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We study a model of spiking neurons, with recurrent connections that result from learning a set
of spatio-temporal patterns with a spike-timing dependent plasticity rule and a global inhibition.
We investigate the ability of the network to store and selectively replay multiple patterns of spikes,
with a combination of spatial population and phase-of-spike code. Each neuron in a pattern is
characterized by a binary variable determining if the neuron is active in the pattern, and a phase-
lag variable representing the spike-timing order among the active units. After the learning stage, we
study the dynamics of the network induced by a brief cue stimulation, and verify that the network
is able to selectively replay the pattern correctly and persistently. We calculate the information
capacity of the network, defined as the maximum number of patterns that can be encoded in the
network times the number of bits carried by each pattern, normalized by the number of synapses,
and find that it can reach a value αmax ' 0.27, similar to the one of sequence processing neural
networks, and almost double of the capacity of the static Hopfield model. We study the dependence
of the capacity on the global inhibition, connection strength (or neuron threshold) and fraction of
neurons participating to the patterns. The results show that a dual population and temporal coding
can be optimal for the capacity of an associative memory.

I. INTRODUCTION

Precise spatio-temporal patterns of spikes, where in-
formation is coded both in the population (spatial) dis-
tribution and in the precise timing of the spikes, has been
hypothesized to play a fundamental role in information
coding, processing and memory in the brain [1–4].

Notably, precise spatio-temporal memory traces,
stored during experience, are replayed during post-
experience sleep, with a different time scale but with the
same phase-relationship [5–7], It has been conjectured
that spontaneous replay of stored patterns during sleep
is relevant for memory consolidation.

Indeed, an important feature of cortical activity, re-
ported in a variety of in vivo studies, is the similarity of
spontaneous and sensory-evoked activity patterns [8–10]
Recently the spontaneous and evoked activity similar-
ity has been reliably observed also in dissociated cortical
networks [11], reinforcing the idea that the emergence of
cortical recurring patterns, both during spontaneous and
evoked activity, is the result of the cortical connectivity
(with its micro-circuits and dynamical attractors) [11].

Several neural codes (firing rate, population code, tem-
poral code, phase of spike code, and combinations of
these) have been proposed in order to explain how neu-
rons encode sensory information. For long time the rate
code hypothesis has been considered adequate, but there
is increasing evidence that the timing of spikes relative
to others emitted by the same or other neurons may be
highly relevant in many situations [3, 4, 12–14].

Recently [3], the performance of different neural codes
in encoding natural sounds in the auditory cortex of alert
primates has been compared. It has been demonstrated
that both temporal spike patterns and spatial population
codes provide more information than firing rates alone,

and that they provide complementary informations. Re-
sults in primary visual and auditory cortices show that
period of slow oscillatory network activity can be used
as internal reference frame to effectively partition spike
trains and extract phase information [15]. Combining
both spatial population activity with temporal coding
mechanisms into a dual code provides significant gains of
information [3, 13, 14]. A dual code consisting of adding
a phase label to population code was found to be not
only more informative, but also more robust to sensory
noise [3].

Following these experimental results, in this paper we
study storage and retrieval of spatio-temporal patterns of
activity, where each pattern is formed by a subset of the
neurons, firing in a precise temporal order. Therefore, in
each pattern the information is coded both in the binary
spatial part, indicating which units are active (as in the
Hopfield model), and in the temporal part, indicating the
spiking order and the precise phase relationships of the
units that are active in that pattern.

A fundamental ingredient of the model is the spike-
timing dependent plasticity (STDP) rule that shapes the
connections between neurons. In the first learning stage,
the network is forced to replay the patterns to be en-
coded, and the STDP learning rule is applied to deter-
mine the connections. While within the class of usual
autoassociative Hebbian rules (as in the Hopfield model)
the connections are symmetric, and therefore the dynam-
ics of the network relaxes towards static patterns, in our
case the plasticity crucially depends on the temporal or-
der of the spikings, and results in asymmetric connections
between neurons, so that the attractors of the dynam-
ics are spatio-temporal patterns with a defined order of
spiking of the neurons. We add, to the connection de-
termined by the STDP rule, a term representing a global
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inhibition, that reduces the probability that a neuron not
participating to the pattern fires incorrectly.

The model is different from other models of memory
storage of dynamical patterns, as sequence processing
neural networks [16, 17] and synfire chains [18–21], be-
cause in such models patterns are characterized by pools
of neurons that fire synchronously, each pool can belong
only to one chain, and each neuron can belong to more
than one pool, thus firing at different times within the
pattern. In our case, a pattern is characterized by a
pool of neurons that are inactive during all pattern evo-
lution, while other neurons fire sequentially, so that no
synchrony between neurons is required, and each active
neuron is characterized by a precise time of firing with
respect to other active neurons within the pattern.

Therefore our model is more similar to the Polychro-
nization model introduced by Izhichevich [22] where pre-
cise reproducible time-locking patterns emerges in net-
work dynamics. Differently from our model, in the model
of Izhichevich polychronous groups are not stable attrac-
tors from dynamical system point of view, they emerge
with a stereotypical but transient activity that typically
lasts less then 100 ms [22].

II. THE MODEL

We simulate a network of N leaky integrate-and-fire
neurons, where a number P of spatio-temporal pattern
are encoded in the connections. The activity of the neu-
ron j = 1, . . . , N in pattern µ = 1, . . . , P is given by the
periodic spike train

xµj (t) = ξµj

∞∑
n=−∞

δ

[
t−

(
φµj
2π

+ n

)
Tµ

]
,

where ξµj = 0, 1 are randomly and independently drawn
binary variables indicating if neuron j participates or not
to the pattern, 0 ≤ φµj < 2π are randomly and indepen-
dently drawn variables indicating the phases of firing, Tµ

is the period of the pattern, and the integer number n
spans all the spikes emitted by the neuron. We extract
randomly P patterns, where 0 < M ≤ N of the neu-
rons are active, that is have ξµj = 1, while the remaining

N−M have ξµj = 0, and we extract randomly the phases

φµj for the M active neurons.
Then, in the first learning stage, we set the connection

between pre-synaptic neuron i and post-synaptic neuron
j using the learning rule

Jij = −I0+E0

P∑
µ=1

Tµ

T̂

T̂∫
0

dt

T̂∫
0

dt′ xµi (t′)A(t−t′)xµj (t), (1)

where T̂ � Tµ is the learning time, I0 is an overall inhi-
bition, E0 is a parameter determining the strength of the
connections for co-active neurons, and A(τ) is a spike-
timing dependent plasticity (STDP) kernel, that makes

the connection dependent on the precise relative timing of
the pre-synaptic and post-synaptic activity, as observed
in neocortical and hippocampal pyramidal cells [23–25].
As shown in Fig. 1, the kernel is such that the connec-
tion between i (pre) and j (post) is potentiated if neuron
j fires few milliseconds after neuron i, and depressed if
the order is reversed. Note that the normalization Tµ/T̂
ensures that the connections do not depend on the learn-
ing time T̂ , if it is large enough that border effect can
be neglected. This rule extends the rule used in [26, 27],
with the addition of the global inhibition term I0, that
inhibits the activity of neurons not participating to the
pattern.

FIG. 1. The learning kernel A(τ) = ape
−τ/tp − ade−ητ/tp if

τ > 0, and A(τ) = ape
ητ/td − adeτ/td if τ < 0, with ap =

(1 + ηtp/td)
−1, ad = (η + tp/td)

−1, η = 4, tp = 10.2 ms,
td = 28.6 ms. The parameters are the same used in [28] to fit
the experimental data of [24].

After learning a number P of patterns with the learn-
ing rule (1), we simulate the dynamics of the network by
considering a leaky integrate-and-fire model of neurons,
where the membrane potential obeys the equation

dVj
dt

= −Vj(t)/τm + Ij(t)

(membrane capacity is set to one), with

Ij(t) =
∑
t̂i>t̂j

Jije
−(t−t̂i)/τs ,

where t̂i > t̂j are all the spikes in input to the neuron j
after the last spike of neuron j, membrane time constant
τm = 10 ms and synapse time constant τs = 5 ms. When
the potential reaches the threshold Θ (conventionally set
to Θ = 1), the neuron fires and the potential is reset to
the resting value V = 0. Note that, among the param-
eters I0, E0 and Θ, only two are independent. We have
chosen to set Θ = 1, but one could as well set for exam-
ple E0 = 1, and study the dependence of the model with
respect to I0 and Θ.

The dynamics of the network is started by a short cue,
i.e. a short train of H � M spikes forced in a sub-
set of neurons with the order given by one of the stored
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patterns. The times of this train of spikes are given by
ti,cue = (i/N)Tcue, with i = 1 . . . H, where Tcue can be
different from the period Tµ of the pattern. In the fol-
lowing the number of neurons is N = 6000, if not other-
wise stated, the period of the patterns is Tµ = 125 ms,
H = M/10, and Tcue = 83 ms.

III. RESULTS

FIG. 2. Two examples of successful replay, initiated by a
stimulus cue, for the network with N = 6000 and M = 3000.
Each dot represents a spike of the neuron indicated by the y-
axis at the time indicated by the x-axis. On the y-axis the first
3000 neurons are the ones participating to the pattern being
replayed, with increasing phase of firing, and the following
3000 are the neurons not participating to the pattern. In
both cases A and B, the parameters used are I0 = 0.0133
and E0 = 0.2856, the length of the cue is H = 300 and its
period Tcue = 83 ms. A) In this case the number of patterns
is P = 30, and the order parameter is m = 0.995. None of
the neurons not participating to the pattern fires during the
dynamics. B) The number of patterns is P = 180, and the
order parameter is m = 0.938. In this case there are several
spikes also from the neurons that do not participate to the
pattern, as an effect of the worse quality of the replay.

After inducing the short cue in the network, we ob-
serve the subsequent spontaneous dynamics, to see if the
network is able to reproduce completely and persistently
the pattern being stimulated by the cue. In Fig. 2, we
show two examples of successful replay with M = 3000,
that is half of the neurons are active in each pattern.
In the case of Fig. 2A, the number of stored patterns is

P = 30. On the y-axis the first 3000 neurons are the
ones participating to the pattern, with increasing phase
of firing, and the following 3000 are the ones not partic-
ipating. The raster plot shows that, after the cue that
lasts ∼ 4 ms, the neurons continue to fire approximately
in the order corresponding to the pattern that has been
stimulated, that therefore has been retrieved with high
fidelity. On the other hand, in Fig. 2B the number of
stored patterns is P = 180, and the quality of the replay
is worse. The order of firing of the neurons is less pre-
cise, as shown by the thickening of the plot, and several
neurons fire although they do not belong to the pattern
being retrieved. With these parameters, when the num-
ber of stored patterns becomes larger than Pmax ' 200,
the network is not able to retrieve any of the patterns,
and the dynamics following the cue becomes completely
chaotic.

In order to quantify the quality of the selective cue-
induced replay of the pattern, we define the overlap qµ

as

qµ([t0, t1]) = max
Tw

∣∣∣∣∣∣ 1

Ns

M∑
j=1

∑
t0≤t∗j≤t1

e2πit
∗
j /T

w

e−2πit
µ
j /T

µ

∣∣∣∣∣∣ ,
(2)

where the sum is done over the spikes t∗j emitted in a
given interval of time [t0, t1] by the neurons belonging to
the pattern µ, Ns is the total number of spikes (included
those emitted by neurons not belonging to the pattern)
and we take the maximum over the time window Tw.
The overlap tends to the value qµ = 1 if the neurons be-
longing to the pattern fire with the same order of the pat-
tern, with a period of replay Tw in general different from
the period Tµ characterizing the pattern in the learning
stage, and those not belonging to the pattern do not fire.
When the quality of the replay is worse, because some of
the neurons not belonging to the pattern fire, or if the
order of replay is not exact, the value of the overlap qµ

is lower than one. Note that the order parameter does
not make any assumption on the time scale of the replay,
in agreement with experimental results showing that the
reactivation of memory traces from past experience hap-
pens on a compressed timescale during sleep and awake
state [2, 5–7].

We compute the overlap in the interval [t0, t1] =
[100 ms, 300 ms]. In the case of Fig. 2, the value of the
overlap is qµ = 0.995 in Fig. 2A and qµ = 0.938 in Fig.
2B.

In Fig. 3 we show the value of the overlap as a function
of the number of stored patterns. The overlap abruptly
goes from a value close to one, when the replay is suc-
cessful, to a value close to zero when replay fails. Failure
may happen both because there is not sustained activ-
ity at all, or because the sustained activity is chaotic
and not similar to the pattern to be retrieved. We can
measure the storage capacity of the network as the max-
imum number Pmax of patterns that can be stored and
retrieved with an overlap greater or equal to 0.5. The
storage capacity for the parameters of Fig. 3 therefore is
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FIG. 3. Plot of the overlap qµ as a function of the number P
of patterns encoded in the network, for N = 6000, M = 3000,
I0 = 0.0133, E0 = 0.2856, H = 300, Tcue = 83 ms. Inset:
period of the replay Tw.

Pmax = 200. In the Inset, we show the period of replay
Tw, that is approximately constant for almost all values
of the number P of patterns encoded, and decreases to
zero when P gets near to its maximum value.

We have then studied the capacity of the network as
a function of the network parameters I0 and E0, for dif-
ferent number M of active neurons. To compare the ca-
pacity for different values of M (and with the case of
static patterns, for example with the Hopfield model), it
is convenient to consider the information content of each
pattern encoded, that is the number of bits carried by
each pattern. This is given by the base two logarithm of
the number of different patterns that can be encoded. For
the Hopfield model we have 2N possible patterns, so that
the number of bits of each pattern is B = log2 2N = N .

In the case of dynamical patterns considered here,
where M of the N neurons are active, we have

(
N
M

)
pos-

sible choices of the active neurons, and M ! possible se-
quences of the active neurons, so that the number of bits
carried by a single pattern is given by

B = log2

[(
N

M

)
M !

]
'M log2N.

We therefore define the information load per synapse
of the network as α = PB/N2, where P is the number
of patterns encoded and B the number of bits of each
patterns. Note that in the case of the Hopfield model
this gives the usual definition α = P/N . The informa-
tion capacity is defined as the maximum value of the
load, αmax = PmaxB/N

2, such that the patterns can be
effectively retrieved.

In Fig. 4, we show the information capacity αmax =
PmaxB/N

2 of a network with N = 6000 neurons, as
a function of the overall inhibition I0, and connection
strength E0, for A) M = 6000, B) M = 2000 and C)
M = 1000, with a cue of length H = M/10 spikes. In
the case M = 6000, when all the neurons participate to
the pattern, the maximum capacity is αmax = 0.167, that
is obtained for a value I0 ' 0 of the global inhibition, and
E0 ' 0.1.

FIG. 4. Plot of the information capacity αmax = PmaxB/N
2

of a network of N = 6000 neurons, as a function of the overall
inhibition I0 and connection strength E0, for A) M = 6000,
B) M = 2000 and C) M = 1000.

When the number M of neurons in the pattern be-
comes lower than N , the maximum of the capacity is
obtained for increasing values of both I0 and E0. For
M = 2000 we find a maximum αmax = 0.239 at I0 '
0.022 and E0 ' 0.45, while for M = 1000 the maximum
is αmax = 0.248 at I0 ' 0.054 and E0 ' 0.95. The main
reason for which higher values of E0 are needed for lower
M , is to compensate the lower number of terms of the
sum in Eq. (1), at fixed neuron threshold. On the other
hand, the global inhibition serves to avoid the firing of
neurons that do not participate to the pattern being re-
played, and therefore increases with he ratio (N−M)/M
between the neurons participating or not.

In Fig. 5, we show the maximum value of the capacity
as a function of the fraction M/N . The overall maximum
capacities are obtained for values of the fraction of neu-
rons participating to the patterns around M/N ' 0.2.
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FIG. 5. Maximum value of the information capacity as a
function of the ratio M/N , where N = 6000 is the total num-
ber of neurons of the network, and M the number of neurons
participating to the patterns.

This means that storage of dual population and phase
coding patterns is more efficient than phase coding alone
(M/N = 1, where the pattern is defined only by the
phases φµj [29–31]). Notably the information capacity of
such dual coding is enhanced also with respect to the
binary population coding alone of the Hopfield model
(where the pattern is defined only by the activities ξµj ).

FIG. 6. Dependence of the maximum value of the information
capacity from the size of the network, for a fraction M/N =
0.2 of active neurons. The best fit is given by αmax = 0.276−
187/N .

In Fig. 6, we show the maximum capacity as a func-
tion of the network size N , for a fixed value M/N = 0.2
of the fraction of neurons participating to the pattern.
The capacity grows with the size of the network, and
tends to a value αmax = 0.276 for very large sizes. No-
tably the capacity is almost the double of that of the
Hopfield model (αmax = 0.139), and practically equiv-
alent (slightly larger) than that of the binary sequence
processing Hopfield-like model (αmax = 0.269) [16].

IV. DISCUSSION

In this paper we have studied the information capacity
of a spiking network, able to store and selectively retrieve
patterns defined by a binary spatial population coding,
as in the Hopfield model, nested with a phase-of-firing
coding. The spatial population binary variable ξµj deter-
mine the M active neurons in pattern µ, while the phase-
of-firing variable φµj define the precise relative timing of
firing of those active neurons. The success of retrieval is
measured by the order parameter qµ, introduced in eq.
(2), that extends the order parameter of Hopfield model,
since it requires both that (1) the N −M neurons silent
in the pattern are silent in the retrieval, and (2) the M
neurons active in the pattern emits a spike with the right
phase relationship φµj (with possibly a different period of

oscillation). The order parameter is insensitive to the
time scale of the replay, in agreement with experimental
results showing that the reactivation of memory traces
from past experience happens on a compressed timescale
during sleep and awake state[2, 5–7].

To study the memory capacity, we measure the maxi-
mum number Pmax of stored patterns that can be success-
fully and selectively retrieved, when a cue is presented,
and in order to compare capacity of networks with differ-
ent value of M , also the maximum information capacity
αmax, i.e. the amount of information (measured as the
maximum number of patterns times the number of bits
of each pattern) per synapse.

The ability to work as an associative memory for such
spatio-temporal patterns is crucially dependent from the
learning rule introduced in Eq. (1) where, in addition to
an overall inhibition, the connections between neurons
co-active in a pattern are determined by a kernel depend-
ing on the precise timing of the spikes between the pre-
synaptic and post-synaptic neurons. Note that this rule
follows more closely the idea of Hebb, with respect to the
Hopfield case, since connections between neurons that are
not active in the same pattern have a negative weight
contribution −I0, while neurons which are both active
in the same pattern have a contribution that is positive
if the pre-synaptic neuron fires few milliseconds before
the post-synaptic one, or negative if the reverse is true.
The rule in Eq. (1) extends the rule [26, 27, 29–33] used
for storing phase-coding-only patterns (i.e. M/N = 1),
and include a crucial global inhibition term, allowing the
storage of patterns with dual coding M/N < 1.

Notably here we found that a fractionM/N ' 0.2 gives
the highest information capacity, meaning that the stor-
age of dual coding patterns, where information is stored
both in the population (spatial) distribution of active
neurons and in the timing of the spikes, is more efficient
then phase coding alone (M/N = 1). At M/N ' 0.2 not
only the capacity is higher, but the region of the param-
eters E0 and I0 where capacity is near-maximal is larger,
so that a fine-tuning of the parameters is less important.

We also found that a crucial role is played by the value
of the global inhibition I0. When the fraction of neurons
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participating to the pattern is smaller, higher values of
I0 are needed in order to reduce the occurrence of “false
positives”, that is neurons not participating to the pat-
tern that fire incorrectly.

We find that the maximum capacity at M/N = 0.2
grows with N , and tends to αmax = 0.276 for very large
size, a value close (slightly higher) than the maximum
capacity found for sequence processing networks, where
discrete time dynamics, binary patterns sequence, with a
Hopfield-like asymmetric learning rule was studied. It’s
interesting that there seems to be a unique maximum
information capacity for storing dynamical patterns, in
which time has been introduced in different ways, the se-
quence of binary patterns with Hopfield-like chain learn-
ing rule ξµξµ+1 [16], and the dual coding patterns of
spike defined here, with a biologically inspired STDP-

based learning rule.

These findings may help to elucidate experimental
observations where both spatial and temporal coding
schemes are found to be present, representing different in-
dependent variables which are simulataneously encoded
and binded together in the memorized patterns, such as
for example the location of the event and its behavioural
and sensory content [13, 14].
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