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Diagnosability analysis

of labeled Time Petri net systems
Francesco Basile, Senior Member, IEEE, Maria Paola Cabasino, Carla Seatzu, Senior Member, IEEE

Abstract—In this paper we focus on two notions of diag-

nosability for labeled Time Petri net systems: K-diagnosability

implies that any fault occurrence can be detected after at

most K observations, while τ -diagnosability implies that any

fault occurrence can be detected after at most τ time units. A

procedure to analyze such properties is provided. The proposed

approach uses the Modified State Class Graph, a graph the

authors recently introduced for the marking estimation of labeled

Time Petri net systems, which provides an exhaustive description

of the system behavior. A preliminary diagnosabilty analysis of

the underlying logic system based on classical approaches taken

from the literature is required. Then, the solution of some linear

programming problems should be performed to take into account

the timing constraints associated with transitions.

Index Terms—Discrete event systems, Petri nets, fault diagno-

sis.

I. INTRODUCTION

The explicit consideration of time is crucial for the speci-

fication and the verification of systems such as transportation

systems [5], communication protocols, circuits, or real-time

systems as well as to study a series of extremely important

problems such as state estimation, state feedback control and

fault diagnosis.

In the Petri net (PN) framework the first main distinction

is between Time PNs [23] and Timed PNs [20]. In Time PNs

enabled transitions may fire within given time intervals that

may either be associated with places or transitions (P-Time

PNs and T-Time PNs, respectively). In Timed PNs enabled

transitions fire as soon as given time delays have elapsed. As in

the previous case, delays may either be associated with places
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or transitions (P-Timed PNs and T-Timed PNs, respectively).

In this paper we consider T-Time PNs and we call them Time

PNs (TPNs) for short.

In [4] we solved the problem of marking estimation of a

labeled TPN. We first presented an algorithm for the construc-

tion of a graph called Modified State Class Graph (MSCG)

that collects all the information on the evolution of the labeled

TPN system; then, given an observation and a time instant we

illustrated a procedure based on the exploration of the MSCG

and on the solution of some linear programming problems

(LPPs), that allows one to determine the set of markings

consistent with the observation and the considered time instant.

Finally, we present a procedure to perform fault diagnosis

using the MSCG.

In this paper we analyze K-diagnosability and τ -

diagnosability of labeled TPNs. The problem of diagnosability

consists in determining a priori if a system is diagnosable, i.e.,

if it is possible to reconstruct the occurrence of fault events

observing words of finite length. When we deal with TPNs

two different diagnosability problems can be solved: After how

many observations are we able to detect a fault occurrence?

Or after how many time units are we able to detect a fault

occurrence? In the first case we study K-diagnosability, while

in the second case we study τ -diagnosability of the system.

Specifically, a TPN is said K-diagnosable if once a fault

has occurred its occurrence can be detected after at most K
observations. On the other hand, a TPN is said τ -diagnosable

if once a fault has occurred its occurrence can be detected

after at most τ time units.

In this paper, in accordance with most of the literature

in this area, we assume that only a subset of transitions

can be observed, e.g., because a sensor that produces an

observable output when they fire is associated with them.

We call such transitions observable. The other transitions are

called unobservable (or silent) because their firing cannot

be observed. We consider fault transitions as a subset of

unobservable transitions. Moreover, we assume that the same

sensor can be associated with more than one transition, i.e.,

more than one transition may share the same label. We call

such transitions indistinguishable.

The main contribution of this paper consists in a procedure

to analyze K-diagnosability and τ -diagnosability. The basic

idea behind the proposed approach can be summarized as

follows.

The MSCG is first computed. Then, based on such a graph,

a preliminary investigation based on classical approaches from

the literature is carried out to establish if the underlying

untimed PN system is diagnosable. If it is diagnosable, for sure

the timed model is diagnosable as well. If it is not diagnosable,
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a further investigation should be carried out because it could

happen that the information originating from time make the

system diagnosable. In more detail, an approach based on the

solution of an LPP is proposed. In very simple words, the

LPP enables us to establish if two sequences that produce the

same observations in the same time instants, one containing

a fault and the other one not, may actually fire, in the sense

that the unobservable events they contain are consistent with

the timing constraints associated with transitions that generate

them.

Note that a preliminary and partial version of this paper

has been presented in [3], where only K-diagnosability was

considered.

We believe that this paper provides an important con-

tribution to the discrete event systems (DES) theory, and

particularly to the PN literature, for two main reasons.

First, while the problems of diagnosis and diagnosability

have been extensively studied using logic DES [24], [8], [6],

[13], [17], there are relatively few works dealing with these

topics in the timed framework, both in the case of automata

[11], [18], [26], [16] and PNs [19], [28], [10], [22].

In particular, to the best of our knowledge, this is the first

time that problems of K-diagnosability and τ -diagnosability

using labeled TPNs are addressed in the literature.

Second, this paper is in line with our idea of building, as

well as we did for untimed Petri nets [1], [12], [14], [13], [15],

a research line that goes from state-estimation/fault diagnosis

of labeled Time Petri nets [4] to diagnosability analysis, up to

methods that make diagnosable a non-diagnosable time system

and/or optimally select sensors for ensuring diagnosability (see

[13] for untimed systems).

We conclude this section with a brief overview of those few

papers dealing with a problem statement closely related to the

one at hand.

Hashtrudi Zad et al. [18] introduced the concept of time-

diagnosability in the context of timed DES modeled by au-

tomata, containing in their events set an event which is the

tick of a global clock. The tick is assumed to be observable.

Time-diagnosability requires that the occurrence of the generic

fault fi can be detected and isolated after the occurrence of at

most τi ticks. Hence, in the context of timed DES the concept

of time-diagnosability is close to K-diagnosability introduced

in this paper. However there are two main differences: First,

the timed DES model in [18] deals with activities with a

fixed time delay, while here time intervals are considered;

second, our approach relies on linear programming that is a

standard and efficient tool, while [18] considers an exhaustive

search on the graph. Finally, the use of linear programming

also opens the door to a future research on how to make a

system K-diagnosable/τ -diagnosable (if possible) acting on

the transitions timing.

Another important contribution in the framework of timed

automata has been proposed by Tripakis in [26] where timed

automata with guards [2] are considered and the notion of

δ-diagnosability (basically coincident with our definition of

τ diagnosability) is proposed and shown to be PSPACE-

complete in the case of δ ∈ Q. The approach proposed by

Tripakis to analyze δ-diagnosability is based on the region

graph tool introduced in [2]. A main difference between

such an approach and the approach in this paper is that the

analysis based on the region graph tool simultaneously checks

logical ambiguities (two sequences have the same observable

projection, one containing the fault and the other one not)

and timing ambiguities (observable events may occur in the

same time instants). On the contrary, our approach first focuses

on logical ambiguities, and only in the case of a positive

answer to this issue, check for timing ambiguities. Finally,

another advantage of the approach presented in this paper is

that it provides a unified framework to study both K- and

τ -diagnosability.

By the way it is important to note that the approach in

[26] cannot be applied to the MSCG even if the MSCG is an

automaton with guards. Indeed guards in the MSCG are in

general not defined by constant numbers (as in [26]) but are

functions of parameters defining guards in other edges. An

example that clearly points out this is provided in [4] where

the MSCG has been introduced first.

A. Structure of the Paper

Section II provides some background on labeled Time

Petri nets. Section III illustrates the two problem statements

considered in this paper and the assumptions on which they are

based. Some results that are useful in the following sections

are also proved here. Preliminary results on the Modified State

Class Graph are presented in Section IV. Sections V and VI

explain how to analyze K-diagnosability and τ -diagnosability,

respectively. Finally, conclusions are drawn in Section VIII

where future lines of research in this framework are also

illustrated.

II. TIME PETRI NETS WITH LABELS

A. Background on Time Petri nets

A TPN is a Petri net also called Place/Transition net (P/T

net) where timing is associated with transition firing [21].

In particular, time intervals are associated with transitions: A

transition may fire at a given time instant if and only if it has

remained logically enabled for an amount of time within its

own time interval. More details are provided in the following.

As in P/T nets the net structure is defined as a quadruple

N = (P, T, Pre, Post) where: P is a set of m places; T is

a set of n transitions; and Pre : P × T → N and Post :
P × T → N are the pre– and post– incidence functions that

specify the arcs. The incidence matrix C of the net is equal

to C = Post− Pre.

A marking (i.e., the net state) is a vector M : P → N that

assigns to each place a nonnegative integer number of tokens,

represented by black dots. We denote M(p) the marking of

place p.

A transition t is said to be logically enabled at M iff M ≥
Pre(· , t). The firing of a transition t at a marking M yields

to marking M ′ = M + C(· , t). We denote A(M) the set of

transitions logically enabled at M , i.e., A(M) = {t ∈ T |
M ≥ Pre(· , t)}.

A Time PN is defined as a couple Nd = (N,Q) where

N = (P, T, Pre, Post) defines the net structure and Q : T →
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Q× (Q∪∞) defines the set of static intervals associated with

transitions. In particular, given a transition ti ∈ T , the function

Q associates two rational numbers with ti (the second one may

also be ∞), namely Q(ti) = (li, ui), where

li ≥ 0, ui ≥ li, li 6= ∞.

Transition ti may fire iff it remains logically enabled for a

time interval included in [li, ui]. The logical enabling condition

must hold consecutively (enabling memory policy) or may not

hold consecutively (total memory policy), depending on the

considered enabling policy [25].

A TPN Nd with a marking M0 at the initial time instant

τ0 = 0 is called a marked TPN, or a TPN system, and is

denoted 〈Nd,M0〉.
A TPN evolution is defined by a time-transition sequence

(TTS), namely a sequence of pairs (transition, time instant),

that specifies the sequence of transitions that have fired,

and the corresponding time instants. As an example, the

firing of σ = (ti1 , τ1)(ti2 , τ2) . . . (tik , τk) ∈ (T × R+
0 )

∗ at

the initial marking M0 means that transition with index i1
has fired at time τ1, transition with index i2 has fired at

time τ2, and so on. We denote this in a compact form as

M0[ti1(τ1)〉M1[ti2(τ2)〉M2 · · · [tik(τk)〉Mk, where obviously

it holds τ1 ≤ τ2 ≤ · · · τk . More concisely, we also write

M0[σ〉Mk or simply M0[σ〉 if we do not want to specify the

marking reached after the firing of σ, but only want to denote

that σ may fire at M0.

Given a TTS σ = (ti1 , τ1)(ti2 , τ2) . . . (tik , τk) ∈
(T × R+

0 )
∗
, we denote as log(σ) = ti1ti2 . . . tik the logic

sequence of transitions associated with σ, neglecting the time

instants at which they have fired.

A marking M is reachable in 〈Nd,M0〉 if there exists a

TTS σ such that M0 [σ〉 M . The set of all markings reachable

from M0 defines the time reachability set of 〈Nd,M0〉 and is

denoted by Rt(Nd,M0). Note that Rt(Nd,M0) is always a

subset (usually a strict subset) of the reachability set of the

underlying untimed PN [21].

A TPN system 〈Nd,M0〉 is bounded if there exists a positive

constant k such that, for all M ∈ Rt(Nd,M0), M(p) ≤ k.

By virtue of the above consideration, it obviously may happen

that a TPN system is bounded even if the underlying untimed

PN is unbounded.

Finally, the enabling degree of a transition t logically

enabled at a marking M is the highest integer number k such

that M ≥ k Pre(·, t). In simple words, in a purely logic

model, the enabling degree of a transition t at a marking M
denotes how many times t may fire at M .

In the rest of the paper we assume that the considered TPNs

follow a single server semantics and an enabling memory

policy. More details on this can be found in [25], [9]. In simple

words, when using a single server semantic each transition

represents an operation that can be executed by a single

operation unit (a single server). Therefore, regardless of the

current enabling degree, a transition may only fire once at a

time. The enabling memory policy implies that a transition has

no memory of any previous enabling, i.e., if it remains enabled

for a certain time and some other transition fires disabling it,

when it is enabled again it does not keep into account the

time intervals in which it has already been enabled. Assume

as an example that a transition models the execution of a given

operation that requires a time interval defined by its lower and

upper bound. If such an operation is interrupted, it should start

from the beginning, i.e., the time required to perform the given

operation should be consecutive.

B. Labeling function and time-label sequences

A labeling function L : T → L ∪ {ε} assigns to each

transition t ∈ T either a symbol from a given alphabet L or

the empty string ε.

We denote as Tu the set of transitions whose label is ε, i.e.,

Tu = {t ∈ T | L(t) = ε}. Transitions in Tu are called

unobservable or silent.

We denote as To the set of transitions labeled with a symbol

in L. Transitions in To are called observable because, when

they fire, their label can be observed. In this paper we assume

that the same label γ ∈ L can be associated with more than one

transition. In particular, two transitions t1, t2 ∈ To are called

indistinguishable if they share the same label, i.e., L(t1) =
L(t2) = γ ∈ L.

We extend the labeling function to define the projection

operator L : T ∗ → L∗ recursively as follows:

(i) if tj ∈ To then L(tj) = γ for some γ ∈ L;

(ii) if tj ∈ Tu then L(tj) = ε;

(iii) if σ ∈ T ∗ ∧ tj ∈ T then L(σtj) = L(σ)L(tj).
Moreover, L(λ) = ε where λ is the empty sequence.

Furthermore, to avoid introducing too many different no-

tations, we also extend the labeling function to TTSs σ ∈
(T×R+

0 )
∗. In particular, we denote as L(σ) ∈ (L×(R+

0 ∪ ∅))∗

the observable projection of σ that only contains those pairs

(label-time instant) relative to observable transitions. If no pair

contains observable transitions, one has L(σ) = (ε, ∅), i.e., the

observable projection coincides with the pair (empty word-

empty set) since we have no information on the transitions

that have fired and on their firing time instants.

III. PROBLEM STATEMENT AND PRELIMINARY RESULTS

In this section we formalize the problem statement and

clarify the assumptions on which our approach is based. Some

results that will be useful in the following are also proved.

We assume that the set of unobservable transitions is par-

titioned into two subsets, namely Tu = Tf ∪ Treg where Tf

includes all fault transitions (modeling anomalous or faulty

behavior), while Treg includes all transitions pertaining to

unobservable but regular events (namely transitions modeling

a normal behavior). The set Tf is further partitioned into r
different subsets T i

f , where i = 1, . . . , r, that model different

fault classes.

We make the following assumptions whose importance will

be clarified in the rest of the paper.

(A1) The considered TPN is bounded.

(A2) For all t ∈ T , the bounds l and u associated with t are

rational numbers.
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A. K-diagnosability

Given a TPN system and an integer K , we say that the

system is K-diagnosable with respect to (w.r.t.) a given fault

class if it is possible to detect the occurrence of some fault in

that class in at most K observations after the occurrence of

the fault.

The above definition can be formalized as follows.

Definition 1: Given a labeled TPN and an integer K , a net

system is K-diagnosable with respect to fault class T i
f if there

do not exist two time-transition sequences σ′ and σ′′ such that:

• σ′ and σ′′ have the same observable projection, i.e.,

L(σ′) = L(σ′′);
• there exists a fault transition tf ∈ T i

f such that tf ∈
log(σ′′) and ∀t ∈ T i

f , t /∈ log(σ′);
• in σ′′ the number of observable events after the first

occurrence of tf is K .

A TPN system is K-diagnosable if it is K-diagnosable with

respect to all fault classes. �

An analogous definition of K-diagnosability for logic PN

systems can be found in [30].

Remark. Other papers [24], [13], [7] in the framework of

purely logic DES provide a slightly different definition of

K-diagnosability. In particular, according to [24], [13], [7]

a system is K-diagnosable w.r.t. a given fault class if it is

possible to detect the occurrence of some fault in that class in

at most K events occurrences (observable and unobservable)

after the fault. In this paper we prefer to focus on the

definition in [30] since we believe that such a definition

better describes real practical problems. The following simple

example clarifies this. For simplicity of explanation, let us

consider the case of a timed LPN with a single fault f . Assume

that a sequence σ̄(a, τa) is observed and we know that no fault

has occurred while observing σ̄. Furthermore, assume that the

only sequence that may actually occur after the observation

of σ̄ is (f, τf )(ε1, τ1)(a, τa), where obviously τf ≤ τ1 ≤ τa.

Finally, assume that the system is 1-diagnosable according to

the definition that counts both observable and unobservable

events, then if the diagnoser computed the diagnosis state at

time τ1, it would detect the occurrence of the fault. However,

since in practice the diagnoser does not compute the diagnosis

state with continuity, and it does not know when unobservable

events occur, the fault is detected at time τa when the diagnosis

state is surely computed. The same obviously happens if the

system is 1-diagnosable according to Definition 1. Based on

the above consideration, we believe that our definition better

characterizes what can be effectively implemented in practice,

in the sense that a more evident physical meaning can be

associated with K . Indeed, based on such a definition K − 1
is the maximum number of events that could be observed after

a fault, without detecting it; when the K-th observable event

occurs, for sure the fault is detected.

We finally observe that Definition 1 is the counterpart of

the definition of τ -diagnosability formally introduced in the

following subsection. Indeed, if a system is τ -diagnosable,

when τ time units have elapsed after the occurrence of a fault,

for sure the fault is detected. Therefore, in both cases the

diagnoser knows exactly how to interpret the diagnosis state.

In one case because he measures the time, in the other case

because he counts the events he has observed. �

The following proposition relates the K-diagnosability of a

TPN system with the K-diagnosability of the underlying logic

PN system [30].

Proposition 2: Let 〈Nd,M0〉, with Nd = (N,Q), be a

labeled TPN system with labeling function L. Let 〈N,M0〉
be the underlying logic labeled PN system. If 〈N,M0〉 is K-

diagnosable, then there exists a K ′ ≤ K such that 〈Nd,M0〉
is K ′-diagnosable.

Proof: It follows from the fact that the effect of the timing

structure can only be that of disabling sequences that are

enabled in the underlying logic model. On the contrary, it may

not occur that sequences that are firable in the TPN are not

firable in the underlying logic model.

�

Obviously if a Petri net system (either a logic PN or TPN)

is K-diagnosable, then it is also K ′-diagnosable for any K ′ ≥
K .

In this paper we provide a procedure to analyze K-

diagnosability of TPN systems under the following additional

assumption.

(A3) There do not exist cycles of unobservable transitions.

B. τ -diagnosability

Given a TPN system and a positive real number τ ∈ R+,

we say that the system is τ -diagnosable w.r.t. a given fault

class if it is possible to detect the occurrence of some fault in

that class in at most τ time units after the occurrence of the

fault.

The above definition can be formalized as follows.

Definition 3: Given a labeled TPN and a positive real

number τ ∈ R+, a net system is τ -diagnosable with respect

to fault class T i
f if there do not exist two time-transition

sequences σ′ and σ′′ such that:

• σ′ and σ′′ have the same observable projection, i.e.,

L(σ′) = L(σ′′);
• there exists a fault transition tf ∈ T i

f such that tf /∈
log(σ′), and tf ∈ log(σ′′);

• the duration in time of σ′′ after the first occurrence of a

fault transition in T i
f is τ .

A TPN system is τ -diagnosable if it is τ -diagnosable with

respect to all fault classes. �

The following proposition relates the τ -diagnosability of a

TPN system with the diagnosability of the underlying logic

PN system.

Proposition 4: Let 〈Nd,M0〉, with Nd = (N,Q), be a

labeled TPN system with labeling function L. Let 〈N,M0〉
be the underlying logic labeled PN system. If 〈N,M0〉 is di-

agnosable, then ∃τ̄ ∈ R+ such that 〈Nd,M0〉 is τ -diagnosable

for any τ ≥ τ̄ .

Proof: It follows the same reasoning used in the proof of

Proposition 2. In fact, the effect of the timing structure can

only be that of disabling sequences that are enabled in the

underlying logic model. On the contrary, it may not occur

that sequences that are firable in the TPN are not firable in the

underlying logic PN. Thus if the underlying logic PN system
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is diagnosable, there always exists a positive real number τ̄
such that the TPN system is τ̄ -diagnosable, thus it is also τ -

diagnosable for any τ ≥ τ̄ .

�

In this paper we provide a procedure to analyze τ -

diagnosability under the following additional assumption.

(A3’) There do not exist cycles of transitions (observable and

unobservable) the sum of whose lower bounds is equal

to zero.

As it will be better explained in Section VI, this assumption

guarantees a stop condition to the proposed approach.

IV. MODIFIED STATE CLASS GRAPH

The approach here presented adopts a graph called Modified

State Class Graph (MSCG) that we recently presented in [4].

The main feature of the MSCG is that it collects all the

information on the evolution of the TPN system. In this section

we provide its definition and the algorithm for its construction.

Let us consider a labeled TPN system 〈Nd,M0〉, where

Nd = (N,Q), N = (P, T, Pre, Post), Q : T → Q × Q.

Let L : T → L ∪ {ε} be its labeling function defined over an

alphabet L. The Modified State Class Graph is a directed graph

whose nodes are called classes. With each class is associated

a set of states of the net, namely a reachable marking M ∈
Rt(Nd,M0) and a set of inequalities Θ that define the timing

constraints relative to all transitions enabled at M . Edges are

labeled as (t, γ,∆ ∈ [l∗, u∗]), where t ∈ T is the transition

whose firing leads from the marking in the tail node to the

marking in the head node; γ = L(t) is the label associated

with t, ∆ ∈ [l∗, u∗] is a constraint on the time to go from the

tail node to the head node of the edge, l∗ ≤ l and u∗ ≤ u.

The construction of the MSCG first requires the definition

of the Modified State Class Tree (MSCT) according to Al-

gorithm 1. The MSCG can be immediately obtained from

the MSCT simply merging duplicate nodes corresponding to

equivalent classes.

In [4] we proved that under Assumptions A1 and A2 the

number of classes of the MSCG is finite.

Example 5: Let us consider the labeled TPN system

in Fig. 1. It is: To = {t1, t2, t3}, Tu = {t4, t5, t6, t7},

L(t1) = a, and L(t2) = L(t3) = b. There are two fault

classes: T 1
f = {t5} and T 2

f = {t7}. Moreover, it holds:

Q(t1) = Q(t2) = Q(t3) = Q(t5) = (1, 2), Q(t4) = (2, 2),
Q(t6) = (0, 2), and Q(t7) = (1, 1). Finally, the initial marking

is M0 = [1 0 0 0 0]T .

The corresponding MSCG is shown in Fig. 2. Each class

is labeled with a reachable marking M ∈ Rt(Nd,M0) and a

set of inequalities Θ that characterize the timing intervals of

the transitions enabled at that class. As an example, the initial

marking M0 and the set of timing constraints Θ0 = {2 ≤
θ4 ≤ 2, 1 ≤ θ5 ≤ 2} are associated with the initial class

C0. In fact, M0 enables t4 and t5, and it is Q(t4) = (2, 2),
Q(t5) = (1, 2).

Class C1 is labeled with marking M1 = [0 1 0 0 0]T

resulting from the firing of t4 at M0. At marking M1 only t1
is enabled. Therefore this class is characterized by the timing

constraints Θ1 = {1 ≤ θ1 ≤ 2}.

Algorithm 1: Construction of the Modified State

Class Tree

input : A labeled TPN system.

output: Its Modified State Class Tree.

1 Initialize: The root node C0 is labeled with the initial

marking M0 and a set of inequalities Θ0 defined as

follows: ∀ti ∈ A(M0), let l0i ≤ θi ≤ u0
i where l0i = li

and u0
i = ui. Tag the root node “new”.

while a node tagged “new” exists do

2 Select a node Ck tagged “new”.

3 for all ti ∈ A(Mk) do

4 if max{0, lki } ≤ minj: tj∈A(Mk){u
k
j }, where

lki (uk
j ) is the lower (upper) bound associated

with ti (tj) at class Ck, then

5 Let Mq = Mk + C(·, ti) be the marking

reached from Mk firing ti.
6 for all transitions tr ∈ A(Mq) do

if tr ∈ A(Mk), i.e., if tr was already

enabled at class Ck, and

Mk − Pre(:, ti) ≥ Pre(:, tr), then
let

lqr = lkr −∆i, uq
r = uk

r −∆i

else
let

lqr = lr, uq
r = ur.

7 Add a new node Cq labeled with marking

Mq and a set of inequalities Θq defined as

follows: ∀tr ∈ A(Mq), let

max{0, lqr} ≤ θr ≤ uq
r.

8 Add an edge from Ck to Cq labeled

“ti,L(ti), ∆i ∈
[max{0, lki },minj: tj∈A(Mk){u

k
j }]”.

9 if there already exists a node equivalent to

Cq in the tree then
tag node Cq “duplicate”,

else
tag it “new”.

10 Untag node Ck .

Moreover, according to Algorithm 1, each edge of

the MSCG is labeled as “ti,L(ti),∆i ∈ [max{0, lki },
minj: tj∈A(Mk){u

k
j }]”. As an example, the edge directed from

C2 to C3 is labeled “t6, ε,∆6 ∈ [0, 2]”, since the minimum of

the upper bounds of the set of transitions logically enabled at

C2 is 2. �

V. K -DIAGNOSABILITY ANALYSIS

The procedure we propose to analyze the K-diagnosability

of a TPN system can be summarized as follows.

Algorithm 6: [Analysis of K-diagnosability]

Inputs: A labeled TPN system 〈Nd,M0〉 with labeling func-

tion L, fault classes T i
f , i ∈ {1, . . . , r}, and an integer number

K .
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Fig. 1. The TPN considered in Example 5.

Output: DiagKi ∈ {0, 1}, i ∈ {1, . . . , r}: DiagKi = 1
(DiagKi = 0) means that the system is (is not) K-diagnosable

w.r.t. fault class T i
f .

1) Build the MSCG according to Algorithm 1 and let

DiagKi = 1, for all i ∈ {1, . . . , r}.

2) Compute the nondeterministic automaton G isomorphic

to the MSCG. Each state of G corresponds to a class of

the MSCG. Edges are labeled with the second element

of the edges of the MSCG, namely the label associated

with transitions. In the case of silent transitions modeling

a fault, it is also specified to which fault class transitions

belong.

3) For any fault class i ∈ {1, . . . , r} compute all pairs of

sequences in G having the same observable projection,

one containing a fault transition in T i
f and the other one

not, and such that in the faulty sequence, the number of

observable events after the fault is K .

4) If there are no such sequences for any fault class i ∈
{1, . . . , r}, then the system is K-diagnosable.

Else if for some fault class i ∈ {1, . . . , r} Step 3

provides some pair, then consider all such pairs and go

to Step 5.

5) Given a pair of sequences in G and a fault class

T i
f , find the corresponding timed sequences σ′ =

(ti′
1
, τ ′1) . . . (ti′

k′
, τ ′k′) and σ′′ = (ti′′

1
, τ ′′1 ) . . . (ti′′

k′′
, τ ′′k′′ )

in the MSCG. Let

π′ =

Cq0

ti′
1
,L(ti′

1
),

∆′
1 ∈ [max{0, lq0

i′
1

},minj: tj∈A(Mq0
){u

q0
j }]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

· · · · · ·

Cqk′
−1

ti′
k′
,L(ti′

k′
−1

),

∆′
k′ ∈ [max{0, l

qk′
−1

i′
k′

},

minj: tj∈A(Mq
k′

−1
){u

qk′
−1

j }]
−−−−−−−−−−−−−−−−−−−−−−−−−−→

Cqk′

be the path associated with sequence σ′ in the MSCG.

Analogously, let

π′′ =

Cq0

ti′′
1
,L(ti′′

1
),

∆′′
1 ∈ [max{0, lq0

i′′
1

},minj: tj∈A(Mq0
){u

q0
j }]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

· · · · · ·

Cqk′′
−1

ti′′
k′′
,L(ti′′

k′′
−1

),

∆′′
k′′ ∈ [max{0, l

qk′′
−1

i′′
k′′

},

minj: tj∈A(Mq
k′′

−1
){u

qk′′
−1

j }]
−−−−−−−−−−−−−−−−−−−−−−−−−−→

Cqk′′

be the path associated with sequence σ′′.

Given a class Cq we denote out(Cq) the set of transitions

associated with edges that exit from Cq . We associate

with the two paths π′ and π′′ the following set of

constraints:
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k′

∑

l=1

∆′
l ≤ τ̄ , (a1)

τ̄ −

k′

∑

l=1

∆′
l <

min
r:tr∈out(Cq

k′
)
{u

qk′

r }, (a2)

k′′

∑

l=1

∆′′
l ≤ τ̄ , (a3)

τ̄ −

k′′

∑

l=1

∆′′
l <

min
r:tr∈out(Cq

k′′
)
{u

qk′′

r }, (a4)

∆′
l ≥ max{0, l

ql−1

il
},

l = 1, . . . , k′,

(b1)

∆′
l ≤ min

j:tj∈A(Mql−1
)
{u

ql−1

j },

l = 1, . . . , k′,

(b2)
∆′′

l ≥ max{0, l
ql−1

il
},

l = 1, . . . , k′′,

(b3)

∆′′
l ≤ min

j:tj∈A(Mql−1
)
{u

ql−1

j },

l = 1, . . . , k′′,

(b4)
q′
∑

l=1

∆′
l =

q′′
∑

l=1

∆′′
l , ∀ti′

q′
, ti′′

q′′
∈ To with

same label and same
observable prefix

(c)

τ̄ ≥ 0 (d)

(1)
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C2     [0 0 1 0 0]
 T

 

           0≤θ6≤ 2 

             1 ≤θ2≤ 2 

 

t4, ε, ∆4 ϵ [2,2] 

t1,a, ∆1 ϵ [1,2] 

C0     [1 0 0 0 0]
 T

 

   2 ≤θ4≤ 2 

  1 ≤θ5≤ 2 

C1       [0 1 0 0 0]
 T

 

        1≤θ1≤ 2 

                

t5, ε, ∆5 ϵ [1,2] 

C3     [0 0 0 1 0]
 T

 

           1≤θ7≤ 1 

 

t6, ε, ∆6 ϵ [0,2] 

C4     [0 0 0 0 1]
 T

 

           1≤θ3≤ 2 

 

t7, ε, ∆7 ϵ [1,1] 

t3,b, ∆3 ϵ [1,2] 

t2,b, ∆2 ϵ [1,2] 

Fig. 2. The MSCG relative to the TPN in Fig. 1.

If the set of constraints (1) is feasible, let DiagKi =
0: It means that there exist two sequences as the ones

described in the itemized list of Definition 1, then the

system is not K-diagnosable w.r.t. fault class i. �

Proposition 7: Given a labeled TPN system 〈Nd,M0〉
with labeling function L, fault classes T i

f , i ∈ {1, . . . , r},

and an integer number K , Algorithm 6 allows to establish

if the system is/is not K-diagnosable w.r.t. fault class T i
f ,

i ∈ {1, . . . , r}. In particular, if DiagKi = 1 then the system

is K diagnosable w.r.t. fault class i, if DiagKi = 0 then the

system is not K diagnosable w.r.t. fault class i.
Proof: At Step 1 we build the MSCG since it collects

all the information on the evolution of the TPN system. By

Assumptions A1 and A2 the number of classes of the MSCG is

finite [4]. Moreover we let DiagKi = 1, for all i ∈ {1, . . . , r},

namely we initially assume that the system is K-diagnosable

w.r.t. all fault classes.

At Step 2 we compute the logic version of the TPN system

by considering the graph G isomorphic to the MSCG. If

the logic system is K-diagnosable, all the more reason it

is K-diagnosable the TPN system (see Proposition 2), so

flag variables DiagKi are not changed. To the best of our

knowledge all the approaches in the literature that allow to

perform such an analysis are based on Assumption A3. This

is the reason why such an assumption is actually made as one

of the main assumptions of the proposed approach.

If the logic system is not K-diagnosable, we need to verify

if the sequences that are “ambiguous” in the underlying logic

PN system, are also ambiguous in the TPN system, i.e., they

produce the same observations in the same time instants. This

verification is done by checking the feasibility of constraints

(1) whose physical meaning is explained in the following.

Obviously, this needs to be done for each pair of paths

corresponding to the pair of sequences σ′, σ′′.

— Constraints (a) impose limitations on the total length of

the sequence. In particular, (a1) (resp. (a3)) implies that, if

the sequence really corresponds to the considered path, then

the class at the end of the path, namely Cqk′
(resp. Cqk′′

), is

reached at a time that is smaller than or equal to the time

instant τ̄ . Note that the time instant τ̄ is an unknown but

should be equal for the two sequences. Now, since ∆′
l (resp.

∆′′
l ) denotes the time interval to go from Cql′−1

to Cql′
(resp.

from Cql′′−1
to Cql′′

), the sum in the left hand side of (a1)

(resp. (a3)) is equal to the time spent to reach class Cqk′
(resp.

Cqk′′
). Constraint (a2) (resp. (a4)) imposes that class Cqk′

(resp. Cqk′′
) is actually the last visited class. This is verified if

the difference between τ̄ and the time spent to reach class Cqk′

(resp. Cqk′′
) is less than the minimum of the upper bounds of

the output transitions of class Cqk′
(resp. Cqk′′

). Indeed, once

the node Cqk′
(resp. Cqk′′

) is reached a transition enabled at

Mqk′
(resp. Mqk′′

) will fire at most after a time interval equal

to the minimum of the upper bounds of the transitions enabled

at Cqk′
(resp. Cqk′′

).

— Constraints (b) simply impose the limitations on the time

intervals ∆′
l ((b1) and (b2)) and ∆′′

l ((b3) and (b4)) as given

in the MSCG.

— Constraints (c) imply that the observable transitions of

the two sequences σ′ and σ′′ occur at the same time instant.

— Constraint (d) imposes that τ̄ is a nonnegative real

number.

If constraints (1) are feasible for a class i, then the corre-

sponding flag variable DiagKi is set to 0 because the system

is not K-diagnosable w.r.t. that fault class. �

Note that constraints (1) are clearly nonlinear. However,

they can easily be linearized using the procedure in [4]. For

the sake of brevity, the linear constraints corresponding to (1)

are not reported here.

Some remarks should be done concerning Step 3 of Algo-

rithm 6.

Several approaches have been proposed in the DES litera-

ture to compute pairs of sequences with the same observable

projection, one containing the fault and the other one not.

Two are the most commonly used. The first one has been

proposed by Sampath et al. in [24] and is based on the notion

of diagnoser. The second one has been proposed by Yoo and

Lafortune [29] and uses the notion of verifier automaton. In

simple words the verifier automaton is the parallel composition

of the system with faults and the system without faults, with

a synchronization on the observable events.

In this section we present a numerical example to illustrate

Algorithm 6. Such an example has been implemented using

the approach in [24] to compute ambiguous sequences. This

choice has been done, even if the technique in [29] is more

efficient from a computational point of view as discussed in

Section VII, for the following three main reasons. First, it is

probably more intuitive. Second, it allows to deal with more

than one fault class simultaneously, while a different verifier

should be constructed for each fault class. Finally, an efficient

software [27], called UMDES, can be used to compute the

diagnoser and the cycles.

In the following subsection we discuss how Algorithm 6

should be particularized when using the technique in [24].
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A. Analysis with the diagnoser approach

When the technique in [24] is used to compute ambiguous

sequences, Steps 3 and 4 of Algorithm 6 should be rewritten

as follows.

3’) Compute the diagnoser Diag(G) using the approach in

[24] and look for uncertain states1 for any fault class

i ∈ {1, . . . , r}.

4’) If there are no uncertain states for any fault class i ∈
{1, . . . , r}, then the system is K-diagnosable (this holds

for any K ∈ N).

Else if there are uncertain paths2 for some fault class

i ∈ {1, . . . , r} (that may eventually include cycles), then

consider all pairs of sequences in G associated with

the corresponding uncertain path such that in the faulty

sequence the number of observable events after the fault

is K , and go to Step 5.

Steps 3’ and 4’ can be explained as follows.

From [24] we know that if the diagnoser Diag(G) does not

contain uncertain states for any fault class T i
f , then G is K-

diagnosable for any K ∈ N. Thus by Proposition 2 the TPN

system 〈Nd,M0〉 is also K-diagnosable for any K ∈ N.

If there are uncertain paths including uncertain but not

indeterminate cycles3 in Diag(G) for some fault class T i
f , then

for any of such classes there exists a K∗(i) ∈ N such that the

underling logic system is K∗(i)-diagnosable w.r.t. to T i
f . Thus

by Proposition 2 there exists a K̄(i) ≤ K∗(i) such that the

TPN system 〈Nd,M0〉 is K̄(i)-diagnosable w.r.t. T i
f . However,

since we are not able to evaluate K̄(i) (as well as K∗(i)), we

have to consider all pairs of sequences in G associated with

the corresponding uncertain path and such that the number of

observable events after the fault is K (Step 5).

All the more reason, pairs of sequences in G associated with

uncertain paths should be considered in Step 5 if the uncertain

paths contain indeterminate cycles.

B. A numerical example

Let us consider again the TPN system and its MSCG shown

respectively in Figures 1 and 2, and introduced in Example 5.

We want to know if such a system is 2-diagnosable.

The nondeterministic automaton G, isomorphic to the

MSCG in Fig. 2, is shown in Fig. 3, and its diagnoser

Diag(G), obtained using the approach in [24], is illustrated

in Fig. 4.

Each state of the diagnoser is composed by a set of states

of the automaton G and by a label that indicates if reaching a

certain state xi from x0 no fault has occurred (N , that stands

for N1N2), or fault transition t5 ∈ T 1
f has fired but not t7 ∈

1A diagnoser state is uncertain w.r.t. a fault class i if it has at least a system
state with label Ni (no fault) for that class and at least one state with label
F i (fault).

2A path (cycle) in Diag(G) is uncertain w.r.t. a fault class i if it is
composed by uncertain states w.r.t. a fault class i.

3A cycle in Diag(G) is indeterminate w.r.t. fault class i if it is uncertain
and if there exist: (i) a corresponding cycle (of observable events) in G
involving only states that carry F i in their labels in the cycle in Diag(G), and
(ii) a corresponding cycle (of observable events) in G involving only states
that carry Ni in their labels in the cycle in Diag(G). In [24] a procedure to
determine if an uncertain cycle is indeterminate is presented.

 

ε 

a 

 ε ϵ Tf

1
 

b 

x0  

x1  x2  

x3  

x4  

ε 

 ε ϵ Tf

2
 

b 

Fig. 3. The nondeterministic automaton G isomorphic to the MSCG of Fig. 1.

T 2
f (F1, that stands for N2F1), or, viceversa, fault transition

t7 has fired but not t5 (F2, that stands for N1F2), or both

fault transitions t5 and t7 have occurred (F1F2). Note that

the same state can have different labels because there could

be more paths from state x0 to state xi.

Looking at G we see that there are three uncertain states

w.r.t. T 1
f , namely S1, S4 and S8, and no uncertain path (with

more than one state) or cycle. This implies that the TPN is

K-diagnosable w.r.t. the first fault class for any K ≥ 1. Indeed

as soon as a new observation occurs we can establish if a fault

in the first class has either occurred or not, since any further

observation leads to a certain state.

On the contrary, there are three elementary uncertain cy-

cles w.r.t. the second fault class, namely, S3bS3, S5bS7aS5,

S6bS8aS6, and S3aS5bS7bS3. In particular, three out of four

uncertain cycles for the second fault class are also indetermi-

nate: S3bS3, S5bS7aS5, S6bS8aS6.

As an example, consider the uncertain cycle S6bS8aS6.

Let σ′ = (t4, τ
′
1) (t1, τ

′
2) (t2, τ

′
3) (t4, τ

′
4) (t1, τ

′
5) (t2, τ

′
6)

(t4, τ
′
7) (t1, τ

′
8) and σ′′ = (t4, τ

′′
1 ) (t1, τ

′′
2 ) (t2, τ

′′
3 )

(t4, τ
′′
4 ) (t1, τ

′′
5 ) (t6, τ

′′
6 ) (t7, τ

′′
7 ) (t3, τ

′′
8 ) (t4, τ

′′
9 ) (t1, τ

′′
10)

be two timed sequences in the MSCG associated with

the pair of sequences x0εx1ax2bx0εx1ax2bx0εx1a and

x0εx1ax2bx0εx1ax2εx3εx4bx0εx1a in G associated with the

indeterminate cycle S6bS8aS6 in the diagnoser. Sequence σ′′

includes t7 ∈ T 2
f and such a transition is followed by 2

observable transitions, precisely t3 and t1. Transition t7 is not

in σ′.

According to the set of constraints (1) we associate the

following set of constraints to σ′ and σ′′:
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a 

{x0N, x1N, x2F1,   

x3F1, x4F1F2} 

                         S1 

b 

{x2N, x3N, x4F2} 

                         S2 

{x0F1, x0F1F2,  

x1F1, x1F1F2, 

x2F1, x3F1F2, 

x3F1, x4F1F2} 

                         S3 

{x2F1F2, x2F1,   

x3F1, x3F1F2, 

x4F1F2}           S5 

{x0N, x0F2, x1N, 

x1F2, x2F1, x3F1F2, 

x3F1, x4F1F2} 

                                S4 

{x0F1, x0F1F2, 

x1F1, x1F1F2, 

x2F1, x2F1F2, 

x3F1, x3F1F2, 

x4F1F2}        S7 

{ x2N, x2F2, 

x3N, x3F2, 

x4F2}       S6 
{x0N, x0F2, x1N, 

x1F2, x2F1, x2F1F2, 

x3F1, x3F1F2, 

x4F1F2}                  S8 

a 

a 

a 

a 

b 

b 

b 

b 
b b 

b 

Fig. 4. The diagnoser of automaton G in Fig. 3.
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8 +∆′′

9 +∆′′
10 ≤ τ̄

τ̄ − (∆′′
1 +∆′′

2 +∆′′
3 +∆′′

4 +∆′′
5+

∆′′
6 +∆′′

7 +∆′′
8 +∆′′

9 +∆′′
10) < 2















































(a)

∆′
1 ≥ 2, ∆′

1 ≤ 2, ∆′
2 ≥ 1, ∆′

2 ≤ 2
∆′

3 ≥ 1, ∆′
3 ≥ 2, ∆′

4 ≤ 2, ∆′
4 ≤ 2

. . .

. . .
∆′′

1 ≥ 2, ∆′′
1 ≤ 2, ∆′′

2 ≥ 1, ∆′′
2 ≤ 2

∆′′
3 ≥ 1, ∆′′

3 ≤ 2, . . . , . . .































(b)

∆′
1 +∆′

2 = ∆′′
1 +∆′′

2

∆′
1 +∆′

2 +∆′
3 = ∆′′

1 +∆′′
2 +∆′′

3

. . .
∆′

1 +∆′
2 +∆′

3 +∆′
4 +∆′

5 +∆′
6 =

= ∆′′
1 +∆′′

2 +∆′′
3 +∆′′

4 +∆′′
5+

+∆′′
6 +∆′′

7 +∆′′
8

. . .







































(c)

τ̄ ≥ 0 (d)

In the above set of constraints ∆′
1 denotes the time interval

spent in class C0. At time τ ′1 = ∆′
1 transition t4 fires leading

to class C1. ∆′
2 denotes the time interval spent in class C1. At

time τ ′2 = ∆′
1+∆′

2 transition t1 fires leading to class C2, and

so on. Note that ∆′
4 denotes the time interval spent in class

C1 the second time this class is visited.

The existence of a solution has been tested using the LINDO

package4, introducing a dummy objective function (we used

min τ̄ ) to obtain a LPP formulation. In particular, we found as

4LINDO website: http://www.lindo.com/

optimal solution τ̄ = 12 that corresponds to L(σ′) = L(σ′′) =
(a, 3) (b, 4) (a, 7) (b, 9) (a, 12). Therefore the system is not

2-diagnosable with respect to the second fault class.

We conclude this section observing that K-diagnosability

strictly depends on transitions timing. As an example, no

solution is found if we assume Q(t6) = (1, 3) instead of

Q(t6) = (0, 2).

VI. τ -DIAGNOSABILITY ANALYSIS

In this section we propose a procedure to analyze the τ -

diagnosability of a TPN. Main steps are summarized by the

following algorithm.

Algorithm 8: [Analysis of τ -diagnosability]

Inputs: A labeled TPN system 〈Nd,M0〉 with labeling func-

tion L, fault classes T i
f , i ∈ {1, . . . , r} and a real positive

number τ .

Output: Diagτi ∈ {0, 1}, i ∈ {1, . . . , r}: Diagτi = 1
(Diagτi = 0) means that the system is (is not) τ -diagnosable

w.r.t. fault class T i
f .

1) Build the MSCG according to Algorithm 1 and let

Diagτi = 1 for all i ∈ {1, . . . , r}.

2) Compute the nondeterministic automaton G isomorphic

to the MSCG. Each state of G corresponds to a class of

the MSCG. Edges are labeled with the second element

of the edges of the MSCG, namely the label associated

with transitions. In the case of silent transitions modeling

a fault, it is also specified to which fault class transitions

belong.

3) For any fault class i ∈ {1, . . . , r} compute all pairs of

sequences in G having the same observable projection,

one containing a fault transition in T i
f and the other

one not, and such that in the faulty sequence, the

subsequence that fires after the fault has the sum of

the path’s transitions lower bounds less than or equal

to τ and the sum of the path’s transitions upper bounds

greater than or equal to τ .
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4) If there are no such sequences for any fault class i ∈
{1, . . . , r}, then the system is τ -diagnosable.

Else if for some fault class i ∈ {1, . . . , r} Step 3

provides some pair, then consider all such pairs and go

to Step 5.

5) Given a pair of sequences in G and a fault class

T i
f , find the corresponding timed sequences σ′ =

(ti′
1
, τ ′1) . . . (ti′

k′
, τ ′k′) and σ′′ = (ti′′

1
, τ ′′1 ) . . . (ti′′

k′′
, τ ′′k′′ )

in the MSCG. Let π′ and π′′ be defined as in Step 3 of

Algorithm 6, namely, respectively, the paths associated

with sequences σ′ and σ′′ (containing the fault) in the

MSCG.

Let k̄ < k′′ be the index associated with the first

occurrence of the fault transition in σ′′. We associate

with the two paths π′ and π′′ the following set of

constraints:



























































































































































































































































































































k′

∑

l=1

∆′
l ≤ τ̄ , (a1)

τ̄ −
k′

∑

l=1

∆′
l <

min
r:tr∈out(Cq

k′
)
{u

qk′

r }, (a2)

k′′

∑

l=1

∆′′
l ≤ τ̄ , (a3)

τ̄ −
k′′

∑

l=1

∆′′
l <

min
r:tr∈out(Cq

k′′
)
{u

qk′′

r }, (a4)

τ̄ −
k̄

∑

l=1

∆′′
l = τ (a5)

∆′
l ≥ max{0, l

ql−1

il
},

l = 1, . . . , k′,

(b1)

∆′
l ≤ min

j:tj∈A(Mql−1
)
{u

ql−1

j },

l = 1, . . . , k′,

(b2)
∆′′

l ≥ max{0, l
ql−1

il
},

l = 1, . . . , k′′,

(b3)

∆′′
l ≤ min

j:tj∈A(Mql−1
)
{u

ql−1

j },

l = 1, . . . , k′′,

(b4)
q′
∑

l=1

∆′
l =

q′′
∑

l=1

∆′′
l , ∀ti′

q′
, ti′′

q′′
∈ To with

same label and same
observable prefix

(c)

τ̄ ≥ τ (d)

(2)

If the set of constraints (2) is feasible, let Diagτi =

0: It means that there exist two sequences as the ones

described in the itemized list of Definition 3, then the

system is not τ -diagnosable w.r.t. fault class i. �

Proposition 9: Given a labeled TPN system 〈Nd,M0〉 with

labeling function L, fault classes T i
f , i ∈ {1, . . . , r}, and

a real positive number τ , Algorithm 8 allows to establish

if the system is/is not τ -diagnosable w.r.t. fault class T i
f ,

i ∈ {1, . . . , r}. In particular, if Diagτi = 1 then the system

is τ diagnosable w.r.t. fault class i, if Diagτi = 0 then the

system is not τ diagnosable w.r.t. fault class i.
Proof: As in Algorithm 6, at Step 1 we compute the MSCG

since it collects all the information on the evolution of the TPN

system. By Assumptions A1 and A2 we know for sure that

such a graph is finite [4]. We consider the logic version of

our PN system by considering the graph G isomorphic to it

(Step 2).

We consider all pairs of sequences that are ambiguous in

the underlying logic model and such that the time length of

the subsequence after the fault is potentially equal to τ . In

more detail (see Step 3) if τ is less than the sum of the path’s

transitions lower bounds then such sequence can never fire

in an amount of time equal to τ , so we should not take it

into account. The same holds if τ is greater than the sum

of the path’s transitions upper bounds. Note that Assumption

A3’ allows us to have a stop criterion. In fact, if Assumption

A3’ is not verified we could have cycles whose sum of the

lower bounds of all transitions is zero. If such is the case the

condition “τ greater than or equal to the sum of the minimum

lower bounds of the subsequence firing after the fault” is

always verified and we should consider sequences of infinite

length.

If no such pair exists, then the system is τ -diagnosable, else

we have to check if some of such pairs are actually enabled

in the TPN system, i.e., if there exist two sequences that can

produce the same observations in the same time instants. This

verification is done by solving the set of constraints (2) that

differs from (1) in constraint (d) and also includes constraint

(a5). In particular, constraint (a5) guarantees that the duration

in time of σ′′ after the first occurrence of a fault transition

in T i
f is τ (third item of Definition 3). Finally, constraint (d)

guarantees the feasability of the constraints, in fact if such a

constraints is not verified, constraint (a5) is never satisfied. �

In the following we present a numerical example to illustrate

the approach. As in the case of K-diagnosabily we use the

diagnoser to compute ambiguous strings in the underling logic

model. Details on this are provided in the following subsection.

A. Analysis with the diagnoser approach

When the diagnoser approach is used to compute ambiguous

strings, Steps 3 and 4 of Algorithm 8 should be replaced by

the following Steps 3” and 4”.

3”) Compute the diagnoser Diag(G) using the approach in

[24] and look for uncertain states for any fault class i ∈
{1, . . . , r}.

4”) If there are no uncertain states for any fault class i ∈
{1, . . . , r}, then the timed system is τ -diagnosable (this

holds for any τ ∈ R+).
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Else if there are single uncertain states w.r.t. some fault

class i ∈ {1, . . . , r}, then for each uncertain state con-

sider the corresponding states in G. Consider all exiting

edges from such states and take the minimum among such

upper bounds associated with the transitions that label the

exiting edges. If τ is greater than or equal to the minimum

among such upper bounds, then the system can be τ -

diagnosable, (but we still have to look for uncertain paths,

see next Else if), else the system is not τ -diagnosable

w.r.t. fault class i and we let Diagτi = 0.

Else if there are uncertain paths (including at least

two states and eventually cycles) for some fault class

i ∈ {1, . . . , r}, then consider all pairs of sequences in

G associated with the corresponding uncertain path such

that in the faulty sequence the subsequence that fires

after the fault has the sum of the path’s transitions lower

bounds less than or equal to τ , and the sum of the path’s

transitions upper bounds greater than or equal to τ , and

go to Step 5.

The above two steps can be explained as follows.

From [24] we know that if the diagnoser Diag(G) does

not contain uncertain states for any fault class T i
f , then G

is diagnosable. Thus, by Proposition 4 the TPN system

〈Nd,M0〉 is also τ -diagnosable for any τ ∈ R+.

The first Else if follows from the fact that if for some fault

class T i
f , with i ∈ {1, . . . , r}, there exists a single uncertain

state in Diag(G) such that τ is less than the minimum among

the upper bounds associated with the transitions that label

the exiting edges of the uncertain state, then the TPN system

〈Nd,M0〉 is not τ -diagnosable w.r.t. class T i
f . Indeed, if such a

case occurs, then τ time units after the fault has occurred, the

system is still in an ambiguous situation, then the TPN system

〈Nd,M0〉 is not τ -diagnosable w.r.t. the ith class. If such is

not the case, we have to look for uncertain paths (second Else

if).

The second Else if follows from the fact that, by Defini-

tion 3, if for some fault class T i
f there exist an uncertain path

in Diag(G), and two sequences σ′ and σ′′ in the MSCG that

satisfy the following three items:

• σ′ and σ′′ satisfy the first two items of Definition 1,

• the subsequence of σ′′ that fires after the first fault in T i
f

has the sum of the path’s transitions lower bounds less

than or equal to τ and the sum of path’s transitions upper

bounds greater than or equal to τ ,

• σ′ and σ′′ lead to a feasible solution for constraints in

eq. (2),

then the TPN system 〈Nd,M0〉 is not τ -diagnosable.

B. A numerical example

Let us consider again the TPN system in Example 5 and

Subsection V-B where K-diagnobility has been studied in the

case of K = 2.

Now, we want to know if the system is τ -diagnosable w.r.t.

the second fault class for τ = 3.

Consider the uncertain path S6bS8aS6 in the diagnoser.

Let σ′ = (t4, τ
′
1) (t1, τ

′
2) (t2, τ

′
3) (t4, τ

′
4) (t1, τ

′
5) (t2, τ

′
6))

and σ′′ = (t4, τ
′′
1 ) (t1, τ

′′
2 ) (t2, τ

′′
3 ) (t4, τ

′′
4 ) (t1, τ

′′
5 ) (t6, τ

′′
6 )

(t7, τ
′′
7 ) (t3, τ

′′
8 ) be two timed sequences in the MSCG asso-

ciated with the pair of sequences x0εx1ax2bx0εx1ax2b and

x0εx1ax2bx0εx1ax2εx3εx4b in G relative to the uncertain

path at hand. Only sequence σ′′ includes t7 ∈ T 2
f and it

is followed by one observable transition (t3). Moreover, the

subsequence t7t3 is such that the sum of the path’s transitions

lower bounds is less than or equal to 2 and the sum of path’s

transitions upper bounds is greater than or equal to 3 (in

particular, the sum of lower bounds is equal to 2 and the sum

of the upper bounds is equal to 3).

According to the set of inequalities in (2), we associate the

following set of constraints with these two sequences:














































































































































































∆′
1 +∆′

2 +∆′
3 +∆′

4 +∆′
5 +∆′

6 ≤ τ̄
τ̄ − (∆′

1 +∆′
2 +∆′

3 +∆′
4+

+∆′
5 +∆′

6) < 2
∆′′

1 +∆′′
2 +∆′′

3 +∆′′
4 +∆′′

5 +∆′′
6 +∆′′

7+
+∆′′

8 ≤ τ̄
τ̄ − (∆′′

1 +∆′′
2 +∆′′

3 +∆′′
4 +∆′′

5 +∆′′
6 +∆′′

7+
+∆′′

8) < 2
τ̄ − (∆′′

1 +∆′′
2 +∆′′

3 +∆′′
4 +∆′′

5 +∆′′
6) = 3















































(a)

∆′
1 ≥ 2, ∆′

1 ≤ 2, ∆′
2 ≥ 1, ∆′

2 ≤ 2
∆′

3 ≥ 1, ∆′
3 ≥ 2, ∆′

4 ≤ 2, ∆′
4 ≤ 2

. . .

. . .
∆′′

1 ≥ 2, ∆′′
1 ≤ 2, ∆′′

2 ≥ 1, ∆′′
2 ≤ 2

∆′′
3 ≥ 1, ∆′′

3 ≤ 2, . . .
. . .







































(b)

∆′
1 +∆′

2 = ∆′′
1 +∆′′

2

∆′
1 +∆′

2 +∆′
3 = ∆′′

1 +∆′′
2 +∆′′

3

. . .
∆′

1 +∆′
2 +∆′

3 +∆′
4 +∆′

5 +∆′
6 =

= ∆′′
1 +∆′′

2 +∆′′
3 +∆′′

4 +∆′′
5+

+∆′′
6 +∆′′

7 +∆′′
8































(c)

τ̄ ≥ 0 (d)

Using the LINDO package we find out that such a set of

constraints is feasible. In particular, assuming again a perfor-

mance index to be minimized equal to τ̄ , we found the optimal

solution τ̄ = 10 that corresponds to L(σ′) = L(σ′′) = (a, 3)
(b, 4) (a, 7) (b, 9). Therefore the system is not diagnosable in

3 time units w.r.t. the second fault class.

VII. COMPLEXITY OF THE PROCEDURE

In this section we analyze the complexity of each step of

the procedure to analyze K-diagnosability. Similar results can

be found if we study the computational complexity to analyze

the τ -diagnosability. They are not reported here for the sake

of brevity.

1) Construction of the MSCG. The number of nodes of

the MSCG increases exponentially with the system

complexity (net structure, and number of tokens in the

initial marking).

2) Computation of the nondeterministic automaton G iso-

morphic to the MSCG. It is obtained from the MSCG

simply working on the labels of the edges of the MSCG,

so requires no additional computational effort.
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3) Computation of the pairs of ambiguous sequence in the

underlying logic model.

As already discussed, this step depends on the approach

considered, e.g. [24] or [29].

In the first case, if nG denotes the number of nodes

of the nondeterministic automaton G isomorphic to the

MSCG, the size of Diag(G) is 2nG , i.e., it is exponential

in the number of states of G. Then uncertain paths

including indeterminate cycles for some fault class T i
f

should be computed. This can be obtained in polynomial

time in the cardinality of the state space of the diagnoser

Diag(G).
In the second case [29] the number of states of the

verifier automaton grows polynomially with the number

nG of states of G, and the complexity of determining

the ambiguous sequences is also polynomial w.r.t. nG.

4) Verification of the ambiguity of a given pair of sequences

wrt time.

For any pair of sequences that is ambiguous in the

underlying logic model wrt a given fault class (such

that the number of observable transitions after the

fault is K), we first determine the corresponding pairs

of timed sequences σ′ = (ti′
1
, τ ′1) . . . (ti′

k′
, τ ′k′) and

σ′′ = (ti′′
1
, τ ′′1 ) . . . (ti′′

k′′
, τ ′′k′′) in the MSCG. Let lmax

be the length of the longest of such sequences. To

establish if such sequences are ambiguous also in the

TPN model, we associate with them a set of non linear

constraints of the form (1), and evaluate if they are

feasible. This can be done solving an LPP obtained

linearizing the constraints (a1) and (b1) (see [4] for

the details on linearization of such constraints). This

LPP has a number of constraints at most equal to

2 + 2(|T | + 2lmax|T |) + lmax+1. In particular, one

constraint is of type (a1) and one of type (a3). The

number of constraints of type (a2) and (a4) is equal

to the number of output transitions of the last node in

the path associated with each sequence, that is at most

equal to |T |. Constraints of type (b1), (b2), (b3) and

(b4) are each in a number equal at most to lmax|T |.
The number of constraints of type (c) is equal to the

number of observable transitions that cannot be greater

than lmax. The number of constraints of type (d) is one.

Finally, the number of unknowns of each LPP is equal

to k′+k′′+1, namely to the length of the two sequences

plus one (τ̄ ), that is at most equal to 2lmax + 1.

We finally note that our approach is based on the solution

of some LPPs that can be solved using polynomial time algo-

rithms. Moreover there are many softwares, such as CPLEX,

that allow to compute LPPs in a very efficient way. However,

if the system evolution is very fast compared with the time

required to solve the LPPs, it may be impossible to use our

approach. Obviously, this is a limitation of the procedure, but it

is common to all approaches that require online computations.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have analyzed K-diagnosability and τ -

diagnosability of labeled TPN systems. We have first formal-

ized the notions of K-diagnosability and τ -diagnosability for

a TPN. Then, using the Modified State Class Graph, we have

presented two procedures to analyze K-diagnosability and τ -

diagnosability of a labeled time Petri net system, respectively.

Both approaches require a preliminary diagnosability analysis

of the underlying logic model, and the solution of some linear

programming problems.

Several are the directions of our future research in this area.

First, we want to validate the effectiveness of the proposed

approach on a real case study, e.g. in the manufacturing or

transportation domain. Second, we plan to investigate the

possibility of making K-diagnosable (τ -diagnosable) a TPN

system that is not K-diagnosable (τ -diagnosable), acting on

the time intervals associated with transitions. Finally, we plan

to extend the proposed results to a decentralized/distributed

framework.

REFERENCES

[1] D. Corona A. Giua and C. Seatzu. State estimation of λ-free labeled
Petri nets with contact-free nondeterministic transitions. Discrete Event
Dynamic Systems, 15(1):85–1, 2005.

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183 – 235, 1994.

[3] F. Basile, M.P. Cabasino, and C. Seatzu. K-diagnosability of Time
labeled Petri nets. In Proc. IFAC WODES’14: 12th Work. on Discrete
Event Systems, 2014.

[4] F. Basile, M.P. Cabasino, and C. Seatzu. State estimation and fault di-
agnosis of Time labeled Petri net systems with unobservable transitions.
IEEE Trans. on Automatic Control, 2014.

[5] F. Basile, P. Chiacchio, and D. Teta. A hybrid model for real time
simulation of urban traffic. Control Engineering Practice, 20(2):123–
137, 2012.

[6] F. Basile, P. Chiacchio, and G. De Tommasi. An efficient approach for
online diagnosis of discrete event systems. IEEE Trans. on Automatic
Control, 54(4):748–759, 2009.

[7] F. Basile, P. Chiacchio, and G. De Tommasi. On K-diagnosability of
Petri nets via integer linear programming. Automatica, 48:2047 – 2058,
2012.

[8] A. Benveniste, E. Fabre, S. Haar, and C. Jard. Diagnosis of asynchronous
discrete-event systems: A net unfolding approach. IEEE Trans. on
Automatic Control, 48:714 – 727, 2003.

[9] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O.H. Roux. Comparison
of Different Semantics for Time Petri Nets. In Proc. 3rd international
conference on Automated technology for verification and analysis, 2005.

[10] Patrice Bonhomme. State Observer Synthesis of Real-Time Systems
Modeled by P-Time Petri Nets. In 18th IEEE Int. Conf. on Emerging
Technologies & Factory Automation, 2013.

[11] B.A. Brandin and W.M. Wonham. Supervisory control of timed discrete-
event systems. IEEE Transactions on Automatic Control, 39(2):329–342,
1994.

[12] M. P. Cabasino, A. Giua, and C. Seatzu. Fault detection for discrete
event systems using Petri nets with unobservable transitions. Automatica.
Submitted.

[13] M.P. Cabasino, A. Giua, S. Lafortune, and C. Seatzu. A New Approach
for Diagnosability Analysis of Petri Nets using Verifiers Nets. IEEE
Trans. on Automatic Control, 57(12):3104 – 3117, 2012.

[14] M.P. Cabasino, A. Giua, M. Pocci, and C. Seatzu. Discrete event
diagnosis using labeled Petri nets. An application to manufacturing
systems. Control Engineering Practice, 19(9):989–1001, 2011.

[15] M.P. Cabasino, A. Giua, and C. Seatzu. Diagnosability of discrete-event
systems using labeled Petri nets. IEEE Trans. on Automation Science
and Engineering, 11:144 – 153, 2014.

[16] F. Cassez. Dynamic observers for fault diagnosis of timed systems. In
Proc. 49th IEEE Conf. on Decision and Control, 2010.

[17] M. Dotoli, M.P. Fanti, and A.M. Mangini. Fault detection of discrete
event systems using Petri nets and integer linear programming. In Proc.
of 17th IFAC World Congress, Seoul, Korea, July 2008.

[18] S. Hashtrudi Zad, R.H. Kwong, and W.M. Wonham. Fault diagnosis
in discrete-event systems: incorporating timing information. IEEE
Transactions on Automatic Control, 50(7):1010–1015, 2005.



POSTPRINT - WORK PUBLISHED ON IEEE TRANSACTIONS ON AUTOMATIC CONTROL (HTTP://DX.DOI.ORG/10.1109/TAC.2016.2588736) 13

[19] G. Jiroveanu and R.K. Boel. A distributed approach for fault detection
and diagnosis based on Time Petri Nets. Mathematics and Computers
in Simulation, 70(5-6):287 – 313, 2006.

[20] Philip Meir Merlin. A study of the recoverability of computing systems.
PhD thesis, Univ. of California, Irvine, 1974.

[21] T. Murata. Petri nets: properties, analysis and applications. Proc. of the
IEEE, 77(4):541–580, 1989.

[22] Yannick Pencolé and Audine Subias. A Chronicle-based Diagnosability
Approach for Discrete Timed-event Systems: Application to Web-
Services. Journal of Universal Computer Science, 15(17):3246–3272,
2009.

[23] C. Ramchandani. Analysis of asynchronous concurrent systems by
timed Petri nets. Technical report, Massachusetts Inst. of Technology,
Cambridge, MA, USA, 1974.

[24] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis. Diagnosability of discrete-event systems. IEEE Trans.
on Automatic Control, 40 (9):1555–1575, 1995.

[25] C. Seatzu, M. Silva, and J.H. van Schuppen (Eds). Control of Discrete-
Event Systems. Automata and Petri Net Perspectives, volume 433. in
Lecture Notes in Control and Information Science, Springer, 2012.

[26] S. Tripakis. Fault Diagnosis for Timed Automata. Lecture Notes in
Computer Science, 2469:205–221, 2002.

[27] Univ. of Michigan. Executables of the umdes-lib software li-
brary for solaris, linux, mac and windows are publicly available.
http://www.eecs.umich.edu/umdes/toolboxes.html. 2007.

[28] X. Wang, C. Mahulea, and M. Silva. Fault Diagnosis Graph of Time
Petri Nets. In 2013 European Control Conference (ECC’13), Zurich,
Switzerland, 2013.

[29] T.-S. Yoo and S. Lafortune. Polynomial-time verification of diagnos-
ability of partially observed discrete-event systems. IEEE Trans. on
Automatic Control, 47:1491–1495, 2002.

[30] J. Zaytoon and S. Lafortune. Overview of fault diagnosis methods for
Discrete Event Systems. Annual Reviews in Control, 37:308 – 320,
2013.

Francesco Basile Francesco Basile was born in
Naples, Italy, in 1971. He received the Laurea degree
in Electronic Engineering in 1995 and the Ph.D.
degree in Electronic and Computer Engineering in
1999 from the University of Naples. In 1999 he
was visiting researcher for six months at the De-
partamento de Ingenieria Informatica y Systemas of
the University of Saragoza, Spain. He is currently
associate professor of Automatic Control at the
Dipartimento di Ingegneria Elettronica ed Ingegneria
Informatica of the University of Salerno, Italy. He

has published more than 100 papers on international journals and conferences
He has been member of the editorial board of International Journal of Robotics
and Automation. He is a member of the editorial board of IEEE Transactions
on Control Systems Technology, IEEE Transactions on Automation Science
and Engineering and of IEEE Control System Society Conference Editorial
Board. His current research interest are: modelling and control of discrete
event systems, automated manufacturing and robotic. He is IEEE Senior
member since November 2011.

Maria Paola Cabasino Maria Paola Cabasino re-
ceived the Laurea degree in electronic engineering
and the Ph.D. degree in electronic and computer
engineering, both from the University of Cagliari,
Cagliari, Italy, in 2005 and 2009, respectively. She
is a Post doctoral researcher of Automatic Con-
trol at the Department of Electrical and Electronic
Engineering of the University of Cagliari. She has
been a visiting researcher at the University of Illi-
nois (Urbana-Champaign, IL, USA), University of
Michigan (Ann Arbor, MI, USA), Universidad de

Zaragoza (Spain) and Indiana University Purdue University Indianapolis
(Indianapolis, IN, US). She was an instructor at Indiana University Pur-
due University Indianapolis during the Spring semester 2014. Her research
interests are based on discrete event systems, automata, Petri nets, state
estimation, diagnosis, identification, supervisory control. She has been the
quality manager of the European project FP7-ICT2-3.7 DISC - Distributed
Supervisory Control of Large Plants (2008-11). She has been member of the
International Program Committee of the 2nd IFAC Conf. on the Analysis
and Design of Hybrid Systems (ADHS’06) and of the 18th IEEE Int. Conf.
on Emerging Technology and Factory Automation (ETFA2013). She has
published 14 international journal papers, 7 book chapters and 35 international
conference papers.

 

Carla Seatzu Carla Seatzu received the Laurea de-
gree in Electrical Engineering and her Ph.D. degree
in Electronic and Computer Engineering from the
University of Cagliari, Italy, in 1996 and 2000,
respectively. Since 2011 she is Associate Professor
of Automatic Control at the Department of Electrical
and Electronic Engineering of the University of
Cagliari, which she joined in 2002 as an Assistant
Professor. In 2013 she got the Italian National Abil-
itation to Full Professor of Automatic Control.

She is Vice-President of the Faculty Committee
of Engineering and Architecture and Vice-Coordinator of the Ph.D. Program
in Electronic and Computer Engineering at the University of Cagliari.

Carla Seatzu’s research interests include discrete-event systems, Petri nets,
hybrid systems, networked control systems, manufacturing and transportation
systems. She is author of more than 200 publications, including 60+ papers in
international journals, 10+ chapters in international books, and one textbook.
She is editor of two international books and the proceedings of two interna-
tional conferences. Her h-index in Scopus is equal to 23.

Actually she is Associate Editor of 4 international journals: IEEE Trans.
on Automatic Control, IEEE Trans. on Automation Science, Discrete Event
Dynamic Systems, and Nonlinear Analysis: Hybrid Systems. She has also
intensively collaborated to the organization of international events. In partic-
ular, she is Workshop Chair of the 55th IEEE Conf. on Decision and Control
(2015), and was General Co-chair of the 18th IEEE Int. Conf. on Emerging
Technologies and Factory Automation (2013).


