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ABSTRACT

Building upon findings in computational model of handwriting learning and execution, we introduce
the concept of stability to explain the di↵erence between the actual movements performed during
multiple execution of the subject’s signature, and conjecture that the most stable parts of the signature
should play a paramount role in evaluating the similarity between a questioned signature and the
reference ones during signature verification. We then introduce the Stability Modulated Dynamic
Time Warping algorithm for incorporating the stability regions, i.e. the most similar parts between
two signatures, into the distance measure between a pair of signatures computed by the Dynamic
Time Warping for signature verification. Experiments were conducted on two datasets largely adopted
for performance evaluation. Experimental results show that the proposed algorithm improves the
performance of the baseline system and compares favourably with other top performing signature
verification systems.

c� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic Time Warping (DTW) is an algorithm largely used
in automatic signature verification (ASV) to detect forgeries.
Indeed, some of the most performing ASV systems in the cur-
rent literature are based on such algorithm. DTW’s elastic prop-
erty is likely the key of its success. Such property allows to en-
large and shorten a cost function in order to find the best elastic
matching between signals.

Some DTW-based systems apply some normalizations to the
obtained dissimilarity measure, e.g. (Diaz et al., 2018; Morales
et al., 2017; Fischer et al., 2015; Kholmatov and Yanikoglu,
2009). Other authors work out the optimization matrix be-
cause further information can be extracted (Sharma and Sun-
daram, 2017b). Moreover, in combination with vector quan-
tization (VQ), which models the signature through prototype
vectors, the DTW seems to be competitive as well (Sharma and
Sundaram, 2016). Similarly, DTW has shown its power when
signatures were represented by features derived from a Gaus-
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sian Mixture Model (GMM) (Sharma and Sundaram, 2017a)
or from the kinematic theory of rapid movements (Fischer and
Plamondon, 2017; Gomez-Barrero et al., 2015). In the stabil-
ity field, the DTW algorithm has been used together with the
Direct Matching Points (DMP) in order to identify the most lo-
cal stable features of a signature (Pirlo et al., 2015a) or for the
stability and complexity analysis of dynamic signatures (Pirlo
et al., 2015b).

However, not only dynamic signature systems, but also o↵-
line ASVs have used DTW (Shanker and Rajagopalan, 2007).
As an example, the distance of strokes extracted from image-
based signature is measured by means of DTW (Ye et al., 2005).

Signatures are complex movements composed by elemen-
tary movements, or strokes, which are concatenated in such a
way that their execution produces the desired trajectory with
the minimum amount of metabolic energy. Along the years and
by repeated practice, such an optimization is learned and the
signature becomes a distinctive feature of the subject. The ef-
fect of the learning is stored in the brain as a motor plan that
incorporates both the sequence of target points, i.e. the points
the strokes aim to reach, and the sequence of motor commands
to be executed to draw the desired shape between them (Sen-
atore and Marcelli, 2012). The former encoding is e↵ector in-
dependent, while the latter depends on the e↵ector selected for
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signing (Raibert, 1977).
Multiple executions of the signature produced by the same

e↵ector, therefore, should produce the same trajectory, as they
are the execution of the same motor plan executed by the same
e↵ector. The actual configuration of the e↵ector, however, may
change from one execution to another, because of the psy-
chophysical conditions of the subject. During the execution of
the movement, thus, the spinal cord may modulate the com-
mands of the motor plan in reaction to the visual and proprio-
ceptive feedbacks in receives, representing the current state of
the e↵ector, in order to keep the actual trajectory as close as
the intended one (Marcelli et al., 2013; Parziale et al., 2015;
Parziale, 2016; Ferrer et al., 2017). Because of its nature and
intended aims, such a modulation should produce small varia-
tions of the shape along the trajectory.

On the other hand, as the complexity of the signing move-
ments increases, so does the complexity of the motor plan
and the amount of metabolic energy required for its execution.
Thus, during the learning, the subject may find more convenient
to break the entire movements into sub-movements, for each of
whom its motor plan is stored. During the execution, the mo-
tor plans are retrieved, as well as their temporal order, and ex-
ecuted, each one like an elementary movement. Between two
successive ones, however, the movement to perform depends on
the relative position between the actual position of pentip at the
end of the first movement and the intended position of the pen-
tip for starting the second movement. As such movements are
not stored in the motor plan, they are computed on the fly, by
resorting to the repertoire of motor plans the subject has previ-
ously learned. During their execution, therefore, it is very likely
that a bigger modulation of the commands by the spinal cord
will be needed to adjust the movements towards to intended
target. Larger modulation, in turn, may produce larger e↵ect on
the shape of the trajectory corresponding to those movements.

According to these observations, we conjecture that the sign-
ing habits of a subject have been encoded in the motor plan
that has been learned, and thus during multiple executions of
the signature, the movements corresponding to the commands
stored into the motor plan should produce very similar shapes,
while those computed on the fly may exhibit a larger variability.
As a consequence, the trajectory of a signature can be thought
as composed of stability regions, originated by the execution of
the motor plan, and other regions, originated by the execution
computed on the fly. Such stability regions, thus, convey the
most relevant information about the signing habits, and there-
fore should be given more importance during the verification.

The idea of signature stability has been exploited by di↵er-
ent algorithms that have been grouped as model-based, feature-
based and data-based approaches (Pirlo et al., 2015b). Model-
based approaches build a model of the writer, for example by
using Hidden Markov Model (Salicetti et al., 2008), and evalu-
ate stability in term of variability of model parameters. Feature-
based approaches estimate signature stability by extracting and
matching feature vectors (Lei and Govindaraju, 2005). Data-
based approaches use raw-data for matching signatures and es-
timating their di↵erences. Pirlo and Impedovo (2013) and Diaz
et al. (2015) use optical flow for evaluating the deformation pro-

cess that transforms a genuine signature in another, while Impe-
dovo et al. (2012) use DTW to compare genuine signatures to
identify matching points that can indicate the presence of a sta-
ble region of the signature.

The approach adopted in this paper di↵ers from the others
because it represents explicitly the motor plans in terms of sta-
bility regions and uses this information to evaluate the similar-
ity between the signatures. In this framework, we introduce the
Stability Modulated Dynamic Time Warping (SM-DTW) algo-
rithm, which aims at incorporating into the computation of the
DTW the role of the stability regions by giving larger weights
to the shape di↵erence between stability regions than in case of
ordinary regions.

The remaining of this paper is organized as it follows. Sec-
tion 2 introduces the SM-DTW algorithm main components,
namely the detection of the stability regions, the estimation of
the relevance of the stability regions in capturing the signing
habits of a subject and the modulation of the DTW computa-
tion based on the relevance of the stability regions. Section 3
describes the experiments performed and reports the results ob-
tained on two signature datasets largely adopted for evaluating
the performance of signature verification systems. Eventually,
Section 4 discusses to which extent the experimental results
support our conjecture and the future investigations they sug-
gest.

2. The SM-DTW algorithm

The proposed algorithm is a weighted version of the classical
DTW algorithm that exploits the detection of stability regions
between a set of N reference signatures R = {R1, ...,RN} gener-
ated by a subject and a questioned signature Q.

In the light of the theoretical framework described above, sta-
bility regions are detected by representing each signature by the
motor plan it derives from. As this last is encoded by a sequence
of strokes, they have to be retrieved from the learned sequence.
For this purpose, any of the stroke segmentation methods pro-
posed in literature can be adopted. In this work we have used
the multiresolution algorithm described in (De Stefano et al.,
2004), where the desired segmentation points are the points cor-
responding to the most salient changes in curvature. We have
also considered to perform this step by using the algorithm pro-
posed in (O’Reilly and Plamondon, 2009), which exploits dy-
namic information, but experiments have shown that it tends
to segment multiple executions of the same motor plan into a
di↵erent number of strokes (Parisi et al., 2018), and thus does
not allow to reliably infer the stability regions as it is described
next.

After segmentation, therefore, both questioned and reference
signatures are represented by sequences of strokes, as in eq. 1
and 2:

Q = {q̃1, . . . , q̃ j, . . . q̃z} (1)

Ri = {r̃1
i
, . . . , r̃ j

i
, . . . , r̃ci

i
} (2)

where q̃
j is the j

th stroke of Q and r̃
j

i
is the j

th stroke of the i
th

reference Ri belonging to R.
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2.1. Searching for the stability regions

According to the definition given in the Introduction, the sta-
bility regions between two signatures are the longest sequences
of strokes having similar shapes and aiming at reaching the
same target points. In (Parziale and Marcelli, 2014) a method
for finding the stability regions between two signatures based
upon this definition has been presented, and will be summa-
rized in the following. In order to find the longest sequences of
strokes having similar shapes, the trajectory is represented by
the digital line obtained by the Bresenham algorithm (Bresen-
ham, 1965) to the temporal sequence of x-y coordinates pro-
vided by the tablet. To find stability regions a matching algo-
rithm that exploits the concept of saliency proposed to account
for attentional gaze shift in primate visual system is adopted
(Itti et al., 1998).

Given two signatures Ri and Q, segmented in ci and z strokes
respectively, the method builds a multiscale representation of
the trajectory made by H = min(ci, z) scales. At each scale h,
where h 2 {1, 2, . . . ,H}, the method measures the similarity be-
tween all the sequences made by h strokes and computes the
similarity matrix SDh, made by ci ⇥ z elements. At the lowest
scale (h = 1), the value of the (yth, lth) element of the similar-
ity matrix SD1 is equal to the shape similarity between the pair
of strokes (r̃y

i
, q̃l), which is computed by adopting the Weighted

Edit Distance (WED) presented in (De Stefano et al., 2005).
This distance varies between 0 and 100 and it is equal to 0
when two strokes with the same shape but opposite direction are
matched and to 100 when two identical strokes are compared.
When h > 1, the (yth, lth) element of the similarity matrix SDh

is set equal to the mean similarity of the sequence composed of
h pair of strokes, as in eq. 3:

SDh(y, l) =

8>>>>>>><
>>>>>>>:

P
h�1
p=0 SD1(y + p, l + p)

h
, if (y + h � 1 < ci)

and (l + h � 1 < z)
0, otherwise

(3)
where SD1(y + p, l + p) = WED(r̃y+p

i
, q̃l+p), 0  y  ci � 1 and

0  l  z � 1.
The most salient sequences of strokes, i.e. the ones with a

similarity greater than a threshold thLCS , are selected at each
scale and are eventually combined in order to build a saliency
map. In particular, at each scale, the similarity of a pair of
stroke is set equal to 0 if its value is below thLCS .

The saliency map SAM is an ci ⇥ z matrix whose elements
report, for each pair of strokes, the maximum of their similarity
across the scales at which the pair of strokes belongs to one of
the most salient sequences, as in eq. 4:

SAM(y, l) = max(SD1(y, l), . . . ,SDh(y, l), . . . ,SDH(y, l)) (4)

where 0  y  ci � 1 and 0  l  z � 1.
The longest sequences of saliency map elements with a value

greater than zero represent the longest sequences of strokes hav-
ing similar shape between the two signatures and from here on

are denoted by LSSSs. None, one or many LSSSs can be de-
tected, respectively when two signatures completely di↵erent,
completely equal or similar only in some parts are compared.
In general, LSSSsRiQ

= {LSSS
1
RiQ
, . . . ,LSSS

k

RiQ
}, and each LSSS

is a sequence of matching strokes

LSSS
j

RiQ
= {S Ri

, S Q} = {(r̃y

i
, q̃l), . . . , (r̃u

i
, q̃o)} (5)

where S Ri
= {r̃y

i
, . . . , r̃u

i
} and S Q = {q̃l, . . . , q̃o} are sequences of

ns matching strokes.
Once the LSSSs have been found, the method evaluates

whether the matching sequences correspond to a stability re-
gion by estimating if SRi

and SQ aim at reaching the same se-
quence of target points. We must bear in mind that the abso-
lute position of the target points may be changed voluntarily
by the subject by changing the size of the signing movements.
However, such a change does not a↵ect the relative position
among the target points. Thus, for establishing whether the two
sequences SRi

and SQ aim at reaching the same target points,
the starting and the ending point of each stroke are joined by a
segment and the angles between successive segments are com-
puted. Therefore, the stroke sequences SRi

and SQ are repre-
sented by two sequences of ns-1 angles, ↵S Ri

= {↵1, . . . ,↵ns�1}
and �S Q

= {�1, . . . , �ns�1} respectively. Eventually, the similar-
ity vector of the sequence of target points of SRi

and SQ, denoted
by T (SRi

, SQ), is computed by exploiting the idea that the more
similar the angles, the closer the relative position of the target
points aimed by the strokes of SRi

and SQ, as in eq. 6:

T (SRi
, SQ) = [cos(2��1), ..., cos(2��ns�1), 1] (6)

where
��(SRi

, SQ) = ↵SRi
� �SQ

(7)

The shape similarity measure and the target point position
similarity measure are combined into the global similarity mea-

sure (GS) defined as in eq. 8:

GS =

nsX

k=1

SAM(SRi
(k), SQ(k)) ⇤ T (SRi

(k), SQ(k)) (8)

Eventually, we consider that the motor plan of a signature
must be fairly complex: too simple motor plans, routinely used
by the subject to encode simple shapes, e.g. the loop on top
of the letter e, h, l and similar may be part of the repertoire
of motor plans every subject has learned by practicing hand-
writing, and therefore are not a specific feature of each subject.
We assume as measure of the complexity of the motor plan the
number of elementary movements it contains. Thus, the desired
stability regions are the LSSSs longer than the threshold thLEN

and whose global similarity is greater than the threshold thGS ,
and from here on are denoted as LSSSs

⇤.
At the end of this step, therefore, each point sampled by the

tablet is labelled depending on whether or not it belongs to sta-
bility regions.

2.2. Estimating the relevance of stability regions

In the previous subsection we have presented a method for
finding stability regions when a signature Q is compared with
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a single reference signature Ri. In way of principle, one would
expect that the same stability regions appear when the compari-
son is performed respect to other signatures written by the same
subject. In practice, many sources of variability influence the
execution of a complex movement and di↵erences can be ob-
served in many replications of a signature. In particular, di↵er-
ent executions of a signature encoded by more than one motor
program may produce di↵erent traces due to the variability in
movements executed for connecting the instances of two con-
secutive motor programs. If more than one reference signature
are available, it is possible to better modelling the signing habits
of a writer, i.e. to infer his/her motor programs, because we can
take into account the e↵ects of writer’s motor variability.

Given a set R of N reference signatures written by a subject,
it is possible to evaluate which parts of the signature Q are more
representative of subject’s signing habits being less a↵ected by
motor variability by detecting the stability regions between Q

and each of the references. The set of all stability regions found
by comparing Q with all the signatures in R is denoted as:

StReg(R,Q) = {LSSSs
⇤
R1Q
, . . . ,LSSSs

⇤
RN Q
} (9)

By evaluating the stability of Q respect to each reference sig-
nature, we count how many times each stroke of Q belongs to a
stability region. From here on, we denote with score(Q) the set
of counters associated with each stroke of Q:

relevance(q̃ j) =
NX

k=1

g(LSSSs
⇤
Rk Q
, q̃ j) (10)

g(LSSSs
⇤
Rk Q
, q̃ j) =

8>><
>>:

1, if q̃
j 2 LSSSs

⇤
Rk Q

0, otherwise
(11)

score(Q) = [relevance(q̃1), . . . , relevance(q̃z)] (12)

The more times a stroke belong to a stability region, the more
it is representative of the writer signing habit, the more it is rel-
evant in the evaluation of genuineness. The counter associated
to a stroke varies between 0 and N, depending on whether the
stroke does not belong to any stability region or it is included in
all the LSSSs

⇤.

2.3. Modulating DTW computation by stability regions

To evaluate the dissimilarity between a reference signature
represented by m sampled points, Ri = {r1

i
, . . . , rm

i
}, and a

questioned signature represented by n sampled points, Q =
{q1, . . . , qn}, we have used a simple design of Dynamic Time
Warping algorithm, which is able to align two non-linear tem-
poral sequences through dynamic programming.

Each point of a signature was represented by a feature vec-
tor F (·) made by f features, therefore the two signatures were
compared in a < f space. In particular, we denote with Ri the
m ⇥ f feature matrix representing signature Ri and with Q the
n ⇥ f feature matrix representing signature Q.

The classical DTW implementation compares the two feature
matrices by creating a m⇥n cost matrix whose (kth, j

th) element
is equal to the euclidean distance between F (rk

i
) and F (q j),

computed as in eq. 13.

d(F (rk

i
),F (q j)) =k (F (rk

i
),F (q j)) k (13)

The best alignment between the two matrices is the one with
the lowest distance d

⇣
Q,Ri

⌘
that can be found by recursively

applying the eq. 14:

 (k, j) = d(F (rk

i
),F (q j)) +min

8>>><
>>>:

 (k, j � 1),
 (k � 1, j � 1),
 (k � 1, j)

9>>>=
>>>;

(14)

where  (k, j) is the cumulative distance up to the (kth, j
th) ele-

ment. In particular, the distance between the two signatures is
computed as in eq. 15:

d

⇣
Q,Ri

⌘
= min

p

|p|X

k=1

d(F (rpk,r

i
),F (qpk,q )) (15)

where p = {(p1,r, p1,q), . . . , (p|p|,r, p|p|,q)} is the minimum warp-
ing path between the two feature matrices and |p| is the path
length.

The classical implementation weights uniformly the dis-
tances between all points of the two series. Instead, in (Jeong
et al., 2011) the authors introduced the concept of Weighted
Dynamic Time Warping (WDTW), a penalty-based DTW that
holds in consideration phase di↵erences between reference and
testing points.

The proposed SM-DTW is a specialisation of the WDTW for
the signature verification domain and it exploits the algorithm
for the detection of stability regions described before. In partic-
ular, the distance between a reference and a questioned point is
weighted according to the representativeness of the stroke the
questioned point belongs to and to the distance between the two
feature vectors representing the two points. By applying the
SM-DTW algorithm, the (kth, j

th) element of the cost matrix is
computed as in eq. 16.

d
SM(F (rk

i
),F (q j)) = w(rk

i
, q j)⇤ k (F (rk

i
),F (q j)) k (16)

In order to properly penalize points that are outside the stability
regions but have a distance d equal to zero, their distance is set
equal to the minimum of the cost matrix.

Eventually, the dissimilarity between the two signatures is
computed as in eq. 17.

d
SM
⇣
Q,Ri

⌘
= min

p

|p|X

k=1

d
SM(F (rpk,r

i
),F (qpk,q )) (17)

The weight w(rk

i
, q j) is computed taking into account if points

r
k

i
and q

j belong to strokes included in a stability region or not.

w(ri

k
, q j) = sigm(d(F (rk

i
),F (q j)), b, c) (18)

where

sigm(d(·, ·), b, c) = 1 +
1

1 + exp(�c ⇤ (d(·, ·) � b)
(19)
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The two parameters b and c depend on the relevance of the
stroke the questioned point belong to. In particular, given a
stroke q̃

j with relevance relevance(q̃ j), the parameters b and c

are computed as in eq. 20 and 21, respectively.

b =

8>><
>>:

b0, if relevance(q̃ j) = 0
bmax +

(bmin�bmax)⇤(relevance(q̃ j)�1)
N�1 otherwise

(20)

c =

8>><
>>:

c0, if relevance(q̃ j) = 0
cmin +

(cmax�cmin)⇤(relevance(q̃ j)�1)
N�1 otherwise

(21)
By using equations (16-21), SM-DTW modulates the dis-

tance between two points according to the relevance of the
strokes they belong to. It is worth noting that by adopting this
kind of modulation the dissimilarity between two points is ac-
centuated as the relevance of the stroke increases: the bigger
the relevance (i.e the bigger the stability), the bigger the weight.
The rationale behind this choice is that, given the definition of
stability, no dissimilarities are expected between part of the ref-
erence and part of the questioned belonging to the stability re-
gion. So, if they occur, the distance between the correspond-
ing points should be enlarged, thus biasing the decision toward
a forgery. On the other hand, similarities between two points
outside the stability regions should be enlarged as well, again
biasing the decision toward a forgery.

Figure 1 visualises the steps of the process described in this
section.

3. Experiments and results

3.1. Datasets

Two standard and frequently used datasets, MCYT-100 and
BiosecureID-SONOF, were adopted for evaluating the perfor-
mances of the proposed method.

The MCYT-100 dataset is a corpus of on-line signatures writ-
ten by 100 users on a tablet. For each user, 25 genuine signa-
tures and 25 skilled forgeries are made available. The skilled
forgeries were produced by 5 di↵erent users that were allowed
to observe the static images of the signature to imitate, and to
practice with the copy before producing the valid signatures
(Moro, 2003).

The BiosecureID-SONOF dataset is a corpus of on-line, o↵-
line and synthetic o↵-line signatures produced by 132 subject
in four sessions over a six-month period. During each session,
4 genuine signatures and 3 skilled forgeries were acquired for
each user. Therefore, for each user 16 genuine signatures and
12 skilled forgeries are made available (Galbally et al., 2015).
In this work, we use the on-line subcorpus of BiosecureID-
SONOF.

3.2. Features

As proposed in (Fischer et al., 2015), each point of the pen-
tip trajectory is represented by eight features: the pen position

(x, y), the pressure (p), the velocity (ẋ, ẏ), the pressure deriva-
tive (ṗ), and the acceleration (ẍ, ÿ). To compare features vectors
by means of an Euclidean distance, the dynamic range of the
features was normalized by a z-score as in eq. 22.

f̂i =
fi � µ fi

� fi

(22)

where µ fi
and � fi

are the mean and the standard deviation com-
puted for the i

th feature over all sampling points of the signature.

3.3. Classification

To classify a questioned signature as genuine or forged, we
evaluated the e↵ects of the two types of normalization applied
to the distance computed with eq. 15 (classical DTW, baseline
system) and with eq. 17 (SM-DTW). Distance normalization is
needed in order to compare signatures written by the same sub-
ject as well as to identify for all the subjects a common thresh-
old beyond which signatures are classified as forged.

Both the normalizations require preventively to compare
each reference signature with all the other ones. The first nor-
malization is defined respect to the ratio between the mini-
mum dissimilarity per subject and the length of its warping path
| p |minR , as in eq. 23 and 24.

s
bl
min
=

min Ri ,R j2R
i, j

d

⇣
Rj,Ri

⌘

| p |minR

(23)

s
SM
min
=

min Ri ,R j2R
i, j

d
SM
⇣
Rj,Ri

⌘

| p |minR

(24)

The second normalization is defined respect to a value that
represents the mean dissimilarity per subject. Such a mean dis-
similarity is computed by averaging the distances between a
reference and all the others as in eq. 25 and 26.

µR =
1

N(N � 1)

NX

i=1

NX

j=1, j,i

d

⇣
Ri,Rj

⌘

| Rj |
(25)

µSM
R =

1
N(N � 1)

|R|X

i=1

NX

j=1, j,i

d
SM
⇣
Ri,Rj

⌘

| Rj |
(26)

When a questioned signature is classified by using the first
normalization, the minimum distance between the questioned
and the references R is computed. Such a distance is normal-
ized respect to the length of its warping path | p |. Eventually,
the questioned signatures is classified by computing its score as
in eq. 27 or 28, depending on whether the distance is computed
with the classical DTW or SM-DTW, respectively.

s
bl
1 =

minRi2R d

⇣
Q,Ri

⌘

| p | � s
bl
min

(27)

s
SM
1 =

minRi2R d
SM
⇣
Q,Ri

⌘

| p | � s
SM
min

(28)

The second normalization classifies a questioned signature
by averaging the distances between this signatures and all the
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Fig. 1: (a) The search for the stability regions. In the top of the figure a set of reference signatures and a questioned signature are shown. The stability regions
found between the reference R3 and the questioned signature are coloured in green, magenta and yellow. The questioned signature is segmented in 23 strokes.
Segmentation points are depicted in red. (b) The relevance of each stroke of the questioned is shown in the histogram. Two regions of the signature are strongly
stable (from stroke 0 to 7 and from stroke 19 to stroke 23), whereas stroke 10 doesn’t match with any stroke of the reference set. (c) On the right of the histogram,
the classical DTW cost matrix is represented. In the bottom part of the image, (d) the weight matrix and (e) the SM-DTW cost matrix are reported. In the DTW
and SM-DTW cost matrices is depicted in red the minimum warping path. The visual comparison between the cost matrix of DTW and SM-DTW shows that the
modulation due to the stability regions filters out local similarities between points, thus favouring the emergence of the global one.

references in R. The distance respect to a reference is normal-
ized respect to | Ri |, the length of the reference itself. This
choice follows immediately from the concept of stability re-
gions, as it redistribute along the trace the dissimilarity between
stability regions, somehow building a model of the signing habit
of the subject. The questioned signature is classified by com-
puting its score as in eq. 29 or 30, depending on whether the
distance is computed with the classical DTW or SM-DTW, re-
spectively.

s
bl
2 = meanRi2R(

d

⇣
Q,Ri

⌘

| Ri |
) � µR (29)

s
SM
2 = meanRi2R(

d
SM
⇣
Q,Ri

⌘

| Ri |
) � µSM

R (30)

3.4. Experimental protocol

The performance of the baseline and the SM-DTW systems,
when both the normalizations were applied, were evaluated in
terms of equal error rate (EER), which correspond to the point



7

of the ROC curve where the false acceptance rate equals the
false rejection rate. The EER was evaluated in two separate ex-
periments: the Random Forgery (RF) and the Skilled Forgery
(SF) experiments. The main di↵erence between these two ex-
periments are the specimens used as impostor signatures. In the
Random Forgery (RF) experiment, the impostor signatures are
genuine signatures of other signers. It mimics a situation where
the impostor has not idea about the signature to fake and try
to authenticate in the system with its genuine signature. It is
typical in a commercial transaction. Whereas, the impostors in
the Skilled Forgery (SF) experiment are people who have pre-
viously trained the signature to falsify. This is the most relevant
experiment in ASV field.

In both the experiments, the first 5 genuine signatures of each
subject were used as reference signatures. In the RF experi-
ment, the first signature of all the other subjects were used as
random forgeries. As with regards to this choice, we favour
it with respect to randomly selecting them from the available
ones and eventually performing cross-validation with di↵erent
set of references. This is supported by the arguments discussed
in (Sae-Bae and Memon, 2014), showing that such a choice bet-
ter mimics the real scenario, where the reference signatures are
acquired during system setup, while the questioned (either gen-
uine or forged) come later, during system operation. Moreover,
it has been argued that using as references the signatures that
were collected first allows to evaluate the robustness of ASV
with respect to the aging of the subjects. Eventually, the argu-
ment of repeatability of experiments for better comparison has
also been used to favour this choice (Das et al., 2016).

As with regards to performance, in the case of MCYT-100,
it was evaluated on 9,900 random forgeries, 2,500 skilled forg-
eries and 2,000 genuine signatures. When the online signatures
of BiosecureID-SONOF dataset were used, it was evaluated on
17,292 random forgeries, 1,584 skilled forgeries and 1,452 gen-
uine signatures.

The EER was evaluated by varying the feature set used for
representing signatures, as listed in Table 1. It is worth noting
that the 15 feature sets were defined by combining exhaustively
4 groups of features: position, pressure, velocity and accelera-
tion.

In (Parziale et al., 2013), it has been studied the connection
between the values assumed by the thresholds thLCS , thLEN and
thGS and the capability of a classifier to discriminate between
genuine and forgery signatures when the length of stability re-
gions is used as unique feature. The best performance were ob-
tained when thLCS , thLEN and thGS were set equal to 75, 3 and
90 respectively; these are the values used in the experiments
presented here.

The values of the parameters b and c, used for modulating the
cost matrix, were computed by evaluating the performance of
SM-DTW algorithm on SVC-task2 dataset (Yeung et al., 2004).
We adopted the same experimental protocol described above
and we choose the values corresponding to the smallest EER.
In particular, the parameters b0, bmin, bmax, c0, cmin, cmax were
set equal to 9, 4, 6, -2, 1.5 and 2, respectively. In Figure 2 are
depicted the values of the parameters b and c depending on the
relevance of the stroke and the resulting weighting functions.

Table 1: Di↵erent feature sets evaluated in the experimentation

Symbol Feature Set
F1 (x, y, ẋ, ẏ, ẍ, ÿ, p, ṗ)
F2 (x, y, ẍ, ÿ, p, ṗ)
F3 (x, y, ẋ, ẏ, p, ṗ)
F4 (x, y, ẋ, ẏ, ẍ, ÿ)
F5 (ẋ, ẏ, ẍ, ÿ, p, ṗ)
F6 (x, y, p, ṗ)
F7 (x, y, ẍ, ÿ)
F8 (x, y, ẋ, ẏ)
F9 (ẍ, ÿ, p, ṗ)
F10 (ẋ, ẏ, ẍ, ÿ)
F11 (ẋ, ẏ, p, ṗ)
F12 (x, y)
F13 (p, ṗ)
F14 (ẍ, ÿ)
F15 (ẋ, ẏ)

3.5. Results

Table 2 and Table 3 report the EER of both the experiments
on MCYT-100 and BiosecureID-SONOF datasets, respectively.
They report, for each feature set, the perfomance of the baseline
and the SM-DTW system: the first six columns of each line
reports the results obtained using the first normalization, the
last six columns those obtained using the second one.

Let us consider the results on the MCYT-100 dataset when
the first type of normalization is used. The EER on skilled
forgeries (columns 2, 4 and 6) shows that the SM-DTW system
achieves better or comparable performance than the baseline
on 12 feature sets, with the largest error reduction (34.20%)
achieved on the feature set F13 and the smallest (0.99%)
achieved on F2. There are 3 cases when, however, SM-DTW
performs worse than baseline, with the largest error increment
(10.27%) reported on F1 and the smallest (4.50%) reported on
F7. The ERR on random forgeries (columns 1, 3 and 5) shows
that SM-DTW performs better than the baseline on 13 feature
sets, with the largest error reduction (55.86%) achieved on F6
and the smallest pne (2.51%) on F4, while no reduction was
observed on F1. There are two cases when SM-DTW per-
forms worse than the baseline, with the largest error increment
(12.51%) reported on F7 and the smallest (2.28%) on F8. It is
worth noticing that the best performance on both kind of forg-
eries is achieved on the same feature set, namely F1 and F5 for
the baseline and the SM-DTW, respectively, with the baseline
system o↵ering slightly better performance on the skilled forg-
eries.

When the second type of normalization is considered, the
ERR on skilled forgeries (columns 8, 10 and 12) shows that
SM-DTW systems performs better than the baseline on 14 fea-
ture sets, with the largest error reduction (26.87%) achieved on
F13 and the smallest one (4.36%) on F3, while no reduction was
achieved on F8 and F11. On the features set F7, the baseline
system performs better than the SM-DTW, for which a small
increment (1.27%) of the EER was reported.

The ERR on random forgeries (columns 7, 9 and 11) shows
that SM-DTW outperforms the baseline on any feature set, with
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Fig. 2: (a) Values of b and c parameters by varying the stroke relevance. (b) Sigmoid functions used for modulating the DTW distance by varying the stroke
relevance.

the largest error reduction (34.81%) achieved on F14 and the
smallest (8.33%) on F8. It is worth noticing that in this case
there is not a single features set on which the systems achieve
the best performance on both random and skilled forgeries.
Considering that the SF experiment is the the most relevant in
ASV field, the best performance of the baseline system (3.45%)
is achieved on the feature set F2, with an ERR of 1.30% on the
random forgeries. The SM-DTW achieves its best performance
(3.09%) on F5, with an error reduction of 10.43% with respect
to the best performance of the baseline, and the same EER on
random forgeries. It is worth pointing out that the SM-DTW
system achieves its best performance on the same feature set,
whichever normalization is used. On the contrary, the baseline
achieves its best performance on F1 or F2, depending on which
normalization is used.

In the case of the BiosecureID-SONOF dataset, when the first
normalization is used the EER on skilled forgeries (columns 2,
4 and 6) shows that the SM-DTW system achieves better per-
formance than the baseline on 14 feature sets, with the largest
error reduction (42.95%) achieved on the feature set F13 and the
smallest (1.31%) achieved on F15. On F1, however, SM-DTW
performs worse than baseline, reporting an error increment of
1.71%. The ERR on random forgeries (columns 1, 3 and 5)
shows that SM-DTW outperforms the baseline on every feature
set, with the largest error reduction (65.38%) achieved on F5
and the smallest (14.37%) on F4. It is worth noticing that there
is not a single feature set on which the systems achieve the best
performance on both random and skilled forgeries. Again, con-
sidering the SF experiment as the most relevant one, the best
performance of the baseline (3.85%) is achieved on the fea-
ture set F1, with an ERR of 0.69% on the random forgeries,
while the SM-DTW achieves its best performance (3.39%) on
F5, with an ERR of 0.33% on the random forgeries. Comparing
the best performance, the SM-DTW achieves an error reduction
with respect to the baseline of 11.95% and 52.17% for skilled

and random forgeries, respectively.
When the second type of normalization is used, the ERR on

skilled forgeries (columns 8, 10 and 12) shows that SM-DTW
systems performs better than the baseline on 13 feature sets,
with the largest error reduction (20.61%) achieved on F2 and
the smallest one (2.54%) on F8, while an increment of the EER
was reported on two feature sets, the largest (17.94%) on F10
and the smallest (13.14%) on F15.

The ERR on random forgeries (columns 7, 9 and 11) shows
that SM-DTW outperforms the baseline on any feature set, with
the largest error reduction (42.89%) achieved on F8 and the
smallest (18.16%) on F15. It is worth noticing that also in
this case there is not a single feature set on which the systems
achieve the best performance on both random and skilled forg-
eries. Considering the SF experiment as the most relevant one,
the best performance of the baseline (1.65%) is achieved on
F10, with an ERR of 1.44% on the random forgeries, while the
SM-DTW achieves its best performance (1.45%) on F5, with
an error reduction of 12.12%, and an EER of 1.17%, with an
error reduction of 18.75%. It is worth pointing out that, as for
the MYCT-100 dataset, the SM-DTW system achieves its best
performance on F5, whichever normalization is used. On the
contrary, the baseline system achieves its best performance on
F1 or F10, depending on which normalization is used.

3.6. Comparison with the State of the art

To put in context the performing properties of the SM-
DTW algorithm in signature verification, we selected the most
performing and recently published methods using the same
datasets for performance evaluation. In Table 4, we compare
the performance of seven state of the art methods on the MCYT-
100 dataset, sorted according to the performance on the SF ex-
periment. The first one adopts a representation of the signatures
in terms of vector quantization (Sharma and Sundaram, 2016),
while the second method carries out a fusion that use the in-
formation from the cost matrix and warping path alignments
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Table 2: EER values on MCYT-100 dataset

s1 s2
DTW SM-DTW Improvement Baseline SM-DTW Improvement

Features RF SF RF SF �RF �SF RF SF RF SF �RF �SF
F1 0.30 4.09 0.30 4.51 0.00% -10.27% 1.35 3.49 1.15 3.25 14.87% 7.02%
F2 0.40 4.56 0.30 4.51 25.00% 0.99% 1.30 3.45 1.15 3.25 11.58% 5.81%
F3 0.40 5.25 0.30 4.96 25.00% 5.53% 1.20 3.56 1.05 3.40 12.55% 4.36%
F4 0.40 4.80 0.39 4.60 2.51% 4.17% 1.40 3.96 1.10 3.76 21.50% 5.06%
F5 0.35 4.20 0.30 4.45 14.30% -5.83% 1.70 3.45 1.30 3.09 23.37% 10.30%
F6 0.90 7.65 0.40 5.91 55.86% 22.69% 1.55 4.05 1.20 3.71 22.40% 8.28%
F7 0.40 4.45 0.45 4.65 -12.51% -4.50% 1.30 3.56 1.01 3.60 22.39% -1.27%
F8 0.44 6.00 0.45 5.25 -2.28% 12.58% 1.15 3.96 1.05 3.96 8.33% 0.00%
F9 0.85 5.56 0.50 4.56 41.42% 18.00% 2.14 3.51 1.55 3.31 27.70% 5.70%
F10 0.59 5.20 0.41 4.60 30.49% 11.54% 1.95 4.05 1.36 3.76 30.15% 7.17%
F11 0.65 5.96 0.36 5.00 44.96% 16.04% 1.70 3.56 1.25 3.56 26.33% 0.00%
F12 0.90 9.65 0.75 7.76 16.76% 19.60% 1.25 5.16 1.10 4.76 12.05% 7.76%
F13 7.60 20.60 4.31 13.56 43.25% 34.20% 6.25 8.36 4.20 6.11 32.80% 26.87%
F14 0.80 5.65 0.70 4.96 12.58% 12.22% 2.15 4.16 1.40 3.80 34.81% 8.54%
F15 0.65 5.96 0.40 5.51 37.98% 7.47% 1.26 4.25 1.05 3.91 16.74% 7.89%

Table 3: EER values on BiosecureID-SONOF dataset

s1 s2
DTW SM-DTW Improvement Baseline SM-DTW Improvement

Features RF SF RF SF �RF �SF RF SF RF SF �RF �SF
F1 0,69 3,85 0,33 3,92 51,89% -1,71% 1,52 2,01 1,17 1,65 22,82% 18,00%
F2 0,62 4,91 0,33 3,92 46,52% 20,12% 1,86 2,07 1,17 1,65 37,15% 20,61%
F3 0,69 5,11 0,28 4,61 59,83% 9,67% 1,52 2,21 1,17 1,85 23,25% 16,38%
F4 0,48 3,99 0,41 3,66 14,37% 8,28% 1,30 2,14 1,03 1,94 20,75% 9,25%
F5 0,97 3,85 0,33 3,39 65,38% 11,99% 1,79 1,71 1,17 1,45 34,62% 15,41%
F6 1,16 8,00 0,63 5,86 45,88% 26,75% 2,43 2,60 1,58 2,14 34,80% 17,75%
F7 0,69 5,11 0,47 4,28 31,52% 16,13% 1,79 2,21 1,24 2,14 30,87% 2,99%
F8 0,55 5,99 0,47 5,17 14,67% 13,74% 1,52 2,60 1,16 2,54 23,77% 2,54%
F9 1,51 5,86 0,69 4,05 54,10% 30,89% 2,41 1,71 1,38 1,52 42,89% 11,56%
F10 0,89 4,05 0,55 3,92 38,51% 3,26% 1,44 1,65 0,97 1,94 33,13% -17,94%
F11 1,10 5,80 0,48 4,61 56,40% 20,44% 2,00 1,94 1,24 1,58 37,81% 18,61%
F12 1,73 11,99 0,97 9,09 44,18% 24,17% 2,34 3,92 1,80 3,79 23,25% 3,37%
F13 7,56 18,94 3,86 10,80 49,01% 42,95% 6,19 4,05 4,41 3,52 28,77% 13,03%
F14 1,38 4,81 0,76 4,05 44,98% 15,75% 1,31 1,71 0,97 1,65 26,21% 3,85%
F15 0,77 5,04 0,61 4,97 20,99% 1,31% 1,09 2,01 0,90 2,27 18,16% -13,14%

(Sharma and Sundaram, 2017b). The third and fifth methods
combine the DTW with Gaussian Mixture Model features, with
the third one adopting a fusion strategy to combine information
provided by both sources (Sharma and Sundaram, 2017a), and
the fifth exploiting only GMM-related features for the final clas-
sification. The fourth method combines DTW and ⌃⇤-based
features (Fischer and Plamondon, 2017). The sixth method uses
a histogram distribution of the features and a Manhattan dis-
tance as classifier (Sae-Bae and Memon, 2014), whereas the last
one adopts a symbolic representation of the signatures (Guru
et al., 2017).

When both the RF and SF experiments were performed, the
results show that SM-DTW performs better than the other meth-
ods in the SF experiment, but worse than two of them in the

RF experiment. As a whole, they show that DTW-based meth-
ods outperform the other ones in both the experiments. More
specifically, we note that in the SF experiment SM-DTW per-
forms better of methods that, in addition to the information pro-
vided by the DTW, use other features to characterise the signing
habits of the subjects. In our opinion, the comparison with those
methods is of particular interest, because it shows that intro-
ducing the stability regions for characterising the signature of
a subject leads to comparable or better performance than those
obtained by using much more sophisticated feature set and clas-
sifiers. When only the SF experiment was performed, SM-
DTW is outperformed by methods that combine the results ob-
tained when using DTW-based information with other sources
of information, as it is well represented by the two methods ex-
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Table 4: Related works on MCYT-100. Results in terms of EER %

Method RF SF
VQ+DTW (fusion, user threshold) (Sharma and Sundaram, 2016) - 1.55
WP+BL DTW fusion (Sharma and Sundaram, 2017b) - 2.76
GMM+DTW with Fusion (Sharma and Sundaram, 2017a) - 3.05
Proposed Method - SM-DTW s

S M

2 F5 1.30 3.09
⌃⇤ + DTW (Fischer and Plamondon, 2017) 1.01 3.56
GMM+DTW (Sharma and Sundaram, 2017a) - 4.00
Histogram +Manhattan (Sae-Bae and Memon, 2014) 1.15 4.02
Symbolic representation (Guru et al., 2017) 2.40 5.70

Table 5: Related works on BiosecureID-SONOF. Results in terms of EER %

Method RF SF
Proposed Method - SM-DTW s

S M

2 F5 1.17 1.45
Histogram based and Manhattan distance (Ferrer et al., 2017) 1.16 1.98
Function based and DTW distance (Ferrer et al., 2017) 0.23 3.08
ASV fusion (On-line + O↵-line) (Galbally et al., 2015) 0.63 5.09

ploiting GMM-based features (Sharma and Sundaram, 2017a),
which shows a boost in performance when fusion is adopted.

In Table 5, we show the performance on the BiosecureID-
SONOF dataset. The top system is the one presented in this
paper. The second system (Ferrer et al., 2017) is based on the
Manhattan distance between histograms of di↵erent measures
of the signature under comparison. The third classifier (Fer-
rer et al., 2017) is based on DTW with Euclidean distance and
parameter vector. Next, the fourth method fuses on-line signa-
tures and synthetic o↵-line signatures, being the DTW used in
the dynamic verification and a Support Vector Matching classi-
fier during the static signature verification.

It is important noticing that the quantitative data reported in
Table 4 and Table 5 have not been obtained in the same condi-
tions, as we have already discussed when presenting our ex-
perimental protocol, so that a direct comparison in terms of
EER may be misleading. Nonetheless, they do show that SM-
DTW adopting as features velocity, acceleration and pressure
(F5) and whose score has been normalised by using the second
methods (s

SM
2 ) is outperformed only by methods that exploit fu-

sion strategy of multiple source of information for making the
final decision.

4. Conclusions

The main purpose of this work has been that of providing ex-
perimental evidence to support our conjecture that, as the sign-
ing habits of a subject have been encoded in the motor plan that
has been learned, during multiple executions of the signature,
the movements corresponding to the command stored into the
motor plan should produce very similar trajectories. It may be
possible, however, that the complex movements corresponding
to a signature have not been completely learned, and therefore
the motor plan encodes only parts of the movements, while oth-
ers are computed on the fly. As a consequence, the trajectory
of a signature can be thought as composed of stability regions,
originated by the execution of the motor plan, and other regions,
originated by the execution computed on the fly. Such stability
regions represent the motor plan of the subject, and convey the
most relevant information about the signing habits, and should
therefore given more importance during the verification.

The data reported in Table 2 and Table 3 show that the base-
line system best performance is achieved by using di↵erent fea-
ture sets, depending on which dataset is used. On the contrary,
SM-DTW achieves better performance by using the same fea-
ture set, independently of which dataset is used. This means
that the stability regions we have introduced seems to capture
distinctive aspects of the process of signing, i.e. its motor con-
trol plan, rather those of a population of signatures. The data
also show that the SM-DTW achieves its best results when con-
sidering the features describing the dynamic of the movement,
but not the one describing its trajectory (F5). Furthermore, they
show that exploiting shape information by the stability regions
provides better results than when it is used as any other one
(F1). This finding confirms that shape information is better ex-
ploited by the stability regions rather than by combining tra-
jectory and dynamic aspects of signatures. All together the re-
sults reported in the previous section support our claim that the
stability regions encode the signature motor plan and therefore
should be given more importance during signature verification.

Eventually, the results reported in Table 4 and 5 show that
the SM-DTW system adopting the normalization (s

SM
2 ) exhibits

EER comparable or better than those of top performing systems
based on DTW, and that the SM-DTW is outperformed only
when a fusion strategy is used to combine multiple sources of
information.

So far, the results reported in the previous section have been
obtained by using the weights defined in subsection 3.4. The
next step would be that of computing their values by some opti-
mization technique, to find the upper bound for the performance
of the proposed algorithm.

Eventually, our definition of stability regions is based only
on the shape of the trajectory. In our future investigations, we
will consider exploiting at a larger extent the kinematics of the
movement for extracting the strokes embedded into the motor
plan. As, according to the findings about handwriting learning
and execution mentioned in the Introduction, it is very unlikely
that a forger can reproduce both the shape and the dynamics of
the signer, we believe that using such information may lead to
extracting more relevant stability regions, or even to establish
which ones are the features that allow for the best recovery of
the motor plan, and therefore to further improvements of the
performance with respect to the baseline system.
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in: Rémi, C., Prévost, L., Anquetil, E. (Eds.), 17th Biennial Conference of
the International Graphonomics Society, International Graphonomics Soci-
ety (IGS) and Université des Antilles (UA), Pointe-à-Pitre, Guadeloupe.

Parziale, A., Fuschetto, S.G., Marcelli, A., 2013. Exploiting stability regions
for online signature verification, in: Petrosino, A., Maddalena, L., Pala,

P. (Eds.), New Trends in Image Analysis and Processing – ICIAP 2013,
Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 112–121.

Parziale, A., Marcelli, A., 2014. Exploiting Stability Regions for Online Sig-
nature Verification. World Scientific. chapter 2. Advances in Digital Hand-
written Signature Processing, pp. 13–25.

Pirlo, G., Cuccovillo, V., Diaz-Cabrera, M., Impedovo, D., Mignone, P., 2015a.
Multidomain verification of dynamic signatures using local stability analy-
sis. IEEE Transactions on Human-Machine Systems 45, 805–810.

Pirlo, G., Impedovo, D., 2013. Verification of static signatures by optical flow
analysis. IEEE Transactions on Human-Machine Systems 43, 499–505.

Pirlo, G., Impedovo, D., Ferranti, T., 2015b. Stability/complexity analysis of
dynamic handwritten signatures, in: 17th Biennial Conference of the Inter-
national Graphonomics Society.

Raibert, M.H., 1977. Motor Control and Learning by the State Space Model.
Technical Report. AILAB, MIT.

Sae-Bae, N., Memon, N., 2014. Online signature verification on mobile de-
vices. IEEE Transactions on Information Forensics and Security 9, 933–
947.

Salicetti, S.G., Houmani, N., Dorizzi, B., 2008. A client-entropy measure for
on-line signatures, in: Biometrics Symposium, 2008. BSYM’08, IEEE. pp.
83–88.

Senatore, R., Marcelli, A., 2012. A neural scheme for procedural motor learn-
ing of handwriting, in: 2012 International Conference on Frontiers in Hand-
writing Recognition, pp. 659–664.

Shanker, A.P., Rajagopalan, A., 2007. O↵-line signature verification using dtw.
Pattern recognition letters 28, 1407–1414.

Sharma, A., Sundaram, S., 2016. An enhanced contextual dtw based system for
online signature verification using vector quantization. Pattern Recognition
Letters 84, 22–28.

Sharma, A., Sundaram, S., 2017a. A novel online signature verification system
based on gmm features in a dtw framework. IEEE Transactions on Informa-
tion Forensics and Security 12, 705–718.

Sharma, A., Sundaram, S., 2017b. On the exploration of information from
the dtw cost matrix for online signature verification. IEEE transactions on
cybernetics .

Ye, X., Hou, W., Feng, W., 2005. O↵-line handwritten signature verification
with inflections feature, in: Mechatronics and Automation, 2005 IEEE In-
ternational Conference, IEEE. pp. 787–792.

Yeung, D.Y., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T.,
Rigoll, G., 2004. Svc2004: First international signature verification com-
petition, in: Biometric Authentication. Springer, pp. 16–22.



  

LaTeX Source Files
Click here to download LaTeX Source Files: latex_R2_finale.zip

http://ees.elsevier.com/prletters/download.aspx?id=1125105&guid=83237390-1a5f-4e89-95fe-9267f2ad3c5a&scheme=1

