
IEEE TRANSACTION ON INDUSTRIAL INFORMATICS, VOL. ??, NO. ?, SEPTEMBER 201?

Visual Exploration System in an Industrial Context
Andrew Fish Member, IEEE, Claudio Gargiulo, Delfina Malandrino, Donato Pirozzi, and Vittorio Scarano

Abstract—This paper describes ExploraTool a new interactive
tool to visually explore data from multiple repositories. The tool
has been applied in a real setting to explore CFD simulation
data and obtain new insights into the space of simulations. The
inclusion of free exploration, filtering operations and chart gen-
eration provides a quick method for performance comparisons.
The paper proposes an algorithmic means of processing input in
the form of tabular data sets, generating a plausible hierarchical
structure over metadata categories which is used to initialize the
visualisation together with interactions methods to explore, select
and compare sets of simulation data. This paper also reports
on the Evaluation Study performed involving 24 engineers over
two distinct locations from a large automotive manufacturer, to
evaluate the usability and the overall user satisfaction with the
tool. Participants rated the tool as intuitive, useful and effective.

Index Terms—Exploratory Search System, Information Re-
trieval, Data Visualisation, User Interfaces, Multirun Simulations,
Industrial User Evaluation Study, Dataset processing.

I. INTRODUCTION

With the increased availability of computing power and
storage capacity, medium and large enterprises can continu-
ously collect data along the product design process (PDP).
Enterprises have large, or even big, data repositories of po-
tentially valuable and strategic assets. In order to boost their
competitiveness it is becoming vital to obtain insights into
the repositories, exploring their content and extracting new
knowledge. Exploring repositories to find valuable information
is difficult [1] because data management systems use tradi-
tional list based widgets, displaying only a small data portion
compared to the repository size, so researchers are exploring
the use of other visualisations (e.g., treemap). Without an
adequate exploring system, data remains in the repositories
without exploitation.

Automotive manufacturers have multiple repositories in
which to store: simulation data generated by different simu-
lator software, experimental data continuously collected from
the Wind Tunnel infrastructure, and competitors’ product data
performances accessible through subscription to third part ser-
vices (e.g., A2Mac1). These repositories are independent, and
in order to compare the various data sets across repositories,
analysts often have to manually access each of them. Due to
this scenario, and market competition, an increasing desire to

Manuscript received July 1, 2015; revised October 9, 2015 and December
9, 2015; accepted January, 14, 2016.

Copyright (c) 2016 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

A. Fish is with the School of Computing, Engineering and Mathematics,
University of Brighton, UK (e-mail: Andrew.Fish@brighton.ac.uk)

C. Gargiulo is with FCA (e-mail: claudio.gargiulo@fcagroup.com)
D. Malandrino, D. Pirozzi and V. Scarano are with the Department of

Computer Science, University of Salerno, IT (e-mails: dmalandrino@unisa.it,
dpirozzi@unisa.it, vitsca@dia.unisa.it)

facilitate easy exploration of repositories, select groups of data,
aggregate them, and perform comparisons over the data via an
intuitive interface is evident. In contrast, software engineering
companies often focus only on the simulation functionality
(e.g., Computer Aided Engineering functionality), not address-
ing the actual industrial need to explore their repositories, and
compare data with other simulators’ results.

This paper introduces a web-based tool, called ExploraTool
that enables the visual and interactive exploration of data sets
by item properties. Using ExploraTool, analysts can select
multiple groups of simulations or single simulations, and
compare their relevant simulations’ performances.

ExploraTool has multiple benefits: 1) it provides a visual
overview of the repository content, grouping items together
by their properties (facets) and visualising them using nested
ellipses covering all the available 2D space screen; 2) com-
pared to the traditional list-based results, during the navigation
it gives a clue on the overall repositories content, which
would be non-trivial with traditional file systems organised
by directories and not by item properties; 3) the visualisation
based on facets helps the user to explore and discover item
properties to further investigate and filter the items by selecting
ellipses; 4) ExploraTool reads data from multiple repositories
(i.e., multiple network file systems, external sources), allowing
the Analysts to select simulations from different sources; 5) it
is extensible to be able to also explore experimental data and
competitors’ performance data, integrating together different
data sources to have an all-in-one workbench.

The paper is organised as follows. Section II discusses
the related work in terms of Exploratory Search Systems
and visualisation approaches. Then, the paper evolves and
combines four aspects that are the main paper contributions: 1)
the ExploraTool idea, its graphical user interface and features
described in Section III; 2) the mathematical background
and an algorithm to process as input any kind of tabular
data set and impose on it a plausible hierarchical structure
over metadata categories that ExploraTool is able to visualise,
enabling data set exploration, described in Section IV; 3) a
field study performed within a large automotive manufacturer,
which involved 24 engineers, to evaluate the tool usability
and overall user satisfaction, which is essential for industrial
adoption described in Section V; 4) an overview the future
extensions obtained through both the field evaluation and the
stakeholders’ interviews, along with lessons learnt from the
process and the potential usage of the tool and approach in
other industrial sectors, described in Section VI.

II. RELATED WORK

This paper focuses on the exploration of industrial reposito-
ries that store thousands of simulations performed over years.

Delfina Malandrino

Delfina Malandrino

Delfina Malandrino
• Published in: IEEE Transactions on Industrial Informatics journal.• © 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.• The Version of Record is available online at: http://dx.doi.org/10.1109/TII.2016.2521613

It aims to assist the industrial analysts with their need to
gain insight, understand the content of the repositories and
filter data to help perform comparisons. Instead of displaying
a list of results, this work exploits the use of interactive
visualisation to provide a visual indication of the repositories’
contents, whilst supporting data filtering and selection tasks.
Hence, exploratory search systems, visualisation approaches,
and interaction techniques are related.

Classical lookup search [2], [3] is a query-response
paradigm where the user poses a textual query, the system
performs the retrieval and shows the results in a list-based
widget. Their main drawback [3] is the difficult for users
to memorise and master filtering and operators syntax (e.g.,
“and”, “or” operator, etc.). Exploratory search [3] consid-
ers multiple iterations involving learning and investigation
activities with higher-level goals (e.g., comparison, analysis,
synthesis and evaluation). Exploratory Search Systems [2] aim
to involve and engage users actively into the search process by
providing human control over the seeking process. They aim
to provide features to (re)formulate queries, giving information
on the search space and clues for further possible search
directions [4], allowing the constant exploration and filtering
of retrieved results [3]. The presentation of query results is
imperative to engage the user in the search process [5].

One popular technique to help users in deciding what to do
next is the grouping of results [6]. Two main approaches exist:
clusters and facets. The clustering approach [7] groups, often
automatically, the query results according to similarity metrics.
In the faceted approach, meaningful items’ feature types are
identified in advance, mostly manually, and labelled. Thus,
facets are categories to characterise items in a collection. Each
item is automatically enriched with multiple facets’ labels.
The query results can be grouped together based on these
labels which form a categorisation, and can be used to further
explore the space of results. According to White and Roth [8],
exploratory search tools should “support querying and rapid
query refinement” and “offer facets and metadata-based result
filtering”. The use of clusters or facets aids searchers with
the query formulation that “significantly improves results” [5].
Flamenco [6] is a web-based system where the navigation
is performed through the selection of hyper-links containing
facets’ labels. Relation Browser [9] is another example, it has
two views, a list of facets and a cloud of facets labels; the user
can filter result by choosing the facets. The system mSpace
[10] uses a multi-column faceted browser for multimedia
data. Carrot2 [11] is a web search engine that supports the
navigation of web results through the selection of cluster
hyper-links showed in a tree-based widget alongside of the
list of results. In a testing with real users using Carrot2 [5],
the clusters were useful in providing other relevant keywords
to narrow the search and for serendipity search. Other systems
that relies on the clusters of results have been introduces, like
Vivisimo and SnakeT [12]. AcquaBrowser Library [13] does
not show the cluster names in a listed way, but introduces
a fluid, attractive and interactive word cloud visualisation,
clicking on a word the user can refine his/her search. With
the introduction of touch mobile devices, classical list-based
result presentation poses challenges for the interaction with

Exploratory Search Systems to refine searches [4].
From the GUI point of view, exploration systems are

now exploiting visualisations to graphically display groups of
items to provide an initial overview, permitting interactions to
formulate queries and update the visualisation. This interaction
“overview first, zoom and filter, then details-on-demand” is
known as information seeking mantra [14]. Interactions can
be grouped into: overview, navigation, and manipulation oper-
ations [15], and optionally, based on the application domain,
interactions to compare the results of the query. FacetMap [16]
is based on the facet concept and exploits a 2D visualisation to
support dataset exploration. Facets are represented by ellipses
and navigation is performed by clicking on the ellipses.
ExploraTool presented in this paper is also based on the facets
concept, but in order to scale on the number of facets, it
organises them hierarchically. As example of a manipulation
operation, the “hierarchy manipulation” term refers to a set of
interactive operations performed on a hierarchical visualisation
to directly and interactively change, re-order, move or copy its
items; for example re-ordering through the drag-and-drop of
hierarchical items. Lutz et al. [15] described many types of
hierarchy manipulations by diagrammatically depicting their
use and effects. ExploraTool has a hierarchical manipulation
operation to change the order of the visualised facets.

In the visualisation field, many alternatives have been pro-
posed to overcome the limits of classical list-based widgets
of items, due to the impossibility of showing all items of
a large dataset. One popular approach is the 2D space-
filling visualisation technique that aims to exploit all of
the available screen-space to show the dataset content. This
technique divides the available screen space recursively using
a basic shape (e.g., rectangle, circle). In this way parent-child
relationships are represented as nested shapes, and sibling
nodes are represented as neighbouring shapes at same depth.
The most popular 2D space-filling visualisation is Treemap,
introduced by Shneiderman during 1990 to provide a compact
file system visualisation and to be able to identify at a glance
the directories that take up the most of the space on the
hard drive. Treemap has been extensively used to visualise
intrinsically hierarchical data [17], [18], providing an overview
of an entire dataset at a glance. Ellimap [19] is another type
of 2D space-filling visualisation approach, which uses ellipses
instead of rectangles to represent the nodes. Usually, shapes of
2D space filling visualisations are area proportional to a given
metric (e.g., the number of items), visually giving an overview
on this value. ExploraTool, presented in this paper, is a visual
exploration system that exploits the use of ellimap layout with
additional interaction functionalities (e.g., drill-down, roll-up),
and provides dataset overview through the visualisation of
facets, which are organised hierarchically on multiple levels.
In this way, ExploraTool supports the constant exploration and
filtering through selection of facets [8].

ExploraTool needs to interoperate with multiple repositories
that can store data in different formats. In the CFD field most
simulator software strategically use closed and proprietary data
formats to make it expensive for customers to change their
software products [20], [21]. ExploraTool relies on the plug-
in based Floasys Architecture [22], [23] to be able to com-

Delfina Malandrino

Fig. 1. ExploraTool’s Graphical User Interface (GUI). The central overview shows the simulation data set grouped together via their relevant attributes: brands,
segments, models, power sources, engines, and revisions. The ellipses depict groups of simulations and the prioritised order of the attributes is indicated in the
hierarchy column on the left. The user can filter the data set by clicking on any group of simulations (drill-down). If the user desires to return to the previous
view, he/she can click on the container ellipse (roll-up). The navigation bar (underneath the main view) shows the path followed during the exploration; in
the example, the path is the universe overview, labelled as “Current Path: simulations”. If user desires a comparison of the performances of one group he/she
can click on the “+ Add” button which adds the current group to the table below and the chart automatically updates accordingly.

municate with many software and data sources. Floasys has
an API interface which acts as isolation layer, and a common
data format to communicate with external client applications.
In order to perform data integration he2014integration the
API interface is implemented by other specifically designed
software modules which read data from closed and open
sources. Floasys architecture processes data from interoperable
standards and protocols like CFD General Notation System
(CGNS), and can be extended to other interoperable standards.

III. EXPLORATOOL FEATURES

This Section introduces the ExploraTool’s features: dataset
overview, exploration and vehicles’ performances compar-
isons. The user task is to select a single simulation, or groups

of simulations, in order to compare the vehicles’ performances
(e.g., aerodynamic performances) via an appropriate chart.

A. Data set Overview
The ExploraTool’s GUI (Fig. 1) has a central view which

graphically depicts the simulations available within the repos-
itory, and a chart on the bottom to compare the selected
vehicles’ performances (e.g., aerodynamic performances). Ex-
ploraTool starts with an initial overview of the data set where
the items are progressively grouped together by their main rel-
evant attributes. The screenshot shows the simulations progres-
sively grouped by Brands, Segments, Models, Power Sources,
Engines, and Revisions. Brands and model names shown
in Fig. 1 and throughout the paper have been anonymised,

Delfina Malandrino

replacing them with artificial names. The hierarchy on the
left shows the default initial ordering of attributes, based
on the feedback provided by analysts in a large automotive
manufacturer [22], but it can be changed any time by the user.
Additional details on each group are requested by hovering
the mouse cursor over the corresponding ellipse, causing
additional information to be presented in a yellow tool tip
box (see the top-right of Fig. 1). The same tool tip box could
be used to show additional statistical information (such as the
average, minimum and maximum drag-coefficient Cx values),
as suggested by users during the Usability Study (Section V).
ExploraTool tries to exploit all of the available screen space
using ellimap [19]. Each group of simulations is a set depicted
by an ellipse. In Fig. 1, the external white space represents
the universe of all simulations within the repository. This is
divided into subsets, depicted as ellipses, generating a nested-
ellipse layout. For instance, the ellipse labelled “BrandD” in
Fig. 1 represents the set of all simulations enriched with facet
BrandD. The ellipse labelled “Seg. A” nested in the ellipse
“BrandD” represents the set of all simulations of Seg. A with
BrandD. In order to reduce cluttering, the tool shows only
labels for two levels at a time. Each ellipse’s area is chosen
to be proportional to the number of simulations in that group,
so that a user can obtain a quick perceptual overview of the
spread of simulations. Alternatively, one could assign other
measures to the area, such as the vehicles’ performances for
that group.

TABLE I
TYPICAL EXPLORATOOL TASKS.

Task # Example

Task 1
Selection of a Group
BrandF, Seg. C, ModelY

Task 2
Selection of a Case
BrandB, Seg. C, ModelB, Fuel Petrol, 1.8TBI 16V, Rev. 5

Task 3
Comparison Case vs. Group
Case: BrandD, Seg. B, ModelU, Diesel, 1.3 Multijet 16V, Rev. 2
Group: BrandD, Seg. B

Task 4

Comparison Case vs. Case
Case 1: BrandB, Seg. C, ModelB, Petrol, 1.8 TBI 16V, Rev. 3
Case 2: BrandB, Seg. C, ModelB, Petrol, 1.8 TBI 16V, Rev. 6
Case 3: BrandB, Seg. C, ModelB, Petrol, 1.8 TBI 16V, Rev. 8

Task 5
Comparison Group vs. Group
Group 1: BrandD, Seg. B
Group 2: BrandF, Seg. B

B. Data set Exploration

The users can interactively explore the data set through an
in-depth navigation [24] performing drill-down and roll-up
operations. Drill-down occurs when a user has identified a
potentially interesting group of simulations and he/she wishes
to further explore the group, so he/she can click on the
ellipse to obtain more details. ExploraTool shows multiple
nested ellipses, so the user can drill-down one level at time

or multiple-levels in one step by clicking on the internal
nested ellipses (Fig. 2). Every time the user drills down in
the hierarchy, he/she is effectively performing a refinement
of the query, filtering all of the simulations in the repository.
For instance, when the user selects in sequence the ellipses
BrandF -> Seg. C -> ModelY (Task 1 in Table I), he/she
is performing a query to retrieve from the repository all the
items with exactly these values (ellipse labels). For each click,
ExploraTool smoothly enlarges the selected group, rendering a
fast transition to the new view. Roll-up operation is performed
when the user wants to have a global data set view, he/she
traverses up the hierarchy by clicking on the container ellipse.

Fig. 2. This effect of the drill-down operation by directly clicking on the
ellipse with the label “Seg. B” from the main view of Fig. 1 is shown. The
ExploraTool smoothly enlarges the selected group, rendering a fast transition
between views. If the user desires to go back and see less details, he/she can
click directly on the external space to perform a roll-up operation returning
back by one level at a time. In order to return to the initial overview, as in
Fig. 1, the user can click on the “Home” icon shown on the top-left.

As shown in Fig. 1, the tool shows a vertical navigation
hierarchy bar on the left, which: (1) gives an overview of
the hierarchy [14]; (2) shows the current depth during the
simulation repository navigation, supporting user orientation;
(3) permits the hierarchy re-arrangement by interactively
swapping the facet’s levels, showing visual cues to indicate
for instance what happens if the mouse is released [15]. In
addition, during interactive data set exploration, ExploraTool
shows the navigation path in the navigation bar, indicating
the total number of filtered items, and updates the hierarchy
bar (displaying only the remainder of the hierarchy from the
current position). Fig. 1 shows the whole universe and the total
number of simulations (2248) within the repository.

The operations provided by the ExploraTool rely on the
direct manipulation [15] principle, which concerns the direct
interaction and manipulation of the rendered objects (e.g.,
directly clicking on the target object). The use of ellipses as
basic shapes guarantees there will be space between sibling
ellipses at same level and amongst nested ellipses. This extra
space improves the hierarchy discernment [19] and every
operation involves exactly the target shape. For instance, in
order to drill down in the hierarchy, the user points and clicks

Delfina Malandrino

on exactly the nested ellipse required. In order to roll-up the
user points and clicks on exactly the parent shape utilising
the space between the parent and child ellipses, which is
always present. In other 2D space-filling techniques, such as
the Treemap visualisation technique, both nested rectangles
and adjacent rectangles have no space between them, so the
position of the mouse pointer designates a branch of the tree
[24] because each point belongs to a single leaf node but also
to all its ancestors [24].

C. Vehicles’ Performance Comparison

When the user finds an interesting data set he/she can add
it to basket of simulations to compare by clicking on the
“+ Add” button (Fig. 1). The user explores the repository
and adds groups of items to the comparison bar (bottom
of Fig. 1). Every time a selection is added to the basket,
ExploraTool updates the chart on the right, showing the mean,
maximum and minimum value for each selection, facilitating
the comparison. Hovering the mouse cursor on the chart
displays the exact values from the chart.

IV. ALGORITHM TO PROCESS DATASET

Interactive exploration through ExploraTool is performed
by clicking on ellipses (drill-down and roll-up operations).
Nested ellipses form a hierarchy (tree data structure). Every
time the user drills down, he/she clicks on ellipse that identifies
a branch in the hierarchy. This Section introduces an algorithm
called BuildHierarchy to process any tabular dataset
to generate one of the possible tree data structures to be
visualised with any kind of 2D space-filling visualisation
techniques (e.g., Treemap, ellimap, etc.). The algorithm has
been used within ExploraTool to process data from vehi-
cle simulation repositories and organise the identified facet
categories (i.e., brand, project model, power source, engine
type) in an initial hierarchical ordering (decided in advance
by the analysts) but can be altered any time through a re-
arrangement operation that triggers the hierarchy recomputing.
The algorithm can process any other dataset to be explored
through ExploraTool, such as a catalogue of parts. In or-
der to process other datasets, the requirement is to identify
the facets (attributes) of the items and their values. The
BuildHierarchy algorithm is implemented in the back-
end of ExploraTool, which makes use of the generated tree
data structure to build the ellipse-based visualisation. It runs
in three cases: (1) when the user opens ExploraTool for the
first time, the algorithm builds the initial default partial tree
made of the first r levels; (2) every time the user performs a
drill-down operation, he/she is navigating to a specific branch
of the entire tree and so the algorithm builds a new subtree
with r levels rooted at the selected node (the server provides
chunks of subtrees made by r levels); (3) every time the user
performs the re-arrangement operation, by sorting the facets
in a different order.

A. BuildHierarchy Algorithm Description

Fig. 3 shows an abstract example of the
BuildHierarchy algorithm (Alg. 1). It takes a dataset as

input, and to be independent of the specific technology to
store simulations, it has been transformed as a tabular dataset
where each row records the relevant metadata for an individual
simulation and the columns are their attributes. So, the input
is a collection of n items R = {s1, ..., sn}. The dataset R
(left side of Fig. 3) has a row for each individual item s ∈ R
(i.e., a simulation) that is described through attributes attached
to it. The set A = {a1, a2, ..., am} contains the labels/names
of the attributes used to describe the items. For example,
in the simulations use case, the labels for the facets [16]
are A = {brand, projectmodel, powersource, enginetype}.
The dataset has these facets (attributes) on the columns.

The algorithm output is a tree data structure T =
(V,E) (right side of Fig. 3), where V is the set of nodes
and E are the edges. For each attribute ai ∈ A, there
will be a level in the tree T (the height of tree is ex-
actly the number of facets). Each attribute ai has a set
of valid values called domain Di = dom(ai). For in-
stance, in the simulation context, the attribute power source
has the domain Dpowersource = dom(powersource) =
{Bifuel, Petrol,Diesel}. In the example, the attribute brand
has the following valid values Dbrand = dom(brand) =
{BrandA,BrandB,BrandC,BrandD,BrandF}. At the
level of the tree corresponding to attribute ai, there are the
nodes with the values in Di. Some nodes corresponds to
zero items in the original data set, so they are not present
in the hierarchical view. For instance, the path (root, 1, B, b)
that would be present in the full tree is not present in our
constructed tree because there are no items in the original
data set with the values s[1] = 1 ∧ s[2] = B ∧ s[3] = b.

Fig. 3. Example of hierarchy extraction from a table. The table on the left
has tree attributes A = {a1, a2, a3} and n simulations. The tree on the right
has a level for each domain Di and at each level i there are the nodes with
the labels in Di. ExploraTool builds the visualisation shown on the bottom
of the figure, starting from the tree data structure.

The tree T will be displayed as nested ellipses starting from
the root (Fig. 3 bottom side). For each node, the algorithm
stores the label to be displayed on the ellipses, and calculates
the number of simulations (Count[u] ∈ N,∀u ∈ V) that will
determine the area of the relevant ellipse.

Algorithm 1 shows the algorithm pseudo-code to process the
dataset as input and generate the tree data structure. Initially
the tree T has the root node and no edges (E = ∅). The
algorithm scans all the simulations in the repository s ∈ R
exactly one time (Alg. 1 line 5). For each simulation s,

Delfina Malandrino

Delfina Malandrino

the algorithm scans the simulations’ attributes in the order
specified by the function fS (Alg. 1 line 6). So, the algorithm
scans the dataset row by row, and for each row the columns.

Algorithm 1 takes each simulation and traverses down the
tree from the root to a leaf, one level at time, through the nodes
with simulation attribute values. On line 7, the algorithm tries
to find the node at level i with value attrvalue. If the node
does not exist, the algorithm creates it at lines 8-11. At line
12, the algorithm counts the number of simulations; this value
will be used to calculate the ellipse’s areas.

Algorithm 1: BuildHierarchy(R, r, fS)
Input: Set of simulations R, number of levels r to load and an

attributes ordering function fS
Output: T = (V,E)

1 root← create the hierarchy root;
2 V ← {root}, E ← ∅;
3 prevnode← root;
4 curnode← null;

5 foreach simulation s in the repository R (s ∈ R) do
6 foreach attribute value “attrval” in s,
7 ordered by fS and limited to the first r values do
8 curnode← Find the child with value attrval;

9 if curnode is null then
10 curnode← create a new node;
11 Label[curnode]← attrval;
12 Count[curnode]← 0;
13 V = V ∪ curnode;
14 E = E ∪ {(prevnode, curnode)};

15 Count[curnode] + +;
16 prevnode← curnode;

17 prevnode← root;

18 return (V,E);

The fS function in input specifies a sorting of the facets
(sorting of domains fS : {1, 2, · · · ,m} → {1, 2, · · · ,m}),
which has a direct impact upon the resulting hierarchy. The
algorithm creates an initial hierarchy based on an initial
domain sorting function fS specified at configuration time.
Then, the tree is rendered using a 2D space-filling visualisation
approach. The user can swap the facets through a rearrange-
ment operation by dragging levels in the hierarchy, choosing
a different permutation of the facets that changes the input
function fS to obtain a different hierarchical views.

B. BuildHierarchy Algorithm Running time discussion

The algorithm generates a tree data structure with height r,
where each level is a facet (attribute). At each level the tree has
a node for each attribute value. For instance, in the hierarchy
at the level of the segment attribute, there is a node for each
segment value (e.g., Seg. A, Seg. B, Seg. C, etc.). In the worst
case all attributes have exactly p values (p nodes at each tree
level). Therefore, in the worst case the total number of nodes
in the tree is O(pr) with p > 1 and 1 ≤ r ≤ m. Introducing
the parameter r, two interesting features can be provided: (1)
details on-demand when the user drills-down in the hierarchy,
it is asking for the next r levels; (2) from a computational
point of view, the algorithm computes only r levels at time.
In order to keep the hierarchy clear during the visualisation,

ExploraTool loads five facets at time; it does not show more
than five levels at each time (r ≤ 5), so the number of the
nodes in the tree is in the worst case O(p5).

In order to build the tree data structure, the algorithm scans
all the dataset items (Θ(n) where |R| = n) and exactly r
columns (O(r), the chosen facets to visualise). Columns are
scanned in the order defined by the sorting function fS , which
is chosen by the user via the GUI. Given the value in the
intersection of the selected row (simulation) and column (at-
tribute), the algorithm checks whether a node with that value is
in the tree at level r. Thus, the algorithm BuildHierarchy
running time is: Θ(n) ·O(r) ·O(p) ≤ O(n · r · p).

Furthermore, the algorithm to process any tabular dataset
and build a hierarchy can be executed by using the map/reduce
paradigm on large data sets in a distributed environment using
for instance Apache Spark1. The idea is to slice the tabular
dataset in q groups of rows. Each group of row will be
processed by a computing node, executing the algorithm and
generating a tree data structure. The trees generated by all
computing nodes can be merged together to obtain the final
hierarchy displayed by ExploraTool.

V. USER EVALUATION STUDY

ExploraTool adopts a novel visual and interactive user inter-
face for the engineering field to explore multiple repositories
of simulations. This section reports on the fundamental activity
to evaluate the tool’s effectiveness and usability in a real
setting involving industrial experts from a large automotive
manufacturer. The question to answer is how users perceive
the system, evaluating its effectiveness, in terms of tasks
completion as well as the usability of the interface and the
overall satisfaction, acquiring user feedback.

A. Methodology

The study lasted thirty minutes for each participant and
consisted of four phases as described in the following.

1) Preliminary Survey: The participant fills out a ques-
tionnaire2 to collect demographic information, particularly as
related to their experience in the simulation field and their
existing procedures to compare vehicle performances using
simulation repositories. ExploraTool uses colours in its user
interface, so it is fundamental to examine its usability by
people with colour deficiencies, especially the effectiveness of
the chosen colour blindness colour palette. Therefore, a quick
Colour Blindness test has been performed (Ishihara test).

2) Training Phase: It demonstrates the functionality to the
participant, using training material with standard basic tasks to
ensure consistency of the explanation among the participants.

3) Testing Phase: Users execute five tasks (Table I) using
ExploraTool in which he/she should find and select single
simulations and/or groups of simulations to compare their
performances. At the end of each task, the user answers
questions to evaluate whether it was successfully completed,

1Apache Spark web-site http://spark.apache.org/
2ExploraTool Usability Study Questionnaires are available on-line at http:

//floasysorg.github.io/Floasys/usabilitystudy/exptoolv1.html

Delfina Malandrino

rate how ease and quick it was to perform the task (standard
questions from the After Scenario Questionnaire3).

4) Summary Survey: The questionnaire concludes with the
assessment of the overall ExploraTool perceived usefulness
and user satisfaction. This part of the questionnaire is based on
a standard TAM model, which is extensively used in usability
studies to explain and/or predict users’ behavioural intentions
when accessing a new technology or system as well as to test
the user acceptance.

B. Evaluation Results Analysis and Discussion

1) Participants’ Demographics: Recruits comprised 24 en-
gineers of a large automotive manufacturer. The sample was
mostly male (87.5%) with mean age of 34 (std. dev. 7.5). The
test has been performed in two locations in Italy: one day
in Pomigliano D’Arco (Naples) involving 8 participants and
almost two days in Orbassano (Torino) involving 16 partici-
pants. The conditions were kept the same (same hardware and
software) in both locations, using an isolated room containing
only one participant at time, where he/she could concentrate
on the test without distractions.

ExploraTool has been designed primarily for simulation
Analysts but different company roles performed the usability
test, all of whom involved in the CFD simulation field: 16
CFD Analysts, 3 Performance Engineers (PEs) and 5 Technical
Managers (TMs) with, on average, 4, 8, and 12 years of
experience in the field, respectively. Technical Managers and
Performance Engineers usually perform few simulations per
year (mean 85, std. dev. 69) as compared to the analysts
(mean 151, std. dev. 123), because TMs are responsible
for the internal team organisation, resource monitoring and
their allocations, whilst PEs work on big picture projects
and are responsible for design choices. There was only one
colour blind participant; whilst he was not able to distinguish
colours, he successfully completed all the tasks, identifying
and discerning correctly the ellipses. ExploraTool uses a space
filling visualisation approach using ellipses to depict groups of
simulations. As such, it is important to understand which users
had previous experience with such visualisations. Participants
had high experience with standard charts (bar, pie, chart and
surface charts) used for the everyday work, but much less had
experience with Treemap (4%).

For all participants it would be useful in their role to
be able to automatically extract simulation data from the
repositories and to obtain comparisons of related statistics
among different releases of the same project or different
projects releases (agreement of 100%). Notwithstanding, all
participants declared that they do not have an automatic tool
to perform these tasks. Instead the common procedure is to
export data from the simulator software in comma separated
value format and to analyse them via Microsoft Excel.

2) Tasks Execution Results: The users executed tasks corre-
sponding to those in Table I. In order to assess the effectiveness
of the tool the error rate has been measured for each task.
As a result, all participants completed tasks 1, 2, 4, and 5
without errors, whilst task 3 had an error rate of 2.8%. A

3ASQ Questionnaire http://garyperlman.com/quest/quest.cgi?form=ASQ

simulation analyst wrongly selected an alternative group of
simulations instead of the group BrandD -> Seg.B requested
in Task 3 (Table I). The responses to the ASQ questionnaire
indicated that participants were highly satisfied with the ease
of the tasks and the amount of time required to complete them;
across all of the tasks there was a mean of 6.9 (std. dev. 0.1)
for the easiness and 6.7 (std. dev. 0.1) for the time, on a 7-
point scale. Furthermore, grouping the participants by their
main role (CFD Analyst, Technical Manager, Performance
Engineer) in the company yields no statistical difference with
regard to the above metrics (Kruskal-Wallis test).

3) Perceived Usefulness and overall Acceptance Results:
At the end of the Testing Phase participants responded to the
TAM questionnaire, whose Cronbach’s Alpha value was 0.92.

TABLE II
SPEARMAN’S CORRELATION COEFFICIENTS BETWEEN SUBSCALES:
PU, PERCEIVED USEFULNESS; EOU, PERCEIVED EASE OF USE;

ATT, ATTITUDE TOWARD USE; BI, BEHAVIOURAL INTENTION TO USE.

Subscale PU EOU ATT BI

PU 1.0

EOU .194 1.0
ATT .604∗∗ .457∗ 1.0
BI .530∗∗ .384 .557∗∗ 1.0

**p < .01, *p < .05

Table II reports the Spearman’s correlation coefficients
among the subscales with the corresponding significance levels
(indicated by the ∗ and the p value). In the table the highest
correlation is between ATT and PU (.604, with p value
< .01). BI is positively correlated with PU and ATT with
high significant level (p < .01 for both metrics). Furthermore,
analysing the TAM answers’ rates (7-point Likert scale) on the
PU, EOU, ATT, BI subscales, results were highly positive for
all these metrics. The highest rate was for the question “Using
the system would enable me to accomplish tasks more quickly”
in the Perceived Usefulness questionnaire section (mean 6.8,
std. dev. 0.4). In addition, a regression analysis was carried
out in order to identify which variables (PU, EOU, and ATT)
influenced the use of ExploraTool (BI). The model yielded
an adjusted R2 value of .606. Based on the analysis of the
attitude results, participants think that ExploraTool’s idea is
wise, smart and interesting. As result, ATT is a significant
variable in increasing the software’s acceptance. When asked
to express the positive tool aspects, the participants indicated:
easiness (71%), quickness (58%), intuitiveness (25%), useful-
ness (17%) and effectiveness (13%). The negative aspects con-
cerned mainly the visualisation (29%), in particular the partial
overlapping of some labels and some thin ellipses, pointing
out the need for improvements of the visualisation overall
aesthetic. In addition users reported future tool improvements,
like additional aggregated statistical data on mouse hovering
(13%) and search by keywords (4%). In summary, despite the
participants’ lack of knowledge of space filling visualisations
like Treemap, they were able to complete the tasks, and
expressed high satisfaction in terms of its usefulness, usability,
and simplicity. Furthermore, users would use the tool on
regular basis and recommend other to use it (questions D18
and D19 of the questionnaire).

Delfina Malandrino

VI. CONCLUSIONS AND FUTURE WORK

This paper presented ExploraTool to visually and interac-
tively explore multiple repositories of simulations through a
novel user interface for the engineering field. As practical in-
dustrial application, the tool has been used to select individual
and/or groups of simulations to compare their performances
(i.e., comparison of aerodynamic simulations by the drag-
coefficient, called Cx). The utility of ExploraTool has been
evaluated in a real setting with expert industrial users. The
users found the tool useful, usable and simple to use, and
users were interested in the novel ExploraTool interactive user
interface. The ExploraTool concept generalises beyond the
simulation context to any other context in which the goal is
to select items by their properties and perform comparisons.
Filling out the questionnaires, analysts indicated the need
to select and compare not only simulations, but also wind
tunnel experiments from a cleaned repository and competitors’
products performance data, extending the applicability of the
tool. As possible extension to other industries, the tool can
provide a visual overview of catalogues of parts, supporting
the interactive finding of parts by their properties.

Reflections on the process adopted to design ExploraTool
may serve to provide good practice suggestions for the design
of novel interactive user interfaces for the engineering field.
In order to identify appropriate tasks and type of interactions,
an essential element was the close interaction with the end-
users, adopting an agile development methodology consisting
of two week periods for the plan, design, develop, and internal
testing phases. For ExploraTool, the crucial stimulation of
discussions and user engagement was a small proof of concept
tool permitting the basic interactions. In this case the users
were willing to pro-actively participate in discussions and
support its development.

As future work, users already provided interesting requests
for new features during the evaluation test: the facility to
bookmark the exploration of results; to introduce a specific
preference section; to filter the repository items by typing a
keyword within a search bar that updates the visualisation
with the filtered items; the ability to export the comparisons
in Excel and PowerPoint in a manner which is compliant to
the internal industrial templates. In addition, improvements
to the layout algorithm are needed to avoid thin ellipses,
thereby improving the overall visualisation aesthetic, whilst
also improving the label positions.

ACKNOWLEDGMENT

The authors gratefully thank all participants who took part
to the ExploraTool Usability Study.

REFERENCES

[1] D. A. Keim, “Visual exploration of large data sets,” Communications of
the ACM, vol. 44, no. 8, pp. 38–44, 2001.

[2] G. Marchionini, “Exploratory search: from finding to understanding,”
Communications of the ACM, vol. 49, no. 4, pp. 41–46, 2006.

[3] E. F. Duarte, E. Oliveira Jr, F. R. Côgo, and R. Pereira, “Dico:
A conceptual model to support the design and evaluation of ad-
vanced search features for exploratory search,” in Human-Computer
Interaction–INTERACT 2015. Springer, 2015, pp. 87–104.

[4] K. Klouche, T. Ruotsalo, D. Cabral, S. Andolina, A. Bellucci, and
G. Jacucci, “Designing for exploratory search on touch devices,” in
Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems. ACM, 2015, pp. 4189–4198.

[5] M. Burt and C. Li Liew, “Searching with clustering: An investigation
into the effects on users’ search experience and satisfaction,” Online
Information Review, vol. 36, no. 2, pp. 278–298, 2012.

[6] M. Hearst, “Clustering versus faceted categories for information explo-
ration,” Communications of the ACM, vol. 49, no. 4, pp. 59–61, 2006.

[7] A. L. Kaczmarek, “Interactive query expansion with the use of
clustering-by-directions algorithm,” IEEE Transactions on Industrial
Electronics, vol. 58, no. 8, pp. 3168–3173, 2011.

[8] R. W. White and R. A. Roth, “Exploratory search: Beyond the query-
response paradigm,” Synthesis Lectures on Information Concepts, Re-
trieval, and Services, vol. 1, no. 1, pp. 1–98, 2009.

[9] R. G. Capra and G. Marchionini, “The relation browser tool for faceted
exploratory search,” in Proceedings of the 8th ACM/IEEE-CS joint
conference on Digital libraries. ACM, 2008, pp. 420–420.

[10] M. Wilson, A. Russell, D. A. Smith et al., “mspace: improving informa-
tion access to multimedia domains with multimodal exploratory search,”
Communications of the ACM, vol. 49, no. 4, pp. 47–49, 2006.

[11] C. Carpineto, S. Osiński, G. Romano, and D. Weiss, “A survey of web
clustering engines,” ACM Computing Surveys (CSUR), vol. 41, no. 3,
p. 17, 2009.

[12] P. Ferragina and A. Gulli, “A personalized search engine based on
web-snippet hierarchical clustering,” Software: Practice and Experience,
vol. 38, no. 2, pp. 189–225, 2008.

[13] J. Kaizer and A. Hodge, “Aquabrowser library: search, discover, refine,”
Library Hi Tech News, vol. 22, no. 10, pp. 9–12, 2005.

[14] B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in IEEE Symposium on Visual Languages,,
1996, pp. 336–343.

[15] R. Lutz, D. Rausch, F. Beck, and S. Diehl, “Get your directories right:
From hierarchy visualization to hierarchy manipulation,” ser. VL/HCC,
Melbourne, VIC, 2014, pp. 25–32.

[16] G. Smith, M. Czerwinski, B. R. Meyers, G. Robertson, and D. Tan,
“FacetMap: A scalable search and browse visualization,” IEEE Trans-
actions on Visualization and Computer Graphics,, vol. 12, no. 5, pp.
797–804, 2006.

[17] P. Demian and R. Fruchter, “Finding and understanding reusable designs
from large hierarchical repositories,” Information Visualization, vol. 5,
no. 1, pp. 28–46, 2006.

[18] J. Bauder and E. Lange, “Exploratory subject searching in library
catalogs: Reclaiming the vision,” Information Technology and Libraries,
vol. 34, no. 2, pp. 92–102, 2015.

[19] B. Otjacques, M. Cornil, and F. Feltz, “Visualizing cooperative activities
with ellimaps: the case of Wikipedia,” in Cooperative Design, Visual-
ization, and Engineering. Springer, 2009, pp. 44–51.

[20] C. Gargiulo, D. Pirozzi, and V. Scarano, “An architecture for CFD
workflow management,” in Proceedings of the 11th IEEE International
Conference on Industrial Informatics (INDIN), Bochum, Germany, July
29-31, 2013, pp. 352–357.

[21] C. Gargiulo, D. Pirozzi, V. Scarano, and G. Valentino, “A platform to
collaborate around CFD simulations,” in Proceedings of the 23rd IEEE
International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), 2014, pp. 205–210.

[22] C. Gargiulo, D. Malandrino, D. Pirozzi, and V. Scarano, “Simulation
data sharing to foster teamwork collaboration,” Scalable Computing:
Practice and Experience, vol. 15, no. 4, pp. 309–329, 2014.

[23] A. Fish, C. Gargiulo, D. Pirozzi, and V. Scarano, “Simulation repository
visualisation and exploration,” in 13th IEEE International Conference
on Industrial Informatics (INDIN), 2015, pp. 832–837.

[24] R. Blanch and E. Lecolinet, “Browsing zoomable treemaps: structure-
aware multi-scale navigation techniques,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 13, no. 6, pp. 1248–1253, 2007.

Delfina Malandrino

Delfina Malandrino

