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Abstract

In Video Surveillance age, the monitoring activity, especially from unmanned
vehicles, needs some degree of autonomy in the scenario interpretation. Video
Analysis tasks are crucial for the target tracking and recognition; anyway, it would
be desirable if a further level of understanding could provide a comprehensive,
high-level scene description, by reflecting that human cognitive capability of
providing a concise scene description that comes from the analysis of involved
objects relationships and actions.
This paper presents a smart system to identify mobile scene objects, such as
people, vehicles, automatically, by analyzing the videos acquired by flying drones,
along with the activities they carried out, so as to depict what it happens in the
scene from a high-level perspective. The system uses Artificial Vision methods
to detect and track the mobile objects and the area where they move, and
Semantic Web technologies to provide a high-level description of the scenario.
Spatio/temporal relations among the tracked objects as well as simple object
activities (events) are described. By semantic reasoning, the system is able to
connect the simple activities into more complex activities, that better reflect a
human-like description of a scenario portion. Tests conducted on several videos,
showing scenarios set in different environments, return convincing results which
affirm the effectiveness of the proposed approach.

Keywords: Activity Detection, Semantic Web technologies, Activity
composition, Object Classification, Video Tracking, OWL

1. Introduction

A report conducted by Information Handling Services (IHS) [1] about Top
Video Surveillance Trends in 2016 confirms that one of the big trends in surveil-
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lance applications is related to mobile cameras. About 66 millions of cameras
have been installed only in 2016, and a growing interest has been devoted to5

mobile cameras, namely to those cameras though for and installed over mobile
platforms such as unmanned vehicles or body-worn. Indeed, about 2% of cameras
installed in 2016 (1.3 million cameras) are mobile. In the last decade, cameras
mounted over unmanned vehicles, both Unmanned Ground Vehicle (UGV) and
Unmanned Aerial Vehicle (UAV) attracted scientific communities working in10

the computer vision and artificial intelligence fields. Such cameras allow to
potentially acquire any scene where some event of interest occurs (even if no
fixed cameras are already available), thanks to the possibility to remotely pilot
the vehicles over the desired place.

In particular, cameras mounted over unmanned vehicles, both Unmanned15

Ground Vehicle (UGV) and Unmanned Aerial Vehicle (UAV) attracted in the
last decade scientific communities working in the computer vision and artificial
intelligence field. Such cameras allow to potentially acquiring any scene where
some event of interest occurs (even if no fixed cameras are already available),
thanks to the possibility to remotely pilot the vehicles over the desired place. The20

UAV drones indeed, are having a strong impact on the public safety market.t.
In a 2016 report [2], Goldman Sachs estimated drone technologies will reach

a total market size of 100 billion between 2016 and 2020: about 70% will be
related to military activities, 17% to the consumer market and the remaining
13% for commercial business, that could reach something like 13 billion between25

2016 and 2020. Furthermore, IHS report [1] confirms that a number of police
forces decided to extend their surveillance systems to the drones.

Anyway, the large number of mobile cameras flying in the sky and thus
of videos now available is more and more requiring the designing of algorithm
able to automatically identify the movement of the objects populating the scene30

(the so-called multi-objects tracking algorithms) [3, 4]. At the same time, they
should automatically analyze such trajectory so as to understand what it is
happening in the scene and if something potentially dangerous may occur, so as
to immediately alerting the operators in charge of the security.

The growing reliability achieved in the last years by multi-camera tracking35

algorithms [5, 6, 7] has moved the attention towards those algorithms able to
analyze and interpret moving objects behaviors automatically.

Within this context, this work proposes a novel hybrid framework which
builds high-level knowledge by integrating tracking and object classification data,
along with semantic, contextual information targeted at interpreting complex40

object activities occurring in the video. The system interprets a video stream by
providing a high-level scene description, through the event/action identification
of the (moving) objects, populating the scenario and their interactions with the
environment and the other (moving or fixed) objects. The goal is recognizing
dynamic aspects in evolving scenarios by combining simple activities carried out45

by the scene objects into complex activities, to provide a high-level abstraction
scene and enhance the overall situation understanding.
In detail, the contribution of this work is manifold. The system aims at achieving:
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• a frame-by-frame object classifier to determine the actual identity for each
tracked object.50

• An area recognition to distinguish the kind of environment where the
object is moving.

• A scene ontology to encode high-level spatio/temporal relations among
scene objects (i.e., people, vehicles, etc), and between scene objects and
the environment.55

• A rule-based model to discover simple activities from the detected spa-
tio/temporal relations at each time instant of the video.

• A high-level description of the main activities occurring in the evolving
scenario by activity composition connected by the timeline.

The paper is structured as follows. Section 2 presents an overview on activity60

recognition systems. Section 3 introduces the whole system and the interaction
of the main components. Section 4 is devoted to present the modules for scene
object and environmental feature recognition; Sections 5 and 6 describe the
generation of high-level knowledge, and the semantic enhancement to detect
simple and complex activities, respectively. A case study on a road scenario65

is described in Section 7, whereas Section 8 shows the system performance,
presenting the experimental results that validate the effectiveness of the system
components. Conclusion closes the paper.

2. Related Work

Current trends in the Video Surveillance field evidence the main role of70

intelligent systems in acquiring and understanding scenarios. A UAV is considered
“smart” if it is equipped with a semantic-based reasoning component, enabling it
to capture heterogeneous information on the scene and then, reasoning about
events and activities, occurring in the environments, in order to get an overall
scene understanding. To this purpose, the following sections introduce a review75

of recent literature on the intelligent systems and the use of high-level knowledge
to support activity detection.

2.1. Intelligent systems
A UAV to perform scenario detection is as highly desirable as complex to

achieve in the surveillance and monitoring systems.80

UAV movements bring some issues to scenario interpretation from a high-level
perspective. UAV can fly over different environments in a few of seconds, this
causes the loss of reference points in the scene. The loss of reference points
complicates the recognition of object action and interaction with the environ-
mental elements of the scene [8]. Moreover, the ever-changing outside scenarios,85

caught on camera by the UAV, make even more difficult the interpretation
of events occurring in the video scenario. Scenario interpretation requires the
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understanding of heterogeneous environments. To this purpose, the Machine
Learning methodologies alone are not enough to support scenario interpretation,
because they need high amounts of samples to be trained [9, 10], and do not90

possess cognitive capabilities to allow a deeper understanding of the object
actions and scene events.
In order to achieve high-level scenario comprehension, intelligent systems are
often taken into consideration. These systems emulate cognitive reasoning by
employing an ontology, representing high-level knowledge on a domain. Rea-95

soning over a scene ontology, representing knowledge on the video scene, can
support the deduction of new facts on the scenario [11]. Some solutions proposed
in literature focus on data fusion, collecting information from heterogeneous
sources [12]. Some approaches are aimed at generating high-level contextual
knowledge to improve scenario interpretation through contextual reasoning, and100

help decision-makers to deal with sensor imprecision [13]. Some solutions are
designed for specific environments, so that they present ad-hoc scene ontologies
[14], generally exploiting scene segmentation, to represent environment areas
and allow deduction of events and object activities [15]. Obviously, ontologies
built on specific applications are not reusable for other environments caught on105

UAV camera. In order to build more adaptable ontologies, some trends include
spatial [16] and temporal information [17] to describe the events occurred in the
scenario. Some approaches [18], [16] specialise ontologies and query to model
places at different levels of granularity (i.e. states, regions, cities) to detect place
areas. Our approach, instead, detects place areas by using an area classifier110

and retrieves additional information on the environment from external sources,
exploiting databases and geo-positional map services, such as Google Maps.
This information allows to model knowledge about different kinds of outside
environments.
The proposed approach introduces a new way to build a human-like description115

of the observed scenario as composed of high-level activities by starting from a
video stream. Contrary to approaches stating a simple message or reporting raw
data, our framework codes and generates high-level knowledge and returns a
refined set of people or vehicle actions detailing what happened in the observed
UAV video.120

2.2. Activity detection
Recent trends are aimed at building scene ontologies to elicit knowledge

about events and activities carried out by the scene objects [15]. Generally, these
models are thought to deal with one well-known domain, kind of environment
and application (i.e. activity daily living), so that these approaches exploit a125

priori knowledge to build the scene ontology [19]. UAVs could fly over different
kinds of environments and catch different kinds of objects and situations. So, a
priori knowledge [20], or pose classification [21], could not be reliable, available
or enough to detect activities. The desirable thing is to build models suited
to accomplish activity detection in different heterogeneous environments. Our130

solution provides an adaptable model to detect people and vehicle activities in
different contexts.
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Figure 1: Framework overview

Other solutions in literature enhance the scene ontology with knowledge about
space and time. Generally, these approaches employ fixed-sized temporal win-
dows to detect events through the analysis of video time intervals, and store the135

most relevant detected events [22, 23]. These solutions find other issues related to
the window management, correct size choice and evaluation of relevant activities,
that could happen at same time or in distinct time intervals throughout the video
[24]. Our model, instead, firstly defines spatio/temporal relations among the
scene objects, and between the scene objects and the environment. Then, it con-140

textualizes these relations with knowledge on objects to detect simple activities.
Higher-level activities are then deduced through simple activity composition.
Unlike the most trends in literature, aimed at directly detecting activities by
exploiting patterns, our approach not only detects activities, but also introduces
a higher-level incremental activity modelling that allows to better contextual-145

ize the activities over time and achieve higher-level abstraction and a better
comprehension of the scene.

3. Overview

Figure 1 shows the logical overview of the system, evidencing two macro-area:
Scene/Object Video Analysis, and Semantic Annotation and Reasoning. These are150

the main components of the system, that are in charge of the object recognition
in the scenario (through video tracking and classification algorithms) and the
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semantic annotation of objects (through semantic web technologies), respectively.
The input data is a video recorded by a flying UAV. The Scene/Object Video
Analysis component accomplishes the tracking algorithm on the video to object155

detection and recognition through frames. As shown in Figure 1, this component
is in turn composed of three modules: each one achieves a specific processing
on the input video. After the Video tracking task, the Object Classification
accomplishes an object classification task, identifying and labeling the objects
appearing in the video; the Area Classification module instead, detects area160

contours of distinct places in the environment (e.g. roads, grass, etc.).
The Semantic Annotation and Reasoning component aims at the semantic
enrichment of scenario: it collects the data processed by the Scene/Object
Video Analysis component and produces statements describing the scenario
and involved objects at a semantic level. Specifically, the High-level knowledge165

generation module generates semantic annotations on object identity and place
areas. It uses an ad-hoc ontology designed to describe scenarios populated by
moving and fixed scene objects. Relations and interactions between objects
and environment are processed by Spatio/temporal relations module that codes
spatial basic relations among the scene objects in semantic statements. Finally,170

the remaining components are in charge of the knowledge inference on the
scene by relating all the object activities occurring in a spatio/temporal context.
Simple activity detection module detects general object activities by relating
the object identity to tracking data and spatio/temporal relations at each time
instant, then Activity composition module composes simple activities over time175

in order to deduce more articulated and specialised activities for each object.
Activity composition acts to put the detected activities of the involved scene
objects in the right context, with respect to time, space and the environment.
Scenario detection module collects the revealed activities to provide a human-like
description of the occurred scenario.180

4. Scene/Object Video Analysis

This module automatically analyses the sequence of images acquired by the
camera so as to answer to the following three questions:

1. Are there any objects moving in the scene?
2. What is the typology of objects moving in the scene?185

3. What is the category of the scene where the objects are moving?

The answer to each question is reported in the following. In particular, the
tracking algorithm used for identifying the objects moving in the scene (question
1) is detailed in Subsection 4.1; the algorithm proposed for identifying the
typology of the objects moving in the scene (question 2) is detailed in Subsection190

4.2; finally, the approach considered for understanding the typology of the scene
where the object is moving (question 3) is detailed in Subsection 4.3.

An overview of the interaction between such components is reported in Figure
1, on the left side of the image (Scene/Object Video Analysis module).

6



4.1. Detection and Multi-target tracking195

The aim of the tracking algorithm is to automatically analyze the sequence of
images acquired by the camera mounted on board of the drone so as to extract
the set of moving object trajectory. In more details, given the current frame
Ft and the set of objects Ot−1 detected until the previous frame, the tracking
algorithm aims at updating the trajectories of the objects Ot = {O1

t , ..., O
|O|
t },200

drawing them frame by frame. In this paper, we adopt the detection and
tracking algorithm we recently proposed in [6]. The detection algorithm aims at
identifying, frame by frame, the so called blobs, namely those objects moving
in the scene at the current frame. Considering that the camera is moving, it is
not possible to exploit any background updating and subtraction algorithm [25].205

Thus, in order to separate the ego motion (namely the motion of the camera
moving on board of the flying drone) from the movement of the objects, we
exploit preliminary camera compensation algorithm, aiming at estimating the
direction and the magnitude of the camera movement between two consecutive
frames. Then, we combine two different approaches, based on the foreground210

mask extraction and on the extraction of some salient points, respectively.
Given the sets of detected blobs, the tracking aims at performing the best

possible association between blob(s) and the corresponding object(s), tracked
until the previous frame. Note that the association is not always 1 : 1 (one object
with one blob); indeed, the following situations need to be managed, namely215

the splits and the merges. In the first situation an object is broken into two or
more blobs due to an error during the detection step, thus one object needs to
be associated with more than one blob (1 : n). Viceversa, in the second situation
two or more objects merge in a single blob (n : 1); note that, due to the nature
of the tracking problem from flying cameras (having a top-down view), the only220

merge that can happen is related to objects very close each other, and not to
occlusions among moving objects or occlusions between a moving object and
a background object (for instance a person partially behind a wall or a pole).
In order to manage with the above mentioned issues, we combine a traditional
forward chain based on data association with a backward chain: a local data225

association (between blobs and objects) is performed during the forward chain
and the reliability in such association is evaluated. In case the reliability is not
sufficiently high (for instance due to a split or to a merge), then the backward
chain is activated, the operating parameters are accordingly adjusted and the
forward chain is activated again with the new operating parameters. In other230

words, the forward chain is performed starting from a startup settings and
is iteratively repeated with refined settings (automatically generated by the
backward chain) until the confidence in the local data association is high enough.
An overview of the architecture of the detection and tracking algorithm is
reported in Figure 2.235

Given the centroid of the object at the current frame (xit, y
i
t) and at the

previous frame (xit−1, y
i
t−1), its direction dit is also computed. In more details,

we consider the eight directions shown in Figure 3, namely North (N), South
(S), West (W), East (E) and the four combined directions, namely NE, SE, NW,
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Figure 2: Architecture of the detection and tracking algorithm.

SW.240

Then, for each object, the directions computed in the last N frames are
considered and the one with the highest occurrence is assigned to the object.

4.2. Object classification
Once updated its trajectory, each object is classified in one of the following

three classes: person (P), vehicle (V) and unknown (U). A two steps evaluation245

is considered: (1) the classification is performed frame by frame and then (2) a
majority voting approach is employed, given all the classes associated frame by
frame to each object. In practice, the class of the objects is computed in real
time (frame by frame) and a decision is taken frame by frame by considering all
the occurrences of that object up to the current frame. As evident, the higher is250

the number of occurrences of an object, the higher will be the reliability in the
classification.

As for the frame by frame classification, we observe that the shape is a good
property for representing the objects: indeed, the vehicles have a regular shape,
while the persons have an irregular shape, due to their nature of non rigid objects.255

Starting from this consideration, we decide to represent each object by means
of an HOG descriptor, which provides a measure about the shape. For each
occurrence of the object Oi

t, its class at the current frame cit is thus computed
by employing a linear multiclass SVM, based on one-versus-all strategy.

Note that, for each object, a set of classes is provided; let’s introduce the
i-th object Oi and its occurrences until the frame t:

Oi = {Oi
t−|T |, ..., O

i
t}, (1)

being |T | the number of frames in which Oi appeared up to now, and then
t− |T | the first frame in which the object is visible inside the scene. For each
occurrence of the object, a decision about the class to which the object belongs
to is provided; it implies that at the t-th frame, |T | potential classes for that
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Figure 3: Quantisation of the movement of the objects in eight directions.

objects are available:
{cit−|T |, ..., c

i
t}. (2)

Finally, a majority voting approach is introduced; each decision is considered as260

a vote for a class, and the class cj ∈ {P,V,U} with the highest number of votes,
ci, is the winner for the object Oi:

ci = argmax
j ∈ {1,...,3}

 |T |∑
k=1

hkj

 (3)

where

hkj =

{
1 if cik = cj

0, otherwise
(4)

4.3. Area categorization
In order to understand the scene, and in particular the typology of the area

where the object is moving, we introduce an algorithm for classifying the portions265

of the scene in the following three classes: street, grass and unknown. In more
details, the scene is partitioned into non overlapped sliding patches, and each
patch is classified by combining two complementary information: LBP features,
able to take into account the texture of the area to be analysed, and histogram
color, able to take into account color information. The two feature vectors are270
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Figure 4: Example of area categorization. Blu patches are classified as road, while red patchesas
grass.

fused and a K-NN classifier is used. An example is shown in Figure 4, where blue
rectangles identify patches classified as road, while red rectangles correspond to
patches classified as grass.

In order to provide to the Semantic Annotation and Reasoning module the
information about the region instead than a single patch, each patch is considered275

as a pixel and morphological operators are applied; in particular, erosion and
dilation are used so as to remove outliers patches, namely those patches (wrongly)
classified as belonging to the class ci and whose neighbouring patches belong
to cj . Finally, connected components are found, so that each region can be
identified by a polygon.280

5. High-level knowledge generation: ontology modeling and popula-
tion

After the video analysis activities, achieved by Scene/Object Video Analysis,
the data flow passes to Semantic Annotation and Reasoning that generates
high-level knowledge on the whole scenario present in the video. The TrackPOI285

ontology [11] is used to describe the scenario at a semantic level: it is designed
for modeling road scenario. The ontology schema specifies two main entities: the
mobile and fixed objects. The mobile objects are the main actors of the scene;
they could be people, animals, vehicles or other moving objects carried or pushed
by living beings. Formally, M̂ = {ô1, ô2, ..} is the set of mobile objects, while290

F = {y1, y2, ...} is the set of the fixed objects of the scene, that are composed by
environmental static features, identifying more or less extended places generally
present in outside scenarios such as parks, roads, parking lots, as well as stores,
ATMs, etc.
Each mobile object ôi ∈ M̂ is a sequence of tracks ôi = {ôt1i , ô

t2
i , ..., ô

tn
i }, where295

each track ôtji represents the mobile object in a specific time instant tj , with
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Figure 5: TrackPOI relations

j = 1, . . . , n of the video. The tracks of each object ôi and the fixed objects
in the F set are, respectively, directly coded into two correspondent TrackPOI
ontology classes. Tracks are represented by instances of the Track class, which
has subclasses modeling two specialized types of track: Vehicle and Person.300

The class, which the instance belongs to, is identified according to the object
classification output. Thus, if classification recognizes a tracked object as person,
an instance of Person will be generated and added to the knowledge base.
Otherwise, the object recognized as Vehicle will trigger the generation of a
Vehicle class instance. The fixed objects are detected by using Google Maps305

service [11], which provides data about the identity and features of the Points of
Interest (POIs), and possible places appearing in the scene. TrackPOI ontology
models these entities as instances of the POI class.
The ontology has been extended with spatial relations among the tracks, and
between the tracks and the POIs. For the sake of completeness, the whole list310

of relations is shown in Figure 5 (for additional details, see [11]). For example,
properties such as inArea and nearestPlace describe relations between a track
and the place where it appears. Assertions with these properties are generated
according to the area classifier results. The spatial relations are asserted for the
track in each video frame; the frame number is associated with the discovered315

relations as well as the frame instant where they happen, in order to get a
complete description of track relations both in terms of space and time.
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Figure 6: Activity modeling: from the row data to the high level scene description, by an
incremental definition of the activities

6. Context and activity-based situation understanding

Once the knowledge base has been populated with tracks and POIs, and
the spatial/temporal relations have been defined, the Scenario detection through320

object activities subcomponent may take charge of activity detection. The
complex activity detection is achieved in an incremental way: the idea behind
this approach is identifying activities or events that involve mobile objects and
then composing these activities in more complex and high-level activities. Figure
6 describes the incremental abstraction model composed of different levels of325

knowledge achieved by performing several steps: spatio/temporal relations are
built on the detected tracks and POIs (Track and POI detection step). The built
spatio/temporal track relations are fused with environmental information on
tracks and POIs to detect simple activities (Track, POI and relation fusion step).
Then, simple activities are connected and composed with respect to space, time330

and environment where they appear, to describe complex activities expressing
higher-level knowledge on the observed scene (Activity composition step).

Figure 6 shows a growing level of semantics, starting from the simple spa-
tio/temporal relations to get a human-like description of complex activities; at
the same time, the domain-dependence increases: as the activities becoming335

complex, so they are more specialized.

6.1. Simple activity detection
The spatio/temporal relations designed in the TrackPOI ontology represent

elementary general activities where a track can be involved. So, for instance, the
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Trackpoi:inArea relation represents the static elementary activity of standing340

in the area of a specific POI. The relation associates the track, at the instant
t, with the spatial data (i.e., POI, pixel data) and video time. The reasoning
model can enhance the knowledge base by inferring new statements over these
ontological relations. As stated, the track spatio/temporal relations can be
merged with other collected track data (i.e., dimensions, speed, direction) and345

along with the involved POI, allow the detection of higher-level activities. Let
us remark that these activities are labeled “simple” because they are detected by
directly fusing the spatio/temporal relations with the knowledge about the track
and POI involved in the relation. Simple activities can be considered as binary
relations between the track performing the activity and the object or place of350

the activity. Recalling the previous definitions of mobile object and fixed object
sets, provided in Section 5, the simple activity is defined as follows:

Definition 1. Simple activity. Let F = {y1, y2, ..., yp} be the fixed object set
and ôi, ôj ∈ M̂ be distinct mobile objects, each one composed of tracks at distinct
time instants ôi = {ôt1i , ô

t2
i , ..., ô

tn
i }, ôj = {ô

t1
j , ô

t2
j , ..., ô

tn
j }. A simple activity St

carried out by the mobile object ôi, at a time instant t, is expressed as the binary
relation R between the track ôti of the mobile object ôi and some object z:

St = < R, ôti, z >t (5)

where z =

{
ôtj , ôtj ∈ ôj , with j 6= i

yh, yh ∈ F, with 1 ≤ h ≤ p

These simple activities are also more contextualized than the simple spa-
tio/temporal relations, although they are still quite general and capable of355

happening in many different scenarios (i.e., going towards someplace, accelerat-
ing, decelerating, etc.).
As an example of a simple activity, let us consider a video showing a car running
on a road. To detect a car moving on a road, the spatio/temporal relations,
stating that the car is on a road at the instant t, must be combined with the360

context-based features. To this purpose, the proposed model uses a SPARQL
Inferencing Notation (SPIN1) rule, shown in Listing 1, to detect this simple
activity. As a first step, the rule checks if the trackpoi:inArea relation holds
(line 8). This property relates a track ?this (i.e. trackpoi:Track), performing
the activity, and a POI ?poi identifying a place. In this example, ?this should365

be a car and ?poi a road, in fact, the rule checks if ?this is a trackpoi:Vehicle
instance (line 5) and if ?poi is a trackpoi:Route (line 7). The rule also checks
if ?this speed (line 9) is greater than 0 (line 10), which means that vehicle is
moving. In other words, if ?this instance is a track and ?poi instance is a route
and the track ?this is moving (speed greater than 0), the CONSTRUCT clause370

holds, viz., the statement asserting that the vehicle ?this is running on route
?poi can be deduced.

1https://www.topquadrant.com/technology/sparql-rules-spin/
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1 CONSTRUCT {
2 ? t h i s t r ackpo i : running ? poi .375
3 }
4 WHERE {
5 ? t h i s a t rackpo i : Veh ic l e .
6 ? t h i s t r ackpo i : track_ID ? id .
7 ? poi a t rackpo i : Route .380
8 ? t h i s t r ackpo i : inArea ? poi .
9 ? t h i s t r ackpo i : speed ? s .

10 FILTER (? s > 0) .
11 }385

Listing 1: Running cars: the SPIN rule detects the simple activity running as triples
stating that cars are running on a road

6.2. Complex activity detection through activity composition
Once the simple activities are detected, the system merges data from simple

activities (carried out by one or more tracks and/or POIs) to define a complex
activity, through a high-level description. More specifically, the knowledge about
a simple activity, performed by a track, is combined with knowledge related to390

other activities performed by the same track or other tracks over time. Activities
are first combined by location (if they occur at the same location) or in adjacent
areas. In addition, they are also linked by time because complex activities are
often composed of simple and consecutive activities over time. The collected
knowledge describes complex activities that are more detailed and dependent395

on the scenario domain, such as the crossing activity which identifies a proper
people’s action strictly related to the road environment. As stated, complex
activities combine more activities carried out by tracks over time. The simple
activities are related to a frame and its time instant in the video. The Activity
Composition module (Figure 1) not only has to check a combination of occurred400

simple activities for each track of an object, but also evaluates the temporal
relations among them. Since a simple activity is defined as an instant timed
(binary) relation (Definition 1), the complex activity is a collection of these
simple activities/binary relations that hold in a time interval T , more formally:

Definition 2. Complex activity. Let M̂ = {ô1, ô2, ..} and F = {y1, y2, ..., yp}
be the mobile and fixed object sets respectively, the complex activity of a mobile
object ôi ∈ M̂ in a time interval T = [t1, t2, . . . , tn] consists of time-related single
activities St (with t ∈ T ) carried out by the mobile object ôi and some object z
in the time interval T :

< CT , ôi, z >T = St1 ∧ St2 ∧ ... ∧ Stn (6)

where z =

{
ôj , ôj ∈ M̂, with j 6= i

yh, yh ∈ F, with 1 ≤ h ≤ p
405

.

An example of complex activity, which needs to be detected over time, is
the people crossing. Generally, to state that a person is crossing the road, there
is a need to know if the person is on the road and if he/she is going to the

14



Figure 7: Activity composition: the complex activity man crosses the road is from three simple
activities happening over the time t ∈ [1.31, 1.39]

other side of the road, otherwise the person is doing something else. In fact,410

people could keep staying on the road for many other reasons, for instance, for
helping someone, i.e., police and rescuers if an accident is occurred, as well
as, for working, i.e., road workers or reckless kids playing. The detection of a
complex activity, such as crossing, requires the analysis of the mobile object
evolution over time. Since the track represents the mobile object in a single415

video frame, the Activity Composition module collects all the tracks related to
the same object and represents them as a unique instance of the Scene Object
ontology class. In other words, the Scene Object (SO) individual represents the
mobile object composed of a collection of all its representations (i.e., tracks) in
the video frames. Since a track is associated with a specific frame/time instant420

of the video, track times associated to the SO individual provide entry and exit
times of the object in the scene, as well as the time duration of the object stay
in the scene.
Similarly, simple activities, directions and speeds associated with a track, are
also collected for each SO individual through its tracks. Then, track simple425

activities are combined with respect to time and space, to identify the complex
activity.
Figure 7 shows the activity composition for the crossing activity. Several simple
activities are identified, each one detected for each track at a specific time instant
of the video; in the example, the activities are detected in the time interval [1.31,430

1.39]: for instance, at the time 1.31, the simple activities walks on the lawn and
is running on the road are performed by tracks Tr:14 and Tr:16, respectively.
Once the simple activities are detected, tracks with the same identifier are
collected to compose the SO individual, for example, the tracks identified by
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Tr:14 over time (i.e. tracks Tr:14 in 1.31, 1.36 and 1.39 instants), represent435

the SO individual SO:14. The different consecutive activities, carried out by
the tracks compounding the SO individual, are collected; for example, the SO
individual SO:14 is composed of all the activities done by tracks Tr:14 : walks
on the lawn, at the time 1.31, and the walks on the road activities at the time
1.36 and 1.39. The time relations among the simple activities are fused with440

the direction (SO:14 barely modifies its direction) and the spatial relations
(SO:14 moves to the opposite side of the road). The merging of the time-related
simple activities (walks on the lawn, walks on the road) with the object features
(direction, speed) and the contextual facts (moving to the opposite side of the
road), supports the detection of the crossing people activity. Therefore, the445

system infers that SO:14 crosses the road.

Figure 8: System at work: the walkingTowards and walkingTogether activities are detected.
The functioning of the system is shown on a video scene showing two people walking together
towards a place. The object annotations show the detected relations and activities.

7. A case study

In order to show how the system works, a case study is described. The video
was shot on the road and it is part of our dataset [11], taken in our university
campus. The focused scenario shows two persons meeting near a road, which450

decide to move together to some place in the surroundings; then, one of them,
probably changing his mind, crosses the road on which a car is running. The video
is given as an input to the system to detect the main activities carried out by the
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Figure 9: System at work: a crossing activity is detected. The functioning of the system is
shown on a video scene showing a man crossing the road. The object annotations show the
detected relations and activities.

people and vehicles. Figures 8 and 9 show the main output by our system on a
processed video portion. As the first step, the system runs tracking and detects455

the moving objects in the video. Three people and several vehicles are detected
throughout the lifespan video. Recalling the system overview shown in Figure 1,
the modules Object Classification and Area Classification are involved in these
activities. The Object Classification module labels the tracked objects, according
to the object classification results. In the figure, tracks with identifier ID:1 and460

ID:2 are recognized as people, while the track ID:4 is classified as a vehicle.
Peculiar data about each track are calculated (i.e., speed, direction, width and
height); the figures show the most significant ones. The Area Classification
module performs area detection so that road and lawn areas in the scenario are
correctly recognized. These areas are marked with graphical lines, and contours465

in the video.
Then, the tracking data along with the object and area classification data are
provided to the semantic component (Semantic Annotation and Reasoning),
which is in charge of the semantic annotation of the scenario with high-level
information. It translates the data about tracked objects and POIs (i.e., in470

our case, the two people, the vehicle and the road shown in the scenario), into
individuals of Track and POI classes, with the aim of populating the scene
ontology TrackPOI.
Furthermore, this module semantically codes the spatio/temporal relations
among the tracked objects, and between the objects and the POIs.475
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In the first part of the video (Figure 8), a near relation between the two people
(i.e., track ID:1 and ID:2 ) is found, then, later in the video, another near
relation between one (of the two) people crossing the road and an oncoming car
is discovered. Then, inArea relations between the people and the lawn, and then,
between a person, a vehicle and the road are asserted as well. These relations480

are combined with track directions and speed to detect simple activities occurred
in a frame. The merging of the speed and direction data of the two people with
the near relation among them allows the detection of the manMeeting simple
activity (Figure 8a). Similarly, the inArea relation between the vehicle and the
road along with the vehicle movements detect the vehicle running on the road485

(vRunning) activity (Figure 9a).
At this time, the Semantic Annotation and Reasoning component composes
discovered relations and simple activities (by reasoning on the knowledge base)
to detect complex activities. Activity composition works the spatio/temporal
relations with tracks, POIs and simple activities. Therefore, the manMeeting490

activity between tracks ID:1 and ID:2 is combined with people direction, speed,
position over time and the environmental POI (i.e., the pub building on their
direction). The system infers that the two people are moving together to the
POI (walkingTogether and walkingTowards activities, see Figure 8b). These
complex activities start when the manMeeting relation is found (Figure 8a),495

then, the people moving in the same direction, and almost the same speed allow
the complex activity detection. These activities end when the manMeeting
activity is no longer detected, and the directions and speeds change (see Figure8c).
Later in the video, Activity composition module combines the movements of the
track ID:2 (speed, direction) over time, with the spatio/temporal relations (i.e.,500

near, inArea) and single activities (i.e., walkingOnThe) that hold between the
track and the road, to infer that the person is crossing (Figure 9b). This activity
composition is triggered by the detection of walkingOnThe simple activity
(ID:2 walkingOnThe route), as shown in Figure 9a. The crossing activity
for ID:2 object lasts until walkingOnThe activity with the route is detected505

and no significant change in the direction is detected: in Figure 9c indeed, the
walkingOnThe activity is no longer detected when the ID:2 object runs out of
the route and the scene. Let us notice that combining all the activities associated
with a mobile object provides a complete scenario description: in the example,
the person activity (crossing), the near relation between vehicle and person,510

the vehicle activity (vRunning), and its own features (i.e., speed and direction)
allow the detection of a typical crossing scenario, without apparent risks (even
though, the car and the person are very close to each other).

8. Framework evaluation

Two main evaluation tasks have been performed on the system, each one515

related to a macro-component shown in Figure 1: one experimentation is indeed
related to the object and area recognition, the other to the activity detection.
The system has been assessed on a dataset of annotated drone videos. The
annotation comprises the presence of the events happening in the video, including
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time, places, and IDs of the involved objects. The resulting accuracy for both520

the experimentations shows good results, evidencing that the synergy between
low-level tracking methods and high-level semantic scene description leads to
performance improvement of the overall system.

8.1. Dataset Description
The datasets employed for tests are composed by both videos recorded in our525

campus and downloaded from the Web2. They show scenes from several distinct
outdoor environments such as roads, heliports, parks, etc. Also the UAV123
dataset3 has been used in our experiments. Videos on our campus have been taken
by using a DJI F-450 drone equipped with a Nilox F60 HD resolution camera.
Tests have been carried out on 21 videos from these datasets and are selected,530

based on a similar length; they show different types of activities carried out by
people and vehicles in different environments. Table 1 describes schematically all
the information taken into account in our experimentation. Videos are grouped
by the contextual environment appearing in the video (i.e. route, highway,
parking lot, etc.), then, simple and complex activities detected from videos are535

listed in the corresponding columns (Table 1) along with a cumulative number of
occurrences, given in the parenthesis. Detailed descriptions about the activities
are reported in the Table 2 and Table 3.

8.2. Scene/Object video analysis module
The Scene/Object Video Analysis component has been tested so as to evaluate540

how accurate it is. In more details, the experimentation has focused on the
object tracking, object classification and on the area categorization modules.

Detection and Tracking: The tests of the detection and tracking algo-
rithms have been performed over the dataset acquired in our campus [11]. The
experimental analysis has been performed from an effectiveness and an efficiency
point of view. As for the effectiveness, the performance has been computed in
terms of Precision (P), Recall (R) and F-Score (F):

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

F = 2 · P ·R
P +R

(9)

where TP, FP and FN represent, respectively, the number of True-Positives
(TP), False-Positives (FP) and False-Negatives (FN). Such parameters have been
computed by evaluating the overlapping between the boxes associated to the

2https://drive.google.com/open?id=0B75yuWMeqbP5NVloZEIzc05jeW8
3https://ivul.kaust.edu.sa/Pages/Dataset-UAV123.aspx
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object at the ith frame, Oi, and the ground truth GTi according to the Pascal
Criterion:

area(Oi ∩GTi)
area(Oi ∪GTi)

≥ 0.5 (10)

otherwise Oi can be considered a FP. The following performance has been
achieved: P = 0.27, R = 0.18 and F = 0.21.

As for the efficiency, we evaluate the processing time over a system on a545

module, namely an Intel Joule 570X board equipped with a quad core Intel
Atom T5700 CPU@1,7 GHz (max 2,4 GHz) and 4 GB RAM LPDDR4. This
platform has been chosen so as to have the possibility to mount the module
directly on board of the drone, thus allowing the system to work in real time
and to transfer only data instead than the whole video stream. With a 4CIF550

resolution (640× 360), the algorithm is able to run at 16 fps, thus confirming
the possibility to work in real time on this kind of board.

Objects classification: The samples used for our experimentation and
collected from the datasets described above are about 4,050. Such samples have
been manually labeled by a human operator and partitioned in three classes,555

namely 1553 samples of pedestrians, 1706 of vehicles and the remaining belonging
to unknown objects. Some examples, for both pedestrians and vehicles, are
reported in Figure 10. As we can see by analyzing the images, the samples have
been acquired in different positions of the image, thus with different orientations
with respect to the camera. Each class has been partitioned in training set (70%)560

and test set (30%), by paying attention to the fact that the same object (even if
acquired in different position of the scene and then with different orientations) is
not present in both training and test set. The accuracy achieved by the proposed
system on the test set is 89.2%, thus confirming the effectiveness of the proposed
approach.565

(a) (b) (c)

(d) (e) (f)

Figure 10: Examples of persons (a,b,c) and vehicles (d,e,f) considered in our experimentation.
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Area categorization: Starting from thee images contained in the dataset,
we collected a dataset of about 30,000 patches, uniformly partitioned in grass,
road and unknown samples. As for objects classification, each class has been
divided in training set (70%) and test set (30%). The overall accuracy achieved
on the test set is 95.3%.570

8.3. Activity recognition
The object activities in the videos are mainly carried out by people and

vehicles in different environments such as highways, urban roads, parking lot,
parks etc., that can appear also in the same video. The most difficult activities
to detect are those occurring in road scenarios, where the interaction between575

people and vehicles complicates activity detection. Our system performance has
been assessed in recognition of simple and complex activities. Tables 2 and 3
show, respectively, the set of simple and complex activities considered in this
experimentation.
Our experimentation is based on a ground truth of the identified activities, and580

some specific metrics have been designed to evaluate the accuracy returned by
our system. The ground truth for a video lists all the occurred activities in
chronological order of appearance in the video. Each activity entry provides
information on the activity type (listed in Table 2 and Table 3), the scene object
performing the activity and the place where the activity has been carried out.585

The starting and ending time of the activity are also included in the activity
entry.
Our system detects the activities as triples written in the Web Ontology Language
(OWL) 4. Each triple consists of subject, property and object: the property name
indicates the type of the detected activity, the triple subject says who (people590

or vehicle) performed the activity while the triple object represents where it
happened.
Figure 11 shows a succession of activities, namely the system-detected (S) and
ground truth (GT ) activities, placed on the video timeline. Precisely, Figure
11a displays two activities, namely, vRunning (VR) and manRunning (MR),595

detected by our system and present in the ground truth. They are represented
as boxes placed on video timeline: the box length describes the duration of the
activity, and the time overlap among S and GT activities occurs when they
are in front of each other, on the same portion of the timeline. Depending on
the attained time match between the detected and ground truth activities, four600

possible comparison cases can be distinguished: (1) S and GT activities of the
same type overlap temporally (for example, activities V R1 and V Ra in Figure
11a), (2) S activity has no temporal overlap with any GT activities (i.e., MR1),
(3) S and GT activities overlap temporally but they are of different type (i.e.
V R2 and MRa) and (4) GT activity does not find any temporal overlap with605

any S activities (i.e. V Rb).
These cases reflect the outcomes in terms of true positives (TPs), false positives

4https://www.w3.org/OWL/
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(FPs) and false negatives (FNs) in precision and recall computation. As Figure
11b shows, true positives indeed are essentially the number of successful matches
between temporally-overlapping S and GT activities of the same type (i.e. V Ra610

and V R1). Let us remark that activities of the same type are carried out by
the same scene object and happening in the same place. If a detected activity
S does not temporally overlap with any other GT activities or, just it overlaps
with GT activities of different types, it is considered as a false positive (see MR1

and V R2 in the figure). Similarly, a GT activity is considered as a false negative615

if it does not temporally overlap with any S activity or overlaps with S activities
of different types (see V Rb and MRa in the figure).
In case of detected activity, S and a ground truth activity GT of the same
type have a temporal overlap (see Figure 11b, activities named V R1 and V Ra,
respectively), then S represents a true positive.620

Figure 11: An example of activity comparison on vRunnnig (VR) and manRunning (MR): (a)
temporal relations between the ground truth and detected activities, (b) True positive, false
positive and false negative definition

Figure 12: Temporal relations between a detected activity (S) and a temporally overlapping
ground truth activity (GT) of the same type

The accuracy of our system is evaluated by using two accuracy metrics, that
take into account the discovered temporal relations between detected and ground
truth activities (of the same type). They have been used to evaluate the precision
and recall of semantic activity recognition; they are described as follows.625

Jaccard metric (JC) [26]: it is based on the comprehensive duration of the
activity time and the overlapping time between a detected activity S and a
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ground truth activity GT . According to Figure 12, JC calculates the ratio in
seconds between the overlapping time among the two activities (c− b) and the
overall time covered by the two activities (d− a), defined as follows:630

JC(S,GT ) =
c− b
d− a

(11)

JC value for a detected activity S is compared to a prefixed threshold µ: if
JC value is greater than or equal to µ, the activity S is assumed to be correctly
detected and then considered as a TP. Otherwise, S is an FP; more formally:

TPS =

{
1, if JC(S,GT ) ≥ µ
0, otherwise

FPS =

{
1, if JC(S,GT ) < µ

0, otherwise

The value µ is set to 0.2, accordingly to literature [26, 27]. In a nutshell, a
JC-based TP is the number of the detected activities with JC value greater than
or equal to µ. In case the detected activity S has JC value lower than µ, it is
counted as an FP, and the relative activity GT is taken as an FN.

Mean Absolute Error Boundary (MAEB) metric [28]: it provides a635

value in the range [0, 1] which represents how much the system-detected activity
(S) overlaps with the ground truth activity (GT ) of the same type. This value
represents how much S can be considered as a TP. MAEB is different from the
JC metric, that uses a threshold to select or not an activity as a TP; the MAEB
value, indeed, is directly calculated according to the durations and the temporal640

overlap between the detected activity (S) and the ground truth activity (GT ) of
the same type, which are performed by an object in a place.

Figure 12 shows three different values which directly represent the extent to
which the detected activity S is considered a TP or an FP, and the extent to
which GT is considered an FN, more formally:645

TPS =
c− b
c− a

(12)

FPS = 1− TPS (13)

FNGT = 1− c− b
d− b

(14)

Adding up all the TPS values so calculated, for each detected activity S
which overlap with the ground truth activities GT of the same type, the final
TPs is calculated. In the same way, the total FPs and FNs are calculated as
well.

As stated, TPs, FPs and FNs, determined with the two metrics, are650

employed to calculate precision and recall. Table 4 shows the precision and
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Table 4: Test results on the detected simple and complex activities. Precision and recall,
calculated with MAEB and JC metrics, are reported.

Activity MAEB JC

Precision Recall Precision Recall
vRunning 0.94 0.86 0.95 0.91
runningOff 0.74 0.87 0.81 0.90

overSpeedLimit 0.94 0.87 0.97 0.91
vehicleStopping 0,71 0.89 0.76 0.94

vehicleAccelerating 0,78 0.90 0.84 0.94
walkingOnThe 0.87 0.93 0.92 0.96
manRunning 0.83 0.74 0.93 0.79
walkingNear 0.88 0.85 0.93 0.91

walkingAround 0.97 0.86 0.99 0.88
movingObjects 0.84 0.75 0.84 0.79
manMeeting 0.80 0.86 0.89 0.88
goingTowards 0.93 0.88 0.97 0.94

parking 0.86 0.92 0.94 0.92
turnAround 0.80 0.87 0.84 0.90

avoidingObstacle 0.77 0.84 0.81 0.86
crossing 0.80 0.86 0.84 0.86

walkingTowards 0.86 0.78 0.88 0.83
walkingTogether 0.78 0.75 0.83 0.77

waitingFor 0.85 0.81 0.88 0.84
getsInTheCar 0.92 0.88 0.94 0.92

getsOutOfTheCar 0.88 0.82 0.88 0.84
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recall calculated with the MAEB and JC metrics on the simple and complex
activities occurred in the video set. At first glance, results from the JC metric
assume slightly greater values than those calculated with the MAEB metric, even
though the performance is generally good for both the metrics. Let us notice655

that the precision in some cases is very high (i.e., greater than 90%): these values
are obtained for several detected activities, such as vRunning, overSpeedLimit,
goingTowards, getsInTheCar etc. High recall values greater than 90% are also
obtained for activities such as walkingOnThe, vehicleAccelarating, goingTowards,
parking.660

The precision values obtained with JC are somewhat higher than the precision
values obtained with MAEB; they are in correspondence with the activities
runningOff, manRunning and manMeeting. In many cases, the two metrics, JC
and MAEB, provide similar values for both precision and recall, or even identical
(i.e. movingObjects, getsOutOfTheCar). MAEB-based results have almost the665

same precision and recall on simple activities (precision: 0.85, recall: 0.85) and
complex activities (precision: 0,84, recall: 0,85), whereas the JC-based results
have slightly greater recall on simple activities (precision: 0.89, recall: 0.89) than
complex activities (precision: 0.88 recall: 0.86). By comparing the two metrics,
on average, the MAEB-based results have a slightly lower precision (0.85) than670

JC-based results (0.89), while recall values are around 0.88 for both of them.
MAEB metric is more sensitive to the variation of the durations and overlapping
times of the detected and ground truth activities. Therefore, the MAEB-based
results assume values very similar to the JC-based results, confirming that our
system offers good performances, not only at recognizing the simple and complex675

activities but also at identifying their correct duration and occurrence in the
video.

Our system reveals satisfying video content analysis, although the perfor-
mance analysis in terms of real-time capability requires a further investigation.
On short videos (one minute long and with a frame-rate equals to 25), real-time680

system performance looks promising for semantic annotation tasks. However,
since the framework encodes information at the frame level, the system perfor-
mance on longer videos is affected by the accumulation of data, whose semantic
content is often redundant between successive frames. Our forthcoming task is
indeed, to discard irrelevant knowledge at runtime (during the frame-by-frame685

generation of RDF triples) to speed up the complex activity composition, and
hence, to enhance system performance and real-time replies.

9. Conclusion

The paper presented a hybrid UAV-based system that combines two research
areas, Computer Vision and Semantic Technologies, to provide a high-level video690

understanding. The system is able to detect moving and fixed objects, to acquire
the spatio-temporal relation among them and with the environment and, finally,
to reconstruct the complete scenario from the activity viewpoint. The system is
composed of two main components: the first one accomplishes Video Analysis
tasks, it aims at detecting scene objects and the places where the objects move695
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by using classification methodologies. The other component employs Semantic
Web technologies to encode video tracking and classification data into ontological
statements: the built knowledge allows the generation of a high-level description
of the scenario through activity detection. The main contribution of this paper
focuses on modeling object activities at different levels of abstraction, which700

are then integrated to better describe the whole scenario. Simple activities are
detected with respect to time, space and context. Then, they are composed
together to obtain complex activities that allow a human-like characterization of
the whole scenario. System components have been tested on several videos; the
results are promising and confirm the potentiality of the approach.705
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