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Abstract

Joining data compression and encryption is a way to keep secure data, as
discussed by the current literature. While data compression responds to the
great demand on data storage and transmission techniques, the encryption
allows to handle some important parameters in a secure way. In wireless sen-
sor networks the usual transform–based compression is the Discrete Wavelet
Transform. In a previous paper we showed the good perfomance of the fuzzy
transform (or F–trasform for short) based compression with respect to it. In
this work, we propose a cubic B–spline F–transform in order to have a higher
accuracy, even when data are not correlated, and a lower computational cost.
Besides, in order to show the efficiency of the proposed approach, we compare
it with the most recent lossless compression scheme in the field. We discuss
these issues formally and numerically by using publicly available real–world
data sets. The parameters required to decompress data are encrypted by
means of a suitable existing encryption algorithm. We show that even if an
illegal user had access to one of these parameters, our scheme would be still
secure.
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1. Introduction

The aim of data compression is to reduce the memory space or the trans-
mission time, especially for wireless sensor networks (WSNs) because of the
energy constraints. In the past, data compression and cryptography were
kept separated because any data can be compressed if necessary and then
encrypted. Anyway because of the rapid progress in computing technology,
the encrypted data could be secure no longer in a few years. A way to
increase security is joining compression and encryption, using one of the ex-
isting cryptography techniques. This scheme has been adopted especially for
images. Keat et al. used a wavelet based encoder with an RC4 encryption al-
gorithm [1]: the authors encrypted some important parameters for recovering
the image, such as initial threshold, scan order, size of the image.

In [2] a Quadtree image compression was used, by dividing the image
into two parts, so that only the tree structure was encrypted by means of a
public–key algorithm such as RSA.

In [3] the image is first compressed and then encrypted by rearranging
the bits of the compressed image by means of a set of scanning paths; this
set of scanning paths is kept secret and it is the encryption key.

In [4] the authors proposed to embed k–PCA into a compression–encryption
scheme. After having compressed the input image, they encrypted the prin-
cipal components and other three parameters, necessary for recovering the
original image, by means of the RC4 symmetric cipher.

In the case of WSNs, since sensors have both limited memory and storage
space and power limitations, the most part of the traditional techniques turns
out to be not suitable, by requiring a certain amount of resources such as
data memory, code space and energy. This is principally due to the fact that
such techniques use asymmetric cryptography, where there is a public key to
encrypt data and a private key to decrypt them. Asymmetric cryptography
is computationally expensive for the individual nodes in a sensor network,
even if some authors [5], [6], [7] showed that it is feasible by choosing the
right algorithms. So symmetric cryptography is the typical choice when the
computational complexity of asymmetric cryptography cannot be afforded.
Symmetric schemes utilize a single shared key known only between the two
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communicating hosts, which is used for both encrypting and decrypting data.
Typical symmetric schemes are RC5 and AES [8].

With regard to the compression techniques avilable in WSNs, one can
refer to [9] for a comprehensive survey. In general, nodes, which are able
to collect, to process data and sharing them with neighboring nodes, are
required to be relatively inexpensive, in terms of power supply, memory ca-
pacity, communication bandwidth, and processor performance [10]. Since
mostly the energy consumption is due to radio communication [11], com-
pression techniques allow lesser communication energy costs. A well–known
approach in the WSN field is the discrete wavelet transform (DWT), which
performs well for spatially– and temporally–correlated data, but this could
not be true for outdoor environments [9]. In a previous work [12], we showed
the good performance of an F–transform based approach when compared to
the usual DWT approach, by finding out a high enough value of the com-
pression rate with a lower distortion.

F–transform was proposed by Perfilieva [13] as a fuzzy approximation
technique. It substantially expresses a functional dependency as a linear
combination of basic functions and it can be used for the solution of di-
rect and inverse problems or least–squares approximations [14]. The major
applications of the F–transform are in image processing, e.g. [15]–[21].

In this paper, we propose cubic B–splines fuzzy transform in order to have
a lower distortion in data compression, with a lower computational cost with
respect to the existing transform–based compression approaches for WSNs.
We discuss formally accuracy and computational cost, by also showing the
compression performance numerically on publicly available real–world data
sets.

It should be pointed out that recently some lossless compression schemes
for WSNs was proposed [22] , [23]. In particular, in [22] an extension of
the predictive coding–based scheme LEC, called S–LEC, is proposed to pro-
vide better results with respect to LEC and the dictionary–based scheme
S–LZW. In [23], a lightweight block–based lossless adaptive compression
scheme, called FELACS, is proposed with good performances with respect
to LEC and S–LZW.

Unlike lossless compression schemes, transform–based approaches have
the shortcoming of a certain distortion (i.e. approximation) in the recon-
structed data. In this case, a loss of information may happen, but generally
a higher compression ratio is achievable [9].

However, in order to show the good performance of our approach we
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provide a comparison with the likely best lossless scheme between [22] and
[23], discussing distortion and compression ratio.

Our approach turns out to be also suitable for data security, by integrating
it with an existing encryption algorithm, such as RC4, which is fast and
secure for WSNs under certain conditions [24]. We use such a algorithm
to keep secure some parameters needed to decompress data. As it will be
shown, even if one parameter were known, trying to reconstrut data would
involve a considerable distortion.

The paper is structured as follows: Section 2 provides theoretical foun-
dations, discussing formally accuracy and computational cost; in Section 3
the compression performance is assessed by means of numerical experiments;
Section 4 introduces the compression–encryption scheme and finally Section
5 gives some conclusions.

2. Data compression based on F–transform

The F–transform changes a functional problem into a problem of linear
algebra, by computing the approximate solution to the problem by means of
the inverse F–transform. The same ideas hold on for the discrete problems
via the discrete F–transform and the inverse discrete F–transform. Since
F–transform was introduced [13], several papers on the topic appeared [25]–
[30]. In particular, in [30] new types of F–transforms were presented, based on
B–splines, Shepard kernels, Bernstein basis polynomials and Favard-Szasz-
Mirakjan type operators for the univariate case.

There are many applications of the F–transforms in image processing
([15]– [21]) and some others in time series analysis [31]–[35], also by integrat-
ing the F–transform and the fuzzy tendency modeling [32] or the F–transform
and fuzzy natural logic [33]. In particular, the paper by Novak et al. [35] fo-
cuses on application of fuzzy transform (F-transform) to the analysis of time
series under the assumption that the latter can be additively decomposed
into trend-cycle, seasonal component and noise.

F–transforms were also used in data analysis [36],[37].
In [29] F–transforms combined with finite differences were used to numer-

ically solve some classical partial differential equations (heat, wave, Poisson)
in simple domains.

In [14] the relations between the least–squares approximation techniques
and the F–transform for the univariate case were investigated.
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2.1. Preliminaries

We briefly recall some definitions. Let I = [a, b] be a closed interval
and x1, x2, . . . , xn, with n ≥ 3, be points of I, called nodes, such that a =
x1 < x2 < . . . < xn = b. A fuzzy partition of I is defined as a sequence
A1, A2, . . . , An of fuzzy sets Ai : I → [0, 1], with i = 1, . . . , n such that

– Ai(x) #= 0 if xε(xi−1, xi+1) and Ai(xi) = 1;
– Ai is continuous and has its unique maximum at xi;
–
∑n

i=1 Ai(x) = 1, ∀xεI .
The fuzzy sets A1, A2, . . . , An are called basic functions and they form an

uniform fuzzy partition if the nodes are equidistant.
In general, h = max|xi+1−xi| is the norm of the partition. For a uniform

partition h = (b− a)/n and xj = a+ jh.
A fuzzy partition with small support has the additional property that

there exists r ≥ 1 such that suppAi = cl{xεI : Ai(x) > 0} ⊆ [xi, xi+r], where
cl stands for closure.

The fuzzy partition can be obtained by means of several basic functions:
- hat functions

Aj(x) =






(xj+1 − x)/(xj+1 − xj), xε[xj, xj+1]
(x− xj−1)/(xj − xj−1), xε[xj−1, xj]

0, otherwise
(1)

- sinusoidal shaped basic functions

Aj(x) =






1
2 cos

(
π(xj−x)
(xj+1−x) + 1

)
, xε[xj, xj+1]

1
2 cos

(
π(x−xj)

(xj−xj−1)+1

)
, xε[xj−1, xj]

0, otherwise

(2)

- cubic B–splines, for j = 0, . . . , n (here in explicit form as in [38],[39])

Aj(x) =
1

h3






(x− xj−2)3, xε[xj−2, xj−1)
(x− xj−2)3 − 4(x− xj−1)3, xε[xj−1, xj)
(xj+2 − x)3 − 4(xj+1 − x)3, xε[xj, xj+1)

(xj+2 − x)3, xε[xj+1, xj+2)
0, otherwise

(3)

It should be pointed out that in order to apply B–splines some auxiliary
points are needed: for cubic B–splines two auxiliary points both on the left
and on the right of the considered interval are required.
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The fuzzy transform (F–transform) of a function f(x) continuous on I
with respect to {A1, A2, . . . , An} is the n–tuple [F1, F2, . . . , Fn] whose com-
ponents are

Fi =

∫ b

a f(x)Ai(x)dx∫ b

a Ai(x)dx
(4)

The function

fF,n =
n∑

i

FiAi(x), xεI (5)

is called inverse F–transform of f with respect to {A1, A2, . . . , An} and
it approximates a given continuous function f on I with arbitrary precision,
as stated by Theorem 2 in [13].

In many real cases, where the function f is known only at a given set of
points {p1, p2, . . . , pm}, the discrete F–transform can be used and Eq. (1) is
replaced by

Fi =

∑m
j=1 f(pj)Ai(pj)∑m

j=1 Ai(pj)
, i = 1, . . . , n (6)

Similarly, Eq. (2) is replaced by

fF,n(pj) =
n∑

i

FiAi(pj), j = 1, . . . ,m (7)

giving the discrete inverse F–transform.
The above concepts can be extended to functions in two variables, as one

will see in the next subsection.

2.2. Least–squares approximation, properties and theorems for the bivariate
case

Let us consider the N × M data matrix D and the fuzzy partitions
{A1, . . . , An} and {B1, . . . , Bm}, with n < N and m < M .

In the least squares approximation, the discrete F–transform of D with
respect to {A1, . . . , An} and {B1, . . . , Bm} are unknowns λij to be obtained
by means of the error functional E

E = D−AΛBT (8)
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i.e. by minimizing it with respect to the λij, we get

Λ = K−1GH−1 (9)

where

G = ATDB (10)

K = ATA, H = BTB (11)

The discrete inverse F–transform is given by:

DF = AΛBT (12)

It should be pointed out that, since A and B are the Gram matrices
associated to given sets of basis functions, they have full rank and K and H
turn out to be positive definite matrices.

With regard to the B–spline based case, we extend some results presented
in [30].

By following [40] and [41], we introduce the modulus of smoothness for a
bivariate function f : R2

+ → R

ω(f,α, β) = sup{|f(u, v)− f(x, y)| : (u, v), (x, y)εR2
+, |u− x| ≤ α, |v − y|β}

(13)
Let us recall the following properties for ω(f,α, β) [42]:
(i) ω(f, 0, 0)=0 and ω(f,α, β) is nondecreasing with respect to α and β;
(ii) ω(f,α1 + α2, β1 + β2) = ω(f,α1, β1) + ω(f,α2, β2).
In particular, the last property reduces to ω(f, 2α, 2β) = 2ω(f,α, β), if

α1 = α2 and β1 = β2, so it is easy to generalize:

ω(f, rα, rβ) = rω(f,α, β) (14)

with r ≥ 2. Let fF
nm(x, y) be the composition of the inverse and direct

F–transform. We prove the following theorem.

Theorem 1. Let f(x, y) be a function assigned over the set [a, b]× [c, d]. Let
{x1, . . . , xn}ε[a, b] and {y1, . . . , ym}ε[c, d] be the partitions, with norms α and
β, of the intervals [a, b] and [c, d] respectively. If A1, . . . , An and B1, . . . , Bm
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are fuzzy partitions with small support, with regard to the same integer r,
then the following inequality holds:

|fF
nm(x, y)− f(x, y)| ≤ rω(f,α, β) (15)

Proof. The proof follows the one of Theorem 3.3 in [30], by considering the
bivariate smoothness modulus and Eq. (14).

The theorem above shows that, if A1, . . . , An and B1, . . . , Bm are gener-
ated by means of B–splines with order r − 1, we get a good approximation
for n,m >> r.

Because of the local nature of B–splines, a related square matrix is a band
matrix with only r nonzero elements in each row [43].

It is well–known that a band matrix has nonzero entries only through
a band along the main diagonal and this is important with regard to the
matrix inversion and in general for the computational complexity.

Remark 2. If the matrices A and B are pseudo–banded matrices, i.e. non–
square matrices which exhibit a band–like structure, then the matrices K and
H are symmetric band matrices.

For a symmetric banded matrix of order n the computational cost of the
inversion can be reduced to O(n) by using a simple algorithm as shown in
[44].

Remark 3. If the matrices A and B are band matrices, the computational
complexity of the LS approach is O(nm).

As a comparison, we point out that the computational complexity of the
(one level) DWT is bounded by O(NM) [9], which is clearly higher.

2.3. A simple example

The proposed F–transform based compression is schematically depicted
in Figure 1. In order to give a clear explaination on how the proposed scheme
can be used for data compression, we present a simple example.

We generated an 11×5 data matrix D by the function sinh(j)/(ij), with
i = 1, 1.5, . . . , 6 and j = 1, 1.5, . . . , 3. In this example, we considered the
F–transform compression rate ρ = (nm)/(NM) = 0.58. By means of cubic
B-splines we obtain MSE = 6.25E − 05, whereas by means of sinusoidal
shaped and hat functions we get MSE = 1.43E−04 and MSE = 1.03E−04
respectively. The data matrix is
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Figure 1: The proposed F–transform based scheme
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D =





1.1752 1.41952 1.81343 2.42008 3.33929
0.783467 0.946346 1.20895 1.61339 2.22619
0.587601 0.70976 0.906715 1.21004 1.66965
0.47008 0.567808 0.725372 0.968033 1.33572
0.391734 0.473173 0.604477 0.806694 1.1131
0.335772 0.405577 0.518123 0.691452 0.954083
0.2938 0.35488 0.453358 0.60502 0.834823

0.261156 0.315449 0.402984 0.537796 0.742065
0.23504 0.283904 0.362686 0.484016 0.667858
0.213673 0.258094 0.329715 0.440015 0.607144
0.195867 0.236587 0.302238 0.403347 0.556549





by means of cubic B–splines the matrices K and H turn out to be

K =





0.0394004 0.630292 0.506921 0.0143588 0 0 0 0 0
0.630292 11.0881 12.294 1.4594 0.0143588 0 0 0 0
0.506921 12.294 29.3791 14.5499 1.47254 0.00927098 0 0 0
0.0143588 1.4594 14.5499 29.5514 14.6317 1.47615 0.0114197 0 0

0 0.0143588 1.47254 14.6317 29.4757 14.5957 1.46448 0.015625 0
0 0 0.00927098 1.47615 14.5957 29.6587 14.5308 1.46448 0.0114197
0 0 0 0.0114197 1.46448 14.5308 29.6587 14.5885 1.45834
0 0 0 0 0.015625 1.46448 14.5885 26.9731 7.96345
0 0 0 0 0 0.0114197 1.45834 7.96345 3.66225





H =

(
0.015625 0.359375 0.359375 0.015625 0
0.359375 9.28125 12.625 1.71875 0.015625
0.359375 12.625 33.5469 16.9844 1.71875
0.015625 1.71875 16.9844 33.5469 12.625

0 0.015625 1.71875 12.625 9.28125

)

3. Compression performance: numerical experiments

In order to show the better approximation obtainable by means of cubic
B–splines, firstly we compare the results so obtained with the ones presented
in our previous work [12] relatively to two SensorScope deployments: Pa-
trouille des glacier (PDG) and Plaine Morte glacier (PM) [45]. We recall
that the PDG deployment had 10 locations whereas PM deployment had 13
locations. Both data sets contain data from several sensors, namely, am-
bient temperature (oC), surface temperature (oC), solar radiation (W/m2),
relative humidity (%), wind speed (m/s), wind direction (deg). For not
available data we adopted zero value. In order to evaluate distortion, we
computed the Mean Absolute Error MAEC , MAES for the LS approach
based on cubic B–splines and sinusoidal shaped basic functions respectively
and we tabled the ratio rMAE = MAEC/MAES for two different values of
the F–transform compression ratio ρ. The ratio rMAE is useful to exploit
differences between the results obtained by the two different basic functions
above. Besides, in order to give a more complete vision, we computed the ra-
tio rMSE = MSEC/MSES between the Mean Squared Error MSEC , MSES

for the LS approach based on cubic B–splines and sinusoidal shaped basic
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Table 1: PDG deployment: rMAE rate for node 1

ρ AT ST SR RH WS WD

0.45 0.0531102 0.00908386 0.0501134 0.011492 0.0383367 0.997299

0.33 0.0638878 0.0119798 0.0663918 0.016865 0.0479208 1.15912

Table 2: PDG deployment: rMAE rate for node 9

ρ AT ST SR RH WS WD

0.45 0.0209357 - 0.0825336 0.0126524 0.0233794 0.775867

0.33 0.0286697 - 0.10183 0.017353 0.0373243 0.966843

functions. The error values are referred to ambient temperature (AT), sur-
face temperature (ST), solar radiation (SR), relative humidity (RH), wind
speed (WS), wind direction (WD).

We recall that the compression ratio (CR) is usually defined as

CR = (1− d′

d
) (16)

where d and d′ are the original raw data size and the compressed data size
in bits, respectively. With regard to the F–transform, clearly it is CR = 1−ρ.

As one can see from Tables 1–6, where the rMAE ratio for some nodes
in the two deployments mentioned above is tabled, cubic B–splines provide
a better approximation with respect to sinusoidal shaped basic functions
even for a small F–transform compression rate ρ (the lower ρ the higher
data compression ratio). This behaviour is confirmed by the rMSE ratio (see
Figure 2) for both the deployments.

Table 3: PDG deployment: rMAE rate for node 16

ρ AT ST SR RH WS WD

0.45 0.0220832 0.00651324 0.0236523 0.0106423 0.0273434 0.976772

0.33 0.0525902 0.00842405 0.0365564 0.0136515 0.0340729 1.02484
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Table 4: PM deployment: rMAE rate for node 20

ρ AT ST SR RH WS WD

0.45 0.0467689 0.00391376 0.00506575 0.00582795 0.00194302 0.289915

0.33 0.0620435 0.00475539 0.00590066 0.00738769 0.00247275 0.364533

Table 5: PM deployment: rMAE rate for node 78

ρ AT ST SR RH WS WD

0.45 0.0746895 0.0135576 0.00806175 0.00796555 0.00240307 0.289915

0.33 0.093278 0.0160717 0.0103972 0.00995694 0.00301168 0.480915

Table 6: PM deployment: rMAE rate for node 83

ρ AT ST SR RH WS WD

0.45 0.0417603 0.00127867 0.0053775 0.00598658 0.0011765 0.293997

0.33 0.0537003 0.00167265 0.00685941 0.00751448 0.00152556 0.367496
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Figure 2: rMSE rate for the two deployments with ρ = 0.33

In order to show the robustness of our approach, we compare the results
so obtained with the ones in [22], because S–LEC [22] seems to be in many
cases better than FELACS [23].

To the scope, we considered, as in [22], temperature and relative humid-
ity measurements from two other SensorScope deployments: LUCE and Le
Genepi [45]. In particular, for the LUCE deployment, node 20 with 21,523
samples in the range September 4th, 2007–October 3th, 2007 were consid-
ered, whereas for Le Genepi deployment, node 84 with 64,913 samples in the
range November 23, 2006–December 17, 2006. In Table 7 the characteristics
of the considered data for the node 84 from the LUCE deployment (here
denoted as LU84) and for the node 20 from Le Genepi deployment (here
denoted as GE20) are tabled.

The obtained compression ratios in [22] are referred to temperature (likely
ambient temperature) and relative humidity measurements. In Table 8 there
are our results, with a better CR with respect to S–LEC and the correspond-
ing MAE.

The value of CR achievable by our approach is the same for AT, ST and
RH, since unlike other approaches such as the lossless ones, the compression is
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Table 7: Absolute maximum and minimum values of the data from GE20 and LU84

variable AT ST RH

min GE20 0 0.025 11.078

max GE20 13.13 23.663 93.877

min LU84 0 0.025 50.981

max LU84 17.36 16.788 98.315

Table 8: CR and MAE for LU84 and GE20 measurements

variable data set CR (S-LEC [22]) CR (present scheme) MAE (S-LEC [22]) MAE (present scheme)

AT GE20 0.548 0.65 0 8.3E-02

ST GE20 - 0.65 - 6.5E-02

RH GE20 0.514 0.65 0 5.9E-03

AT LU84 0.7207 0.82 0 1.86E-02

ST LU84 - 0.82 - 5.9E-02

RH LU84 0.6371 0.82 0 2.03E-03
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(a) (b)

Figure 3: MAE vs CR: (a) GE20 case, (b) LU84 case

Table 9: The rMAE rate

data set CR AT ST RH

GE20 0.65 0.0205477 0.00216003 0.0113007

LU84 0.82 0.52677 0.71232 0.582145

executed on the data matrix and not on its single columns. Besides, it should
be pointed out that the values of MAE are compatible with the minimum
and maximum values of the original data: a mean variation in ambient or
surface temperature less than 1/10 oC is meaningless. A similar remark holds
on for the relative humidity.

Figure 3 shows as MAE varies with CR for the different measurements
relatively to GE20 and LU84. In Figure 3, the minimum value of CR is the
one referred to S–LEC [22].

Figures 4–6 show a sample of the reconstructed data for the GE20 case,
with CR = 0.65.

For the sake of completeness, in Table 9 we tabled the values of the rMAE

rate relatively to the GE20 and the LU84 cases, for the values of CR fixed in
Table 8. These results show again the higher performance of cubic B–splines
basic functions with respect to sinusoidal shaped basic functions.
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Figure 4: GE20, ambient temperature: original data (thick line), reconstructed data
(dashed line)

Figure 5: GE20, surface temperature: original data (thick line), reconstructed data
(dashed line)
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Figure 6: GE20, relative humidity: original data (thick line), reconstructed data (dashed
line)

Finally, we wish to compare the computational cost of our approach with
that of the S–LEC algorithm, which has substantially the same structure of
the LEC.

In [46], the computational cost of LEC is expressed in number of in-
structions (NI), namely for the LU84 case, LEC requires 44,784 NI for the
temperature and 62,817 NI for the relative humidity.

In Section 2, we showed that the computational cost of our approach
is O(nm). This means for the LU84 case, as tabled in Table 8, getting
O(17, 550× 2) = O(35, 100) for AT, ST and RH jointly considered.

4. A secure compression scheme

In the previous sections we have discussed the efficiency of the cubic B–
splines F–transform based compression, due to its low distortion and low
computational cost. Now, we wish to show how to achieve a secure compres-
sion. We propose a compression–encryption scheme as shown in Figure 7.
The procedure is as follows:

1. the matrix Λ Eq. (9) is generated by using cubic B–splines;
2. the size (i.e. N and M) of the data matrix D is kept secret, since

without N and M the inverse F–transform cannot be computed;
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Figure 7: The compression–encryption scheme

3. once N and M are retrieved the inverse F–transform is computed by
Eq. (12).

In symmetric key cryptosystems, the same key is used for both encryp-
tion and decryption, by resulting in a much faster scheme than public key
cryptosystems. The two major types of symmetric key systems are block
ciphers and stream ciphers. Block ciphers in general process the plaintext in
relatively large blocks at a time with the same key. Stream ciphers encrypt
bits individually, by adding a bit from a key stream to a plaintext bit [47].

Even if under certain modes of operation, block ciphers can be used in
WSNs [48], stream ciphers are faster and seem the most suitable to WSNs
[24].

A very popular stream cipher is RC4. It was introduced in ’90s by Rivest
[49]. It is essentially a pseudo–random number generator initialized by a
secret key. The RC4 algorithm turns out to be really a secure cipher under
certain conditions, i.e. by pre–processing the base key, whose length should
be at least 128 bits, and any counter or initialization vector by means of a
hash function such as MD5 or by discarding the first 256 output bytes of the
pseudo–random generator before beginning encryption [24].

Unlike [4], here we consider the RC4 algorithm with a 128 bits–base key,
as suggested in [24]. In this way, in a brute force attack, one should try 2128

guesses to find the key and recover the encrypted parameters, i.e. if a 1000
MIPS computer were used, this would mean 2128/(1000× 106 × 3600× 24×
365) > 1022 years.

Under a known–data attack, let us suppose that an illegal user obtained
some information, e.g. the exact value of M . The encryption scheme turns
out to be still secure, because even a small change in N would cause a
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Table 10: PDG16: MAE for incorrect values N

N AT ST SR RH WS WD

1.5n = 1890 3.981746 5.005864 129.978459 47.333548 3.645330 149.764020

2n = 2520 2.985519 3.753404 97.458035 35.490762 2.733273 112.293276

2.4n = 3024 0.744714 1.08467 32.2789 5.20535 2.04482 100.037

3n = 3780 5.132178 8.486034 302.041375 51.470216 5.577987 213.155838

(a) (b)

Figure 8: PDG16: reconstructed ambient temperature with (a) N = 1890, (b) N = 3024
(dashed line: reconstructed data; thick line: original data)

substantial distortion in the reconstructed data.
As an example, we consider again the data from the node 16 in the PDG

deployment (for short PDG16 in what follows) with a compression ratio
CR = 0.67, i.e. N = 3072, M = 6, n = 1260, m = 5.

An illegal user may try some incorrect values N > n to reconstruct the
data, even just partially if N < N .

In Table 10, the distortion (i.e. the MAE) of the reconstructed data for
different values of N is tabled. As one can see, the distortion is noticeable,
especially for N = 3n > N . When the value of N is close to N , the distortion
is lesser but not meaningless.

This behaviour is graphically shown in Figures 8–9, where some samples
of the reconstructed data obtained by means of the incorrect values N are
depicted.
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(a) (b)

Figure 9: PDG16: reconstructed relative humidity with (a) N = 1890, (b) N = 3024
(dashed line: reconstructed data; thick line: original data)

5. Conclusions

In this paper we firstly investigated the use of cubic B–splines to improve
the performance of an F–transform based data compression, namely the LS
approach, and afterwards we showed how to keep the compression scheme
secure. In spite of the fact that cubic B–splines require two auxiliary points
both on the left and on the right of the considered interval, this choice has
the following advantages:

– high accuracy, as also formally proved by means of Theorem 1;
– low computational cost of the final LS approach, when compared to the

usual DWT or even to a state–of–the–art lossless compression scheme;
– reliability of the integrated compression-encryption scheme.
In particular, with respect to the last point above, we proposed to inte-

grate the compression technique with an existing encryption algorithm suit-
able to WSNs, such as the RC4 cipher, in order to keep secret two parameters
necessary to recover the source data. Even if an illegal user had access to
one of these parameters, the scheme would be still secure, because a small
change in the remaining parameter would cause a not meaningless distortion
in the reconstructed data.
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