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Abstract

Noise-induced phenomena characterise the nonlinear relaxation of nonequi-
librium physical systems towards equilibrium states. Often, this relaxation
process proceeds through metastable states and the noise can give rise to
resonant phenomena with an enhancement of lifetime of these states or some
coherent state of the condensed matter system considered. Specifically three
noise induced phenomena, namely the noise enhanced stability, the stochas-
tic resonant activation and the noise-induced coherence of electron spin will
be reviewed in the nonlinear relaxation dynamics of three different systems
of condensed matter: (i) a long-overlap Josephson junction (JJ) subject to
thermal fluctuations and non-Gaussian, Lévy distributed, noise sources; (ii)
a graphene-based Josephson junction subject to thermal fluctuations; (iii)
electrons in a n-type GaAs crystal driven by a fluctuating electric field. In
the first system, we focus on the switching events from the superconducting
metastable state to the resistive state, by solving the perturbed stochastic
sine-Gordon equation. Nonmonotonic behaviours of the mean switching time
versus the noise intensity, frequency of the external driving, and length of the
junction are obtained. Moreover, the influence of the noise induced solitons
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on the mean switching time behaviour is shown. In the second system, noise
induced phenomena are observed, such as noise enhanced stability (NES) and
stochastic resonant activation (SRA). In the third system, the spin polarised
transport in GaAs is explored in two different scenarios, i.e. in the presence
of Gaussian correlated fluctuations or symmetric dichotomous noise. Nu-
merical results indicate an increase of the electron spin lifetime by rising the
strength of the random fluctuating component. Furthermore, our findings
for the electron spin depolarization time as a function of the noise correla-
tion time point out (i) a non-monotonic behaviour with a maximum in the
case of Gaussian correlated fluctuations, (ii) an increase up to a plateau in
the case of dichotomous noise. The noise enhances the coherence of the spin
relaxation process.

Keywords: Noise processes and phenomena; Josephson junction; Stochastic
analysis methods; Noise enhanced stability; Resonant activation; Spin pola-
rised transport in semiconductors; Monte Carlo methods
PACS: 72.70.+m, 85.25.Cp, 05.10.Gg, 81.05.ue, 74.40.-n, 72.25.Dc, 05.10.Gc

1. Introduction

The nonlinear relaxation process in many condensed matter systems pro-
ceeds through metastable states, giving rise to nonmonotonic behaviors of the
lifetime of the metastable state as a function of the noise intensity or some
external driving frequency. Moreover, the noise can enhance the electron spin
lifetime in semiconductor crystals for an initial metastable state with all spin
aligned. Metastability, in fact, is a generic feature of many nonlinear systems,
and the problem of the lifetime of metastable states involves fundamental as-
pects of nonequilibrium statistical mechanics. Nonequilibrium systems are
usually open systems which strongly interact with the environment and this
interaction can be modeled as a noise source. The investigation of noise in-
duced phenomena in far from equilibrium systems is one of the approaches
used to understand the behavior of condensed matter complex systems.

In this paper we shortly review three noise induced effects in condensed
matter systems, namely the noise enhanced stability and the stochastic res-
onant activation in JJs and the noise-induced coherence of electron spin in
a spintronic system. Specifically we will consider the nonlinear relaxation
process of long and short JJs and spin transport in GaAs. Moreover, new
results concerning the out of equilibrium dynamics of graphene-based JJ and

2



the spin depolarisation process are presented.

1.1. Long JJ

A Josephson junction (JJ) is a device realised by sandwiching two super-
conducting plates on a interlayer of non-superconducting material. In this
mesoscopic device, macroscopic quantities as voltage and current are directly
related to a microscopic order parameter ϕ, representing the phase difference
between the wavefunctions of charge carriers in the two superconducting
electrodes. In fact, great attention has been paid to JJs as superconducting
quantum bits [1]-[4], nanoscale superconducting quantum interference de-
vices for detecting weak flux changes [5, 6], and threshold noise detectors [7]-
[10]. Moreover JJs are typical out of equilibrium systems characterised by
tilted or switching periodic potentials [11, 12], and the effects both of ther-
mal and non-thermal noise sources on the transient dynamics of JJs have
recently attracted considerable interest [13]-[23]. In the last decade, theoret-
ical progress has allowed to calculate the entire probability distribution of
the noise signal and its cumulants, performing a full counting statistics of
the current fluctuations [14]. Moreover, the presence of non-Gaussian noise
signals has been observed experimentally in several systems [13, 17], [24]-
[27]. As an example in a wireless ad hoc network with a Poisson field of
co-channel users, the noise has been well modelled by an α-stable distribu-
tion [27]. Non-equilibrated heat reservoir can be looked as a non-Gaussian
noise sources [24]-[26]. In particular, the effects of non-Gaussian noise on the
average escape time from the superconducting metastable state of a biased
junction coupled with nonequilibrium current fluctuations, has been experi-
mentally examined [13, 17].

Recently, the characterisation of JJs as detectors, based on the statistics
of the escape times, has been proposed [7]-[10], [19]-[23]. Specifically, the
statistical analysis of the switching from the metastable superconducting
state to the resistive running state of the JJ has been proposed to detect
weak periodic signals embedded in a noise environment [9, 10]. Moreover,
the rate of escape from one of the metastable wells of the tilted washboard
potential of a JJ encodes information about the non-Gaussian noise present
in the input signal [7, 8], [19]-[23].

Here, the theoretical results for nonmonotonic behaviours of the mean
switching time (MST) in a long JJ as a function of the noise intensity, fre-
quency of the external driving current, and junction length are shown and
analysed. Specifically, we try to understand how non-Gaussian noise sources
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affect the switching times in long JJs. The model and the results are pre-
sented in Section 2.

1.2. Graphene JJ

The Josephson effect came to light also in a particular kind of JJs, in
which the interlayer is a graphene sheet. The resistance of the graphene to
the surface oxidation makes this material a good candidate for the realisa-
tion of high quality junctions. These devices seem good candidates for the
realisation of gate-tunable phase qubits [28, 29]. The current-phase relation
(CΦR) for superconductor - graphene - superconductor (SGS) device com-
posed by two electrodes “suspended” over a graphene substrate (see Fig. 6a),
was deeply studied in Refs. [30, 31]. Moreover, noise signatures in the be-
haviour of graphene junctions characterise many experimental and theoretical
works [28], [32]-[36]. Here we analyse the transient dynamics and the escape
process from metastable states in a SGS device. The model and the results
are discussed in Section 3.

1.3. Spin polarised transport

In recent years, diffusion in heterostructures [37] and transport in semi-
conductors [38] have been increasingly investigated. In particular, the inter-
est in developing spin-based devices gave rise to a huge number of investi-
gations on spin phenomena in semiconductors, with the aim to control the
electron spin polarisation by means of electric currents or gate voltages [39]-
[44]. Nevertheless, a drawback of the use of the electron spin is the fact that
the magnetic polarization relaxes over time during the transport because of
spin-orbit interactions or scattering events.

Since the spin lifetime could be too short to enable the entire execution
of the necessary spin manipulations, the investigation of the spin relaxation
processes in spintronic device design is a crucial point [40, 41]. In the last
decades, great interest has been oriented towards the noise-induced phenom-
ena in nonlinear complex systems, such as conduction electrons inside semi-
conductor structures [45]. Noise enhanced stability phenomenon [46]-[48]
in the electron transport inside GaAs bulks, caused by the addition of ex-
ternal fluctuations to the driving oscillating electric field, has been reported
in Refs. [49]-[51]. Recently, in semiconductor quantum wells and quantum
wires the possibility of exploiting random Rashba spin-orbit interaction to
generate spin currents has been found [52]. Specifically, Monte Carlo simu-
lations have evidenced that the spatial variation of the Rashba electric field
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along the quantum wire length yields the spatial spin depolarization process
random, non-monotonic and chaotic [53]. Previous studies of the electron
spin decoherence process in GaAs crystals have revealed that a Gaussian
random contribution added to the static driving field can change both the
spin depolarization time and length [54, 55]. Moreover, recently it has been
found that the electron spin lifetime can be changed also when dichotomous
random fluctuations are externally added to the driving electric field [56].
In all cases, the external noise can have opposite effects on the electron spin
depolarization process, critically depending on the strength of both the ap-
plied voltage and the external noise, as well as on the fluctuation correlation
time.

In Section 4, the effects on the electron spin depolarization of two dif-
ferent fluctuating contributions, namely a Gaussian correlated noise and a
symmetric dichotomous one, to the driving electric field in n-doped GaAs
crystals, are shown. The analysis is performed by varying the amplitude of
the electric driving field, the noise correlation times and the external fluctu-
ation amplitude, discussing the possibility of “tuning” the rate of the spin
relaxation process.

Finally, in Section 5 we have drawn the conclusions.

2. Long JJ - The sine-Gordon model

The I-V characteristics of a long JJ is directly related to the transient
dynamics of the order parameter ϕ, that is the phase difference across the
junction. The ϕ evolution is described by the well-known sine-Gordon (SG)
equation, shown below in the so-called perturbed form, namely including
bias and fluctuating currents ib(x, t) and if (x, t), respectively, and a damping
term [57, 58]

β
SG
ϕtt(x, t)− ϕxx(x, t) + sin(ϕ(x, t)) = ib(x, t) + if (x, t)− ϕt(x, t). (1)

The subscripts of ϕ represent partial derivatives in the indicated variables.
In Eq. (1) the variables x and t are normalised to the Josephson penetration
length λJ and the characteristic JJ frequency ωc, respectively. The coefficient
β

SG
is related to the details of the junction, according to β

SG
= ωcRC, where

R and C are the effective normal resistance and capacitance of the device.
The sin(ϕ) term is the supercurrent. All the current terms in Eq. (1) are
normalised to the JJ critical current Ic. The presence of an external magnetic
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Figure 1: (Color online) (a) Tilted washboard potential with a soliton located between
two neighbouring valleys. (b) Tilted washboard potential with a breather.

field is taken into account in the boundary conditions

ϕx(0, t) = ϕx(L, t) = Γ, (2)

where Γ is the normalised magnetic field and L is the junction length in unit
of λJ . The analysis is carried out in absence of applied magnetic field, i.e
Γ = 0. Usually, the dynamics of a long JJ can be described as that of a phase
string of length L, whose elements are named cells. The string is placed on
a tilted potential, the washboard potential (WP), which is characterised by a
sequence of wells (see Fig. 1) and it is expressed by

U(ϕ, x, t) = 1− cos(ϕ(x, t))− ib(x, t)ϕ(x, t). (3)

The junction remains superconductive until the string entirely lies within a
potential well, otherwise it undergoes a resistive behaviour. The SG equation
admits various traveling wave solutions, that is solitons, antisolitons and
breathers. Specifically, the soliton stochastic dynamics in JJs has been largely
investigated [59]-[64]. A SG soliton is a 2π step in ϕ, corresponding to a string
placed between two neighbouring valleys of the WP, as it is shown in panel
(a) of Fig. 1. In the unperturbed SG model, the analytic expression of a
soliton solution is

ϕ(x− ut) = 4 arctan

{
exp

[
± (x− ut)√

1− u2

]}
, (4)
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Figure 2: (Color online) Probability den-
sity functions for Gaussian (G), Cauchy-
Lorentz (CL) and Lévy-Smirnov (LS) dis-
tributions.

Distr. P(x) Sα(σ, β, µ)

G
1√
2πσ
e
− (x−µ)2

2σ2 x ∈ R S2(σ, 0, µ)

CL
σ/π

σ2+(x−µ)2 x ∈ R S1(σ, 0, µ)

LS
√

σ
2π

e
− σ

2(x−µ)

(x−µ)3/2 x ≥ µ S 1
2
(σ, 1, µ)

Table 1: Closed form of Gaussian (G),
Cauchy-Lorentz (CL) and Lévy-Smirnov (LS)
distributions and characteristic values of pa-
rameters.

where u is the Swihart velocity and the sign ± distinguishes between a soli-
ton and an antisoliton. A breather is a soliton-antisoliton bounded couple
oscillating in an internal frame with a proper frequency. A string excited
by a breather is shown in panel (b) of Fig. 1. The bias current used in our
model is

ib(x, t) = i0(x) + A sin(ωt), (5)

and it represents the inclination of the potential, so that ib(x, t) > 1 means a
WP so tilted that its “maxima and minima” structure vanishes, correspond-
ing to the absence of metastable states. Therefore, the ib value is also directly
related to the height of the right and left potential barriers that the phase
string has to overcome to switch to the resistive state. In this work we set
A = 0.7, i0(x) = i0, that is constant values, and the driving frequency ω
ranging in the interval [10−2, 102]. Other more refined models use spatially
dependent bias current distributions, which increase considerably close to the
junction ends [22, 23].

2.1. Long JJ - The Lévy statistics

In this section, we discuss several cases [65] in which non-Gaussian stable
statistics, connected to the generalised Central Limit Theorem [66]-[72], is
used to model experimental data characterized by asymmetric distributions
with heavy tails. The α-stable (or Lévy) distributions can be indicated using
the symbol Sα(σ, β, µ). This notation needs four parameters: an asymmetry
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parameter β with |β| ≤ 1, a stability index (or characteristic exponent) α ∈
]0, 2] which rules how the distribution tails go to zero and two real numbers
σ > 0 and µ which determine the profile of the distribution and are named
shape parameters. In particular, setting β = 0 (β 6= 0) the distribution is a
symmetric (asymmetric). For α < 2 the asymptotic behaviour is described
by a power law, while a Gaussian distribution results from α = 2 and β = 0.
Setting σ = 1 and µ = 0, the stable distributions are named standard. Only
few Lévy distributions have a probability density function known in explicit
form, as shown in Table (1). The abbreviations for the peculiar distributions
used in the rest of this work are listed in Table (1). The Gaussian (G) and
Cauchy-Lorentz (CL) distributions have β = 0 and are symmetrical with
respect to x = µ, while the Lévy-Smirnov (LS) distributions normal and
reflected are skewed to the right (β = 1) or left (β = −1) side, respectively.
The distributions of Table (1) are presented in Fig. 2. The asymmetry of
the LS distribution, with a narrow peak located at a positive value of x
followed by a heavy tail, is evident. In comparison with the Gaussian one, the
CL distribution has higher tails and a central part of the distribution more
concentrated around the mean value. For short times, the random values
distributed according to the CL statistics define trajectories characterised by
limited space displacement. The CL statistics is characterised, around the
mean value, by a narrower distribution with respect to the Gaussian one.
However, for longer times heavy tails result in events with large values of x,
whose probability densities are not negligible. Using CL and LS statistics rare
events are taken into account, because of the fat tails of these distributions.
These events represent the so-called Lévy flights. In this work, to simulate
Lévy noise sources we use the algorithm proposed by Weron [73] to implement
the Chambers method [74]

2.2. Long JJ - results and discussions

We computationally study the mean switching time (MST) of an over-
damped JJ (β

SG
= 0.01). Here, no absorbing barriers are considered, and

the MST is calculated as nonlinear relaxation time (NLRT) [48], according to
definition given in Refs. [75]-[79]. In order to obtain the mean values of the
switching times we perform a suitable number (N = 5000) of numerical real-
isations. As initial condition we set the string at the bottom of the first WP
valley, that is ϕ0 = arcsin(ib(x, 0)) = arcsin(i0). The calculations are per-
formed for the three noise statistics given in the previous section, obtaining
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the behaviour of the MST τ in the presence of different sources of Lévy noise.

MST vs JJ length L − We begin to study the MST values varying the
JJ length L in the range [0, 20]. The results obtained setting i0 = 0.5 and
ω = 0.4 are shown in Fig. 3, emphasising the three different noise sources
used, G (panel a), CL (panel b) and LS (panel c). The amplitude of the
oscillating driving signal is set at A = 0.7, to obtain during the oscillation
(see Eq. (5)) both ib > 1 (absence of metastable states) and ib < 0 (positive
slope). The results shown in Fig. 3 clearly indicate an overall reduction of
the MST values as the noise amplitude increases, since the higher the γ value
is the faster the cells are pushed out from the initial metastable state. The
curves obtained using Gaussian noise sources (panel a of Fig. 3) show the
occurrence of two different dynamical regimes. Up to a critical length [23, 80],
an initial monotonic increasing behaviour characterises the values of τ , but
exceeding this critical length a constant MST plateau is established. The
different mechanisms ruling these two regimes are clearly explained in Fig. 4.
For a short junction (see panel (a) of Fig. 4 obtained for L = 2) the string
tends to move between the WP valleys as a whole, because the connection
among cells is so strong that the soliton formation is forbidden. In the short
junction regime, an increase in the number of cells makes more difficult the
motion of the whole string during the transition process, causing the MST to
raise for short lengths. For junction lengths greater than the critical value it
is evident a saturation effect. The MST reaches an almost constant value and
switching events are driven by the solitons, as shown in panel (b) of Fig. 4,
obtained for L = 10. Panels (b) and (c) of Fig. 3 show MST curves obtained
in the presence of CL and LS noise sources, respectively. These behaviors
appear quite different with respect to those obtained using a Gaussian noise
source. The MST curves are strongly affected by Lévy flights that favour
jumps between different potential valleys and soliton formation (see Fig. 4,
containing rapid and sudden phase variations). Specifically, for CL noise
the saturation effect gives rise to a value of MST lower than that observed
with the Gaussian thermal fluctuations. This is due to the peculiarity of
the fat tails of PDF for CL noise. Furthermore, LS noise drives the phase
string out of the potential well very quickly, due to the greater diffusive
power of this noise source. The curves of Fig. 4, obtained using a CL noise
source, show peaks associated with the generation of Lévy flights. These noise
induced fluctuations influence the switching events and the soliton formation.
These graphs also clearly display the creation of another “structure”, known
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Figure 3: (Color online) MST τ as a function of the length L of the junction, for different
noise intensities γ = {0.025, 0.10, 0.2, 0.35, 0.45, 0.9}, setting ib = 0.5, ω = 0.4 and using
different noise source statistics, that is Gaussian (panel a), Cauchy-Lorentz (panel b) and
Lévy-Smirnov (panel c). The legend shown in panel (a) refers also to other panels.

Figure 4: (Color online) String dynamics during the switching towards the resistive state:
for a JJ of length L = 2 (panel a) and L = 10 (panel b). All graphs were obtained for
ω = 0.4, γ = 0.2 and CL noise source. The curves show the characteristic Lévy flights of
the CL statistics.

as breather. This is a well-known localised solution of the SG equation,
consisting of a soliton-antisoliton pair oscillating with an internal “breathing”
frequency. Here, we name this particular solution of the SG equation noise-
induced breather.

MST vs driving frequency ω − In this subsection we study the MST τ
behaviour as a function of the driving frequency ω ∈ [10−2 − 10], setting
L = 6 and γ = 0.1, varying the bias value i0 = {0.5, 0.9} and the statistics of
the noise sources. The data obtained are shown in panel (a) of Fig. 5. The
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junctions are long enough to give rise to solitons along the string. All graphs
clearly show the presence of resonant activation (RA) [48], [81]-[91], specif-
ically stochastic resonance activation, a noise induced phenomenon, whose
signature is the appearance of a minimum in the curve of MST vs ω [10, 23].
The RA is a phenomenon sufficiently robust to be found also in the presence
of Lévy noise sources [92, 22, 23]. Particle escape from a potential well occurs,
in average, when the potential barrier oscillates on a time-scale characteris-
tic of the particle escape itself. Since the resonant frequency is close to the
inverse of the average escape time in the minimum, which is the mean escape
time over the potential barrier in the lower configuration, stochastic resonant
activation occurs [10, 23, 93]. This is a phenomenon different from the dy-
namic resonant activation, which occurs when the driving frequency matches
the natural frequency of the system, that is the plasma frequency [94]-[96].
By increasing the driving frequency, at low noise intensities, a trapping phe-
nomenon occurs. A threshold frequency ωthr exists such that for ω > ωthr
the phase string is trapped within a region between two adjacent minima of
the potential profile. In other words, the string can not advance from the
potential well to the next one during one period T0 of the oscillating current
A sin(ωt). Therefore, the MST diverges in the limit γ → 0. The value of the
threshold frequency increases with increasing bias current and/or maximal
current across the junction [47, 48].

MST vs noise amplitude γ − Here we explore the behaviour of the MST
τ , varying the noise amplitude γ in the range [5 · 10−4, 2 · 102]. The results
are shown in panel (b) of Fig. 5 for L = 6 and ω = 0.9. Two different
inclinations of the WP are taken into account, imposing i0 = {0.5, 0.9}, and
considering G, CL and LS noise statistics. For γ → 0, all curves converge
to the deterministic lifetime of the superconducting state. For weak noise
intensities and intermediate slope of the WP, trapping phenomena occur, i.e.
τ → Tmax. Increasing γ, the MST curves exhibit an effect of noise enhanced
stability (NES), a noise induced phenomenon observed in different physical
systems [46]-[48], [97]-[117], consisting in a nonmonotonic behaviour of τ vs γ
with the appearance of a maximum. The curves calculated for G noise sources
and high slope, i.e. ib = 0.9, show an evident double maxima NES effect [23].
The maximum for high noise amplitudes is related to the possibility that the
phase string returns into the initial valley after a first escape event. This
second peak tends to vanish in CL curves, due to the action of the CL Lévy
flights. The differences between the first NES maximum obtained using a
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Figure 5: (Color online) (a) MST τ as a function of the driving frequency ω, setting
γ = 0.1. (b) MST τ as a function of the noise amplitude γ, setting ω = 0.9. The legend
in panel (b) refers also to panel (a). For both panels, L = 6, i0 = {0.5, 0.9} and G, CL
and LS noise source statistics are used.

G noise and that obtained by a CL noise source can be ascribed to the
limited space displacement that characterises the CL distribution for short
time scales and low noise intensities. The LS τ values tend to rapidly decrease
as γ increases, because very intense Lévy flights tend to rapidly push the cells
out of the potential minimum.

3. Graphene JJ

For a short ballistic SGS junction, in the low temperature limit, the ex-
pressions of the supercurrent iϕ(t) and washboard potential (WP) U(ϕ) were
obtained in Refs. [30, 31]. A non-sinusoidal phase-dependence of iϕ(t) and
U(ϕ) is found, unlike the conventional junctions, that is ruled by the well-
known d.c. Josephson relation. Noise signatures in the behaviour of graphene
junctions characterise many experimental and theoretical works [28], [32]-
[36]. In this paper we explore the switching dynamics of an underdamped
SGS junction in the presence of an external noise source. The analysis is
performed by varying the amplitude ib and frequency ω of the applied bias
current, and the intensity γ of the noise signal. We compare the results
obtained for a graphene-based JJ with the analogous ones calculated consid-
ering a conventional JJ. Our work sheds light on the transient dynamics and
the escape events from the metastable states of the WP of a graphene-based
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(a)

(b)

Figure 6: (a) (Color online) Schematic view of a suspended SGS junction structure. (b)
Washboard potential U(ϕ) as a function of the phase ϕ for a graphene-based JJ with
ib = 0. Three different configurations are shown, corresponding to different values of
sin(ωt) (see Eqs. (6) and (5)), namely zero (dark red, solid line), maximum (green, dashed
line) and minimum (dark blue, dotted line) slopes of the potential profile. Red and blue
dashed-dotted lines represent the right and left absorbing barriers, respectively. In the
legend, T is the oscillation period of the potential.

junction (see Fig. 6bb), provided that the proper CΦR [30] is considered.

3.1. Graphene JJ - The model

The time evolution of the order parameter ϕ for a short JJ is ruled by
the RCSJ model [57]. The equation for the motion of ϕ is

ϕtt(t) + β
J
ϕt(t) = ib(t)− iϕ(t) + if (t) (6)

where β
J

is the damping parameter calculated according to the Johnson
approach [57]. The time variable in Eq. (6) is normalised to the inverse
of the JJ plasma frequency. The current terms ib(t), iϕ(t) and if (t) are
the bias current, the supercurrent and the fluctuating current, respectively,
normalised to the JJ critical current value. The bias current is given by

ib(t) = i0 + A sin(ωt), (7)

where i0 is the initial value, A = 0.7 and ω are the amplitude and frequency
of the oscillating part.

For a SGS junction, the deviation from the conventional sinusoidal be-
haviour of the supercurrent was analytically obtained by Titov and Beenakker [30].
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In the limit of small temperature, T → 0, they obtained the supercurrent
and its critical value for a short ballistic junction

iϕ(ϕ(t)) =
I(ϕ)

Ic
=

2

1.33
cos
(ϕ

2

)
tanh−1

[
sin
(ϕ

2

)]
(8)

Ic = 1.33
e∆0

~
W

πL
. (9)

Using the previous Josephson current, Lambert et al. [31] derived the follow-
ing expression of the washboard-like potential

U(ϕ, t) = − EJ0

{
− 2

1.33

{
2 sin

(ϕ
2

)
tanh−1

[
sin
(ϕ

2

)]
+

+ ln
[
1− sin2

(ϕ
2

)]}
+ ib(t)ϕ

}
, (10)

where EJ0 = Φ0ic/2π is the Josephson coupling energy and Φ0 = h/2e is the
magnetic flux quantum. As a conventional WP, the slope is represented by
the bias current and the position of the phase particle along the potential
profile defines the working regime, superconducting or resistive, of the de-
vice. The graphene WP is shown in Fig. 6b for three different slopes (zero,
maximum and minimum) with ib = 0. The mean escape time τ is calculated
as mean first passage time (MFPT). Two absorbing barriers are placed in
correspondence of the WP maxima closer to the initial minimum, chosen as
initial condition (see the dashed-dotted lines of Fig. 6b).

The thermal fluctuations of the current if are modelled by a Gaussian
noise source with the well-known statistical properties

〈if (t)〉 = 0, 〈if (t)if (t+ τ)〉 = 2γ(T )δ(τ) (11)

In Eq. (11), the dimensionless amplitude is γ(T ) = kT/EJ0 and T is the
temperature.

3.2. Graphene JJ - Results

The analysis of the MFPT τ as a function of ω and γ is developed mainly
varying the slope of the WP, that is using different values of the initial bias
current i0. The heights ∆U± of the right and left potential barriers strictly
follow the modifications of the slope of the potential. In particular, ∆U± → 0
when ib → ±1.

14



�

���� ���� ���� ���� ��� ��� ���

�

�� �	���
�
�
����

�	���
�
�
����

�	���
�
�
����

�	���
�
�
���

�����
�
�
����

�����
�
�
����

�����
�
�
����

�����
�
�
���

��
����

�

���� ��� ���

��

���

��
����� ������

Figure 7: (Color online) (a) MFPT as a function of γ, with fixed frequency ω = 0.6. (b)
MFPT as a function of ω, with fixed noise intensity γ = 0.01. In both panels different
initial values of the bias current are used: i0 = 0.0, 0.1, 0.5, 0.9, and A = 0.7. Solid and
dotted lines represent results for a conventional JJ (SNS in the legend) and a SGS junction,
respectively. Legend in panel (a) refers to both panels.

Therefore, the transient dynamics of the phase particle is strongly influ-
enced by the values assumed by the bias current. For this reason we analyse
the transient dynamics of a short graphene-based junction, using different
initial values of the bias current (WP slope): i0 = 0.0 (zero slope), 0.1 (small
slope), 0.5 (intermediate slope) and 0.9 (high slope). The study is developed
for both a graphene-based and a normal JJ.

The results are shown in Fig. 7. Panel (a) of this figure contains MFPT
curves as a function of the amplitude of the Gaussian noise signal γ, with
fixed frequency ω = 0.6. All curves show signature of the NES effect, but
the characteristic of the NES maxima depends from the initial values of the
bias current i0.

For very low initial values of the bias current slope, the value of the
maximum of τ (see Fig. 7a) for a graphene-based junction, compared to
that obtained for a normal JJ (SNS), is clearly smaller. Viceversa, for in-
termediate and high slopes, the maximum of τ for a SGS increases. These
peculiarities should be ascribed to the different potential profile “felt” by the
phase particle during its nonlinear relaxation motion.

The values of τas a function of the driving frequency ω, with a fixed noise
intensity γ = 0.1, are shown in panel (b) of Fig. 7. The RA effect is clearly
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visible in all the curves, with differences again related to the slopes of the
potential profile. A comparison with the results obtained for a SNS, shows a
shift of all curves towards lower values of the frequency ω, again due to the
peculiarities of the WP in a SGS junction.

4. Electron spin decay modelling

In n-type III-V semiconductors, under nondegenerate regime, the dom-
inant electron spin relaxation process is the D’yakonov-Perel (DP) mech-
anism [118, 119]. The spin-orbit interaction couples the spin of conduc-
tion electrons to the carrier momentum, randomized by interactions with
phonons, impurities and other electrons. The spin-orbit coupling produces
the spin precession, while momentum scattering makes the precession ran-
domly varying, both in orientation and magnitude [40, 41]. The part of the
Hamiltonian of a single electron in the conduction band which takes into
account the spin-orbit coupling is given by

HSO =
~
2
~σ · ~Ω(~k). (12)

HSO accounts for the energy of an electron spin precessing with angular
frequency ~Ω around an effective magnetic field given by

~B = ~~Ω(~k)/µBg (13)

where µB is the Bohr magneton and g is the electron spin g-factor. ~Ω depends
on the orientation of the electron momentum vector with respect to the
crystal axes. Near the bottom of the Γ-valley the precession frequency is

~ΩΓ =
βΓ

~
[kx(k

2
y − k2

z)x̂+ ky(k
2
z − k2

x)ŷ + kz(k
2
x − k2

y)ẑ] (14)

Near the bottom of the L-valleys, located along the [111] direction in the
crystallographic axes [121], the precession vector can be written as

~ΩL =
βL√

3
[(ky − kz)x̂+ (kz − kx)ŷ + (kx − ky)ẑ] (15)

In equations (14)-(15), ki (i = x, y, z) are the components of the electron wave
vector, βΓ and βL are the spin-orbit interaction coefficients. Here, we set βΓ=
23.9 eV ·Å3, as in Ref. [120] and βL=0.26 eV Å·2/~, as theoretically estimated
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in Ref. [122]. As the quantum-mechanical description of the electron spin

evolution is equivalent to that of a classical momentum ~S experiencing the
magnetic field ~B, we describe the electron spin dynamics by means of the
classical equation of precession motion

d~S

dt
= ~Ω× ~S. (16)

The DP mechanism works between two collision events and randomizes spin
phases since electrons precess with different frequencies depending on their
momenta. In fact, the direction of the precession axis and the effective mag-
netic field ~B changes randomly and in a trajectory-dependent manner. This
makes the spin precession frequencies ~Ω and their directions varying in an
inhomogeneous manner within the electron spin ensemble. This spatial vari-
ation, known as inhomogeneous broadening, can be quantified by the average
squared precession frequency 〈| ~Ω(~k) |2〉 [123]. This quantity, together with
the correlation time of the random angular diffusion of spin precession vector
τΩ, are the relevant variables in the D’yakonov-Perel’s formula

τ =
1

〈| ~Ω(~k) |2〉τΩ

. (17)

Where, 1/τΩ = 1/τp + 1/τ
′
p, obtained by using Matthiessen’s rule. Here, τp is

the momentum relaxation time and τ
′
p, the momentum redistribution time,

related to the electron-electron interaction mechanism.

4.1. Monte Carlo approach and Noise modelling

The conduction bands of GaAs are represented by the Γ-valley and four
equivalent L-valleys. The electron transport dynamics is simulated by a semi-
classical Monte Carlo approach, which takes into account all the possible scat-
tering events of the hot electrons in the medium [124]- [126]. Moreover, we
also include the electron-electron (e-e) scattering by exploiting the screened
Coulomb potential and the Born’s approximation. The e-e scattering is han-
dled as an interaction between only two particles, by means of the Peschke’s
approach [127], as improved by Moško and Mošková [128] to take into ac-
count the e-e scattering rate valid for spin-polarised gas [129]. The complete
set of n-type GaAs parameters utilized in our numerical simulations is listed
in Table I of Ref. [124]. In our numerical code the spin polarisation vector is
taken into account and calculated for each free electron [121, 130, 131]. All
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simulations are obtained in a GaAs bulk having a doping concentration n
equal to 1016 cm−3 at a lattice temperature TL=300 K. In our algorithm all
donors are considered ionised and the free electron concentration is set equal
to the doping concentration. In order to collect spin statistics we simulate
an ensemble of 5 ·104 electrons and we compute all physical quantities after a
transient time long enough to get the steady-state transport regime. The spin
depolarization study starts with all the carriers at the injection plane being
in the Γ valley, initially polarised (S(0) = 1) along the x̂-axis of the crystal.
The spin lifetime τ is calculated as the time corresponding to a reduction
of the initial polarisation by a factor 1/e. Our numerical outcomes provides
spin lifetimes in good agreement with those calculated in a recent theoretical
paper [120] and with the experimental results reported in Ref. [132].

In our numerical calculations the GaAs sample is driven by a fluctuating
electric field F (t) = F0 + η(t), where F0 is the strength of the deterministic
field and η(t) is the random contribution due to the noise external source.
Here we consider two different kinds of random fluctuations: a Gaussian
correlated (GC) noise source and a dichotomous Markov (DM) noise source.

Gaussian correlated noise is modelled as an Ornstein-Uhlenbeck (OU)
process, which obeys the following stochastic differential equation [133]

dη(t)

dt
= −η(t)

τc
+

√
2D

τc
ξ(t) (18)

where τc and D are the correlation time and the intensity of the noise com-
ponent, respectively. The autocorrelation function of the OU process is
〈η(t)η(t′)〉 = D exp(−|t − t′|/τc), and ξ(t) is a Gaussian white noise with
zero mean 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t− t′).

The symmetric dichotomous Markov (DM) noise is generated by a random
process characterized by a stochastically switching between only two discrete
values [134, 135]

η(t) ∈ {−∆,∆}. (19)

Thus, we have zero mean
〈η(t)〉 = 0, (20)

and correlation function

〈η(t)η(t′)〉 = ∆2 exp

(
−| t− t

′ |
τD

)
, (21)
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Figure 8: Spin polarisation < Sx > as a function of time at three different values of the
normalised correlation time τc/τ0 (left panel) or τD/τ0 (right panel), namely (dotted line)
10−3, (solid line) 100 and (dashed line) 103. The other parameter values are: F0 = 6
kV/cm, τ0 =1.40 ps; for the Gaussian correlated noise (left) D1/2 = 2.4 kV/cm; for the
dichotomous noise (right) ∆ = 1.2 kV/cm.

where τD is the correlation time of the noise and it is related to the inverse
of the mean frequency of transition from ±∆ to ∓∆, respectively [134, 135].
In our simulations, we set η(0) = Z as initial condition, where Z is a random
variable which can assume only the values ∆ and −∆ with the same prob-
ability (P = 0.5). In this work only fluctuations of equal amplitude, easily
generable by means of electronic circuits, have been taken into account in
order to make more manageable the effects of the DM noise.

4.2. Numerical results and discussion

In order to investigate the effects due to the addition of external random
fluctuations on the depolarisation process of the electron spin, we carried
out 500 diverse noise histories for each strength of the deterministic applied
field and estimated the mean value and the standard deviation of the spin
relaxation times. Different findings are found, depending on whether the
deterministic field F0 is lower or higher than the Gunn field (FG ≈ 3.25
kV/cm), that is the minimum value of electric field that the electrons need
to move in L-valleys. In panels of Figure 8, we show a single Monte Carlo
realisation of the electron spin average polarisation < Sx > (averaged over
the electron ensemble) as a function of time. The fluctuating external field is
characterised by a deterministic component with amplitude F0 = 6 kV/cm
and a random GC component of amplitude D1/2 = 2.4 kV/cm (left panel)
or a DM random component of amplitude ∆ = 1.2 kV/cm (right panel),
for three different values of the normalised noise correlation time τc/τ0 or
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Figure 9: Normalised electron spin relaxation time τ/τ0 as a function of the normalised
correlation time τc/τ0 of the GC noise or τD/τ0) of the DM noise, respectively. The values
of the other parameters are: n = 1016 cm−3, TL=300 K, F0 = 1 kV/cm, D1/2 = 0.4
kV/cm, ∆ = 0.2 kV/cm, and τ0 = 42.8 ps.

τD/τ0, respectively. Here, τ0 = 1.40 ps is the spin relaxation time obtained
when only the deterministic field F0 is applied. The spin relaxation process
is significantly influenced by the external GC fluctuation component only
for values of the noise correlation time comparable to τ0 (τc ≥ τ0), where
the electron spin lifetime is considerably enhanced. In the case of the DM
random component, when τD � τ0, the spin dephasing process is practically
not affected by the fluctuations of the electric field, which have a negligible
memory (τD) with respect to the characteristic time τ0 of the system, making
the dephasing process quasi-deterministic. The spin relaxation process begins
to be influenced by the fluctuating field only for values of the noise correlation
time comparable with τ0 (τD ≥ τ0).

In Fig. 9, we show the normalised electron spin lifetime τ/τ0 as a function
of the normalised noise correlation time, both for GC and DM noise, with
F0 = 1 kV/cm, ∆ = 0.2 kV/cm and D1/2 = 0.4 kV/cm. Since the amplitude
of the applied electric field is not enough to allow the electrons to move in
higher energy valleys (F0 < FG), independently on the noise mean switching
time, the DM noise has no effect on the spin relaxation process (see circles).
However, a faster spin depolarisation, with a shorter spin lifetime (up to 5%),
is found if the fluctuating contribution is Gaussian correlated (see squares).
In this case, the reduction strongly depends on the noise correlation time.
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Figure 10: Results for Gaussian correlated noise: normalised electron spin relaxation time
τ/τ0 as a function of the normalised noise correlation time τc/τ0, for three different values
of noise amplitude, namely D1/2 = 1.2, 2.4, 3.6 kV/cm. The values of the other parameters
are: n = 1016 cm−3, TL=300 K, F0 = 6 kV/cm and τ0 = 1.40 ps.

The dependence of the normalised spin relaxation time τ/τ0 on the nor-
malised noise correlation time τc/τ0, in the case of a driving electric field
fluctuating for the presence of an external source of GC noise, is shown in
Fig. 10, for three different values of the noise intensity. A detailed analysis
of these data highlights the presence of a nonmonotonic behaviour charac-
terised by a slight minimum at τc/τ0 ∼ 10−1 and a more evident maximum
for a value of the noise correlation time of about 10 τ0. Our results show that
the addition of a Gaussian correlated noise, with τc in the range (1÷ 100)τ0,
causes an enhancement of the value of the spin relaxation time τ which may
increase up to ∼ 2.1 τ0 depending on the value of the noise intensity D. For
very low and very high values of τc, the time τ remains close to τ0. In the pres-
ence of Gaussian correlated fluctuations, the electron ensemble experiences
an effective electric field that can be higher or lower than the deterministic
one, depending on the value of the noise correlation time, the characteristic
memory time of the fluctuations. This affects the electron transport in the
semiconductor in such a way that an enhancement or a reduction of the elec-
tron spin lifetime, occupation percentage and hot-electron temperature can
be obtained [56]. The occurrence of these circumstances depends not only
on the ratio between the value of the memory time of the GC noise and the
characteristic relaxation time of the spin system, but also on its ratio with
both the momentum relaxation time and the momentum redistribution time
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Figure 11: Results for dichotomous Markov noise: normalised electron spin relaxation time
τ/τ0 as a function of the normalised noise correlation time τD/τ0, for three different values
of noise amplitude, namely ∆ = 0.6, 1.2, 1.8 kV/cm. The values of the other parameters
are: n = 1016 cm−3, TL=300 K, F0 = 6 kV/cm and τ0 = 1.40 ps.

(characteristic of the electron-electron interaction). Thus, if the GC noise
becomes “resonant” with one of these characteristic times of the system, it
can give rise to a constructive or destructive interference, and produce sig-
nificant changes on the electron dynamics [56]. The influence of different
time scales on the spin polarised transport in GaAs and other semiconductor
materials needs deeper analysis and will be subject of further investigations.

In Fig. 11, we show the normalised electron spin relaxation time τ/τ0 as
a function of the normalised correlation time τD/τ0, for different values of
the DM noise amplitude ∆. For the lowest noise amplitude ∆ = 0.6 kV/cm,
the electron spin relaxation time is almost constant (τ/τ0 ∼ 1). For values
of the noise correlation time τD ≤ 10−1τ0, the value of τ is always close to
τ0, even at higher values of ∆. On the contrary, when the noise amplitude
increases and τD > τ0, the value of the spin relaxation time τ can increase up
to 1.25 τ0. For τD > 10 τ0, the electron spin lifetime remains approximately
constant. This positive effect monotonically increases with the amplitude of
the DM noise. A threshold effect is observed, in which an enhancement of
the electron spin lifetime can be maintained for several orders of magnitude
of the DM mean switching time, starting from a value equal to 10 times the
relaxation characteristic time τ0 of the spin system in the absence of noise.
A simple argument to explain the numerical results found in the presence of
an external source of DM noise has been extensively discussed in Ref. [56].

22



5. Conclusions

The investigation of three noise induced effects in the transient dynamics
of out of equilibrium condensed matter systems has been reviewed. Specif-
ically, we analyzed the noise enhanced stability and the stochastic resonant
activation phenomena in the nonlinear relaxation of (i) a long JJ in the pres-
ence of non-Gaussian noise source, (ii) a short grapheme based JJ, and (iii)
the noise-induced coherence of electron spin in a n-doped GaAs semiconduc-
tor crystal.

(i) In long current-biased Josephson junctions, the effects of non-Gaussian
noise sources on the mean switching times (MST), using different Lévy dis-
tributions, have been presented. Specifically, we have shown how the out
of equilibrium dynamics of long JJs is affected by Lévy flights and noise-
induced solitons. In particular, in the behaviour of the MST, we observed
noise induced phenomena such as stochastic resonant activation (SRA) and
noise enhanced stability (NES), with different characteristics depending on
both the bias current and the length of the superconducting device. The
analysis of the MST as a function of the junction length revealed that the
soliton dynamics plays a crucial role in the switching dynamics from the su-
perconducting to resistive state. The MST from one of the metastable states
of the potential profile encodes information on the non-Gaussian background
noise. Therefore, the statistical analysis of the switching times of JJs can be
used to analyse weak signals in the presence of an unknown non-Gaussian
background noise.

(ii) The short JJ studied in this work is composed by two superconducting
elements suspended on a graphene layer. As a consequence, the critical
current of a graphene-based JJ deviates from the conventional sinusoidal
behaviour. A comparison between the mean first passage times calculated for
normal and graphene-based devices, changing the initial bias current value,
is presented. Noise induced behaviours have been observed, that is RA and
NES effects, with characteristics depending on the kind of junction taken into
account. The nonmonotonic behaviours of the superconducting lifetime as a
function of the driving frequency and noise intensity could give rise to a new
generation of graphene-based JJs. Our results show that, by controlling the
escape process from the metastable state, we can improve the performance of
short and long JJ devices and reveal non-Gaussian background noise present
in input unknown signals.

(iii) We have also analysed the influence of two different noise sources on
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the electron spin relaxation process in n-doped GaAs semiconductor crys-
tals. Our findings show that in the case of Gaussian correlated fluctuations,
the spin relaxation time has a nonomonotonic behaviour, with a maximum.
In particular, when the noise memory time is comparable with one of the
characteristic times of the electron dynamics, a constructive or destructive
interference effect occurs giving rise to an enhancement or a reduction of
the spin relaxation time. With the addition of DM random fluctuations
to a static driving electric field, whose amplitude is greater than the Gunn
threshold, it is possible to enhance the spin lifetime up to 25% of its value
in the absence of external noise. This enhancement, which increases with
the amplitude of the external fluctuations, is observed for noise correlation
times comparable or greater than the spin lifetime obtained with the only
deterministic applied field. The enhancement of the electron spin lifetime
in GaAs crystals strongly depends on the correlation time and amplitude of
the external Gaussian correlated noise. In particular, we have found that
the benefits of the dichotomous noise consist in a threshold effect, in which
the increase of the electron spin lifetime is obtained in a wide range of noise
correlation times, while in the presence of a Gaussian correlated noise, the en-
hancement is greater, but is obtainable only in a limited range of correlation
times. In conclusion, random fluctuations of the electric driving field, due to
different noise sources, can play a relevant role on controlling and tuning the
coherence of spin-relaxation processes. In this view, by using appropriate
characteristic times for the noise sources, it is possible to select the most
favourable condition for the transmission of information by electron spin.

The noise can stabilize a metastable state in fluctuating driven JJ sys-
tems, by increasing its lifetime. Moreover, the noise can enhance the spin
lifetime in a spintronic system by increasing the coherence of the spin re-
laxation process from an initial metastable state. The results presented in
this paper are general enough to be extended to out of equilibrium con-
densed matter and complex biological systems characterized by the presence
of metastable states.
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[70] A. Khintchine, P. Lévy, Sur les lois stables, C. R. Acad. Sci. Paris 202.

[71] A. Y. Khintchine, Limit Distributions for the Sum of Independent Ran-
dom Variables, O.N.T.I, Moscow (in Russian), 1938.

[72] W. Feller, An introduction to probability theory and its applications,
Vol. 2, John Wiley & Sons, 2008.

[73] R. Weron, On the Chambers-Mallows-Stuck method for simulating
skewed stable random variables, Stat. & Probabil. Lett. 28 (2) (1996)
165–171.

[74] J. M. Chambers, C. L. Mallows, B. Stuck, A method for simulating
stable random variables, J. Am. Stat. Assoc. 71 (354) (1976) 340–344.

[75] K. Binder, Time-Dependent Ginzburg-Landau Theory of Nonequilib-
rium Relaxation, Phys. Rev. B 8 (1973) 3423–3438.

[76] N. V. Agoudov, A. N. Malakhov, Nonstationary diffusion through arbi-
trary piecewise-linear potential profile. Exact solution and time charac-
teristics Radiophys. Quantum El. 36 (2) (1993) 97–109.

[77] A. N. Malakhov, Time scales of overdamped nonlinear Brownian motion
in arbitrary potential profiles, Chaos 7(3) (1997) 488–504.

[78] A. A. Dubkov, A. N. Malakhov, A. I. Saichev, Correlation time and
structure of the correlation function of nonlinear equilibrium Brownian
motion in arbitrary-shaped potential wells, Radiophys. Quantum El.
43(4) (2000) 335–346.

[79] A. N. Malakhov, A. L. Pankratov, Evolution times of probability dis-
tributions and averages–exact solutions of the Kramers’problem, Adv.
Chem. Phys. 121 (2002) 357–438.

[80] K. Fedorov, A. L. Pankratov, B. Spagnolo, Influence of length on the
noise delayed switching of long Josephson junctions, Int. J. Bifurcat.
Chaos 18 (09) (2008) 2857–2862.

31



[81] C. R. Doering, J. C. Gadoua, Resonant activation over a fluctuating
barrier, Phys. Rev. Lett. 69 (16) (1992) 2318–2321.

[82] R. N. Mantegna, B. Spagnolo, Experimental investigation of resonant
activation, Phys. Rev. Lett. 84 (14) (2000) 3025–3028.

[83] R. Mantegna, B. Spagnolo, Numerical simulation of resonant activation
in a fluctuating metastable model system, J. Phys. IV 8 (PR6) (1998)
Pr6-247–251.

[84] P. Pechukas, P. Hänggi, Rates of activated processes with fluctuating
barriers, Phys. Rev. Lett. 73 (20) (1994) 2772–2775.

[85] M. Marchi, F. Marchesoni, L. Gammaitoni, E. Menichella-Saetta,
S. Santucci, Resonant activation in a bistable system, Phys. Rev. E
54 (4) (1996) 3479–3487.

[86] B. Dybiec, E. Gudowska-Nowak, Lévy stable noise-induced transitions:
Stochastic resonance, resonant activation and dynamic hysteresis, J.
Stat. Mech.-Theory E. (2009) P05004.

[87] S. Miyamoto, K. Nishiguchi, Y. Ono, K. M. Itoh, A. Fujiwara, Resonant
escape over an oscillating barrier in a single-electron ratchet transfer,
Phys. Rev. B 82 (3) (2010) 033303.

[88] N. Pizzolato, A. Fiasconaro, D. Persano Adorno, B. Spagnolo, Reso-
nant activation in polymer translocation: new insights into the escape
dynamics of molecules driven by an oscillating field, Phys. Biol. 7 (2010)
034001.

[89] Y. Hasegawa, M. Arita, Escape process and stochastic resonance under
noise intensity fluctuation, Phys. Lett. A 375 (39) (2011) 3450–3458.

[90] A. Fiasconaro, B. Spagnolo, Resonant activation in piecewise linear
asymmetric potentials, Phys. Rev. E 83 (4) (2011) 041122.

[91] N. Pizzolato, A. Fiasconaro, D. Persano Adorno, B. Spagnolo, Translo-
cation dynamics of a short polymer driven by an oscillating force, J.
Chem. Phys. 138 (2013), 054902.

32



[92] G. Augello, D. Valenti, B. Spagnolo, Non-gaussian noise effects in the
dynamics of a short overdamped josephson junction, Eur. Phys. J. B
78 (2) (2010) 225–234.

[93] C. Pan, X. Tan, Y. Yu, G. Sun, L. Kang, W. Xu, J. Chen, P. Wu, Reso-
nant activation through effective temperature oscillation in a Josephson
tunnel junction, Phys. Rev. E 79 (3) (2009) 030104.

[94] M. H. Devoret, J. M. Martinis, D. Esteve, J. Clarke, Resonant activation
from the zero-voltage state of a current-biased josephson junction, Phys.
Rev. Lett. 53 (13) (1984) 1260–1263.

[95] M. H. Devoret, J. M. Martinis, J. Clarke, Measurements of macroscopic
quantum tunneling out of the zero-voltage state of a current-biased
Josephson junction, Phys. Rev. Lett. 55 (18) (1985) 1908–1911.

[96] J. M. Martinis, M. H. Devoret, J. Clarke, Experimental tests for the
quantum behavior of a macroscopic degree of freedom: The phase dif-
ference across a Josephson junction, Phys. Rev. B 35 (10) (1987) 4682–
4698.

[97] R. N. Mantegna, B. Spagnolo, Probability distribution of the Residence
Times in Periodically Fluctuating Metastable Systems, Int. J. Bifurcat.
Chaos 8(4) (1998) 783–790.

[98] N. V. Agudov, A. A. Dubkov, B. Spagnolo, Escape from a metastable
state with fluctuating barrier, Physica A 325 (2003) 144-151.

[99] A. Fiasconaro, D. Valenti, B. Spagnolo, Role of the initial conditions on
the enhancement of the escape time in static and fluctuating potentials,
Physica A 325 (2003) 144–151.

[100] B. Spagnolo, A. A. Dubkov, and N. V. Agudov, Enhancement of sta-
bility in randomly switching potential with metastable state, Eur. Phys.
J. B 40 (2004) 273–281.

[101] B. Spagnolo, N. Agudov, A. Dubkov, Noise enhanced stability, Acta
Phys. Pol. B 35 (4) (2004) 1419–1436.

[102] P. D’Odorico, F. Laio, L. Ridolfi, Noise-induced stability in dryland
plant ecosystems, P. Natl. Acad. Sci. USA 102 (31) (2005) 10819–10822.

33



[103] A. Fiasconaro, B. Spagnolo, S. Boccaletti, Signatures of noise-enhanced
stability in metastable states, Phys. Rev. E 72 (6) (2005) 061110.

[104] A. Fiasconaro, B. Spagnolo, A. Ochab-Marcinek, E. Gudowska-Nowak,
Co-occurrence of resonant activation and noise-enhanced stability in a
model of cancer growth in the presence of immune response, Phys. Rev.
E 74 (2006) 041904(10).

[105] P. I. Hurtado, J. Marro, P. Garrido, Metastability, nucleation, and
noise-enhanced stabilization out of equilibrium, Phys. Rev. E 74 (5)
(2006) 050101.

[106] B. Spagnolo, A. Dubkov, A. Pankratov, E. Pankratova, A. Fiasconaro,
A. Ochab-Marcinek, Lifetime of metastable states and suppression of
noise in interdisciplinary physical models, Acta Phys. Pol. B 38 (5)
(2007) 1925–1950.

[107] G. Bonanno, D. Valenti, B. Spagnolo, Mean escape time in a system
with stochastic volatility, Phys. Rev. E 75 (2007) 016106(8).

[108] R. Mankin, E. Soika, A. Sauga, A. Ainsaar, Thermally enhanced stabil-
ity in fluctuating bistable potentials, Phys. Rev. E 77 (5) (2008) 051113.

[109] A. Fiasconaro, A. Ochab-Marcinek, B. Spagnolo, E. Gudowska-Nowak,
Monitoring noise-resonant effects in cancer growth influenced by spon-
taneous fluctuations and periodic treatment, Eur. Phys. J. B 65 (2008)
435–442.

[110] M. Yoshimoto, H. Shirahama, S. Kurosawa, Noise-induced order in the
chaos of the Belousov–Zhabotinsky reaction, J. Chem. Phys. 129 (1)
(2008) 014508.

[111] A. Fiasconaro, B. Spagnolo, Stability measures in metastable states
with Gaussian colored noise, Phys. Rev. E 80 (4) (2009) 041110.

[112] M. Trapanese, Noise enhanced stability in magnetic systems, J. Appl.
Phys. 105 (7) (2009) 07D313.

[113] A. Fiasconaro, J. J. Mazo, B. Spagnolo, Noise-induced enhancement
of stability in a metastable system with damping, Phys. Rev. E 82 (4)
(2010) 041120.

34



[114] J.-h. Li, J.  Luczka, Thermal-inertial ratchet effects: Negative mobil-
ity, resonant activation, noise-enhanced stability, and noise-weakened
stability, Phys. Rev. E 82 (4) (2010) 041104.

[115] A. A. Smirnov, A. L. Pankratov, Influence of the size of uniaxial mag-
netic nanoparticle on the reliability of high-speed switching, Phys. Rev.
B 82 (13) (2010) 132405.

[116] A. Shit, S. Chattopadhyay, J. R. Chaudhuri, Quantum Stochastic Dy-
namics in the Presence of a Time-Periodic Rapidly Oscillating Potential:
Nonadiabatic Escape Rate J. Phys. Chem. A 117 (2013) 8576-8590.

[117] T. Yang, C. Zhang, Q. Han, C.-H. Zeng, H. Wang, D. Tian, F. Long,
Noises- and delay-enhanced stability in a bistable dynamical system de-
scribing chemical reaction, Eur. Phys. J. B 87 (2014) 136.

[118] M. I. D’yakonov, V. I.Perel, Possibility of Orienting Electron Spins
with Current, JETP Lett. 13 (1971) 467–469.

[119] K. L. Litvinenko, M. A. Leontiadou, J. Li, S. K. Clowes, M. T. Emeny,
T. Ashley, C. R. Pidgeon, L. F. Cohen, B. N. Murdin, Strong dependence
of spin dynamics on the orientation of an external magnetic field for InSb
and InAs, Appl. Phys. Lett. 96 (2010) 111107.

[120] H. Tong, M. W. Wu, Multivalley spin relaxation in n-type bulk GaAs
in the presence of high electric fields, Phys. Rev. B 85 (2012) 075203.

[121] S. Saikin, M. Shen, M. C. Cheng, Spin dynamics in a compound
semiconductor spintronic structure with a Schottky barrier, J. Phys.-
Condens. Mat. 18 (2006) 1535–1544.

[122] J. Y. Fu, M. Q. Weng, M. W. Wu, Spin-orbit coupling in bulk GaAs,
Physica E 40 (2008) 2890–2893.

[123] C.P. Slichter, Principles of Magnetic Resonance, edited by H.K.V.
Lotsch, Springer-Verlag, Berlin, 1996 pp. 399.

[124] D. Persano Adorno, M. Zarcone, G. Ferrante, Far-infrared harmonic
generation in semiconductors: A Monte Carlo simulation, Laser Phys.
10 (2000) 310–315.

35



[125] D. Persano Adorno, M. Zarcone, G. Ferrante, Monte Carlo simulation
of harmonic generation in InP, Laser Part. Beams 19 (2001) 81–85.

[126] D. Persano Adorno, Polarization of the radiation emitted in GaAs semi-
conductors driven by far-infrared fields, Laser Phys. 20 (2010) 1061–
1067.

[127] C. Peschke, The impact of electron-electron interaction on electron
transport in GaAs at high electric fields, J. Phys.-Condens. Mat. 6 (1994)
7027–7044.
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