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Abstract 12 

Mitochondria play a crucial role in energetic metabolism, signaling pathways, and 13 

overall cell viability. They are in the first line in facing cellular energy requirements 14 

in stress conditions, such as in response to xenobiotic exposure. Recently, a novel 15 

regulatory key role of microRNAs (miRNAs) in important signaling pathways in 16 

mitochondria has been proposed. Consequently, alteration in miRNAs expression by 17 

xenobiotics could outcome into mitochondrial dysfunction, reactive oxygen species 18 

overexpression, and liberation of apoptosis or necrosis activating proteins. The aim of 19 

this review is to show the highlights about mitochondria-associated miRNAs in 20 

cellular processes exposed to xenobiotic stress in different cell types involved in 21 
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detoxification processes or sensitive to environmental hazards in marine sentinel 22 

organisms and mammals. 23 

Keywords: mitochondrial dysfunction; pollutants; microRNA; ROS; hepatocytes; 24 

haemocytes  25 

1. Introduction 26 

In eukaryotic cells, mitochondria are the main source of adenosine triphosphate 27 

(ATP) production as well as reactive oxygen (ROS) and nitrogen species (RNS) 28 

(Heise et al., 2003; Donaghy et al., 2012; Putti et al., 2015; Rivera-Ingraham et al., 29 

2016). Reviews by Donaghy et al. (2015) and Zeeshan et al. (2016) point to the 30 

endoplasmic reticulum (ER) as another source of ROS. The synthesis of 31 

mitochondrial ROS as well as other essential biological processes seems to be 32 

regulated by microRNAs (miRNAs, miRs), both in mammals and non-mammalian 33 

organisms (Kren et al., 2009; Christian and Su, 2014; Duarte et al., 2014; Burgos-34 

Aceves et al., 2018a). The miRNAs are a group of small endogenous noncoding 35 

segments of RNA, ~18-25 nucleotide (nt) long that play a critical role in modulating 36 

gene expression (Filipowicz et al., 2008). To date, there is growing evidence that 37 

miRNAs are also present in or associated with other organelles (Fig. 1) such as 38 

mitochondria (Sripada et al., 2012; Tomasetti et al., 2014), ER (Li et al., 2013; 39 

Montgomery and Ruvkun, 2013; Axtell, 2017), processing bodies (P-bodies), stress 40 

granules, multivesicular bodies, and exosomes (Nguyen et al., 2014). Further, it has 41 

been suggested that cytosolic miRNAs can be transferred within the mitochondria (Li 42 

et al., 2012) or generated within it (Latronico and Condorelli, 2012; Sripada et al., 43 

2012; Bandiera et al., 2013), and modulate genes expression and regulate important 44 
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signaling pathways (Li et al., 2012). Thus, deregulation of miRNAs biosynthesis can 45 

be associated with mitochondrial dysfunction (Wang et al., 2017). 46 

The aim of this review is to summarize the current knowledge on the role played by 47 

miRNA in regulation of mitochondrial function in condition of xenobiotic exposure. 48 

In the first part of the review, we introduced the role played by miRNA in regulating 49 

mitochondria and the effect of xenobiotic on mitochondrial function. In the second 50 

part, we summarized current knowledge on xenobiotic effect on mitochondrial 51 

associated-miRNA in cells from both hazards sentinel organisms and humans. In 52 

particular, we focused on bivalve mollusks and fish, as marine sentinel organisms in 53 

environmental health programs due to their ability to accumulate toxins inside tissue 54 

(Burgos-Aceves et al. 2018b). Then, we focused on mammalian liver cells, since it is 55 

well known that liver is the main organ involved in the processes of detoxification 56 

from xenobiotics in mammals including humans. Understanding the genetic and non-57 

genetic mechanisms and miRNA involvement in mitochondrial response to toxic 58 

xenobiotics in sentinel animals cells facing detoxification processes, could be useful 59 

to shed light on etiopathogenesis of mitochondrial related-diseases and their possible 60 

therapies in humans.  61 

2. miRNAs and mitochondrial function 62 

Canonically, the miRNAs are transcribed from the non-coding regions of DNA by a 63 

RNA polymerase II to produce the primary long transcripts (pri-miRNA), which is cut 64 

into 70-nt stems and loop precursors (pre-miRNAs) by Drosha/DGCR8 complex  65 

(figure 1), (Zeng and Cullen, 2005). In turn, the pre-miRNAs are transporter from the 66 

nucleus to the cytoplasm by Exportin 5 (XPO5) along with RanGTP. There, the 67 

endonuclease Dicer splicing the pre-miRNAs to produce the mature double-stranded 68 
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miRNA. One of these strands is linked to the argonaute protein (Ago) and forms the 69 

RNA-induced Silencing Complex (RISC), becoming active and capable to bind to a 70 

3’ untranslated region (3’UTR) of its target mRNA (Bartel, 2004). Some of these 71 

mature miRNAs can be translocated to the mitochondria (Fig. 1), and modulate 72 

mitochondrial gene expression in normal and disease conditions (Das et al., 2012, 73 

2017). Noteworthy, a very recent review (Macgregor-Das and Das, 2018) focused on 74 

the role of a functionally important subset of miRNAs located in mitochondria, known 75 

as MitomiRs. It has recently been postulated that the transcription of mitomiRs could 76 

also occur from the mitochondrial genome. Bandiera et al. (2011) reported the 77 

transcription of at least three miRs with the participation of the protein Ago-2 into the 78 

mitochondria; hsa-miR-1974, hsa-miR-1977 and hsa-miR-1978 in HeLa cells. This 79 

work confirms the previous finding by Kren et al. (2009) for miR-494 in rat liver 80 

mitochondria, as well as the localization of two pre-miRNAs (pre-mir-302a, pre-let-81 

7b) in human mitochondria isolated from muscular cells (Barrey et al., 2011). The 82 

presence of the proteins Ago in the mitochondria suggests that mitochondrial outer 83 

membrane (Fig. 1) may probably provide novel platform to assemble the 84 

miRNA/RISC complexes (Bandiera et al., 2011). These emerging data suggest that 85 

mitochondria have a unique population of miRNAs and that the enrichment of 86 

miRNAs in mitochondria is independent of the total cellular abundance of miRNAs 87 

(Bian et al., 2010). However, miRNAs translocation mechanisms, biological targets, 88 

and function at the mitochondrial level are not well understood (Borralho et al., 2014) 89 

Up to date, there is an emerging interest in the identification and putative role of 90 

miRNAs in mitochondrial homeostasis (Borralho et al., 2014). In different cell types, 91 

miRNAs were found to be involved in regulation of mitochondrial function and may 92 

play a role in mitochondrial-associated disease (Bandiera et al., 2013; Duarte et al., 93 
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2014). In neuron cells, an over expression of miR-338 decreases the cytochrome c 94 

oxidase IV (CoxIV) gene and protein expression, which translates into a significant 95 

reduction of mitochondrial oxygen consumption, metabolic activity and ATP 96 

production, which could be implicated in a subset of neurodegenerative diseases, such 97 

as Alzheimer’s or Parkinson’s disease (Aschrafi et al., 2008). Whereas, up-regulation 98 

of miR-15b, miR-16, miR-195 and miR-424 can suppress ATP levels in cardiac 99 

myocytes, affecting the integrity of mitochondria, which may contribute to cardiac 100 

dysfunction (Nishi et al., 2010). Shen et al. (2016) reported an alteration in 101 

mitochondria biogenesis during myocyte differentiation by down-regulation of 102 

forkhead box j3 gene (Foxj3) upon overexpression of miRNA-27. Jeong et al. (2017) 103 

exhibited a correlation between miR-24 and mitochondrial outer membrane protein 104 

isoform H2AX. miR-24-mediated knockdown of H2AX impaired both mitochondria 105 

and the insulin signaling pathway. An overexpression of miR-24 decreased 106 

mitochondrial H2AX level resulting in a mitochondrial malfunction. In addition, 107 

hepatic miR-24 levels were significantly increased in diabetic and obese mice, 108 

suggesting that H2AX-targeting miR-24 may be a novel negative regulator of 109 

mitochondrial function in the pathogenesis of insulin resistance. Burchard et al. 110 

(2010) made evident that miR-122 can regulate the mitochondrial metabolism in 111 

human hepatic cells, and its under-expression can lead to the development of 112 

hepatocellular carcinoma (HCC). On the other hand, it has been reported that 113 

miRNAs can indirectly modulate the mitochondrial apoptosis pathway (Fig. 2). The 114 

tumorigenic cyclooxygenase-2 (COX-2) overexpression, which is induced under 115 

pathologic conditions, is frequently associated with resistance to apoptosis in human 116 

cancer cells (Fosslien, 2000; Leng et al., 2003; Liou et al., 2005), and its inhibition 117 

has been associated with induction to apoptosis activating the effector caspases in 118 
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human hepatocellular carcinoma cells (Kern et al., 2006). An up-regulation of miR-16 119 

can silence COX-2 expression via interaction with its predicted binding sites in the 3’-120 

untranslated region (3’-UTR) (Agra Andrieu et al., 2012), activating mitochondrial 121 

apoptosis through a cytochrome c (cyt c)-dependent pathway (Li et al., 2001). Occurs 122 

a mitochondrial outer membrane permeabilization (MOMP), and collapse of 123 

mitochondrial membrane potential (Δψm) by down-regulation of anti-apoptotic 124 

protein Bcl-2. This allows translocation of pro-apoptotic Bax protein to mitochondria 125 

to form the complex Bax/Bak (Lalier et al., 2007), and release of cyt c to cytosol 126 

activating apoptosis process (Fig. 2) (Sobolewski et al., 2010). However, Guo et al. 127 

(2017) reported a down-regulation of miR-142-3p associated with a COX-2 128 

overexpression, an increment in apoptosis process, and inactivation of 129 

PI3K/AKT/mTOR signaling pathway in bleomycin-treated mouse lung epithelial type 130 

II cells (MLE-12). Therefore, a mitochondrial dysfunction can be assumed because 131 

the mechanistic target of rapamycin (mTOR) has been advised as modulator of 132 

mitochondrial biogenesis, apoptosis, mitophagy and mitochondrial hormesis 133 

(mitohormesis) including the retrograde response and mitochondrial unfolded protein 134 

response (mito-UPR) (Morita et al., 2015; Yui et al., 2015; Wei et al., 2015). In any 135 

case, regulation of COX-2 expression can be miRNA-mediated, as shown by Yoon et 136 

al. (2011), since at least the ectopic expression of another six miRNAs (miR-26a, -137 

143, -145, -199a, -542-3p, and -543) are involved in the regulation of COX-2 138 

expression, suggesting an important role for miRNAs in COX-2 overexpression 139 

during inflammation and tumorigenesis. 140 

3. Xenobiotics and xenobiotic-induced miRNAs effect on mitochondrial function  141 
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Overproduction of intra-mitochondrial ROS has been associated to drugs but also to 142 

environmental toxicants resulting in serious injuries that may alter the normal 143 

mitochondrial functions causing some kind of diseases in mammals and non-mammal 144 

organisms, such as anemia, heart disease, hepatic cytolysis and steatosis, 145 

inflammation, skeletal muscle disorders, etc. (Pagano, 2002; Begriche et al., 2011; 146 

Deavall et al., 2012; Meyer et al., 2013; Brunst et al., 2015; Varga et al., 2015; Vuda 147 

and Kamath, 2016; Datta et al., 2016; Eakins et al., 2016; Blajszczak and Bonini, 148 

2017; Dott et al., 2018). To date, very little are known about nuclear DNA (nDNA) 149 

and mitochondrial DNA (mtDNA) damage by xenobiotics, and its association to 150 

mitochondrial dysfunction (Caito and Aschner, 2015; Roubicek and Souza-Pinto, 151 

2017). Some data indicate that mtDNA seems to be more predisposed to damage 152 

because mitochondria are more susceptible to increase ROS and RNS after xenobiotic 153 

stimuli and also tend to accumulate them (Kang and Hamasaki, 2002; Venkatraman et 154 

al., 2004). Venkatraman et al. (2004) reported a perceived decrement in both nDNA 155 

and mtDNA-encoded gene products of oxidative phosphorylation complexes 156 

(OXPHOS) in hepatic cells after a chronic ethanol exposition, where mtDNA damage 157 

was mostly observed, modifying the mitochondrial protein profile. A similar effect 158 

was reported by López-Gallardo et al. (2016) on osteosarcoma and adenocarcinoma 159 

cells after environmental exposure to tributyltin chloride (TBTC), a worldwide 160 

toxicant ATP synthase inhibitor present in contaminate human food and water. The 161 

organotin TBTC seems to trigger mutations on mtDNA, causing an OXPHOS 162 

disorder, and inducing striatal necrosis syndromes. Polychlorinated biphenyl (PCB) 163 

quinones have been associated to several toxic effects in human, and their exposure 164 

increase ROS production, decreasing mitochondrial Δψm, inducing the translocation 165 

of cyt c from mitochondria into cytosol, and an increment in caspase-3/9 and p53 166 
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protein and gene expressions in human hepatoma cells (HepG2), resulting in 167 

apoptotic cell death (Xu et al., 2015). 168 

Functional modification in mitochondria is one of the parameters that can be used to 169 

detect spatial and temporal alterations in organisms by external effectors like 170 

environment pollutants, hypoxia, and temperature or combined effect (Yawetz et al., 171 

2010; Hamanaka and Chandel, 2010; Ivanina et al., 2012). Hence, elucidating the 172 

roles of microRNAs in mitochondria will provide the basic framework to investigate 173 

their functions in mitochondria and to unravel their potential in designing new 174 

therapeutic strategies for mitochondrial diseases (Li et al., 2012). 175 

4. Xenobiotics impact on mitochondrial function and related miRNAs in marine 176 

environmental sentinel species  177 

To study the effects of xenobiotics and environmental pollutants on human health, it 178 

can be useful to analyze how they impact on organisms that may be considered 179 

sentinel species (Neo and Tan, 2017). Animals in many habitats can be used as a 180 

surveillance tool for monitoring environmental and human health hazards (Reif, 181 

2011), since they allow detecting risks to humans by providing warning of a danger in 182 

advance. Indeed, they share the same environment as humans, but they have a higher 183 

exposure risk since they spend more time outdoors than humans. In addition, taking 184 

into consideration their compressed lifespans, mechanisms of injury by environmental 185 

hazards may develop more rapidly than in humans (Rabinowitz et al., 2010). A 186 

variety of marine species are excellent to monitor health hazards in the environment. 187 

For example, shellfish and fish are sentinel organisms and the presence of residues of 188 

environmental contaminants in their tissues is well documented in the literature (Reif, 189 

2011). 190 
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4.1 Xenobiotics effects on mitochondrial function and related miRNAs in bivalves 191 

Bivalves, due to their lifestyle, are species with a greater risk of contact with the 192 

increasing discharge of municipal and industrial wastewater effluents in their 193 

environment, affecting the ROS production involved in cellular and tissue 194 

homeostasis (Winston et al., 1996; Donaghy et al., 2012; De Lisi et al., 2013). The 195 

digestive gland or hepatopancreas is the organ associated with the processes of 196 

detoxification and elimination of xenobiotics, as well as the immune response to 197 

pathogens (Moore and Allen, 2002; Torre et al., 2013a,b), and the haemocytes are 198 

responsible for carrying out these processes (Faggio et al., 2016; Pagano et al., 2016, 199 

2017). The haemocytes contain organelles in cytoplasm, including several 200 

mitochondria and considerable amount of endoplasmic reticulum (Cajaraville and Pal, 201 

1995; Yanyan et al., 2006), and it has been observed that environmental contaminants 202 

like benzo[a]pyrene (B[a]P) can down-regulate the mitochondrial activity in adults 203 

mussel of Mytilus galloprovincialis (Banni et al., 2017), or structurally distort the 204 

mitochondria by bioaccumulation of heavy metals (Torre et al., 2013b; Pagano et al., 205 

2017; Savorelli et al., 2017), as observed in the marine Indian green mussel Perna 206 

viridis (Vasanthi et al., 2013, 2017). Besides, xenobiotics, such as the herbicide 207 

fomesafen, can activate the apoptotic program of haemocytes through the collapse of 208 

the mitochondrial Δψm, a subsequent membrane asymmetry with phosphatidylserine 209 

(PS) release in a dose-dependent way (Russo and Madec, 2007). A mitochondrial 210 

ROS production can occur by breaking lysosomes (Moore et al., 2009), resulting in 211 

the release of mitochondrial proteins, including cyt c, and promote the apoptotic 212 

cascade (Zhao et al. 2003). The presence of PS onto the membrane is required for 213 

apoptotic cell recognition and has been proposed in the intrinsic death program, 214 

following cell injury (Martin et al. 1995). Therefore, apoptosis pathway might provide 215 
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a sensitive indicator of environmental pollution (Russo and Madec, 2007). Other 216 

organs can also be used as biomarkers of ecotoxicity. In the freshwater mussel 217 

Elliptio complanata, some pharmaceutical products (ibuprofen, cotinine, fluoxetine, 218 

coprostanol, trimethoprim) as well as municipal effluents can increase mitochondrial 219 

electron transport (MET), lipid peroxidation and respiration rates in isolated 220 

mitochondria from gonad. Environmental factors such temperature could enhance the 221 

susceptibility of mitochondrial energy production and oxidative stress in 222 

environments contaminated by domestic wastewater. So, it is suggested that 223 

organisms exposed to polluted environments are more susceptible to temperature 224 

fluctuations (Gagné et al., 2006). 225 

To date, studies have been developed concerning the modulating role of miRNAs 226 

against the effects of environmental stress in marine invertebrate animals (Biggar et 227 

al., 2012; Bao et al., 2014; Burgos-Aceves et al., 2018b). Notwithstanding, there are 228 

any published data related to the role of miRNAs in mitochondrial haemocyte 229 

function under xenobiotic stress. However, there is evidence indicating that miRNAs 230 

can play a key role in the direct regulation of genes coding for mitochondrial proteins 231 

and consequently mitochondrial function in other cell types (Duarte et al., 2014; 232 

Tomasetti et al., 2014; Macgregor-Das and Das, 2018; Murri and El Azzouzi, 2018), 233 

but the mode of action in mitochondria are largely unknown (Srinivasan and Das, 234 

2015). Besides, the role of mitochondria extends beyond energy metabolism to many 235 

other cellular processes like metabolism, cell death and inflammation (Sripada et al., 236 

2012), reason why miRNAs can play a key role in mitochondrial haemocyte 237 

functions.  238 
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Consequently, alteration of digestive gland functions as other organs or tissues can 239 

reflect disturbances at molecular level and identification of these disturbances can aid 240 

in the understanding of whole animal impact due to pollutants and other stress factors 241 

(Vasanthi et al., 2012; Faggio et al., 2018). Therefore, it is necessary to carry out 242 

further investigation to determine which miRNAs might be regulated by xenobiotic. 243 

How these miRNAs act, may allow us to increase our understanding of miRNAs roles 244 

in regulation of xenobiotic challenge and stress. This finding would have important 245 

implications for our understanding of gene regulation under environmental stress and 246 

make a significant contribution to the long-term goal of a complete miRNA profile for 247 

bivalve haemocytes. 248 

4.2 Xenobiotics effects on mitochondrial function and related miRNAs in fish cells 249 

Fish are known as very sensitive to anthropogenic impacts and are often being used as 250 

sentinel species in the aquatic environment (Burgos-Aceves et al., 2018a). One of the 251 

main effects of xenobiotics is the direct or indirect ROS production, where lysosomal 252 

membrane rupture and mitochondrial metabolism alteration can be associated to ROS 253 

overproduction (Pourahmad et al., 2001, 2004), and promote activation of caspase 254 

enzymes and apoptotic cell death (Pourahmad et al., 2001; He et al., 2012; Yu et al., 255 

2018). In fish, the production of ROS under normal condition is by the red muscle 256 

mitochondria during swimming activity, and also in liver, heart, swimbladder, roe and 257 

blood in resting fish. The mechanism of fish mitochondrial function and ROS 258 

production seems to be similar to that of mammals with the difference that fish 259 

erythrocytes possess nuclei and mitochondrial membrane is highly flexible (Wilhelm 260 

Filho, 2007). 261 
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Many xenobiotics tend to accumulate in the liver, making this organ particularly 262 

sensitive, triggering structural and distribution of almost any cell organelle system  263 

(Grund et al., 2010), in order to carry out a morphological restructuring in adaptation 264 

to the need for intensified metabolization/detoxification capacities (Triebskorn et al. 265 

2004). Then, alterations on hepatic mitochondrial function and other subcellular 266 

organelles by xenobiotics have been reported in several fish species (Myers et al. 267 

1994; Pedrajas et al. 1995, 1996; Krumschnabel and Nawaz, 2004; Miller et al., 2007; 268 

Schnell et al., 2009; Wu et al., 2014; Lin et al., 2017; Du et al., 2018). Recent studies 269 

indicate that several chemicals with pharmaceutical or personal care products have 270 

toxic effects on liver mitochondria in fish acting as endocrine disruptors (Burgos-271 

Aceves et al., 2016; Plhalova et al., 2017; Sehonova et al., 2017a,b; Fiorino et al., 272 

2018), similar to that reported in mammals (Brown et al., 2014). They can inhibit 273 

function such as the mitochondrial electron transport system (Chan et al., 2005). A 274 

work done by Yeh et al. (2017) showed that certain chemicals considered as 275 

contaminants of emerging concern (CECs), even at low concentration, could affect 276 

liver mitochondrial functions in individuals of Chinook salmon, owing to 277 

bioaccumulative effect. These chemicals can affect both liver mitochondrial quality 278 

and content, reduce the expression of the positive transcriptional regulator of 279 

mitochondrial biogenesis peroxisome proliferator-activated receptor (PPAR) Y 280 

coactivator-1alpha (pgc-1) and elevate the respiratory activity per mitochondria. The 281 

respiration rate can significantly rise in fish hepatocytes as a response mechanism in 282 

the reduction and elimination of intracellular xenobiotic concentration via the use of 283 

P-glycoproteins (Bains and Kennedy, 2004, 2005). Perchlorate (ClO4
−), lanthanum 284 

(La3+), and calcium (Ca2+) can have toxic effects in liver of Carassius auratus, 285 

inducing mitochondrial oxidative stress, and subsequently a gradual opening of 286 
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permeability transition pore leading to mitochondrial swelling and lipid peroxidative 287 

membrane damage (Zhao et al., 2014; Wu et al., 2015). Similar effects have been 288 

observed in liver mitochondria of rainbow trout Oncorhynchus mykiss and yellow 289 

croaker Pseudosciaena crocea at highly elevated zinc (Zn) concentration (Sharaf et 290 

al., 2017; Zheng et al., 2017). The insecticide Rotenone has the faculty of inhibit the 291 

mitochondrial respiratory complex I function in both mammals and fishes (Caito and 292 

Aschner, 2015). Then, hepatic mitochondria seem to be the commonly acting site of 293 

most toxicants, suggesting that oxidative stress played a significant role in the 294 

mechanisms of the hepatotoxicity of xenobiotics (Lin et al., 2017). 295 

Lately, studies indicate that molecular regulation of mitochondrial metabolism, 296 

structure, and function are genetically modulated by miRNAs (Huntzinger and 297 

Izaurralde, 2011; Li et al., 2012), and the expression of these can be extensively 298 

modified by different stress factors in fish (Burgos-Aceves et al., 2016, 2018a; Tong 299 

et al., 2017). Nevertheless, despite the emerging interest of mitochondria as target for 300 

environmental toxicants, little has been discussed about the effect of xenobiotics on 301 

hepatic mitochondria of fish and even less about the modulating action of miRNAs on 302 

mitochondrial functions under pollutants presence. Cohen et al. (2008) have 303 

previously shown differential miRNA expression patterns in the zebrafish tissues after 304 

exposure to estradiol (E2), where a comprehensive miRNA downregulation was 305 

predominantly observed in the liver (Cohen and Smith, 2014). Instead, there are 306 

reports indicating that E2 can have deleterious effects on mitochondria through the 307 

accumulation of Ca2+ by delaying the opening of the permeability transition pore 308 

(Moreira et al., 2007; Thiede et al., 2012), while other reports indicate an upgrade 309 

hepatic mitochondrial function (Kozlov et al., 2010). Meanwhile, Renaud et al. (2017) 310 

showed that in liver of zebrafish 15 miRNAs where differently expressed after 311 
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bisphenol A (BPA) exposure, affecting the oxidative phosphorylation and cell cycle 312 

pathways, perturbation on mitochondrial respiratory electron transport chain, and 313 

development of liver disease like the non-alcoholic fatty liver disease (NAFLD) and 314 

genetic disease. Additionally, some other reports indicate the possible role of 315 

miRNAs in the adaptation mechanisms in fish from extreme environments, denoting 316 

that several conserved miRNAs play a key role in the regulation of gene expression 317 

associated to signal transduction, cell differentiation and biosynthetic process. While 318 

other miRNAs seem to be species-specific and involved in ion binding, transport and 319 

oxidoreductase activity (Tong et al., 2017). 320 

5 Xenobiotics impact on mitochondrial function and related miRNAs in 321 

mammals: focus on hepatic cells. 322 

Liver is the main organ involved in detoxification processes in humans and therefore, 323 

modulation of hepatic cell metabolism and mitochondrial function by miRNA may 324 

play a key role in the response to xenobiotics in both liver tissue and whole organism. 325 

There is a growing evidence that drug overdose-induced mitochondrial malfunction is 326 

associated to several human diseases (Begriche et al., 2011; Zhou and Guilarte, 2013), 327 

although mitochondrial dysfunction has been reported in many in vitro studies 328 

(Roubicek and Souza-Pinto, 2017). Analyses have been carried out to identify reliable 329 

and sensitive early markers for liver injury using state-of-the-art technologies, so an 330 

early diagnosis of drug-induced liver injury (DILI) is important, especially in the case 331 

of idiopathic DILI where the underlying cause is difficult to determine (Hayes and 332 

Chayama, 2016). Recently, studies have shown the involvement of miRNAs in liver 333 

diseases caused by drug abuse and other external factors (Bala et al., 2009; Wang et 334 

al., 2009; Lewis et al., 2011). Acetaminophen (APAP) is one of the most commonly 335 
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used drugs for pain and fever in adults and children, and an APAP-overdose is the 336 

most common cause of DILI (Williams et al., 2010). Fukushima et al. (2007) denote 337 

that an overdose of APAP or carbon tetrachloride (CCl4), added to the histological 338 

damages in rat liver, triggered a decrease in the expression of miR-298 and miR-370, 339 

which is speculated to be bind to thioredoxin reductase 3 messenger RNA and 340 

regulate the oxidative stress-related genes. Therefore, their down-regulation would be 341 

associated with an increase in the production of ROS. A study in mouse liver showed 342 

an up-regulation of liver-specific miR-122 was observed correlated with an increment 343 

in alanine aminotransferase (ALT) resulting in APAP-induced liver injury (Bala et al., 344 

2012). Yang et al. (2015) also reported an overexpression of miR-122 and miR-375 345 

associated with mitochondrial DNA damage, collapse of mitochondria, and necrotic 346 

cell death. This may be due to excessive ROS or the opening of the mitochondrial 347 

membrane permeability transition pores (Jaeschke, 2005). The miR-122 is considered 348 

as a mitochondrial function regulator (Burchard et al. 2010), and both miR-122 and -349 

375 are cholesterol and lipid metabolism regulators (Esau et al., 2006; Christian and 350 

Su, 2014). Moreover, APAP also can induce liver inflammation and the miR-155 is 351 

known to mediate inflammatory responses via mediating NF-B signaling pathway, 352 

through regulation of p65 and IKKε expression. Inhibition of miR-155 entails an 353 

increment in the inflammatory mediators tumor necrosis factor-alpha (TNF-alpha) 354 

and interleukin-6 (IL-6) in liver (Yuan et al., 2016). Streptozotocin (STZ), a drug used 355 

for treating metastatic cancer of the pancreatic islet cells, can induce type 1 diabetes 356 

and mitochondrial dysfunction (Ghosh et al., 2004). According to studies conducted 357 

by Bian et al., (2010) a mitochondrial dysfunction in mouse liver can be associated 358 

with significantly altered expression pattern of mitochondria-associated miRNAs after 359 
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STZ treatment, where the principal miRNAs up-regulated were miR-494, miR-202–360 

5p, miR-134, and miR-155 and the miR-122 was down-regulated. 361 

Unhealthy diets can imbalance the supply and utilization of fatty acids (FA), 362 

contributing to intrahepatic lipid (IHL) accumulation in obesity (Ciapaite et al., 2011). 363 

The cause of obesity can be associated also with mitochondrial biogenesis and 364 

dynamic dysfunction (Ji et al., 2015), since there is an unbalance between energy 365 

intake and energy expenditure, resulting in an excessive energy accumulation in 366 

adipocytes (Ciapaite et al., 2011). Recently, mitochondria-related miRNAs have 367 

emerged as key regulators in metabolic disorder (Iacomino and Siani, 2017; Murri 368 

and El Azzouzi, 2018), where the epigenetic modifications can have effects on 369 

cellular lipid metabolism and energy expenditure. Epigenetic modifications are now 370 

closely involved in non-alcoholic fatty liver disease (NAFLD) associated with excess 371 

transfer of fat to the adipose tissue and the induction of obesity (Martins, 2015). It has 372 

been reported that a diet containing elevated components (sugar, fats, xenobiotics, 373 

drugs) may alter the expression of miRNAs associated to adipocyte differentiation, 374 

insulin action and fat metabolism (Xie et al., 2009; McGregor and Choi, 2011). 375 

According to Ji et al. (2015) in a high-fat-diet (HFD) an up-regulation of 376 

mitochondrial-related miR-141-3p with a marked hepatic mitochondrial dysfunction 377 

was observed. Their results indicate that the overexpression of miR-141-3p 378 

contributed to an up-regulation of ATP and ROS production, through the promotion 379 

of oxidative phosphorylation (OXPHOS) by increasing the expression of the 380 

mitochondria-encoded subunits of cytochrome c oxidase (COX or complex IV) Cox2 381 

and Cox3, and a reduction of antioxidant enzymes capacity by silencing phosphatase 382 

and tensin homolog (PTEN) gene. These changes lead to an energy imbalance can be 383 
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associated with obesity development due to induced alterations in hepatic and adipose 384 

lipid metabolism by miRNAs (Martins, 2015; Giroud et al., 2016). 385 

Recently, miRNAs have been postulated a key modulators in mitochondrial apoptosis 386 

(Cai et al., 2009; Duarte et al., 2014; Su et al., 2015). At least, a potential interaction 387 

between miR-130a and mitochondrial encoded cytochrome c oxidase III (Cox3) has 388 

been established in liver of rat (Kren et al., 2009). Apparently a xenobiotic-induced 389 

miR-130a suppression can be associated with an inhibition of Cox3, while, an over-390 

expression of miR-181c causes a decrement in cytochrome c oxidase subunit I 391 

(Cox1), and an increased rate of O2 consumption by complex IV, caused probably by 392 

increased generation of ROS (Latronico and Condorelli, 2012). This alteration on 393 

mitochondrial complex IV function in turn may cause the synthesis of C16:0 394 

ceramide by a transcriptional up-regulation of (dihydro)ceramide synthases-6 (CerS6) 395 

gene in the ER membrane, a key cellular stress response to Cox inhibition. Increment 396 

in cellular ceramide levels specially promotes permeability of mitochondrial outer 397 

membrane and consequently release of cyt c and activation of caspase pathway (Fig. 398 

3) (Aflaki et al., 2012; Schüll et al., 2015). 399 

6. Conclusions and Perspectives 400 

Carry out evaluations of mitochondrial function and related miRNA can help us to 401 

determine the degree of disturbance of cell metabolism in marine sentinel organisms, 402 

such as shellfish and fish, according to the level of contamination of environment. 403 

Additionally, pollution can genetically affect a population splitting sub-genotypes 404 

(Yawetz et al., 2010). With regard to genetics, the importance of these pathways is 405 

underscored by the fact that inherited mitochondrial diseases are caused by mutations 406 

in genes encoding proteins involved in each of these processes that can be inherited 407 
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maternally (Nunnari and Suomalainen, 2012). Thus, it will be important to determine 408 

whether toxicity of a specific xenobiotic is directly due to toxicity to the mitochondria 409 

or whether the mitochondria is damaged as a secondary event after exposure. This 410 

may give insight into the role of miRNAs, mitochondria and environmental exposures 411 

in disease, so that, modulation of miRNA levels may provide a new therapeutic 412 

approach for the treatment of mitochondria-related diseases in humans. 413 
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Schüll, S., Günther, S.D., Brodesser, S., Seeger, J.M., Tosetti, B., Wiegmann, K., 766 

Pongratz, C., Diaz, F., Witt, A., Andree, M., Brinkmann, K., Krönke, M., Wiesner, 767 

R.J., Kashkar, H. 2015. Cytochrome c oxidase deficiency accelerates mitochondrial 768 

apoptosis by activating ceramide synthase 6. Cell Death Dis. 6, e1691. 769 

Sehonova, P., Plhalova, L., Blahova, J., Doubkova, V., Marsalek, P., Prokes, M., 770 

Tichy, F., Skladana, M., Fiorino, E., Mikula, P., Vecerek, V., Faggio, C., Svobodova, 771 

Z. 2017a. Effects of selected tricyclic antidepressants on early-life stages of common 772 

carp (Cyprinus carpio). Chemosphere 185, 1072-1080. 773 

https://doi.org/10.1016/j.scitotenv.2018.07.109 



 35 

Sehonova, P., Plhalova, L., Blahova, J., Doubkova, V., Prokes, M., Tichy, F., Fiorino, 774 

E., Faggio, C., Svobodova, Z. 2017. Toxicity of naproxen sodium and its mixture with 775 

tramadol hydrochloride on fish early life stages. Chemosphere. 188, 414-423. 776 

Sharaf, M.S., Stevens, D., Kamunde, C. 2017. Zinc and calcium alter the relationship 777 

between mitochondrial respiration, ROS and membrane potential in rainbow trout 778 

(Oncorhynchus mykiss) liver mitochondria. Aquat. Toxicol. 189, 170-183. 779 

Shen, L., Chen, L., Zhang, S., Du, J., Bai, L., Zhang, Y., Jiang, Y., Li, X., Wang, J., 780 

Zhu, L. 2016. MicroRNA-27b regulates mitochondria biogenesis in myocytes. PLoS 781 

ONE. 11 (2), e0148532. 782 

Sobolewski, C., Cerella, C., Dicato, M., Ghibelli, L., Diederich, M. 2010. The role of 783 

cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int. J. 784 

Cell Biol. 2010, 215158. doi: 10.1155/2010/215158. 785 

Srinivasan, H., Das, S. 2015. Mitochondrial miRNA (MitomiR): a new player in 786 

cardiovascular health. Can. J. Physiol. Pharmacol. 93 (10), 855-861. 787 

Sripada, L., Tomar, D., Singh, R. 2012. Mitochondria: One of the destinations of 788 

miRNAs. Mitochondrion. 12, 593-599. 789 

Su, Z., Yang, Z., Xu, Y., Chen, Y., Yu, Q. 2015. MicroRNAs in apoptosis, autophagy 790 

and necroptosis. Oncotarget. 6 (11), 8474-8490. 791 

Thiede, A., Gellerich, F.N., Schönfeld, P., Siemen, D. 2012. Complex effects of 17β-792 

estradiol on mitochondrial function. Biochim. Biophys. Acta. 1817 (10), 1747-1753. 793 

https://doi.org/10.1016/j.scitotenv.2018.07.109 



 36 

Tomasetti, M., Neuzil, J., Dong, L. 2014. MicroRNAs as regulators of mitochondrial 794 

function: role in cancer suppression. Biochim. Biophys. Acta. 1840 (4), 1441-1453. 795 

Tong, C., Tian, F., Zhang, C., Zhao, K. 2017. The microRNA repertoire of Tibetan 796 

naked carp Gymnocypris przewalskii: A case study in Schizothoracinae fish on the 797 

Tibetan Plateau. PLoS One. 12 (3), e0174534. 798 

Torre, A., Trischitta, F., Corsaro, C., Mallamace, D., Faggio, C. 2013a. Digestive 799 

cells from Mytilus galloprovincialis show a partial regulatory volume decrease 800 

following acute hypotonic stress through mechanisms involving inorganic ions. Cell 801 

Biochem. Funct. 31, 489-495. 802 

Torre, A., Trischitta, F., Faggio, C. 2013b. Effect of CdCl2 on Regulatory Volume 803 

Decrease (RVD) in Mytilus galloprovincialis digestive cells. Toxicol. in Vitro. 27, 804 

1260-1266. 805 

Triebskorn, R., Casper, H., Heyd, A., Eikemper, R., Koehler, H.R., Schwaiger, J. 806 

2004. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part II: 807 

cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus 808 

mykiss). Aquat. Toxicol. 68, 151-166. 809 

Varga Z.V., Ferdinandy, P., Liaudet, L., Pacher, P. 2015. Drug-induced mitochondrial 810 

dysfunction and cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol. 309, H1453-811 

H1467. 812 

Vasanthi, L.A., Revathi, P., Arulvasu, C., Munuswamy, N. 2012. Biomarkers of metal 813 

toxicity and histology of Perna viridis from Ennore estuary, Chennai, southeast coast 814 

of India. Ecotoxicol. Environ. Saf. 84, 92-98. 815 

https://doi.org/10.1016/j.scitotenv.2018.07.109 



 37 

Vasanthi, L.A., Revathi, P., Mini, J., Munuswamy, N. 2013. Integrated use of 816 

histological and ultrastructural biomarkers in Mugil cephalus for assessing heavy 817 

metal pollution in Ennore estuary, Chennai. Chemosphere. 91, 1156-1164. 818 

Vasanthi, L.A., Revathi, P., Rajendran, R.B., Munuswamy, N. 2017. Detection 819 

ofmetal induced cytopathological alterations and DNA damage in the gills and 820 

hepatopancreas of green mussel Perna viridis from Ennore Estuary, Chennai, India. 821 

Mar. Pollut. Bull. 117, 41-49. 822 

Venkatraman, A., Landar, A., Davis, A.J., Chamlee, L., Todd Sanderson, T., Kim, H., 823 

Page, G., Pompilius, M., Ballinger, S., Darley-Usmar, V., Bailey, S.M. 2004. 824 

Modification of the mitochondrial proteome in response to the stress of ethanol-825 

dependent hepatotoxicity. J. Biol. Chem. 29 (21), 22092-22101. 826 

Vuda, M., Kamath, A. 2016. Drug induced mitochondrial dysfunction: Mechanisms 827 

and adverse clinical consequences. Mitochondrion. 31, 63-74. 828 

Wang, K., Zhang, S., Marzolf, B., Troisch, P., Brightman, A., Hu, Z., Hood, L.E., 829 

Galas, D.J. 2009. Circulating microRNAs, potential biomarkers for drug-induced liver 830 

injury. Proc. Natl. Acad. Sci. USA. 106, 4402-4407. Biomed. Res. Int. 2017, 831 

4042509. 832 

Wang,  X., Song, C., Zhou, X., Han, X., Li, J., Wang, Z., Shang, H., Liu, Y., Cao, H. 833 

2017. Mitochondria associated microRNA expression profiling of heart failure. 834 

Biomed. Res Int. 2017, 4042509. doi: 10.1155/2017/4042509 835 

Wei, Y., Zhang, Y.J., Cai, Y., Xu, M.H. 2015. The role of mitochondria in mTOR-836 

regulated longevity. Biol. Rev. Camb. Philos. Soc. 90 (1), 167-181. 837 

https://doi.org/10.1016/j.scitotenv.2018.07.109 



 38 

Wilhelm Filho, D. 2007. Reactive oxygen species, antioxidants and fish mitochondria. 838 

Front. Biosci. 12, 1229-1237. 839 

Williams, C.D., Bajt, M.L., Farhood, A., Jaeschke, H. 2010. Acetaminophen-induced 840 

hepatic neutrophil accumulation and inflammatory liver injury in CD18-deficient 841 

mice, Liver Int. 30 (9), 1280-1292. 842 

Winston, G.W., Moore, M.N., Kirchin, M.A., Soverchia, C. 1996. Production of 843 

reactive oxygen species by hemocytes from the marine mussel, Mytilus edulis: 844 

Lysosomal localization and effect of xenobiotics. Comp. Biochem. Physiol. C 845 

Pharmacol. Toxicol. Endocrinol. 113 (2), 221-229. 846 

Wu, F., Lin, L., Qiu, J.W., Chen, H., Weng, S., Luan, T. 2014. Complex effects of 847 

two presumably antagonistic endocrine disrupting compounds on the goldfish 848 

Carassius aumtus: a comprehensive study with multiple toxicological endpoints. 849 

Aquat. Toxicol. 155, 43-51. 850 

Wu, M., Gao, J.L., Sun, M.X., Zhang, Y.Z., Liu, Y., Dai, J. 2015. Effects of La(III) 851 

and Ca(II) on isolated Carassius auratus liver mitochondria: heat production and 852 

mitochondrial permeability transition. Biol. Trace Elem. Res. 163 (1-2), 217-223. 853 

Xie, H., Lim, B., Lodish, H.F. 2009. microRNAs induced during adipogenesis that 854 

accelerate fat cell development are downregulated in obesity. Diabetes. 58, 1050-855 

1057. 856 

Xu, D., Li, L., Liu, L., Dong, H., Deng, Q., Yang, X., Song, E., Song, Y. 2015. 857 

Polychlorinated biphenyl quinone induces mitochondrial-mediated and caspase-858 

dependent apoptosis in HepG2 cells. Environ. Toxicol. 30 (9), 1063-1072. 859 

https://doi.org/10.1016/j.scitotenv.2018.07.109 



 39 

Yang, X., Salminen, W.F., Shi, Q., Greenhaw, J., Gill, P.S., Bhattacharyya, S., Beger, 860 

R.D., Mendrick, D.L., Mattes, W.B., James, L.P. 2015. Potential of extracellular 861 

microRNAs as biomarkers of acetaminophen toxicity in children. Toxicol. Appl. 862 

Pharmacol. 284, 180-187. 863 

Yanyan, Z., Sulian, R., Dexiu, W., Weibo, S. 2006. Structure and classification of 864 

haemocytes in the bivalve mollusc Meretrix meretrix. J. Ocean Univ. China. 5, (2), 865 

132-136. 866 

Yawetz, A., Fishelson , L., Bresler, V., Rami Manelis, R. 2010. Comparison of the 867 

effects of pollution on the marine bivalve Donax trunculus in the vicinity of polluted 868 

sites with specimens from a clean reference site (Mediterranean Sea). Mar. Pollut. 869 

Bull. 60, 225-229. 870 

Yeh, A., Marcinek, D.J., Meador, J.P., Gallagher, E.P. 2017. Effect of contaminants 871 

of emerging concern on liver mitochondrial function in Chinook salmon. Aquat. 872 

Toxicol. 190, 21-31. 873 

Yoon, S., Choi, Y.-C., Lee, Y., Jin, M., Jeong, Y., Yoon, J., Baek, K. 2011. 874 

Characterization of microRNAs regulating cyclooxygenase-2 gene expression. Genes 875 

genomes. 33, 673-678. 876 

Yu, L.L., Yu, H.H., Liang, X.F., Li, N., Wang, X., Li, F.H., Wu, X.F., Zheng, Y.H., 877 

Xue, M., Liang, X.F. 2018. Dietary butylated hydroxytoluene improves lipid 878 

metabolism, antioxidant and anti-apoptotic response of largemouth bass (Micropterus 879 

salmoides). Fish Shellfish Immunol. 72, 220-229. 880 

https://doi.org/10.1016/j.scitotenv.2018.07.109 



 40 

Yuan, K., Zhang, X., Lv, L., Zhang, J., Liang, W., Wang, P. 2016. Fine-tuning the 881 

expression of microRNA-155 controls acetaminophen-induced liver inflammation. 882 

Internat. Immunopharmacol. 40, 339-346. 883 

Yui, K., Sato, A., Imataka, G. 2015. Mitochondrial dysfunction and its relationship 884 

with mTOR signaling and oxidative damage in autism spectrum disorders. Mini. Rev. 885 

Med. Chem. 15 (5), 373-389. 886 

Zeeshan, H.M., Lee, G.H., Kim, H.R., Chae, H.J. 2016. Endoplasmic Reticulum 887 

Stress and Associated ROS. Int. J. Mol. Sci. 17, 327. 888 

Zeng, Y., Cullen, B.R. 2005. Recognition and cleavage of primary microRNA 889 

precursors by the nuclear processing enzyme Drosha, EMBO J. 24, 138-148. 890 

Zhao, M., Antunes, F., Eaton, J.W., Brunk, U.T. 2003. Lysosomal enzymes promote 891 

mitochondrial oxidant production, cytochrome c release and apoptosis. Eur. J. 892 

Biochem. 270, 3778-3786.  893 

Zhao, X., Zhou, P., Chen, X., Li, X., Ding, L. 2014. Perchlorate-induced oxidative 894 

stress in isolated liver mitochondria. Ecotoxicol. 23, 1846-1853. 895 

Zheng, J.-L., Yuan, S.-S., Shen, B., Chang-Wen Wu, C.-W. 2017. Organ-specific 896 

effects of low-dose zinc pre-exposure on high-dose zinc induced mitochondrial 897 

dysfunction in large yellow croaker Pseudosciaena crocea. Fish Physiol. Biochem. 898 

43, 653-661. 899 

Zhou, C., Guilarte, T.R. 2013. Mitochondria and Environmental Health. JSM 900 

Environ. Sci. Ecol. 1 (1), 1002.  901 

https://doi.org/10.1016/j.scitotenv.2018.07.109 



 41 

Figure caption 902 

Figure 1. Schematic microRNAs (miRNAs, miRs) translocation to mitochondrion. 903 

Once the biogenesis process (canonical) of miRNAs has been carried out, both pre-904 

miRNAs and mature miRNAs can be translocated to various subcellular locations as 905 

nucleus, mitochondria, Endoplasmic Reticulum, P-bodies, etc. Mitochondrial outer 906 

membrane may itself serve as a novel platform for the miRNA transport or assembly, 907 

and the presence of pre-miRNAs also in mitochondria, suggesting that mitochondria 908 

may provide a miRNAs assembly platform. miRNAs have been suggested to augment 909 

translocation under specific circumstances through a separate importation of miRNAs 910 

and argonaute (Ago) protein by a yet unidentified protein import complexes located in 911 

the mitochondrial intermembrane space (channels in red and green). Abbreviations: 912 

RISC, RNA-induced silencing complex; Exportin, 5 XPO5; DGCR8, Di-George 913 

syndrome critical region gene 8. 914 

Figure 2. Indirect modulation of apoptosis by microRNAs through the inhibition of 915 

cyclooxygenase-2 (COX-2). The inhibition of COX-2 by miR-16 (black cross) 916 

depletes the activity of the anti-apoptosis proteins Bcl-2 favoring the activation and 917 

translocation (blue arrow) of the pro-apoptotic protein Bax to mitochondria, and 918 

activation of mitochondrial surface Bak to form the Bax/Bak complex thus leading to 919 

mitochondrial outer membrane permeabilization (MOMP), collapse of mitochondrial 920 

membrane potential (Δψm), and release of cytochrome c (cyt c; purple arrow) through 921 

Bax/Bak complex into cytosol to form the apoptosome initiating the apoptosis 922 

program. 923 

Figure 3. Schematic proposal of miR-130a  (orange) and miR-181c  (green) role in 924 

mitochondrial function. Cox1, 2, and 3, are transcribed from the heavy and light 925 
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stands of the circular mtDNA. The miR-181c binds to the cognate site on the 3’ 926 

untranslated region of the mRNA of Cox1 inhibiting its translation, whereas miR-927 

130a induce the translation of Cox3, which is blocked by xenobiotic action. Alteration 928 

on COX Complex IV, in yellow) leads by an as yet unknown mechanism to enhanced 929 

expression of CerS6 (mainly associated with ER membranes) and accumulation of 930 

intracellular C16:0 ceramide. The increased intracellular C16:0 ceramide promotes 931 

permeability of mitochondrial outer membrane allowing the release of cytochrome c 932 

inducing the activation of apoptosis pathway. 933 
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