe-

duce solution.

Keywords: Agent-based Simulation, Parallel Computing, Distributed Computing,

Simulation Optimization, Model Exploration, Cloud Computing

1. Introduction

Complex system simulation is gaining relevance in business and academic fields

as a powerful experimental tool for research and management. Simulations are mainly

used to analyze behaviors that are too complex to be studied analytically, or too costly

to be tested experimentally [28]. The representation of such complex systems results

in a mathematical model comprising several parameters. Hence, the question arises as

to how changes in model parameter values influence model output (simulation meta-

modeling, e.g. [6]) and how to find model parameter values that yield minimum (maxi-

mum) model output (simulation-optimization e.g. see [19, 47]). Considering the multi-

dimensionality of the parameter space, exploring parameter values and determining the

optimal parameters configuration is by no means an easy undertaking and requires ex-

tensive computing power.

In this paper a software framework for Simulations Optimization (SO) is devel-

oped. SO is understood as techniques studied for ascertaining the parameters of the

model that minimize (or maximize) given criteria (one or many), which can only be

computed by performing a simulation run — see [47, 25]. There are several approaches

to addressing simulation-optimization problems depending on model type. Simulation-

optimization model types can be classified either by algorithm type or by computation

type.

The following set SO model classes are considered in the literature (see [7, 19]): (1)

1SOF GitHub public repository, https://github.com/isislab-unisa/sof.

2

https://github.com/isislab-unisa/sof


Table 1: Simulation-optimization algorithms can be divided into four computational categories (a list of

example SO algorithms is presented). The goal of this paper is to provide a framework that allows rapid

deployment of computational infrastructure supporting all of the proposed categories – with particular focus

on the parallel simulation-optimization problem.

Computation type

Parameter

space

sequential

(single thread)

parallel

(multi-process)

discrete

KG [20],

IZ [35], PGS [9]

VIP [12]

NHH [37], NSGS [35]

OCBA [11]

SKG, AKG, AOCBA [27]

continuous
Stochastic Krigging [5]

RSM [33]

GP-BUCB [16],

EI(µ,λ) [26]

Ranking and Selection, (2) Response Surface Methodology (RSM), (3) Gradient-Based

Procedures, (4) Random Search, (5) Sample Path (6) Optimization and Metaheuristics.

Since many methods exist for parallel simulation-optimization there is a need for a

general computational approach to manage such a process.

From a computational point of view, the problems considered in the literature can

be classified according to decision space (continuous and discrete) and parallelization

(single-threaded vs multi-threaded). Most simulation-optimization policies assume se-

quential data processing and hence do not allow for parallelization. To illustrate the

proposed classification approach a list of sample simulation-optimization algorithms

and their classes has been presented in Table 1.

Branke et al. [9] note that since several approaches are available for simulation-

optimization, a researcher should choose the one which has the best performance for

a given problem. However, in the case of parallel, distributed algorithms, implement-

ing the appropriate computational infrastructure is a very sophisticated task. The goal

of this paper is to provide a distributed software framework that will streamline this

complex process.

There are several frameworks for distributed computing including MPI, task man-

agement platforms such as SGE, and Hadoop. Eric et al. [36] compare MapReduce

3



applicability with a message passing interface (MPI). They found out that MapReduce

has a much higher overhead – in particular in scenarios where running simulations

requires large amount of input data (they give a geographic system simulation as an ex-

ample). However, they also note that the MapReduce model is much more appropriate

for cloud computing environments, like Amazon EC2, where nodes might become un-

available during computations. Indeed, Apache Hadoop [44] offers built-in protection

against core failures by having the master core periodically detect the status of worker

cores and re-launch failed map or reduce tasks. Moreover, the Hadoop distributed file

system (HDFS) [44], which is used by Apache Hadoop to keep MapReduce input and

output, also maintains replicates of data blocks to ensure that no data is lost as a result

of a single hardware failure. Therefore, the increased overhead of those fault tolerance

mechanisms is often offset by the decrease in cost of using cheaper resources.

This raises the need for tools which exploit the computing power of parallel systems

to improve the effectiveness and the efficiency of SO strategies. The crucial character-

istics of such tools are: zero configuration, ease of use, programmability and efficiency.

Zero configuration and ease of use are required because both the design and the use

of SO strategies are performed by domain experts, who are seldom computer scientists

and have limited knowledge of managing modern parallel infrastructures. Programma-

bility is mandatory because different models usually require different SO strategies.

Finally, the system must be efficient in order to meet the huge demand for computing

power.

In the paper the specific problem of introducing or evaluating new ways to explore

the parameters space is addressed — a support tool to perform the parameters space

exploration and SO on stochastic simulation model is developed. The proposed frame-

work exploits the computing power of a cloud computational environment in order to

quickly carry out simulation exploration and/or optimization strategies.

The applicability of the proposed SOF framework will be illustrated by an agent-

based simulation model (ABSM). ABSM enables the reproduction of complex and

significant aspects of real phenomena by defining a small set of simple rules regulat-

ing how agents interact in social structures and how information is spread from agent

to agent. Agent-based models have been successfully applied in several fields such

4



as biology, sociology, economics, military and infrastructure – for a review of ABSM

applications see [32]. Since ABSMs are the most complicated simulation model types

([10, 15, 28]), there are several libraries and frameworks that speed up and facilitate

the tasks of developing and testing simulations have been developed. Some examples

are NetLogo [48], AnyLogic [7], MASON [30] and Repast [39, 42]. Note that the ap-

plicability of SOF the framework developed in this paper is not limited only to ABSM,

but rather it is considered as a representative complex simulation use case scenario.

The framework that will be described in Section 4 has been fully developed and

is available on a public repository [63]. The framework has been validated on sev-

eral private platforms, such as a dedicated cluster of workstations, as well as on public

platforms, including the Hortonworks Data Platform and Amazon Web Services Elas-

tic MapReduce (EMR) solution. Section 5 reports the results of several experiment

performed on the framework in order to assess its effectiveness and efficiency.

2. Background

2.1. Simulations

A Simulation is an attempt to reproduce the behaviour of a real-life system over

time. A system is understood as “a set of interrelated elements”, where each element

is connected to every other element, either directly or indirectly [2]. [28] defines a

simulation as “numerically exercising the model for the inputs in question to see how

they affect the output measures of performance”. Hence, the goal of simulation is to

experiment with a model of a system – observe, understand, infer and answer “what if”

questions about the system. Simulations can either be used to design a novel system or

for predicting the effect of changes to an existing system [11]. The main advantage of

simulation is that it can be used to explore certain behaviour without causing disruption

to the actual system.

2.2. Model Parameter Space Exploration and Simulation Optimization

The simulation modeler usually needs to execute a large number of simulations in

order to find the optimal configuration of input parameters (that is, the configuration

5



which allows them to imitate the desired system). This process is named Parameter

Space Exploration (PSE) or parameter sweep. Simulation results are evaluated using

an objective (evaluating) function which associates a score with each simulation per-

formed with a given set of parameters. As the number of the parameters of a model

increases, the parameter space to be explored expands exponentially and it becomes

unfeasible to handle the parameter space exploration process – which comprises pa-

rameters selection, simulations run and output evaluations – manually. Moreover, the

feedback obtained from the simulation of previous configurations can be used to select

future configurations to be simulated and evaluated. This circular process: a) choice of

initial configurations, b) execution, c) evaluation and d) selection of new candidates, is

referred to as the Simulation Optimization (SO) process [11, 47, 4, 34], which can be

formally presented as

min
x∈D

Γ(x),

where D ⊆ Θ is the feasible decision space, Θ is the entire parameters space, x ∈

D is a 1-dimensional vector having size δ representing a single configuration (δ is

the number of parameters of the considered simulation), and Γ(x) is a function being

estimated using simulation. The feasible decision space D can be either discrete or

continuous.

Generally, the problem has a single objective (i.e., Γ(x) ∈ R), although multi-

objective optimization problems (Γ(x) ∈ Rn) can also be considered. For the remain-

der of the paper single-objective optimization problems are considered; however, the

proposed methodology can easily be applied to multi-objective optimization in a sim-

ilar fashion, as described in [8]. The stochastic nature of simulation means that the

output of a simulation run is not deterministic and an expected value for it is calculated

as E[Φ(x, ε)], where Φ(x, ε) is the result of a stochastic simulation run on configura-

tion x and a random feed ε. Finally, Γ(x) = f(E[Φ(x, ε)])is calculated, where f(·) is

a function that evaluates the result of a simulation and calculates a single rank value.

For instance, in [11], the value of E[·] is estimated as a mean result of r ≥ 1 simulation

runs.

6



2.3. Distributed Computing in the Cloud

It should be noted that the kind of computation needed for an SO process resembles

an instance of the well known bag-of-tasks application [1], i.e., an application made of

a collection of independent tasks, to be scheduled on a master–worker platform. Nev-

ertheless, a mechanism for the distribution of the task and the collection of results is

required. Hence, we believe that SO processes can readily be deployed by exploiting

the MapReduce (MP) programming model. Moreover, an SO process potentially re-

quires several optimization loops in which a large amount of data is generated. One

aspect that is of particular significance is the amount of inputs and outputs generated

in the SO process that must be managed in a distributed storage environment. In the

following we briefly introduce the MapReduce paradigm and Apache Hadoop. A nat-

ural cost-effective choice for distributed computations is the cloud that we discuss in

the last subsection.

2.3.1. MapReduce Paradigm Overview.

MapReduce (MP) [13] is a programming model, proposed by Google, for process-

ing large data sets by exploiting parallel/distributed computations on a set of loosely

coupled machines. MP is based on two principal functions named Map and Reduce,

commonly used in functional programming languages such as Lisp. Each function

takes a collection of inputs pairs, expressed as a key/value combination, to compute

some transformation on it. The Map function produces a collection of intermediate

results while the Reduce function merges the intermediate results into a new collec-

tion of key/value pairs. Historically, MP has been used for indexing and calculating

PageRank, but since its creation the research community has adopted the programming

model for several purposes, in particular, when the amount of computation is large and

the whole computation can be easily decomposed into smaller independent tasks.

2.3.2. Apache Hadoop.

Apache Hadoop is an open-source alternative to the Google technologies: Google

File System [22] and MapReduce [13]. Hadoop is the top-level of many subprojects

comprising Hadoop Distributed File System (HDFS) and MapReduce. HDFS is a dis-

7



tributed filesystem that enables storage of a huge dataset across a distributed system.

HDFS is designed to accommodate the following requirements [44]: Large Data Sets,

Simple Coherency Model, Moving Computation is Cheaper than Moving Data (it at-

tempts to assign a computation to a node that maintains the data instead of move the

data around the nodes), Portability Across Heterogeneous Hardware and Software Plat-

forms and Hardware Failure. Hadoop defines a specification for the Map and Reduce

functions, the developers must provide the input/output specific and the implementa-

tions of Map and Reduce functions, often referred as mappers and reducers. Then the

framework manages all the functionality needed to run an MP application, such as job

execution, parallelization, and coordination. A typical MP program, as implemented

on Hadoop, starts on a single node that launches and manages the execution of the en-

tire distributed program on the distributed system. Subsequently, several components

operate at different stages:

− Splitter, handles the single data source providing input pairs (key/value) to map-

pers.

− Mapper, processes a key/value pair to generate a set of intermediate key/value

pairs.

− Combiner, also called “Local Reducer” (optional). It can help in cutting down the

amount of data exchanged between Mappers and Reducers.

− Partitioner, also called the “Shuffle Operation”. It ensures that records with the

same key will be assigned to the same Reducer.

− Reducer, gathers the results of the computation and concludes the job, giving out-

put as the new collection of key/value pairs, typically stored in the HDFS.

2.3.3. Cloud Computing.

Cloud computing is developing very quickly as a tool to orchestrate high volume

and high scale computational jobs. The cloud services offered by major companies

(Amazon AWS, Microsoft Azure, Google Cloud Platform) make it possible to pro-

vision several thousands of computing cores within just minutes. The pay-as-you go

model, combined with hourly billing for the provisioned computing power, is a per-

fect fit for any SO computational problem. The computational cluster can be scaled to

8



match the complexity of the SO problem and hence provide the answer within a short

time.

3. Related Work

Since the proposed framework involves different topics, we will present the related

works in three sections: Distributed computing frameworks, Parameter Space Explo-

ration on existing tools and Parameter Space Exploration libraries and frameworks.

3.1. Distributed Computing Frameworks

The evolution of computer science in the last two decades has been characterized

by the architectural shift that has brought the centralized computation paradigm toward

distributed architectures, where data processing and data storing are cooperatively per-

formed on several nodes, interconnected by a network.

Performing distributed computation is a significant challenge which involves job

decomposition, task assignment and machine synchronization. In the following, we

will briefly revise some distributed computing frameworks. See also [46] for a detailed

discussion. MPI (Message Passing Interface) [21] provides a language independent

standard allowing process communication. MPI provides a real implementation of the

message passing protocol in any distributed computing system. This approach, requires

a detailed knowledge of the considered systems while the robustness of the system

has to be guaranteed by dedicated procedures. Apache Spark [53] is an in-memory

distributed data analysis platform, primarily targeted at speeding up batch analysis jobs,

iterative machine learning jobs, interactive query and graph processing. Apache Storm

[54] is a free and open source distributed real-time computation system, focused on

stream processing. Hadoop [44] is a framework or ecosystem of components, intended

for carrying out batch analytics or a simple distributed task over a massive amount

of distributed data. We decided to adopt Hadoop because: (1) the SO process can

easily be translated into MapReduce model, which guarantees inherent scalability of

the framework; (2) it provides a robust environment to ensure that no data is lost as

a result of a bounded number of failures; (3) it provides a distributed filesystem that

enables storage of algorithms and input/output data.

9



3.2. Parameter Space Exploration on existing tools

Several ABM platforms enable modelers to automatically perform simulations in

order to explore a pre-defined parameter space. The parameter space is defined using

specific tools that enable selection of the parameters, their range and increment/decrement

values, or selection by a simple list of values. Further details about the PSE on existing

ABM toolkits are listed below:

• NetLogo [48] provides both GUI (BehaviorSpace [59]) and command line based

batch run capabilities. NetLogo has a Behavior Search tool [45], which enables

the use of a predefined set of model exploration heuristics (e.g. simulated an-

nealing, genetic algorithms) for running a PSE on NetLogo models.

• AnyLogic [7] is a proprietary multi-method simulation toolkit. It supports agent-

based, discrete event, and system dynamics simulation methodologies. The Any-

Logic engine Java API enables the user to perform “Experiments”, including op-

timization, calibration, and user-defined custom experiments. (It is worth men-

tioning that many of the advanced capabilities are available only for AnyLogic

Professional and University Researcher editions.)

• MASON simulation library [30] offers a set of capabilities for creating ABSMs.

Its modularity allows MASON models to be called either via the command line

or as libraries from Java-based programs for model exploration purposes.

• Repast Simphony, [38] is the Java based toolkit of the Repast Suite. Repast

Simphony has a batch functionality which divides a given parameter space into

discrete sets of parameter values and executes simulations over those discrete sets

in parallel. The simulations can be run on a local machine, on remote machines

accessible through secure shell (ssh), in the cloud (e.g., Amazon EC2) or on some

combination of the three. Using an InstanceRunner interface, Repast Simphony

models can be launched by other control applications such as a bash, Portable

Batch System (PBS), or Swift scripts.

None of the ABSM toolkits on their own offer the capabilities or scope, in terms

10



of flexible, simple integration of external model exploration tools and performance on

massively parallel computing resources, that the SOF framework aims to provide.

3.3. Parameter Space Exploration libraries and frameworks

In the following, the existing Parameter Space Exploration (PSE) or, in general,

simulation optimization (SO) libraries and frameworks are briefly discussed. While

most can be used as standalone tools, some of these can be used as libraries to introduce

PSE/SO modules within a given ABSM framework. Most of the following software

falls under the metaheuristics umbrella. For an overview of metaheuristics see [31],

for reviews of more metaheuristics frameworks see [41] and for parallel metaheuristics

frameworks see [3].

• OptQuest [61] is proprietary simulation optimization engine developed by Opt-

Tek Systems for metaheuristic optimization. OptQuest is also directly integrated

into a number of ABSM and simulation tools (e.g., AnyLogic).

• Industrial Strength COMPASS (ISC) [51] is a library for discrete event simula-

tion which combines metaheuristics with stochastic search algorithms.

• ECJ [56] is an open source (AFL v3) research system for evolutionary com-

putation. ECJ can be used for developing evolutionary algorithms and general

integration of simulation code on massively parallel systems. ECJ can be inte-

grated with Java based simulation code (e.g., written with MASON or Repast

Simphony) and is designed to be highly flexible: all structures in the system are

arranged to be easily modifiable.

• ParadisEO [62], published under the CeCILL license, and MALLBA [58], pub-

lished under a non-commercial license, are libraries of frameworks for combina-

torial optimization that can deal with parallel metaheuristics methods.

• Dakota [55] combines a number of optimization, design of experiment and un-

certainty quantification libraries developed by Sandia National Laboratories (e.g.,

DDACE, HOPSPACK), in addition to other external libraries. Dakota can be

used on machines from desktops to massively parallel computers.

11



Type Multi-lang. Zero-conf. Easy to use Program. Tutorial

EMEWS SO X — — X X2

OpenMOLE PSE X — X X X3

MEME PSE — — X — na

Table 2: Frameworks’ comparison table.

Closely related to this work are Extreme-scale Model Exploration With Swift/T

(EMEWS) [40], Open MOdeL Experiment (OpenMOLE) [43] and Model Exploration

ModulE (MEME) [23]. EMEWS [40] uses the general-purpose parallel scripting lan-

guage Swift [49] to generate highly concurrent simulation workflows. These workflows

enable the integration of external PSE algorithms to coordinate the running and evalua-

tion of large numbers of simulations, in addition to making the SO process easy to im-

plement. OpenMOLE [43] provides an execution platform that distributes simulation

experiments on high performance computing environments using a domain–specific

language (DSL) that is an extension of the Scala programming language. MEME [23]

is based on virtual hosts specifically prepared for simulation experiments, deployed on

EC2 (the Amazon Elastic Cloud).

Table 2 summarizes the characteristics of the competitor frameworks. The table

shows that only EMEWS enable the user to perform several loops in order to run a Sim-

ulation Optimization algorithm. On the other hand, EMEWS uses Swift, which needs

a dedicated installation and configuration. Unlike such systems, our tool is specifically

designed for the optimization of simulations using an evolutionary computing strategy.

Furthermore, we have designed SOF to be deployed on any Hadoop installation; only

SSH access to the hosting platform is required. Moreover, our tool provides an easy-

to-use environment devoted to domain experts who are seldom computer scientists and

have limited knowledge of managing a modern parallel infrastructure or of developing

parallel code.

2EMEWS tutorials are available at http://www.mcs.anl.gov/˜emews/tutorial/
3OpenMOLE tutorials are available at https://www.openmole.org/Tutorials.html

12

http://www.mcs.anl.gov/~emews/tutorial/
https://www.openmole.org/Tutorials.html


4. Simulation exploration and Optimization Framework for the cloud (SOF)

We present the Simulation exploration and Optimization Framework for the cloud

(SOF), a framework that allows us to run and collect results for two kinds of optimiza-

tion scenarios: parameter space exploration (PSE) and simulation optimization (SO).

Figure 1: SOF Work Cycle.

Figure 1 depicts the SOF work cycle, which comprises three phases: selection,

parallel simulation and evaluation. SOF provides a set of functionality that allows

developers to construct their own simulation optimization strategy. We designed the

framework based on the following objectives:

− zero configuration: the framework neither requires the installation nor the config-

uration of any additional software, only Hadoop and SSH access to the hosting

platform are required;

− ease of use: the tool is transparent to the user, since the user is totally unaware

that the system operates on a distributed environment;

− programmability: both the simulation implementation and the simulation opti-

mization functionalities can be implemented using different simulation toolkits

(MASON, NetLogo, etc.) and/or by exploiting different programming languages,

provided that the hosting platform supports them;

13



− efficiency: by executing several independent tasks (simulations) concurrently, the

framework adequately exploits the resources available on the hosting platforms.

4.1. Scenarios

In the following we will presents two algorithms – inspired by evolutionary al-

gorithms [14] – which define the simulation optimization scenarios. The following

symbols are used in the algorithms description:

− Θ, parameters space;

− D ⊆ Θ, feasible decision space;

− X ⊆ D is a set of configurations from the feasible decision space D, X =

{x1, x2, . . . : xi ∈ D};

− r denotes the number of simulation run;

− Φ(x, ε) denotes the results of a stochastic simulation run on configuration x and a

random feed ε;

− E[· · ·] denotes the expected results of a set of stochastic simulation run;

− Y is the set of expected simulation results corresponding to the configuration in X.

− t is the current optimization loop;

− � contains the ranking values associated with the configurations in X;

PSE Algorithm (PSE). The PSE scenario describes a generic process of simulation

optimization where a fixed set of configuration X is executed and all the corresponding

results are collected. The algorithm 4.1 performs this task and also handles stochastic

simulations, which require several execution runs (with a different random seed) and

the estimate of the expected values. The algorithm 4.1 performs r simulations for each

14



point xi ∈ X and collects the simulation results in a set Y.

Algorithm 4.1: PSE()

INPUT: X,Φ(·, ·)

OUTPUT: Y
parallel



for each xi ∈ X

do


for j ← 1 to r

do Zj ← Φ(xi, εj)

Yi ← E[Z1, Z2, . . . , Zr]

Y = {Y1, Y2, . . .}

SO Algorithm (SO). The simulation optimization is a general case of PSE and cor-

responds to the execution of several loops of the PSE algorithm. For each optimiza-

tion loop t, the set of configurations to be executed and evaluated, Xt, depends on the

results obtained from the previous loops. Each optimization loop uses the function

f Selection(·, ·, ·) to generate a novel set of configurations. At the end of each loop,

the function f Evaluate(·) computes the ranking values associated with each config-

uration in Xt. The SO algorithm ends when the selection function returns an empty set.

15



Algorithm 4.2: SO()

INPUT: D,Φ(·, ·), f Selection(·, ·, ·), f Evaluate(·)

OUTPUT: {Y1,Y2, . . .}, {�1,�1, . . .}

t = 1

while ((Xt=f Selection(D, {X1, ...,Xt−1}, {�1, ...,�t−1})! =∅)

parallel



for each xi ∈ Xt

do


for j ← 1 to r

do Zj ← Φ(xi, εj)

Yi ← E[Z1, Z2, . . . , Zr]

Yt = {Y1, Y2, . . .}

for each Yi ∈ Yt

do Γi ← f Evaluate(Yi)

�t = {Γ1,Γ2, . . .}

t = t+ 1

A contributor who implements an SO package needs to provide a functional mech-

anism for the definition of the feasible decision space D and the implementation of

both the f Selection and f Evaluate functions.

Then the modeler wishing to use an implementation of SO, developed for SOF,

must provide:

− the definition of D according to the mechanism provided by the SO package;

− a stochastic simulation model Φ(x, ε);

− all the parameters required by the f Selection(. . .) and f Evaluate(. . .) func-

tions.

4.2. SOF Work Cycle

The SOF architecture has been designed according to the Work Cycle shown in

Figure 1 and the algorithms shown in section 4.1. The framework is divided into three

functional blocks: the User Front-end (Figure 1, left); the SOF core, which acts as a

controller (Figure 1, middle); the computational resources (Figure 1, right).

16



The User front-end is implemented as a web or a standalone application through

which the user provides the inputs to the system: Simulation Implementation, Selec-

tion Function, Evaluation Function. In order to ensure flexibility, we also include in

the request to the system an XML schema for the description of Domain (Parameters

Domain), Input (Simulation Input), Output (Simulation Output) and Rating (Simulation

Rating). The application level of SOF provides a tool to easily generate the XML files

needed. The execution of the system is described by the loop shown in Figure 1. We

summarize it in the following key phases:

1. User Request. The user submits the Simulation Implementation, the Selection

Function and the Evaluation Function written using any language supported by

the cloud environment. Then s/he defines the Parameters Domain, the Simulation

Input, Output and Rating format in XML using the SOF XML schema.

2. Selection. The system processes the request using the Selection Function and

generates a set of parameters according to the XML schema defined by the user.

3. Spread. The generated XML inputs are dynamically assigned to the computa-

tional resources. We note that our system delegates to the distributed computing

environment (Hadoop in our case ) both scheduling and load balancing of tasks

(simulations).

4. Collect. When all the simulation runs complete, the computation state is syn-

chronized and the outputs are collected at the SOF core system according to the

XML schema defined by the user, through a set of messages exchanged between

the computational resources and the core system.

5. Evaluation Phase. The system applies the evaluation function to the collected

outputs and generates the rating (again in the desired XML format).

After the evaluation phase, the system returns to the selection phase, which, also

using the evaluation results obtained during the preceding steps, generates a new set

of XML inputs. Obviously, the selection function also includes a stopping rule (for

instance an empty set of parameters) which allows termination of the SO process.

17



Figure 2: SOF - Hadoop Architecture

During the spread phases, the framework executes a large number of simulations

in order to achieve the results of a PSE or an SO scenario. The challenge is “How to

elaborate a large number of inputs, on a distributed system, in order to ensure fault tol-

erance and good performance, even for different SO processes running concurrently?”.

We believe that a good solution to this question is to leverage the Apache Hadoop

framework. Apache Hadoop, briefly described in Section 2.3, provides some tools for

managing MapReduce applications and the HDFS File System. It also provides a set of

Java libraries for writing MapReduce applications. According to the language used by

the Simulation Implementation, it will be possible to run the MapReduce application

in several ways. For instance, when the implementation is written in Java (eg, MA-

SON) is it possible to write a MapReduce application that initializes the simulation at

code level by using mechanisms like Java Reflection. Other frameworks, like Netlogo,

provide a Java library for executing simulations from a Java application. Eventually, in

the case of generic implementations, the setting of simulation parameters is performed

using the Java Runtime to set the input as command line arguments of the executable.

4.3. SOF Architecture

As shown in Figure 2, the system workflow presents two main entities: the SOF

client and the remote host (on which Apache Hadoop is installed). The SOF architec-

ture is divided into three main software components:

18



− the SOF front-end (client side), which is the SOF application for running and man-

aging the simulation on the Hadoop infrastructure;

− the Hadoop layer (remote side), which comprises software and libraries provided

by the Hadoop infrastructure;

− the SOF core composed of five functional blocks, which are used on both the client

and the remote side.

SOF Core. The main objective of the SOF core is to ensure flexibility in terms of

the ability to use any Hadoop installation on-the-fly without requiring a specific con-

figuration of Hadoop infrastructure or a particular software installation on the remote

host. The SOF core uses the Secure SHell (SSH) protocol for the communication be-

tween the client and remote host so as to ensure the highest level of flexibility and a

secure consolidated communication mechanism. Further details about what the SOF

core comprises are given below:

− Parameters Manager: defines the XML schema of the Parameters Domain Defi-

nition, Simulation Input Definition, Simulation Output Definition and Simulation

Rating Definition. It also provides routines for creating, managing and verifying

the XML files.

− File System: defines the structure of the SOF Environment, which comprises the

directories hierarchy on the HDFS, Remote and Client hosts. This block exposes

routines to obtain the paths of a simulation, a simulation loop or for temporary

files and folders on both the remote and client hosts.

− HDFS Manager: is responsible for monitoring and creating files on the HDFS.

− MapReduce (SOF process) and Asynchronous Executor (SOF-RUNNER): allow

execution of the SO algorithm on a Hadoop environment.

− Simulation Manager: is the fundamental block in the SOF architecture and pro-

vides the routines for executing and monitoring simulations. This block uses SSH

to invoke an asynchronous execution of the SOF-RUNNER. When an SO process

is started, the remote process ID is stored in the XML simulation descriptor file

on the HDFS. In this way it is always possible to monitor the SO process on the

remote machine and it is also possible to stop/restart or abort the SO process.

19



SOF–Hadoop interaction. SOF has been designed under the assumption that the

remote host is a Unix machine. Therefore, the interactions between the client, remote

host and Hadoop system are made using SSH and Unix commands. An important

contribution of this work is that we present a novel approach to managing SO processes

by embedding them in the MapReduce paradigm.

For SOF use case we use ABSM, hence we consider three types of simulation

frameworks: MASON, NetLogo and simulations implemented without a programmatic

framework (generic). The first two are the most relevant ABSM frameworks in the

ABSM community; the latter refers to any application executable on the computation

host.

In the following we describe in detail the interaction between the SOF core and

Hadoop. The main events in the system are:

− User Login: After the user login on the Remote machine, the system automati-

cally builds a new SOF Environment on the Remote machine and the HDFS and

copies two programs onto the remote machine: SOF and SOF-RUNNER. SOF

is the MapReduce application specialized for execution, on Hadoop, of MASON,

NetLogo or a generic simulation framework. SOF-RUNNER is the SOF process

manager, responsible for executing the PSE or SO algorithm exploiting the SOF

MapReduce application. The Simulation Environment allows the storage of all re-

quest and output files for the simulation process. The structure of the Simulation

environment is defined by the SOF File System;

− Simulation Creation: The user prepares the simulation environment exploiting

the features provided by the SOF frontend. Subsequently, all simulation files —

Simulation Implementation, Selection Function, Evaluation Function, Parameters

Domain Definition, Simulation Input Definition, Simulation Output Definition and

Simulation Rating Definition are copied onto the HDFS using the structure defined

by the SOF File System;

− Simulation Submission: The SOF Core provides a routine to run a new process

that launches the SOF-RUNNER via SSH on a particular simulation. The SOF-

RUNNER executes the PSE or SO algorithm, exploiting the Selection Function

and the SOF MapReduce application on the Hadoop infrastructure, for parallel

20



execution of the Simulation Implementation and the Evaluation Phase.

Due to the asynchronous nature of the system and decoupling from the Hadoop

infrastructure, all states of the processes are visible only by reading the state of the SOF

Environment, which comprises the Simulation Environment of all the SO processes in

the system. On the HDFS, the SOF Environment contains the state of the simulation

and the state of the optimization loop for any SO process. On the Remote machine

the SOF Environment stores the state of the SOF-RUNNER process: in this way it

is also possible to stop/restart or abort any SO process. SOF has been designed for

the concurrent optimization of different simulations performed by one or many users.

In order to avoid the concurrency issues, SOF separates Simulation Environments and

assigns unique identifiers for each SO process.

Figure 3: Parameter Space embedding in MP and Simulation Optimization embedding in MP.

MapReduce paradigm Embedding. The computation schema of an SO process, as

mentioned above, resembles the well known paradigm MapReduce. In particular, we

21



consider the parameter space Θ as a dataset of Key/Value, where the Keys are the

input IDs and the Values are a feasible set of values for the simulation parameters.

Two main transformations of the inputs are considered: transform the input x ∈ Θ

into the simulation output Φ(x) and evaluate the simulation output f(Φ(x)). The first

transformation requires the execution of the simulation on the desired set of parame-

ters, while the second transformation evaluates the output using an evaluating function

(f Evaluate(·)) according to the SO adopted scenario (see Section 4.1).

The SOF-RUNNER, depicted in Fig. 3, performs the following steps:

1. It executes the selection function using the Java Runtime. The selection function

takes three arguments: the path to the input sets already executed, the path to the

rating corresponding to the input sets executed, and the path where the function

creates the novel input set.

2. When the selection function ends, the SOF-RUNNER transforms the input set

from XML format to a standard format for the Hadoop MapReduce application

and copies it on the HDFS (this is not strictly necessary because the latest version

of Hadoop also supports XML input, yet to ensure compatibility with a larger

number of Hadoop clusters we favor the use of a standard format).

3. It launches the SOF MapReduce application. The MapReduce application (SOF)

consists of two main routines, map and reduce, as described in section 2.3:

(a) the map routine corresponds to executing the simulation and generating an

output XML file, which represents the final state of the executed simula-

tion;

(b) the reduce routine executes the evaluation function, using the Java Run-

time. The evaluation function takes two arguments: the path of the output

XML files and the path where the function creates the rating XML file.

4. When the evaluation function ends the reducer saves the rating XML file on the

HDFS.

22



The mapper routine should be specialized according to the specific simulation frame-

work used. For MASON and NetLogo, the system can automatically read the final

state of the simulation and generate the output XML. In order to ensure this kind of

functionality, the system requires the definition of the XML format for the input and

the output files. Such files do not contain any values for the parameters but are needed

just to inform the system about the names of the parameters to be initialized at the

beginning of the simulation and to be returned at the end. In the case of a generic

simulation framework, the modeler of the simulation is responsible for generating the

output files using a specific XML format in a predefined output folder.

It is worth mentioning that although the system is designed for Hadoop, by chang-

ing the SOF application it is still possible to use the system on other environments for

distributed computing [1].

5. Evaluation

In the following section, we describe the benchmarks used to evaluate SOF scalabil-

ity on a Hadoop cluster machine and present a genuine use case on a cloud computing

provider: Amazon EMR.

5.1. Scalability evaluation on a Hadoop cluster machine

We have tested a simple SO process using the NetLogo Fire model [50]. This

model simulates the spread of a fire through a forest. It shows that the fire’s chance

of reaching a particular point in a forest (e.g. right border) depends critically on the

density of trees. This is an example of a common feature of complex systems, the

presence of a non-linear threshold or critical parameter. In particular, at 59% density,

the fire has a 50/50 chance of reaching the right edge. The Fire model has also been

used to validate the OpenMOLE platform [43].

Since we are evaluating the performance of the framework, the SO process is based

on an empty f Evaluate(·) function, while the f Selection(·, ·, ·) function generates

a set of n configurations for the first 10 loops and an empty set at the end of the 10th

loop, so that the SO process terminates. Each configuration consists of the density

23



parameter and a seed for the random number generator. All the simulations perform

1000 simulation steps.

The Simulation Environment. Simulations have been performed on a Hadoop cluster

of four nodes, each equipped as follows:

• Hardware:

– CPUs: 2 x Intel(R) Xeon(R) CPU E5-2680 @ 2.70GHz (#core 16, #threads

32)

– RAM: 256 GB

– Network: adapters Intel Corporation I350 Gigabit

• Software:

– Ubuntu 12.04.4 LTS (GNU/Linux 3.11.0-15-generic x86 64)

– Java JDK 1.6.25

– Apache Hadoop 2.4.0

Experimental results. We executed 12 test setting experiments, varying both the num-

ber of cluster nodes (p ∈ {1, 2, 4}) and the number of configurations generated per loop

(n ∈ {2000, 4000, 8000, 16000, 32000}). Such values have been selected in order to

analyze both the strong and weak scalability of the framework. Table 3 depicts the

completion time in seconds required for the execution of each test. Results show that

the system scales fairly well, especially when the number of configurations is large.

This result was unsurprising given that the tasks are all independent and do not gener-

ate any communication overhead.

Strong and Weak Scalability. In order to better evaluate the scalability efficiency of the

framework, we computed both the weak and strong scaling efficiency.

The strong scaling efficiency measures the capability of the framework to complete

a set of simulations in a reasonable amount of time. In order to compute the strong

scalability efficiency, the problem size stays fixed but the number of processing ele-

ments are increased. The strong scalability efficiency (as a percentage of the optimum)

24



p / n 2000 4000 8000 16000 32000

1 1817 3109 6615 12516 25656

2 1330 2517 3620 6562 13420

4 1058 1440 2471 4093 7854

Table 3: Completion time (s) with different test settings where n is the number of simulations performed per

loop and p is the number of cluster nodes.

is given by
t1,n

p× tp,n
× 100%

where ti,n denotes the completion time to perform the overall set of n simulations

using i cluster nodes. In our cases the strong scaling efficiency ranges from 42.93%

(p = 4, n = 2000) and 95.59% (p = 2, n = 32000).

The weak scaling efficiency measures the capability of the framework to solve

larger problems as the number of processing elements increases. In order to compute

the strong scalability efficiency, the problem size assigned to each processing element

stays constant and additional elements are used to solve a larger problem. The weak

scalability efficiency (as a percentage of the optimum) is given by

t1,n
tp,n×p

× 100%

and in our cases is equal to 100% (for p = 2 and n = 8000) and 73.53% (for p = 4

and n = 2000). Finally, on the larger problem (n = 32000) the speedup measured as

Sp =
t1,n
tp,n

is S2 = 1.91 and S4 = 3.27.

5.2. SOF genuine use case

Optimal Computing Budget Allocation. For the real case evaluation we have chosen

a Ranking and Selection SO problem class. We show how the proposed SOF frame-

work can be integrated with the classic Optimal Computing Budget Allocation (OCBA)

mechanism [11]. Since in our solution each worker takes a single additional simulation

25



to evaluate and the standard OCBA is not numerically stable for computational budgets

equal to 1, we used the purified OCBA approach proposed in [27]. Please note that the

SOF framework provides a general abstract mechanism for running SO computations

- hence the OCBA model is here just a proof-of-concept example.

OCBA allocates every solution a certain number of replications in the initial loop

to obtain a general idea about these solutions. Then, over successive loops the best

candidate solutions are analyzed with grater detail (increasing the number of replica-

tions). The classic OCBA mechanism is unsuitable when the solution space is large,

continuous, or even unbounded. To tackle this problem several OCBA integrations

with search algorithms have been developed (see [29] and references quoted therein).

In the OCBA mechanism n points are considered. In the first step of the procedure, for

each point k, k ≥ 2, simulations are run. Next, for each design point i, i = 1 . . . n, the

mean value µi and the standard deviation σi, are calculated. Finally, for a given com-

putational budget T , µi and σi, new computations allocations mi are calculated where

m1 + . . . + mn = T . Further details can be found in [24] and implementation details

for small computational budget increments can be found in [27]. Full implementation

source code is available in the SOF GitHub repository [63].

Simulation model. We have tested a simple SO process using the Wealth Distribution

model [60].

The model simulates the “rich get richer” effect in the distribution of wealth. It

is adapted from Epstein & Axtell’s “Sugarscape” model [17] but uses grain instead

of sugar. The field is a bi-dimensional space of 50 × 50 patches. Each patch has an

amount of grain and a grain capacity (the amount of grain it can grow). People collect

grain from the patches, and eat the grain to survive. How much grain each person

accumulates constitutes his or her wealth. The model begins with a roughly equal

wealth distribution. The people then wander around the landscape gathering as much

grain as they can. Each person attempts to move in the direction where the most grain

lies.

The model is characterized by several parameters. Among them, in our experiment

we look for an optimization of the following parameters:

26



• PERCENT-BEST-LAND, which determines the initial density of patches that

are seeded with the maximum amount of grain. It ranges from 5 to 25%;

• NUM-GRAIN-GROWN, which determines how much grain is grown after a

certain number of ticks. It ranges from 1 to 10;

• LIFE-EXPECTANCY-MAX is the longest number of ticks that a person can

possibly live. It ranges from 1 to 100;

We assume that the modeler aims at maximizing the inequality of wealth. We measured

the inequality of the system using the Gini-Index. The Gini-Index is a measure of

statistical dispersion intended to represent the income or wealth distribution, and is the

most commonly used measure of inequality. The Gini-Index ranges from 0 to 1. A

Gini-Index of 0 expresses perfect equality, where all values are the same. A Gini-Index

of 1 expresses maximal inequality among values (e.g., where only one person has all

the income or consumption, and all others have none).

The Simulation Environment. Simulations have been performed on Amazon Elastic

MapReduce (Amazon EMR) which exploits Amazon Web Services (AWS).

Amazon Web Services (AWS) is a scalable and highly reliable cloud computing

infrastructure that offers on demand cloud computing infrastructure. AWS provides

different services on the cloud. In this work, we are interested in the web services

that enable either the modeler or the developer to run their simulation on the cloud.

The Amazon Elastic Compute Cloud (Amazon EC2) provides resizable computing ca-

pacity in the cloud. In terms of abstraction layers, Amazon EC2 is an instance of the

Infrastructure as a Service (IaaS) model, where the Amazon infrastructure is seen as a

complete virtual environment which allows execution of different instances of virtual

machines.

Amazon Elastic MapReduce (Amazon EMR) [52] is a cluster of virtual servers

running on the Amazon cloud. It is managed using the open-source framework Apache

Hadoop. Amazon EMR enables Hadoop applications to work seamlessly with AWS.

The EMR architecture assumes that a Hadoop clusters running on Amazon EMR uses

EC2 instances as virtual Linux servers. One of these virtual servers acts as the master

27



node of the Hadoop cluster and the others as slave nodes. AWS recommends to use

the Amazon S3 storage service in place of HDFS service for persistent data storage

in Hadoop cluster — this approach enables a significant cost reduction. EMR cluster

performance can be continuously monitored with the CloudWatch service. In turn,

the CloudWatch service can be integrated with autoscaling services — EMR Hadoop

cluster slave nodes can be automatically added on-the-fly once the cluster performance

is insufficient.

Simulations have been performed using p ∈ {2, 4, 8, 16, 32, 64, 128} slave nodes

plus 1 master node, using different Amazon EC2 instance types. In particular, we chose

all the instance types from the general purpose instance class: {m1.medium,m1.large,

m1.xlarge,m3.xlarge,m3.2xlarge} plus one instance type for each of the remaining

instance classes: c4.2xlarge,which belong to the class Compute optimized,m4.2xlarge,

which belong to the class Memory optimized and r4.2xlarge, which belong the class

Storage optimized. Overall, I = {m1.medium,m1.large,m1.xlarge,m3.xlarge,

m3.2xlarge, c4.2xlarge,m4.2xlarge, r4.2xlarge}.

The features of each instance type are reported in Table 4:

Name Memory Processor vCPUs Instance Storage Network Speed Linux on Demand cost

m1.medium 3.75 GB Xeon E5-2650 1 vCPUs 410 GB HDD Moderate $ 0.087 hourly

m1.large 7.5 GB Xeon E5-2650 2 vCPUs 840 GB (2× 420 GB HDD) Moderate $ 0.175 hourly

m1.xlarge 15.0 GB Xeon E5-2650 4 vCPUs 1680 GB (4× 420 GB HDD) High $ 0.350 hourly

m3.xlarge 15.0 GB Xeon E5-2670 v2 4 vCPUs 80 GB (2× 40 GB SSD) High $ 0.266 hourly

m3.2xlarge 30.0 GB Xeon E5-2670 v2 8 vCPUs 160 GB (2× 80 GB SSD) High $ 0.532 hourly

c4.2xlarge 15.0 GB Xeon E5-2666 v3 8 vCPUs EBS only High $ 0.398 hourly

m4.2xlarge 32.0 GB Xeon E5-2686 v4 8 vCPUs EBS only High $ 0.431 hourly

r4.2xlarge 61.0 GB Xeon E5-2686 v4 8 vCPUs EBS only Up to 10 Gigabit $ 0.532 hourly

Table 4: Amazon EC2 general purpose instances comparison.

Experimental results. We executed 56 experiments evaluating 8 Amazon EC2 in-

stance types with 2, 4, 8, 16, 32, 64, 128 slave nodes — see Table 5.

All the experiments were conducted on a population of 1000 agents. The SO pro-

cess is composed of 10 loops, evaluating at most 200 stochastic simulation configura-

tions per loop with at most 10 simulation replicas (varying the random seed). Overall,

at most 2000 simulation runs are executed for each loop.

28



For each experiment we collected the timing and the maximum obtained Gini-

Index. All the experiments were able to find an optimal (or nearly optimal) config-

uration, which in our case corresponds to a Gini-Index equal to 0.506. In terms of

speed, the following table gives the timing recorded during the first loop (which in

each experiment comprises 2000 simulation runs).

The table also shows the per loop cost of each configuration setting. Results show

that the costs increase gradually (almost constant up to 16 slave nodes) for low pow-

erful instances while they tend to increase with the number of instances on powerful

instances.

Comparing the different instances, it is worth noting that the best choice seems to

be the c4.2xlarge instance type which provides the best performance both in terms of

efficiency (only 92 s to perform the first loop, using 64 slave instances) and in terms of

cost (only $ 0.15 to perform the first loop, using 4 slave instances).

Figure 4 depicts the trend of both the price and the time required by experiments on

the c4.2xlarge instance type, according to the number of vCPUs used. Specifically, the

X axis represents the number of vCPUs used, the price trend is shown by histograms

whose scale is presented on the left hand side of the figure, and finally the time required

by experiments shown by the curve whose scale is presented on the right hand side of

the figure.

Number of Slave instances

2 4 8 16 32 64 128

Name vCPUs time (s) cost ($) time (s) cost ($) time (s) cost ($) time (s) cost ($) time (s) cost ($) time (s) cost ($) time (s) cost ($)

m1.medium 1 3572 0.26 2070 0.25 1099 0.24 678 0.28 553 0.44 420 0.66 377 1.18

m1.large 2 2043 0.30 1193 0.29 728 0.32 494 0.41 345 0.55 306 0.96 246 1.54

m1.xlarge 4 1288 0.38 806 0.39 550 0.48 520 0.86 444 1.42 465 2.94 427 5.35

m3.xlarge 4 1100 0.24 591 0.22 400 0.27 305 0.38 207 0.50 173 0.83 121 1.15

m3.2xlarge 8 626 0.28 383 0.28 294 0.39 315 0.79 303 1.48 270 2.59 301 5.74

c4.2xlarge 8 628 0.21 278 0.15 208 0.21 159 0.30 103 0.37 92 1.31 94 1.34

m4.2xlarge 8 554 0.18 356 0.20 261 0.26 275 0.52 277 1.01 283 2.04 292 4.18

r4.2xlarge 8 591 0.26 319 0.24 217 0.29 172 0.43 113 0.55 99 0.95 113 2.15

Table 5: Time in seconds and cost ($) required by the first loop of the SO process evaluating 2000 simulation

configurations.

29



Figure 4: Price vs Time trends on the c4.2xlarge instance using up to 1024 vCPUs.

6. Conclusion

This paper presents the design and implementation of SOF, a framework which

exploits the computing power of a cloud computational environment in order to ac-

complish effective and efficient simulation optimization strategies. The framework has

been specifically designed for ABM simulation, in particular for the MASON and Net-

Logo simulation environments, but supports any simulation executable, provided that

the hosting platform supports them. Two simulation scenarios, Parameter Space Ex-

ploration and Simulation Optimization, have been deployed. We have showed how to

embed these kinds of scenarios in a distributed computation using a consolidated in-

frastructure for distributed computing. SOF offers the following interesting features:

(i) “zero configuration”: SOF does not require any additional installation on the re-

mote host – only Apache Hadoop and SSH access are needed to set-up and run the

system; (ii) ease of use: the user is totally unaware that the system operates on a dis-

tributed environment, so SOF does not require specific skills on the part of users; (iii)

programmability: SOF allows the user to run different simulation toolkits and/or ex-

ploit diverse programming languages. Preliminary evaluations show that the system is

30



scalable, especially when the SO process involves a large number of concurrent inde-

pendent simulations. We have validated the proposed framework with an agent-based

simulation model, but the proposed approach can be use to run and find optimal pa-

rameters for simulation models of any type. The tool has been fully developed and is

available on a public GitHub repository [63] under the Apache public license. It has

been tested and validated on top of several private platforms, such as a dedicated cluster

of workstations, as well as public platforms, including the Hortonworks Data Platform

[57] and Amazon Web Services EMR solution. SOF also includes both a command

line interface and a GUI client, which can be used either by a contributor – designing

an SO package – or by a modeler – to set-up and run an SO process.

Acknowledgment

We are grateful to the reviewers for their careful reading of the paper and for their

helpful comments.

This work was supported by the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 645860.

[1] M. Adler, Y. Gong, A. L. Rosenberg, Optimal sharing of bags of tasks in het-

erogeneous clusters. In Proceedings of the fifteenth annual ACM symposium on

Parallel algorithms and architectures, 2003.

[2] R. Ackoff, Towards a System of Systems Concepts, Institute of Management Sci-

ences, 17(11), pp. 661–671, 1971.

[3] E. Alba, G. Luque and S. Nesmachnow, Parallel metaheuristics: recent advances

and new trends. International Transactions in Operational Research, 2013.

[4] A. Ammeri, W. Hachicha, H. Chabchoub, F. Masmoudi, A comprehensive lit-

erature review of mono-objective simulation optimization methods.Advances in

Production Engineering & Management 6(4), 2011.

[5] B. Ankenman, B. L. Nelson, J. Staum. Stochastic kriging for simulation meta-

modeling. Operations research, 58(2), pp. 371-382, 2010.

31



[6] R. R. Barton, Simulation Metamodels. In Proceedings of Winter Simulation Con-

ference, 1998.

[7] A. Borshchev, Y. Karpov, V. Kharitonov, Distributed simulation of hybrid systems

with anylogic and {HLA}, Future Generation Computer Systems 18 (6), pp. 829–

839, 2002.

[8] J. P. Brans and B. Mareschal, Multiple Criteria Decision Analysis: State of the

Art Surveys. International Series in Operations Research & Management Science,

Salvatore Greco(Ed.), Springer Science, 2005.

[9] J. Branke, S. E. Chick, C. Schmidt. Selecting a selection procedure. Management

Science, 53(12), pp. 1916-1932, 2007.

[10] B. Calvez, G. Hutzler, Parameter Space Exploration of Agent-Based Models. In

Proceedings of Knowledge-Based Intelligent Information and Engineering Sys-

tems, pp. 633–639, 2005.

[11] C. Chen, L. Lee, Stochastic Simulation Optimization: An Optimal Computing

Budget Allocation, World Scientific Publishing Co., Inc., 2010.

[12] S. E. Chick, K. Inoue. New two-stage and sequential procedures for selecting the

best simulated system. Operations Research, 49(5), pp. 732-743, 2001

[13] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clus-

ters. Communications of the ACM 51(1), pp. 107–113, 2008.

[14] L. N. De Castro, Fundamentals of natural computing: basic concepts, algo-

rithms, and applications. Computer and Information Science Series, Chapman

& Hall/CRC, 2006.

[15] A. Deckert, R. Klein, Simulation-based optimization of an agent-based simula-

tion. NETNOMICS: Economic Research and Electronic Networking, 15(1), pp.

33–56, 2014

32



[16] T. Desautels, A. Krause, J. W. Burdick. Parallelizing exploration-exploitation

tradeoffs in gaussian process bandit optimization. The Journal of Machine Learn-

ing Research, 15(1), pp. 3873-3923, 2014.

[17] J. M. Epstein, R. Axtell, Growing Artificial Societies: Social Science from the

Bottom Up, The Brookings Institution, Washington, DC, USA, 1996.

[18] M. C. Fu, F. W. Glover, J. April, Simulation optimization: a review, new develop-

ments, and applications. In Proceedings of Winter Simulation Conference, 2005.

[19] M. C. Fu, Handbook of simulation optimization, 216, Springer, 2015.

[20] P. I. Frazier, W. B. Powell, S. Dayanik. A knowledge-gradient policy for sequen-

tial information collection. SIAM Journal on Control and Optimization, 47(5),

pp. 2410-2439, 2008.

[21] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun,J. Dongarra, J. M. Squyres, V.

Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D.J. Daniel, R.

L. Graham and T. S. Woodall, Open MPI: Goals, Concept, and Design of a

Next Generation MPI Implementation. In Proceedings, 11th European PVM/MPI

Users’ Group Meeting, pp.97–104, 2004.

[22] S. Ghemawat, H. Gobioff, S. Leung, The Google File System. ACM SIGOPS

operating systems review, 37(5), 2003.

[23] L. Gulyás, A. Szabó, R. Legéndi, T. Máhr, R. Bocsi, G. Kampis, Tools for Large

Scale (Distributed) Agent-Based Computational Experiments. In Proceedings of

Computational Social Science Society of the Americas CSSSA, 2011.

[24] D. He, S. E. Chick, C.-H. Chen, Opportunity Cost and OCBA Selection Proce-

dures in Ordinal Optimization for a Fixed Number of Alternative Systems. IEEE

Transactions on Systems, Man, and Cybernetics, Part C: Applications and Re-

views, 37(5), pp. 951–961, 2007.

[25] D. He, L. H. Lee, C. Chen, M. Fu, S. Wasserkrug, Simulation Optimization Using

the Cross-entropy Method with Optimal Computing Budget Allocation. In ACM

Transactions on Modeling and Computer Simulation (TOMACS) 20(1), 2010.

33



[26] J. Janusevskis, R. Le Riche, D. Ginsbourger, R. Girdziusas. Expected improve-

ments for the asynchronous parallel global optimization of expensive functions.

Potentials and challenges, in: Learning and Intelligent Optimization, Springer,

Berlin, Heidelberg, pp. 413-418, 2012

[27] B. Kamiński, P. Szufel, On Parallel Policies for Ranking and Selection

Problems. In Journal of Applied Statistics, 2017, Taylor & Francis, doi:

10.1080/02664763.2017.1390555.

[28] A. M. Law, Simulation modeling and analysis, McGraw-Hill, 2007.

[29] L. H. Lee, C. H. Chen, E. P. Chew,J. Li, N. A. Pujowidianto and S. Zhang. A re-

view of optimal computing budget allocation algorithms for simulation optimiza-

tion problem. In International Journal of Operations Research 7(2), pp. 19–31,

2010.

[30] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, G. Balan, MASON: A Multia-

gent Simulation Environment, Simulation 81(7), 2005.

[31] S. Luke, Essentials of Metaheuristics (Second Edition), 2013.

[32] C. M. Macal, M. J. North, Tutorial on Agent-based Modeling and Simulation. in:

Proceedings of Winter Simulation Conference, 2005.

[33] R. H. Myers, A. I. Khuri, W. H. Carter. Response surface methodology. Techno-

metrics, vol. 31(2), pp. 137–157, 1989.

[34] B. L. Nelson, Optimization via simulation over discrete decision variables. Risk

and Optimization in an Uncertain World. Informs, pp. 193–207, 2010.

[35] B. L. Nelson, J. Swann, D. Goldsman, W. Song. Simple procedures for selecting

the best simulated system when the number of alternatives is large. Operations

Research, 49(6), pp. 950-963, 2001.

[36] E. C. Ni, D. F. Ciocan, S. G. Henderson, and S. R. Hunter, Comparing Message

Passing Interface and Mapreduce for Large-scale Parallel Ranking and Selection.

In Proceedings of the 2015 Winter Simulation Conference, pp. 3858–3867, 2015.

34



[37] E. C. Ni, S. R. Hunter and S. G. Henderson,A Comparison of Two Parallel Rank-

ing and Selection Procedures. In Proceedings of the 2014 Winter Simulation Con-

ference, pp. 3761–3772, 2014.

[38] M.J. North, J. Ozik, E.R. Tatara, C. Macal, M. Bragen, P. Sydelko, Complex

adaptive systems modeling with Repast Simphony. InComplex Adaptive Systems

Modeling 1(3), 2013.

[39] M. North, T. Howe, N. Collier, J. Vos, A Declarative Model Assembly Infrastruc-

ture for Verification and Validation. In Advancing Social Simulation: The First

World Congress, , 2007.

[40] J. Ozik, N. Collier, J. Wozniak, C. Spagnuolo, From Desktop To Large-scale

Model Exploration with Swift/T. In Proceedings of Winter Simulation Confer-

ence (WSC),pp. 206–220, 2016.

[41] J.A. Parejo, A. Ruiz-Cortsa, S. Lozano and P. Fernandez, Metaheuristic opti-

mization frameworks: a survey and benchmarking. In Soft Computing, 2011.

[42] S. Railsback, L. Railsback, S. Lytinen, S. Jackson, Agent-based Simulation Plat-

forms: Review and Development Recommendations. Simulation 82(9), 2006.

[43] R. Reuillon, M. Leclaire, S. Rey-Coyrehourcq, OpenMOLE, a Workflow Engine

Specifically Tailored for the Distributed Exploration of Simulation Models. In

Future Generation Computer Systems 29(8), pages 1981–1990, 2013.

[44] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The Hadoop Distributed File

System. In Proceedings of the 2010 IEEE Symposium on Mass Storage Systems

and Technologies (MSST), 2010.

[45] F. Stonedahl, Genetic Algorithms for the Exploration of Parameter Spaces in

Agent-based Models. P.h.D. Thesis, 2011.

[46] M. Telmo da Silva, Survey on Frameworks for Distributed Computing: Hadoop

Spark and Storm, Proceedings of the 10th Doctoral Symposium in Informatics

Engineering, pp. 29–30, 2015.

35



[47] E. Tekin, I. Sabuncuoglu, Simulation optimization: A comprehensive review on

theory and applications, IIE Transactions 36 (11), 2004.

[48] S. Tisue, NetLogo: Design and implementation of a multi-agent modeling envi-

ronment. In Proceedings of Agent, 2004.

[49] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa, M. Hategan,

B. Clifford, I. Raicu, Parallel scripting for applications at the petascale and be-

yond. Computer. In Computer 42(11), 2009.

[50] U. Wilensky, NetLogo Fire model. Center for Connected Learning and Computer-

Based Modeling, Northwestern University, Evanston, IL. http://ccl.

northwestern.edu/netlogo/models/Fire, 1997.

[51] J. Xu, B.L. Nelson, JL. Hong. Industrial strength COMPASS: a comprehensive

algorithm and software for optimization via simulation. ACM Transactions on

Modeling and Computer Simulation 20, pp. 1–29, 2010.

[52] Amazon Elastic MapReduce Developer Guide. http://docs.aws.

amazon.com/emr/latest/DeveloperGuide/emr-dg.pdf, last

accessed 2017-09-25.

[53] Apache Spark. https://spark.apache.org/, last accessed 2017-09-25.

[54] Apache Storm. http://storm.apache.org/, last accessed 2017-09-25.

[55] Dakota.https://dakota.sandia.gov, last accessed 2017-10-05.

[56] ECJ. https://cs.gmu.edu/˜eclab/projects/ecj/, last accessed

2017-11-07.

[57] Hortonworks Data Platform, The completely open source Apache Hadoop data

platform, architected for the enterprise, http://hortonworks.com/hdp/,

last accessed 2017-09-27.

[58] Mallba. http://neo.lcc.uma.es/mallba/easy-mallba/, last ac-

cessed 2017-09-25.

36

http://ccl.northwestern.edu/netlogo/models/Fire
http://ccl.northwestern.edu/netlogo/models/Fire
http://docs.aws.amazon.com/emr/latest/DeveloperGuide/emr-dg.pdf
http://docs.aws.amazon.com/emr/latest/DeveloperGuide/emr-dg.pdf
https://spark.apache.org/
http://storm.apache.org/
https://dakota.sandia.gov
https://cs.gmu.edu/~eclab/projects/ecj/
http://hortonworks.com/hdp/
http://neo.lcc.uma.es/mallba/easy-mallba/


[59] NetLogo BehaviorSpace. http://ccl.northwestern.edu/netlogo/

docs/behaviorspace.html, last accessed 2017-10-07.

[60] NetLogo: Wealth Distribution. http://ccl.northwestern.edu/

netlogo/models/WealthDistribution, last accessed 2017-10-07.

[61] OptTek Systems. http://www.opttek.com, last accessed 2017-10-03.

[62] ParadisEO. http://paradiseo.gforge.inria.fr, last accessed 2017-

10-02.

[63] Simulation Optimization and exploration Framework on the cloud: SOF — pub-

lic GitHub repository, isislab-unisa/sof GitHub repository. https://github.

com/isislab-unisa/sof.

37

http://ccl.northwestern.edu/netlogo/docs/behaviorspace.html
http://ccl.northwestern.edu/netlogo/docs/behaviorspace.html
http://ccl.northwestern.edu/netlogo/models/WealthDistribution
http://ccl.northwestern.edu/netlogo/models/WealthDistribution
http://www.opttek.com
http://paradiseo.gforge.inria.fr
https://github.com/isislab-unisa/sof
https://github.com/isislab-unisa/sof



