
0

Synchronization of Queries and Views Upon Schema Evolutions: A
Survey

One of the problems arising upon the evolution of a database schema is that some queries and views

defined on the previous schema version might no longer work properly. Thus, evolving a database schema

entails the redefinition of queries and views to adapt them to the new schema. Although this problem has

been mainly raised in the context of traditional information systems, solutions to it are also advocated

in other database related areas, such as Data Integration, Web Data Integration, and Data Warehouses.

The problem is a critical one, since industrial organizations often need to adapt their databases and data

warehouses to frequent changes in the real world. In this paper we provide a survey of existing approaches

and tools to the problem of adapting queries and views upon a database schema evolution; we also propose

a classification framework to enable a uniform comparison method among many heterogeneous approaches

and tools.

Categories and Subject Descriptors: C.2.2 [Databases]: Schema Evolution Synchronization Approaches

General Terms: Approaches, Tools, Comparison Framework

Additional Key Words and Phrases: DB Schema Evolution, Query Synchronization, View Synchronization

1. INTRODUCTION

During the life cycle of an information system it is often necessary to modify the
schema of the underlying database. This might occur either to correct previous design
and implementation errors or to adapt the information system to changes in the real
world. This is a well known and critical problem, named Schema Evolution, which has
drawn the attention of many researchers in the database community. In fact, there are
many artifacts depending on the old version of a database schema, which might need
to be modified in order to continue work on the new schema. In particular, queries
and views might no longer work properly if the schema update operations concern
constructs of the old schema on which they were defined. Thus, they need to be syn-
chronized to the new schema.

There are many other contexts in which it is necessary to synchronize queries and
views upon schema evolution operations, like for example in data warehouses, data
integration systems, web services, and mashup development [Moro et al. 2007].

The problem of synchronizing queries and views upon a schema evolution has been
faced since 1982, and it has been considered a major bottleneck in system conversion
[Shneiderman and Thomas 1982a]. Over the years there has been no unique term to re-
fer to the problem, also due to the fact that it has been faced in wider and different ap-
plication contexts. Thus, depending on the context, the following terms have been used:
query-program conversion [Shneiderman and Thomas 1982a], view/query rewriting
[Rundensteiner et al. 1999], change propagation [Melnik 2004], mapping adaptation
[Velegrakis et al. 2003b], co-transformations within the broader research context of
bi-directional transformations [Czarnecki et al. 2009; Terwilliger et al. 2012]. A more
formal definition has been given by Rundensteiner et al. [Rundensteiner et al. 1997] in
the context of Data Integration, where the view synchronization problem has been de-
fined as a dynamic process to adapt the view definition upon capability changes of an
information source, that is, changes involving the addition, the deletion, or the renam-
ing of database constructs. In this paper, we will use the term “query/view synchro-
nization”, since the problem definition has been expanded to some contexts in which
the concept of query is more appropriate than that of view.

Although the query/view synchronization problem has proven to be of vital impor-
tance, the shortage of proper automated tools has not made it practical so far [Bern-

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

carmine gravino
Published in: ACM Transactions on Database Systems journal.
Copyright © held by the Association for Computing Machinery, Inc. (ACM).
Authors version
The publisher version is available at https://dl.acm.org/doi/10.1145/2903726

0:2

stein and Melnik 2007; Curino et al. 2008b; Hick and Hainaut 2006]. Moreover, it is
not economically sustainable to manually rewrite queries and views, since it would re-
quire a considerable amount of programmers’ work. Thus, the research community has
focused its attention on the development of approaches capable of mitigating the inher-
ent complexity of the synchronization process, such as: i) approaches applying updates
in a “lazy” fashion, or ii) approaches capable of “tolerating” the presence of queries and
views working on previous versions of a database schema. Lazy update approaches
have been proposed to cope with delayed synchronization processes [Ferrandina et al.
1994], whereas tolerating approaches assume that only new applications are relevant,
while old ones are discarded. When old applications have to be maintained, schema
versioning provides an alternative solution to the query/view synchronization prob-
lem [De Castro et al. 1997; Grandi and Mandreoli 2003; Jørgensen and Böhlen 2007;
Jensen and Böhlen 2002]. The adoption of schema versioning lets old applications con-
tinue work with the old schema, whereas new applications will work with the new
schema.

Query/view synchronization is also crucial in the area of application management,
to refactor application programs accessing evolved database schemas, since programs
mainly embed queries [Li 1999; Ram and Shankaranarayanan 2003].

Although in the literature there are several approaches facing the query/view syn-
chronization problem in the broader sense, there are still many synchronization pro-
cesses based on specific policies, cases, and/or domain-specific issues. In order to an-
alyze and classify the existing approaches in a uniform and inclusive way, in this
paper we survey existing query/view synchronization approaches providing a frame-
work to describe, classify, and systematically compare them. In particular, the survey
aims to pursue the following goals: i) to analyze existing query/view synchronization
approaches; ii) to provide a comprehensive and classified list of them, useful for re-
searchers, database designers, and database tool vendors; and, iii) to help users select
the approaches more suitable for their purposes.

The paper is organized as follows. In Section 2 we characterize the query/view syn-
chronization problem as a specialization of the main schema evolution problem and
describe some application domains. In Section 3 we present our framework for the
classification of the existing approaches, which are clustered in i) operation-based ap-
proaches, ii) mapping-based approaches, and iii) hybrid approaches, described in Sec-
tions 4, 5, and 6, respectively. Finally, a discussion and final remarks are given in
Section 7.

2. THE QUERY/VIEW SYNCHRONIZATION PROBLEM

Often, organizations have to cope with the evolution of information systems at several
stages of their life cycle. This may happen when a system is first released, since bugs
or incomplete functionalities may arise in this phase; or, the system might successively
need to evolve in order to reflect changes in the real world, which might also entail the
evolution of the underlying database.

Let S be a database schema, and Inst(S) be the set of possible instances of S; an
evolution of S is the result of one or more changes to the data structures, constraints,
or any other artifact of S, that is, changes modifying the contents of its system catalog.
They might consist of simple schema modifications, such as the addition, deletion, or
renaming of an attribute, of a constraint, or of a relation, and/or composed schema
modifications, such as join, partition, and decomposition [Lerner 2000]. In what
follows, we denote with S→S′ the evolution of the schema S into S′, where S and S′

are called schema versions.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:3

Example 1. Let us consider the following schema S:

ATMBranchPoint(ATMcode, address, branch, bank, positioning) (1)

where the underlined attribute is the primary key. The schema represents the code, ad-
dress, branch, and bank of an ATM point, whereas the attribute positioning indicates
whether the ATM point is located internally or externally to the branch location.

Let us also consider two evolutions S→S′ and S′→S′′, with:

S′ : ATMPoint(ATMcode, address, branch, positioning)

Branch(branch, bank)

and

S′′ : ATMPoint(ATMcode, address, branch)

Branch(branch, bank)

(2)

In S→S′, the relation ATMBranchPoint is decomposed into the relations ATMPoint
and Branch, whereas in S′→S′′ the attribute positioning is dropped from ATMPoint.

The impact of schema modifications on the database instances can be character-
ized through the concept of information capacity [Hull 1986; Miller et al. 1993]. The
latter specifies whether the set Inst(S′) is equivalent to Inst(S), extends Inst(S), or
reduces it [Bernstein and Melnik 2007]. For instance, when an attribute is dropped
from a database schema, the corresponding information is lost, hence Inst(S′) reduces
Inst(S).

Formally, the information capacity variation associated to a given schema evolution
S→S′ can be evaluated by means of a function g : Inst(S′)→Inst(S), according to which
the evolution is:

- Capacity increasing, if the function g is surjective, i.e. for each instance in the set
Inst(S) there is at least one corresponding instance in the set Inst(S′).

- Capacity preserving, if the function g is bijective, i.e. there exists an instance in the
set Inst(S) iff there exists a corresponding instance in the set Inst(S′).

- Capacity reducing, if the function g is injective, i.e. for each instance in the set Inst(S)
there exists at most one corresponding instance in the set Inst(S′).

According to this definition, the evolution S→S′ of example 1 is capacity preserving,
whereas the evolution S′→S′′ is capacity reducing.

Capacity reducing variations are the most critical ones, since they entail a loss of in-
formation that might irremediably invalidate some database components, like queries
and application programs. However, also the other two types of variations might re-
quire adaptations of several database components, in order to make them continue
work on the new schema version. The change operations applied to a database schema,
and the problems deriving from them, fall in the context of the so called Schema Evo-
lution problem.

In the last few decades, the schema evolution problem has increasingly drawn the
attention of database researchers. In fact, although in traditional information systems
the database schema was designed to accept any future requirement changes, this as-
sumption has become soon unrealistic, especially with the advent of Web Information
Systems, due to their distributed nature, which yields even stronger a pressure to-
wards changes. However, what has made this problem a critical one is the impact of
the schema evolution operations on queries and applications, since it has been esti-

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:4

Schema S

Schema Change Schema Change

Application

Management

Application on S Application on S’ Application on S’’

Application

Management

Database instance

Inst(S)

Database instance

Inst(S’)

Database instance

Inst(S’’)

Instance Update Instance Update

Schema S’ Schema S’’
ATMBranchPoint(ATMCode,

 Branch, Address, Positioning,

 Bank)

ATMPoint(ATMCode,

 Branch, Address,Positioning)

Branch(Branch, Bank)

ATMPoint(ATMCode,

 Branch, Address)

Branch(Branch, Bank)

a)

b)

c)

Fig. 1. A schema evolution scenario: a) application management, b) schema change, c) instance update.

mated that each evolution step might affect up to 70% of the queries operating on the
schema [Curino et al. 2008], which must consequently be reworked.

In this scenario, the query/view synchronization (QVS in the following) problem is
to adapt all the queries and views defined on the old version of a database schema, in
order to make them work also on the evolved one. Formally, let Q be the set of queries
and views defined on a database schema S; upon a schema evolution S→S′, the QVS
problem consists of finding a transformation t of Q, which produces a set Q′ of queries
and views on S′, such that the semantics of Q′ on S′ preserves the semantics of Q on
S. If such a transformation exists, we say that there exists a synchronization Q→Q′,
or even that Q′ represents a legal rewrite of Q.

As an example, let us consider the following view on the database schema S of ex-
ample 1:

IsInternal(ATMcode, bank)

←ATMBranchPoint(ATMcode, address, branch, bank, positioning) ∧

∧ positioning = “internal”

(3)

which extracts the tuples IsInternal(ATMcode, bank) for all the internal ATMs.
Clearly, even such a simple view needs to be synchronized or rewritten upon each
of the schema evolutions defined in (2).

Since it is too expensive to synchronize queries and views manually, research in this
area attempts to derive methods and tools providing users with automated support for
the QVS problem. Also, it would be desirable giving the user the illusion of defining
queries and views on an older version of the schema even though it has evolved over
time [Lakshmanan et al. 1993].

As shown in Figure 1, upon a schema evolution (Figure 1.b) it is necessary to syn-
chronize both the application programs (Figure 1.a) and the database instance (Fig-

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:5

ure 1.c) [Ram and Shankaranarayanan 2003]. In our study we will focus on the syn-
chronization of application programs, and in particular, of the queries and views. The
reader interested on the instance update problem may refer to the related work section
of [Lerner 2000] for a short survey.

There are two basic strategies to specify a schema evolution, one that describes the
procedure to transform S into S′, and one that first specifies S′, and then finds schema
correspondences between S and S′. Moreover, there are hybrid strategies mixing the
characteristics of the two previous ones. As a consequence, we can have the following
three types of schema evolution approaches:

(1) operation-based;
(2) mapping-based;
(3) hybrid.

Operation-based includes approaches based on the editing process, i.e. approaches
that define schema modification commands to implement each type of supported
changes. More specifically, the operation-based approaches define several modification
operations to specify the effects of single modifications on both schemas and instances

(see [Banerjee et al. 1987; Zicari 1991; Roddick et al. 1993; Peters and Özsu 1997; Moro
et al. 2007]). Such approaches enable the management of both simple and composed
schema modifications.

As an example, by using the schema modification operators defined in the SMO lan-
guage [Curino et al. 2008b], an operation-based specification of the schema evolution
S′→S′′ of Figure 1 is:

DROP COLUMN positioning FROM ATMPoint (4)

Mapping-based includes approaches based on the editing result, i.e. approaches that
allow to modify the schemas as necessary and then compare the two schema versions
[Lerner 2000]. Thus, they mainly focus on the detection of correspondences between
schema versions, which can be represented by means of mappings [Bertino 1992; Lak-
shmanan et al. 1993; Lerner 2000; Bernstein et al. 2000; Bernstein and Rahm 2000;
Melnik 2004; Bernstein 2003; Bernstein and Melnik 2007; Velegrakis et al. 2004a].
Formally, a mapping m between two schemas S and S′, is a set of assertions of the
form qS qS′ , where qS and qS′ are queries over S and S′, respectively, with the same
set of distinct variables, and ∈{⊆,⊇,≡}. An assertion qS ⊆ qS′ is a sound mapping,
meaning that qS is contained in qS′ w.r.t. S ∪ S′; an assertion qS ⊇ qS′ is a complete
mapping, meaning that qS′ is contained in qS w.r.t. S ∪ S′; and an assertion qS ≡ qS′

is an exact mapping, when it is sound and complete [Haase and Motik 2005]. While
a schema determines a set of possible database instances, Inst(S), the mappings be-
tween S and S′ are subsets of Inst(S)×Inst(S′) [Ten Cate and Kolaitis 2009]. Using
the mapping concept, the schema evolution S′→S′′ expressed in (4) would be described
by the following schema mapping:

∀ATMcode,Address,Branch, positioning(

ATMPoint(ATMcode,Address,Branch, positioning)

→ ATMPoint(ATMcode,Address,Branch)

)

(5)

which represents a FullTGD mapping1.

1A FullTGD mapping represents a schema mapping specified by using a complete set of source-to-target
tuple-generating dependencies (source-to-target tgds) [Fagin et al. 2005]. A tuple-generating dependency is

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:6

S S’

Evolution

of the schema

Synchronization

of queries/views

Q Q’

Fig. 2. The query/view synchronization problem.

In general, operation-based approaches exploit the advantage of knowing a priori
how the schema can evolve and the effects of each evolution. Unfortunately, since the
possible modifications are well defined, they pose a limit on the possible evolutions of
the schema. On the other hand, mapping-based approaches allow us to handle every
type of modification [Melnik 2004], but without a complete view of the effects that
a single modification will have on the schema. Finally, by combining the characteris-
tics of both operation-based and mapping-based, hybrid approaches exploit advantages
and strength points of both basic types.

2.1. The QVS process

The QVS process is graphically represented as shown in Figure 2. The horizontal arrow
between S and S′ represents the schema evolution S→S′, and the horizontal arrow
between Q and Q′ represents the QVS Q→Q′. The vertical arrows between S and Q,
and S′ and Q′, respectively, indicate that Q and Q′ are sets of queries and views defined
on S and S′, respectively.

Unfortunately, it is not always possible to find a synchronization for all the queries
and views upon a schema modification, especially when the schema evolution is capac-
ity reducing (see [Lakshmanan et al. 1993; Rundensteiner et al. 1997]), or when the
schema is considerably altered (see [Barklund et al. 1997; Polese and Vacca 2009a]).
In these cases, it is necessary to decide whether the query/view must be dropped, or
the schema evolution inhibited, in order to preserve the correct functioning of all the
queries and views. To this end, Papastefanatos et al. defined the concept of policy guid-
ing the synchronization process [Papastefanatos et al. 2006]. In particular, they de-
fined three types of policies i) propagate, ii) block, and iii) prompt, which prescribe how
to handle the portions of the view definitions affected by the schema modification. In
particular, the policy propagate prescribes to apply changes and synchronize Q; block
forbids changes; and prompt prescribes to ask the DBA for the action to be under-
taken. Although the last policy might appear the most suitable, one should not abuse
it in order to keep the QVS process sufficiently automated.

While the concept of policy concerns the application of schema changes, Runden-
steiner et al. propose a different solution focusing on the view constructs, by intro-
ducing the View Evolution Parameters (VEPs) [Rundensteiner et al. 1997]; these are a
class of parameters through which it is possible to define how to handle the single com-
ponents of a view during the synchronization process, by specifying a priori whether
the component (e.g. an attribute) is replaceable, or whether it is dispensable. In ad-

a first order logic formula of the form (∀x)(ϕ(x) → (∃y)ψ(x, y)), in which ϕ(x) is a conjunction of atoms such
that the variables of each atom are among those in x and each variable x occurs in at least one of the atom
of ϕ(x); and ψ(x, y) is a conjunction of atoms whose variables are those in x and y. FullTGDs represent a
subclass of TGDs in which the existential quantifier is on the right-side of the formula [Kolaitis 2005].

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:7

dition, the same authors introduced the View Extent2 Parameter (VE) [Rundensteiner
et al. 1997] associated to a view Q specifying a condition on the extent of a view Q′ in
order for Q′ to be considered an acceptable synchronization of Q. In other words, the
V E parameter φ, φ ∈ {≡,⊆,⊇,≈}, specifies a priori whether the extent of Q′ must
be equivalent (≡), be included (⊆), include (⊇), or approximate (≈) the extent of Q,
for Q′ to be considered a legal rewrite of Q. In practice, the V E parameter establishes
the relationship that must hold between the projections of Q′ and Q on their common
attributes, i.e.

πAttr(Q) ∩ Attr(Q′)(Q
′) φ πAttr(Q) ∩ Attr(Q′)(Q) (6)

where φ ∈ {≡,⊆,⊇,≈}, and φ is the usual projection operator.

Example 2. Let

AtmBrPos(ATMcode, branch, positioning)

←ATMPoint(ATMcode, address, branch, positioning)
(7)

be a view defined on the schema S′ of Figure 1, which extracts the code, the reference
branch, and the positioning of each ATM. If there is a V EP associated to the view
AtmBrPos specifying that the attribute positioning is dispensable, then the schema
evolution S′→S′′ is feasible, and consequently, if the V E associated to the same view
is ≡, then the view

NewAtmBrPos(ATMcode, branch)

←ATMPoint(ATMcode, address, branch)
(8)

can be considered a synchronization of AtnBrPos, since

Attr(Q) ∩ Attr(Q′) = {ATMcode, branch}

and

π{ATMcode,branch}(AtmBrPos(ATMcode, branch, positioning) ≡

π{ATMcode,branch}(NewAtmBrPos(ATMcode, branch))
(9)

Another problem to be considered upon an evolution S→S′ is the choice of the
schema version on which to start the synchronization process. In fact, a different se-
quencing of schema evolution/synchronization operations might lead to different syn-
chronization results. To this end, the QVS problem may reduce to finding the schema
version Si from a schema evolution sequence S1, . . . , Si, . . . , Sn (resulting after several
schema evolutions) that is more similar to the schema S′. Such a schema will be the one
from which to start the next synchronization step [Koeller and Rundensteiner 2005].

Example 3. Let us consider the schema evolution S′→S′′ recalled in example 2. If S′′

undergoes a new evolution S′′→S′′′ in which the previously dropped attribute position-
ing is re-added, the best way to synchronize the view NewAtmBrPos given in (8) is to
start the synchronization process from the schema version S′ instead of S′′, because
there is no means to recover the values of the attribute positioning after it has been
dropped.

2The view extent is the usually adopted term indicating the result-set of a view statement, i.e. the materi-
alized view.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:8

Sj Sj’

Evolution

of the

schema

S1 Sn... ...

G G’

Synchronization

of queries

and views

Fig. 3. The QVS problem in the Data Integration Systems context.

2.2. Application Domains

Let us discuss some application domains in which either the QVS problem has been
faced, or it can potentially arise. This will help the reader better understand the pe-
culiarities of some surveyed approaches, since they have been developed for solving
specific problems of one application domain, hence they show features that are not
found in other approaches. Moreover, exploring new potential application domains for
the QVS problem might stimulate further research and applications, for which the
proposed survey might help reuse characteristics of existing approaches, avoiding to
reinvent the wheel. This is somehow what has happened in the past, since new ap-
proaches have been devised to solve problems for which existing approaches might
have been suitable.

We will discuss the QVS problem in the context of the following application domains:
Data Integration Systems, Web Data Integration Systems, Web Services, Mushups, Data
Exchange Systems, and Data Warehouses.

Data Integration Systems (DISs) enable the correlation of concepts belonging to dis-
tinct data sources, which are independent and used in different contexts. They allow
us to collect data from different sources and merge them into an integrated view (see
[Lenzerini 2002] for a survey). An integrated view G (also called global or mediation
view) is defined from a set of data sources S1, . . . , Sn, by creating mappings from each
of them onto the global view, that is, QSi → G, ∀i = 1, . . . , n.

In this context, data sources are particularly dynamic, hence it is of vital importance
having an automated process for QVS. However, when the modifications to the data
sources are relevant, this might affect the schema of the global view, which entails
the reiteration of the algorithm for source schema integration, and the update of the
mappings between the new global view and some (possibly all) data sources [Velegrakis
et al. 2004a; Melnik et al. 2003a].

Figure 3 shows how the QVS problem in the DIS domain can be viewed as a special-
ization of the more general problem of QVS, where the evolution of a source schema
yields the necessity to synchronize the integrated view G. In particular, the synchro-
nization of G is accomplished by rewriting the mappings between the modified sources
and G. In Figure 3 the horizontal arrow between Sj and Sj

′ represents the evolution of

a generic source schema Sj (i.e Sj→Sj
′), whereas the horizontal arrow between G and

G′ represents the synchronization of the integrated view G (i.e. G→G′). Other arrows
ending in G and G′ represent the fact that G and G′ are defined by sets of mediation
queries on sources S1, . . . , Sn.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:9

Web Data Integration Systems are DIS encompassing both structured and semi-
structured data containers available on the Web. Thus, in the Web Data Integration
Systems context we need to consider many new issues, which make their design and
management particularly complex [Madhavan et al. 2007]. For instance, given the high
number of information sources available on the Web, and their rapid growth, the scal-
ability of such systems becomes highly critical. Moreover, we also need to consider
the heterogeneity of web information sources and their modification frequency, which
makes automatic synchronization processes even more vital. For this reason, several
approaches focus on the creation of peer-to-peer logical relations between information
sources by means of mediation mappings [Rahm et al. 2005; Halevy et al. 2003], so
avoiding the creation of the global view.

Web Services represent a programming paradigm enabling the extraction and the
integration of data from heterogeneous information systems [Hansen et al. 2003]. The
web service paradigm is based on the use of open standards for systems integration.
In particular, the XML standard is used for preparing messages and structuring data,
the SOAP protocol is used for data transfer, the WSDL language is used for describing
the available services, and the UDDI standard is used for defining the available ser-
vices. In the web service programming paradigm, developers often need to query and
translate XML messages originating from Web Services, or directly from the databases
in which they are stored [Moro et al. 2007].

Mashups are web applications combining third-party data and services [Weiss and
Gangadharan 2010]. They originate from the necessity to integrate contents, function-
alities, and structured or semi-structured information available on the Web, as Open
API or reusable services. There are several programming workbenches for developing
mashups, like for example Yahoo’s Pipes, Google Maps Editor, Microsoft popfly, and
so forth [Yu et al. 2008]. They aim to facilitate mashup development even for non-
experienced users. One fundamental requirement for mashups is that the integration
of contents must occur dynamically, upon specific runtime requests from the users.
The development and management of this type of applications is heavily based on
data integration methods, that is, methods specifying how data are related by means
of mappings. The complexity of such tasks is tackled either by limiting the data inte-
gration types (e.g. by using standard ISBN objects, latitude/longitude), or by providing
complex architectures for data integration (see [Thor et al. 2007]).

Data Exchange Systems. Both web services and mashups can be considered as spe-
cial cases of data exchange systems, in which the focus is on the problem of transform-
ing instances of a source schema into those of a target one, by means of a mapping re-
lating the two schemas [Fagin 2006; Kolaitis 2005]. In fact, data exchange, also known
as data conversion, represents the problem of taking data structured according to a
source schema, restructuring and translating them according to a target schema.

Figure 4 shows how the QVS problem can be adapted to the context of data exchange
systems, where the evolution of the source schema leads to the necessity to synchronize
the target schema T . In particular, the synchronization of T depends on the rewriting
of the mapping relating S and T . In Figure 4 the horizontal arrow between S and S′

represents the evolution of the source schema (i.e. S→S′), the horizontal arrow be-
tween T and T ′ represents the QVS T→T ′, and the horizontal arrow between Q and
Q′ represents the QVS Q→Q′. The vertical arrows ending in T and T ′ represent that T
and T ′ are defined by sets of queries/views (represented as mapping) from the source,
and the vertical arrows ending in Q and Q′ represent the fact that Q and Q′ are sets
of queries/views defined on T and T ′, respectively.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:10

S S’

Evolution

of the

schema

T T’

Q Q’

Synchronization

of queries

and views

Fig. 4. The QVS problem in the Data Exchange Systems context.

A further generalization of this scenario is given by bidirectional transformations
(bx), which is a mechanism for maintaining the consistency of two (or more) related
sources of information, and can be used to manage co-evolutions of database schemas
and schema-dependent programs [Terwilliger et al. 2012]. Thus, a bx between two
sources of information A and B (e.g., a database source and view, two different soft-
ware models, or the input and output of a program) comprises a pair of unidirectional
transformations like those occurring in data exchange systems: one from A to B, and
another from B back to A [Czarnecki et al. 2009]. It is easy to figure out that the
QVS problems highlighted in the context of data exchange systems also apply to the
bidirectional transformation context.

Data Warehouses (DWs) are specialized databases mainly used to support business
decisions. They store data collected from several operational databases and possibly
from several external information sources. The development of Data Warehouses can
be accomplished either by defining global views on a data source, or by loading data
from different data sources onto a reconciled database by means of ETL (Extraction,
Transformation and Loading) procedures. Moreover, DWs are based on a multidimen-
sional data model, in which data represent facts associated to numerical measures
that can be analyzed along several dimensions [Pedersen and Jensen 2001]. Analy-
ses on Data Warehouses are mainly performed by means of OLAP (OnLine Analytical
Processing) queries, and Data Mining techniques. Since the evolution of a source data
schema might corrupt the mappings between the DW and the modified source, it can
be easily figured out how the QVS problem might be crucial also in this application do-
main. In fact, upon the evolution of a source schema it might be necessary to synchro-
nize some of the queries used to construct the global view, or some ETL procedures in
case a reconciled schema is constructed. However, if the evolution of the source schema
also affects the structure of the global view or the reconciled schema, it might also be
necessary to synchronize OLAP queries and/or Data Mining applications defined on
the DW [Bellahsene 2002].

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:11

3. THE PROPOSED CLASSIFICATION FRAMEWORK

From the previous discussion, it is evident that the existing QVS approaches differ
in the way they face single problem issues within the whole synchronization process.
Thus, it would be desirable to define a framework characterizing each approach in
terms of its capabilities, and its proper context of use, so as to highlight differences
and similarities among them, and their peculiarities.

The proposed framework is structured in two groups of parameters: Structural is-
sues and Semantic issues.

Structural issues. The parameters in this group characterize how the QVS problem is
tackled by a single approach:

- Type of approach. This parameter indicates the implementation level of the
approach, i.e. whether it is a tool/system, a programming language, a non-
implemented approach, and so forth.

- Application area. This parameter indicates the application domain for which the
approach has been created, and in which it is mainly used.

- Supported models. Since some approaches for QVS are devised for a specific data
model, whereas others can be applied to more or all possible data models, this pa-
rameter indicates the supported data model/s.

- Resource/Technique. This parameter specifies the resources and techniques used,
such as, whether the approach exploits meta-knowledge, meta-reasoning, algo-
rithms, guidelines, and so forth.

- QV definition language. Queries/views are specified through a language, such as
SQL, or a mapping. Moreover, in some QVS approaches the expressive power of
the language has been enriched in order to enhance the specification of the whole
synchronization process. Thus, this parameter reports the type of the query/view
definition language.

- Schema changes language. The evolution is managed through a specific language for
modifying schemas and/or for catching versions correlations. Thus, this parameter
indicates the language used by an approach to specify the evolution of a schema.

- Managed schema changes. Independently of the specific schema change language,
an approach can manage different sets of modifications, that can be simple modifi-
cations, such as the addition, the deletion, or the renaming of an attribute, of a con-
straint, or of a relation, or compound modifications, such as join, partition, decom-
position, and so forth. Thus, this parameter indicates the type of schema changes
addressed by the approach.

Semantic issues. The parameters in this group concern the aspects of the QVS problem
a single approach faced by each approach:

- Automation level of the synchronization. A fully automated synchronization is a de-
sirable feature. However, some approaches provide a partial automation. This pa-
rameter indicates whether an approach permits a semi or complete automation level
of synchronization.

- Management of information loss. The QVS problem is particularly difficult when the
schema evolution leads to a loss of information, as in the case of capacity reducing
changes. Some approaches specifically focus on the management of changes yielding
loss of information. This parameter indicates whether and how an approach man-
ages the information loss.

- Global/Local synchronization. An approach can enable the definition of synchro-
nization policies/modalities that are local to a single query/view, or can enable the

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:12

Type of

approach
Applica!on area

Supported

models

Resource -

Technique

QV defini!on

language

Schema changes

language

Automa!on

synchroniza!on

level of the
Management of

informa!on loss

Global/Local

synchroniza!on

 Transparency of

evolu!on

Choice among

several

synchroniza!on

Evalua!on of

evolu!on

impact

Traceability of

changes

Detec!on of

QVs to be

synchronized

Propaga!on to

view extent

Managed changes

Seman!c issues

Structural issues

Fig. 5. The headers of the tables “structural issues” and “semantic issues”of the classification framework.

definition of global policies/modalities applied to all the queries and views. This pa-
rameter indicates how a specific approach defines its global/local synchronization.

- Transparency of evolution. The transparency of evolution enables users to pose
queries/views based on a (possibly old) version of the schema, even though the
schema has evolved to a different state [Lakshmanan et al. 1993]. This parameter
indicates whether and how an approach manages the transparency of evolution.

- Choice among several synchronizations. In some cases there is not a single legal
synchronization. For this reason, it is useful to choose among allowable synchro-
nizations in order to get better and/or less expensive synchronizations. Thus, this
parameter indicates whether and how an approach manages the choice among sev-
eral synchronizations.

- Evaluation of evolution impact. The schema evolution is an error-prone process. For
this reason, it would be desirable having mechanisms enabling users to evaluate
the impact of a schema evolution, so as to let them estimate costs and benefits of
schema changes [Maule et al. 2008]. Thus, this parameter indicates whether and
how an approach supports the user in the evaluation of the evolution impact.

- Traceability of changes. In some contexts the schema evolution is not a supervised
and/or monitored process. In those cases, it is important to monitor the occurrence
of schema modifications upon an evolution. Thus, this parameter indicates whether
and how traceability of changes is supported.

- Detection of QVs to be synchronized. In large scale systems the huge number
of queries/views defined on one or more sources makes the detection of the
queries/views to be synchronized an extremely hard task. Thus, this parameter in-
dicates whether and how an approach tackles the detection of queries/views to be
synchronized.

- Propagation to view extent. A view is said to be materialized when its data (i.e.,
its extent) are computed and persistently stored [Bellahsene 2002]. When there are
materialized views to be synchronized it is useful to adapt the view extent to the
accomplished synchronization. Thus, this parameter indicates whether and how an
approach manages the synchronization propagation to the view extent.

According to this framework, we will classify the existing approaches and will collect
them in two tables (see Figure 5), one for structural issues and another for semantic
issues.

Since each approach is based on one of the three schema evolution strategies de-
scribed in Section 2, i.e. operation-based, mapping-based, and hybrid, respectively, we
have grouped the surveyed approaches based on these three categories. Thus, each
of the following three Sections focuses on the classification of approaches falling in
the same category. At the end of each Section, the characteristics of the surveyed
approaches are compared by means of a summary table structured according to the
framework parameters (Figure 7, 9, and 11). Finally, in order to let the readers quickly
access the approaches better suiting their needs and/or interests, the table in Figure 6

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:13

AutoMed / Sec�on 6.2

ToMAS /

Generic Model Management /

Mapping based Hybrid

Adap!ve Query Formula!on

approach / Sec�on 4.5

EVE project / Sec�on 4.2

Evolu!on of media!on query

approach / Sec�on 4.4

Automa!c Rela!onal database

System Conversion / Sec�on 4.1

Bellahsene approach / Sec!on 4.3

Synchroniza!on of e-learning data

warehouse / Sec�on 4.6.1

Synchroniza!on of queries over

star and snowflakes / Sec�on 4.6.2

PRISM / Sec�on 6.1

Coupled Sw Transfor. / Sec�on 6.4

Breaks queries under ontology

changes / Sec�on 6.5

Schema versioning/evolu!on

approach in OODBs / Sec�on 6.6

Sec�on 5.1

Default Schema Mapping /

Sec�on 5.2

XPath synchroniza!on / Sec�on 5.5

SchemaLog / Sec�on 5.3

Mesodata domain evo. / Sec�on 5.4

D
a

ta
 I

n
te

g
ra

!
o

n
D

a
ta

 E
x

ch
a

n
g

e

Opera!on based

G
e

n
e

ri
c

D
B

D
a

ta
 W

a
re

h
o

u
se

Applica!on area

Approach categories

Sec�on 6.3

Fig. 6. The approaches within their application area.

maps each surveyed approach to the Section in which it is described, and to the appli-
cation areas where it has been originally defined.

4. OPERATION-BASED APPROACHES

The approaches in this area aim to define a sequence of modification operations trans-
forming a given version of a schema into a target one.

4.1. The Automatic Relational Database System Conversion (ARSC)

One of the main concerns upon a modification of a database schema is how to rewrite
queries and application programs to make them work also on the modified schema.
This problem represents the bottleneck of conversion systems, and has been first tack-
led within the Automatic Relational Database System Conversion approach [Shnei-
derman and Thomas 1982a; 1982b], which is not aimed at creating a software prod-
uct, rather to prove that automatic conversion is feasible. Indeed, the approach has
not been implemented yet, and it belongs to the class of operation-based approaches,
since it determines synchronization modalities based on the modifications that are
possible on the database schema. The authors defined a set of 15 transformations,
including both simple schema modifications (e.g. change the name of an identifier;
create/delete a relation or an attribute) and composite schema modifications (e.g.
promote/demote a primary key, affect functional dependencies, and so forth), which
have been defined for the relational data model, and are applicable only to relational
data schemas satisfying 4NF. Moreover, such transformations have been classified as
information-preserving, data-dependent, and program-dependent. A transformation is
said information-preserving if it is possible to guarantee that the application of the
transformation does not cause information loss. A transformation is data dependent if
the stored database must be checked to verify whether the transformation is consistent
with the target system. As an example, the deletion of an attribute is a transformation

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:14

that might violate constraints of the target system, such as when the deleted attribute
is part of a foreign key. When such a situation occurs, the DBA must decide whether
to block the transformation, or whether to modify the source database (e.g. changing
its integrity constraints) so that the transformation can continue. Finally, a transfor-
mation is program-dependent if it is not guaranteed that a QVS can be achieved. As
an example, the renaming of an attribute or of a relation clearly guarantees the possi-
bility of transforming the queries/views into equivalent ones, whereas this is not guar-
anteed in case of deletion of an attribute. Thus, when the transformation is program-
dependent the DBA must check whether it prevents the transformation of some query
or view into an input/output equivalent one, in which case s/he must decide whether
the transformation is acceptable. Since the process of checking data-dependence and
program-dependence properties is extremely costly, authors advocate the implementa-
tion of efficient techniques to reduce such costs.

Such a classification is important, since it determines how to manage the synchro-
nization process. In fact, if a transformation is data-independent, then the target
schema can be immediately constructed, and if it is program-independent the query
rewriting rules can be automatically applied.

As an example, let us consider the evolution S→S′ described in Figure 1, where the
relation ATMBranchPoint is decomposed in the two relations ATMPoint and Branch.
Such a transformation can be defined in ARSC through the following statement:

DECOMPOSE ATMBranchPoint INTO
ATMPoint(ATMcode, address, branch, positioning),
Branch(branch, bank)

and it is classified as information-preserving, data-independent, and query-program-
independent. In fact, this transformation does not cause loss of information, and it is
not necessary to check the consistency with respect to the logical format of the tar-
get system. As a consequence, the transformation can be automatically applied, but it
might require the rewriting of queries and views involving the AtmBranchPoint rela-
tion. In fact, while the query to construct the view in (3) needs to perform a selection
and a projection on AtmBranchPoint, after the schema evolution it must be trans-
formed to first perform a natural join between AtmPoint and Branch.

The semantic issues of the approach can be summarized as follows:

- The synchronization process is described by using the defined transformations; their
definition allows the DBA to identify the transformations yielding an information
loss, in which case s/he must decide whether to permit or to inhibit the schema
evolution. For this reason, the synchronization is semi-automatic.

- The synchronization policy is global, i.e. it is applied to all the involved
queries/views.

4.2. EVE

The Evolvable View Environment (EVE) has been built based on one of the most im-
portant studies performed in the context of schema evolution systems [Rundensteiner
et al. 1997; Lee et al. 2002; Nica et al. 1998; Nica and Rundensteiner 1998; Koeller
and Rundensteiner 2000; Lee et al. 1999b; 1999a; Koeller et al. 1998; Rundensteiner
et al. 1998; Rundensteiner et al. 2000], in which the main concepts and definitions on
the QVS problem have been provided. This study has also influenced most approaches
that have been successively defined. Based on its early results, the EVE system has
been implemented [Rundensteiner et al. 1999]. Its underlying approach is oriented to
Data Integration (DI) architectures, facing the view synchronization problem by evolv-
ing views in response to a modification of the functionalities of an Information Source

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:15

(IS). The EVE system supports simple schema modifications (add/delete/change name
of an attribute, add/delete/change name of a relation), and is based on an extensive use
of meta-data that must be specified during the system construction [Velegrakis et al.
2004a; Pedersen and Pedersen 2004a].

The authors propose the EVE architecture as a generic framework within which
to perform view synchronization when the underlying ISs change their capabilities.
In particular, the EVE architecture is divided in two spaces, namely the information-
space, which is populated by a given number of heterogeneous ISs, and the view-space,
containing the user-defined views that are specific of the application context. Both
of them use knowledge bases to store meta-data concerning views and information
sources. More specifically, a Meta Knowledge Base (MKB) stores meta-data on source
capabilities, their data model and data content. Examples of , whereas a View Knowl-
edge Base (VKB) stores meta-data on view definitions. They are both used in the view
synchronization process. Moreover, the view space contains the view maintainer com-
ponent of the EVE system, which takes into account the propagation of changes to
view extents.

In EVE the user can specify view synchronization policies a priori through Evolvable
SQL (E-SQL), an extension of SQL, to guide the view synchronization process through
both the VE and VEP parameters. The synchronization process is realized by means
of several algorithms:

- the Simple View Synchronization (SVS) algorithm [Rundensteiner et al. 1997] con-
cerning simple substitutions; for instance, when an attribute A of a relation R is
deleted from an information source IS1, the View Synchronization Process (VSP)
seeks the VKB, and locates for each view affected by the modification: a) an accept-
able definition based on the evolution preferences specified within the E-SQL defi-
nition, b) the kind of functionality modification, and c) the meta-knowledge stored
in the MKB.

- the Complex View Synchronization (CVS) algorithm [Nica et al. 1998] exploiting
constraints of the MKB to handle complex substitutions; for instance, when a rela-
tion R is deleted, the VSP seeks the VKB, and for each affected view it changes its
definition by replacing instantions of R with an expression derived from the MKB
constraints.

- the PrOject-Containment (POC) algorithm [Nica and Rundensteiner 1998] seeks
substitutions for the deleted attributes or relations used within a view definition,
by exploiting project containment constraints from the MKB. These express con-
straints between the relation or the attribute to be replaced and the replacing one.

Koeller and Rundensteiner [Koeller and Rundensteiner 2000; 2005] propose a differ-
ent synchronization policy to overcome the limitations of the previous synchronization
algorithms, which takes into account only the last schema modification (One Step algo-
rithms), and may produce inappropriate views in situations like the one presented in
example 3. The proposed synchronization policy keeps views synchronized with their
original definitions, in the context of a sequence of meta-data modifications that can oc-
cur overtime. Such a new policy is automatically executed through the History-driven
Algorithm HD-VS (History-Driven View Synchronization), which executes three steps:
backtracking in the view history, re-application of part of the sequence of modifications
to the meta-data from the history, and re-construction of part of the view-history graph
in the process of re-application of the meta-data modifications [Koeller and Runden-
steiner 2005].

A sample synchronization policy in EVE is provided in example 2, where the a priori
specification of the VEP and VE parameters on the view AtmBrPos given in (7) permits

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:16

to determine feasible synchronizations of it; based on them the synchronization given
in (8) is considered feasible, and can be automatically handled through the execution
of the SVS algorithm.

The semantic issues of the approach can be summarized as follows:

- The synchronization process is based on the specification of policies based on View
Evolution and View Extent parameters (VEP and VE, respectively).

- The latter are useful for an a priori specification of information loss management
policies.

- VEP and VE increase the expressive power of SQL, enabling the specification of
policies for local synchronizations through E-SQL.

- Thanks to the specification of VEP and VE, a complete automation level of synchro-
nization is achieved.

- The EVE system determines how to propagate changes to extent of views.

4.3. The Bellahsene approach (BellApp)

This approach concerns problems related to the evolution of data warehouse systems,
and in particular to the structural modification of views, upon modifications in the
capabilities of the underlying source schemas [Bellahsene 2002]. Since a data ware-
house can also be viewed as a set of materialized views on multiple data sources, this
is highly related to the QVS problem.

BellApp always propagates schema modifications to views by means of a propaga-
tion policy, never blocking the synchronization process. This is based on the assump-
tion that if a construct is deleted from the source schema, the propagation policy as-
sumes that such construct is no more useful, and hence it is deleted from the view. The
supported schema modifications fall in the category of simple modifications. For each
possible modification on the basic relations of the source schema, the approach tries to
derive the instance of the synchronized view from the materialization of the old view,
aiming to avoid to recompute it from the basic relations on which the view is defined.
To this end, the author defines the containment control (Q1 ⊆ Q2)

3, which represents
the portions of the new view that are common to the old view, so as to recompute only
the portion of the new view not contained in the old one. Thus, the problem reduces to
finding the containment rewrite of the new view by using the old view. The basic idea
here is to formulate the new view in terms of some queries that can be derived from
existing materialized views.

As an example, let us consider again the evolution S′→S′′ described of Figure 1, and
the following view

IsBranchInternal(ATMcode, branch)

←ATMPoint(ATMcode, address, branch, positioning) ∧

∧ positioning = “internal”

(10)

which extracts the tuples IsBranchInternal(ATMcode, branch) for all the internal
ATMs. Upon the deletion of the attribute positioning, BellApp replaces the affected
clause within the selection condition of the IsBranchInternal definition with a tau-
tology. As a consequence, the synchronized view will also include tuples that were
previously discarded, as shown in the following

3Definition of containment [Abitebul et al. 1995]: Let Q1 and Q2 two queries defined on the schema S, we
say that Q1 is contained in Q2, denoted by Q1 ⊆ Q2, if for each instance I of S, the answer set of Q1 is a
subset of the answer set of Q2

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:17

NewIsBranchInternal(ATMcode, bank)

←IsBranchInternal(ATMcode, bank) ∨

∨ (ATMPoint(ATMcode, address, branch, positioning) ∧

∧ ¬positioning = “internal”)

(11)

In this way, NewIsBranchInternal contains all the tuples previously materialized in
the view IsBranchInternal, and new tuples extracted by the new subquery in which
the condition positioning = internal is negated.

The semantic issues of the approach can be summarized as follows:

- The synchronization process presents a complete level of automation, based on the
specified propagation policy.

- The propagation to view extent is tackled by the containment control, so permitting
the derivation of the extent for the new view from the materialization of the old
view.

- The synchronization policy is global.

4.4. The Evolution of Mediation Query approach (EMQ)

Bouzeghoub et al. [Bouzeghoub et al. 2003] faced the problem of the evolution of media-
tion queries in Global-As-View (GAV) systems. The latter are particular Data Integra-
tion (DI) systems, in which each relation in the global schema (also called mediation
schema) is defined by queries (also called mediation queries) on the source schemas.
For this reason, the evolution of mediation queries is a typical QVS problem, since one
or more queries must be synchronized upon a source schema evolution. The authors
have faced the QVS problem of this kind of systems, aiming at preserving the integrity
of mediation queries, upon simple modification operations on the source schemas (e.g.
insertion/deletion of attributes, relations, or referential constraints). The idea under-
lying their approach is to adapt an existing algorithm for Mediation Query Generation,
namely MQG, to work in a modular and incremental way, so as to synchronize all
the mediation queries to the updated source schemas. In particular, MQG finds the
GAV mappings (mediation queries) and generates metadata for both source relations
and for the operations needed to rewrite a mediation relation. The extended algorithm
is named Incremental Mediation Query Generation (IMQG) [Kedad and Bouzeghoub
1999].

In order to guarantee modularity and incrementality, IMQG requires the mediation
schema to store a chronology of all the design choices of the previous iterations. To this
end, the authors define a representation of relationships among data sources and me-
diation relations, and of all the possible operations among them, by using the operation
graph. The latter contains nodes representing relations, and edges representing possi-
ble operations. Moreover, they define a set of propagation primitives specifying updates
and checks that must be executed on operation graphs, and on mediation queries, so
as to reflect update modification operations on the local schema. In this approach, the
propagation of modifications on a source schema to a mediation level is accomplished
by means of a global evolution process, which consists of two fundamental steps: the
relation evolution step and the mediation query generation step. In order to synchro-
nize the processes involved in such steps, the query generation process will only start
when all the modification events notified by all the data sources have been propagated
to the corresponding relations.

Successively, this approach has been extended to handle the evolution of mediation
queries based on XML [Lóscio and Salgado 2004], in which the mediation schema is

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:18

represented by means of the X-Entity model (an ER-like Language), and the evolution
of the source data schema is based on a set of modification operations of the X-Entity
schema [Roddick et al. 1993].

The semantic issues of the approach can be summarized as follows:

- The synchronization process is based on the construction of an operation graph,
which contains relationships among data sources and mediation relations, and
of all the possible operations among them. The graph permits the detection of
queries/views to be synchronized (mediation queries) and their local synchroniza-
tion, in order to avoid the redefinition of the whole mediation schema.

- The automation level of the synchronization is complete, and it is applied by Event-
Condition-Action (ECA) rules based on propagation primitives.

- A defined Lookup process permits to get the traceability of changes.

4.5. The adaptive query formulation approach (AQF)

The adaptive query formulation approach (AQF) exploits a graph model to represent
relations, views, constraints, and queries in a uniform way [Papastefanatos et al. 2006;
Papastefanatos et al. 2007; 2009]. In particular, the entities of a database (e.g., rela-
tions, queries, views, and conditions of both the queries and the database) are modeled
by means of nodes and edges of a directed graph. Other than representing the seman-
tics of the database system, the graph allows us to predict the impact of a modification
over the entire system.

The approach supports simple modifications (creation and deletion of relations, at-
tributes, and conditions), and enables the definition of three types of policies: propagate
the modifications (queries/views must be redefined); block the modifications (the inten-
tion here is to preserve the old semantics of the graph, hence modification events must
be blocked, or at least, constrained, so as to preserve the old semantics); prompt (the
DBA interactively decides what to do). In other words, for each entity of the database,
the approach prescribes how to handle each possible modification event, by annotat-
ing the associated graph construct with the policy to be applied. The policy and the
modifications activated on the graph constructs are specified locally to the views.

The synchronization of queries/views upon a modification event on a database
schema is accomplished by determining the involved data structures, and by apply-
ing their associated policies, which also determine how the graph will be affected. In
this way, it is possible to define the actions to be applied (possibly automatically) by
selecting the predominant policy among those defined for all the constructs affected by
the modification. Notice that, the application of a policy is itself considered as a new
modification event.

The whole approach has been implemented within the HECATAEUS tool [Papaste-
fanatos et al. 2008; Papastefanatos et al. 2010], which allows to perform what-if anal-
yses by graphically simulating the effects of modifications on the schema and their
impact on queries, views, and on the schema itself.

As an example, let us consider the evolution S′→S′′ described of Figure 1, where
the attribute positioning is deleted from ATMPoint. After the evolution, all the
queries/views referring to this attribute become syntactically invalid and need to be
rewritten, as it happens for AtmBrPos given in (7). If the DBA specified a “propa-
gate” policy on the attribute selection, the view NewAtmBrPos given in (8) could be
automatically derived as a QVS of AtmBrPos.

The semantic issues of the approach can be summarized as follows:

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:19

- The synchronization process is based on the specification of policies on the graph
constructs. The predefined policy specification is useful for the management of infor-
mation loss, and it permits the local synchronization to queries/views.

- One type of policy invokes the DBA supervision in order to determine whether to
permit or to inhibit a schema modification. For this reason, the automation level of
the synchronization is semi.

- There is the possibility that more than one synchronization policy is simultane-
ously activated; to this end, the authors defined a guideline based on the “policy-
prevalence” among several synchronizations.

- The what-if analysis defined within the tool HECATAEUS permits to evaluate the
impact of change.

4.6. Domain specific operation-based approaches

In the following we discuss two ah-hoc solutions created for specific domains.

4.6.1. The synchronization of e-learning data warehouses (eLDWS). The QVS problem be-
comes particularly critical in the context of E-learning Data Warehouses (EDWs). This
is a particular type of DW that is defined on E-learning Information Sources (EISs); it
enables the integration of data in a single repository that is customized to user needs.

In this context, the QVS becomes critical due to the fact that EISs are heteroge-
neous, distributed, autonomous, and can contain massive information stored in local
and geographical networks.

Studies reveal that a centralized architecture is inappropriate for this kind of sys-
tems [Jalel 2007]. The author also proposes an EVE-based approach, exploiting the
Mobile Agent-e-DWMS architecture, which uses mobile agents based communication
to realize some of the EVE’s functions. Using this approach the view synchronization
process consists of determining legal rewrites of affected views, based on rules and con-
straints stored in the MKB. Such rules guide the definition of rewrites for the affected
view components, according to the preference parameters stored in the VKB. With re-
spect to the EVE canonical approach, this solution is based on a distributed structure,
and exploits static and mobile agent-based collaborative e-learning environments. The
whole approach has been implemented by means of IBM aglets, which convey it a bet-
ter efficiency.

The approach inherits all the semantic issues highlighted for EVE. Moreover, the
following semantic issue is specific for this approach:

- A dedicated Agent, namely View Knowledge Base agent (VKB agent), permits the
identification of queries/views to be synchronized in order to preserve the maximum
number of view definitions.

4.6.2. The synchronization of queries over stars and snowflakes (MDWS). Star and Snowflake
are two typical models used to describe Multi-Dimensional schemas of Data Ware-
houses (MD-DW): they both contain a Fact Table referencing a set of dimensional ta-
bles. Kaas et al. [Kaas et al. 2004] have systematically studied the evolution of star
and snowflake schemas, focusing on the impact that their evolution produces on both
exploration and aggregation queries; the authors specified eight different evolution
operations that include: insertion and deletion of dimensions, levels, dimensional at-
tributes, and measure attributes. Moreover, they provided a formal semantics for each
type of modification operation, for both star and snowflake schemas, describing the
impact on existing navigation and aggregation queries.

Although the approach only provides a preliminary study towards the synchroniza-
tion of navigation and aggregation queries on star and snowflake schemas, it can be

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:20

considered a pioneer approach facing the problem of query synchronization in multidi-
mensional data warehouses.

Thus, the only semantic issue of the synchronization process concerns the fact that
the semantics of the evolution operations permit the evaluation of the impact of the
evolution process.

4.7. Comparison of operation-based approaches

The tables shown in Figure 7 summarize the structural and semantic issues of the
operation-based approaches.

It can be easily noted that only a few operation-based approaches (two out of seven)
have been completely implemented, whereas for the rest of them there are mostly pro-
totype implementation or no implementation at all. Another interesting issue is that
only two out of seven approaches have been employed in generic database applica-
tions, whereas the remaining ones have been used either in data integration or data
warehousing.

Concerning the data model, most of the operation-based approaches are based on
the relational one, but two of them have also been extended for the XML data model.
One approach, namely MDWS, is specifically targeted at star/snowflakes, since it is
specialized on evolutions of multidimensional data warehouse schemas. Another im-
portant characteristic of the operation-based approaches is that they are based on
sufficiently different models and techniques, such as SVS, Containment rewritings,
X-Entity, graph model, mobile agents, and so forth.

In terms of the query/view definition language, one of the surveyed approaches uses
SQL, whereas most of the remaining ones propose extensions of it. ARCS and EMQ
do not use SQL-like languages. EMQ uses mediation queries, whereas ARCS uses the
query/view definition language of the specific applications. As for schema change lan-
guages, the majority of approaches use change operators (four out of seven), whereas
AQF uses change events. Finally, ARCS and BellApp use transformation primitives.

All the surveyed approaches have similar capabilities for change operations, mainly
enabling the addition/deletion of attributes, relations, and constraints, while few of
them also handle the modification of these schema constructs. Although not im-
plemented, ARCS also handles more complex modifications, such as the composi-
tion/decomposition and merge of schema constructs. Finally, only MDWS manages
completely different types of modifications, since they are applied to multidimensional
schemas of data warehouses.

Concerning the semantic issues, most of the surveyed operation-based approaches
provide a complete automated support to QVS (four out of seven), whereas ARSC and
AQF invoke the DBA supervision in the QVS process, in order to manage complex cases
of schema evolution, such as those involving capacity reducing modifications. However,
the management of information loss has also been faced in EVE and eLDWS through
the evolution and the extent parameters (VEP and VE), specified through E-SQL, also
yielding a local synchronization of queries/views. The latter is also provided in AQF, by
means of policy specifications, and in EMQ, by means of an operation graph. Finally,
only ARSC and BellAPP provide global level management of QVS.

The remaining semantic issues have been often raised to solve specific problems
of the application domain for which an approach has been devised. For this reason,
they appear as “not handled” in many surveyed approaches. In particular, none of the
surveyed operation-based approaches handles transparency of evolution, since this is-
sue is raised in mapping-based approaches. Only EMQ guarantees the traceability
of changes through a lookup process. EMQ and eLDWS are the only approaches fac-
ing the problem of indentifying the queries/views to be synchronized, which is vital in
contexts in which a huge number of queries/views have to be managed. Another impor-

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0
:2

1

Type of

approach

Applica!on

area

Supported

models

Resource -

Technique

QV defini!on

language

Schema

change

language

Not

implemented
Generic DB Rela!onal

System

architecture
Default

Transform.

primi!ves

System DI
Rela!onal

XML

SVS, CVS,

POC, HD-SV

Evolvable

SQL

Change

operators

Prototype DW Rela!onal
Containment

rewri!ngs
Extended SQL

Transform.

primi!ves

Prototype
DI

(GAV)

Rela!onal

XML

IMGQ, ECA,

X-En!ty

Media!on

queries

Change

operators

System Generic DB Rela!onal Graph model SQL
Change

events

Prototype
DW

(e-learning)
Rela!onal

Mobile

agents

Evolvable

SQL

Change

operators

Not

implemented

DW

(mul!-dim)

Star

Snowflakes
N. H.

Aggregate

SQL

Change

operators

eLDWS

Sec�on 4.6.1

MDWS

Sec�on 4.6.2

ARSC

Sec�on 4.1

EVE

Sec�on 4.2

BellApp

Sec�on 4.3

EMQ

Sec�on 4.4

AQF

Sec�on 4.5

 Structural issues

.

Approaches .

Managed changes

add/delete a#ributes, merge/compose/decompose, change name,

import/export/extract/remove dependency, promote/demote key

add/delete/change name a#ribute, add/delete/change name

rela!on

add/delete/modify a#ributes, delete rela!on

add/remove a#ribute, add/remove rela!on, add_ref/remove_ref

constraint

add/delete a#ribute, add/delete/update condi!on, delete rela!on

add/delete/change name a#ribute, add/delete/change name

rela!on

insert into fact/delete dimension, insert/delete level,

connect/disconnect a#ribute from dimension level, add/delete

Automa!sm of

synchroniza!on

Management of

informa!on loss

Global/Local

synchroniza!on

to QV

 Transparency of

evolu!on

Choice among

several

synchroniza!on

Evalua!on of

evolu!on

impact

Traceability of

changes

Iden!fica!on of

QVs to be

synchronized

Propaga!on to

view extent

Semi DBA supervision Global N. H. N. H. N. H. N. H. N. H. N. H.

Complete VEP and VE
Local: Evolvable

SQL
N. H. N. H. N. H. N. H. N. H.

View

Maintainer

Complete N. H. Global N. H. N. H. N. H. N. H. N. H.
Containment

control

Complete N. H.
Local: Opera!on

graph
N. H. N. H. N. H. Lookup process Opera!on graph N. H.

Semi
Policy

specifica!on

Local: Policy

specifica!on
N. H.

Policy

prevalence
What-if analysis N. H. N. H. N. H.

Complete VEP and VE
Local: Evolvable

SQL
N. H. N. H. N. H. N. H. VKB agent N. H.

N. H. N. H. N. H. N. H. N. H.
QV evolu!on

seman!cs
N. H. N. H. N. H.

 Seman!c issues

.

Approaches .

ARSC

Sec�on 4.1

EVE

Sec�on 4.2

BellApp

Sec�on 4.3

EMQ

Sec�on 4.4

AQF

Sec�on 4.5

eLDWS

Sec�on 4.6.1

MDWS

Sec�on 4.6.2

* N. H. = Not Handled

Fig. 7. Comparison tables of structural issues and semantic issues of the operation-based approaches.

A
C

M
T

ra
n

sa
ctio

n
s

o
n

D
a

ta
b

a
se

S
y
ste

m
s,

V
o
l.

0
,

N
o
.
0

,
A

rticle
0

,
P

u
b

lica
tio

n
d

a
te

:
0

.

0:22

tant issue is the propagation of evolution to view extents, which has been faced in EVE
through the view maintainer, and in BellAP through the containment control. Finally,
only AQF and MDWS enable the user/DBA evaluate the evolution impact, through a
what-if analysis in AQF, and through the evolution semantics analysis in MDWS. This
is the only semantic issue handled in MDWS, since it is a non implemented study.

5. MAPPING-BASED APPROACHES

A schema mapping enables the transformation of data structured according to a spe-
cific model into data structured according to a different one, preserving their se-
mantics. This methodology can be adopted in several contexts, such as data integra-
tion, where the schema mapping describes correspondences between two versions of
a database schema. Schema mappings have the advantage of providing a description
that is not limited to specific predefined modification operations, but to all the possible
modification operations on a database schema.

5.1. The Generic Model Management (GMM)

Schema mappings have rapidly become popular, due to the possibility of applying them
to many different contexts. However, this has revealed the necessity of developing a
framework for efficiently managing them, together with operators for their manip-
ulation. Model Management is the first proposal in this direction [Bernstein et al.
2000; Bernstein and Rahm 2000; Bernstein 2003] and focuses on two main concepts:
schemas and mappings between them. After this first proposal, the Generic Model
Management (GMM) has been introduced [Bernstein 2001; Melnik 2004; Bernstein
and Melnik 2007], whose main goal is to reduce the programming work necessary to
develop applications that solve metadata manipulation problems. In order to achieve
this goal, GMM provides a set of algebraic operators enabling the generalization of
transformation operations used through the application of metadata. The operators
allow one to operate on both schemas and mappings. For this reason, GMM can be
applied to many contexts, including data warehousing, e-commerce, relational-object
wrapping, enterprise information integration, database portals, and report generators
[Bernstein and Melnik 2007].

The operators of GMM range from Match, enabling the creation of a mapping be-
tween two input data schemas, to ModelGen, enabling the translation of schemas de-
fined on different data models. Such operators can be applied only to the schemas and
to the mappings between them. As a consequence, also queries/views must be defined
according to these two concepts.

As shown in Figure 8, the QVS problem can be naturally seen as a GMM problem.
The figure shows that, given a schema S, and a mapping mapS−S′ defining its evolution
into a schema S′, if V is the set of views defined on S, then the QVS problem is to find
a set of views V ′ defined on S′ representing a rewrite of V [Bernstein 2003; Bernstein
and Melnik 2007]. This is done in a way independent from the specific modifications
that have caused the schema evolution.

Two typical solutions to the QVS problem are the direct and the inverse solution,
which differ in the direction of the mapping: when the mapping is from the source
to the destination, we have a direct solution, vice versa we have an inverse one. The
former applies operators according to the following sequence of steps:

mapS−S′ = Match(S, S′)
/* Finds the mapping between schemas S and S′ */
mapV−S′ = Compose(mapV−S ,mapS−S′)
/* Links views in V to the new schema S′, composing the mapping between V and */
/* S with that between S and S′*/

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:23

S S’

V V’

Schema

Mapping

mapS-S’

Fig. 8. The schema evolution problem according to the GMM view.

In particular, this solution allows one to find the mapping defining the evolution
S→S′ by means of the Match operator, and then it creates the correspondences between
the original views and the modified schema S′, by means of the Compose operator. Vice
versa, the inverse solution applies the operators according to the following sequence of
steps:

mapS−S′ = Match(S, S′)
/* Finds the mapping between schemas S and S′ */
mapS′−S = Invert(mapS−S′)
/*Undoes the effects of mapS′−S*/
mapS′−V = Compose(mapS′−S ,mapS−V)
/* Links view V to the new schema S′ */

In this solution, the operator Inverse is applied, which aims at reverting the direction
of a mapping, undoing the effects of the previous mapping.

The two presented solutions show how operators defined in GMM can be applied to
solve the QVS problem in simple scenarios. However, more complex application sce-
narios can be faced by applying new operators to these two types of solutions. For
instance, when the evolution reduces the capacity of the data schema, like in the case
of attribute deletion, then it can be decided either to delete the attribute from all the
view definitions, or to waive synchronizing the views containing it [Bernstein 2003].
In the last case, the operator Diff could be used to exclude all the views that cannot
be mapped on the new data schema, whereas in the first case the DBA could define a
function f to remove parts of the view definitions that have been deleted during the
evolution, and apply f by means of the Apply operator.

The main advantage of GMM is that schemas, mappings, and generic operators are
independent from the model, enabling the interoperability between different data mod-
els. Moreover, this does not limit the evolution of schemas, providing a set of manage-
able modification operations. The schema evolution is managed by trying to find the
equivalence between the queries/views before and those after the schema modification,
overlooking the queries/views for which it is not possible to find such equivalence.

The Rondo programming Platform [Melnik 2004; Melnik et al. 2003a; 2003b; Melnik
2005] represents the first software supporting GMM. It has been created to solve prob-
lems related to model management, schema evolution, reuse of views, and reintegra-
tion4. It implements all the GMM operators described in the literature, also providing
a high level programming environment. Other than supporting numerous models, the

4The reintegration problem arises when a model is modified independently by several engineers or tools
[Melnik et al. 2003a].

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:24

Rondo Platform provides a mechanism to introduce new modeling languages within
the prototype.

The architecture of Rondo has a main component, called Interpreter, which allows
to organize the data flow between operators. The latter can be defined by means of
Scripts or Applications, whereas the models and the mappings are represented as
objects structured in a shared meta-model, and stored in a DBMS or a file system.
The prototype also supports basic functionalities of SQL DDL, XML schemas, RDF
schemas, SQL views, and UML. Moreover, it provides a Graphical User Interface (GUI)
that allows receiving DBA’s comments during the management of semi-automatic op-
erations.

As an example, let us consider the following procedure in which the DBA imposes
that queries/views containing removed information have not to be synchronized:

mapS−S′ = Match(S, S′)
/* Finds the mapping between schemas S and S′ */
if (!Contain(V , Diff(S,mapS−S′)))
/* Verify if there are not elements of S included into V , which are not */
/* referenced in mapS−S′ */
then
mapV−S′ = Compose(mapV−S ,mapS−S′)
/* Links views in V to the new schema S′, composing the mapping between V and */
/* S with that between S and S′ */

According to this procedure, the view AtmBrPos given in (7) can be synchronized
upon the evolution S→S′ described in Figure 1, but not after the evolution S′→S′′.

The semantic issues of the approach can be summarized as follows:

- The synchronization process is based on the application of operators in the direct
and inverse solution.

- The automation of the synchronization is complete.
- Queries based on older versions of a schema can be executed by using the inverse
solution, which guarantees the transparency of evolution.

- The policy of synchronization is global.

5.2. Default schema mappings for approximate view synchronization (DSMS)

GMM-based approaches do not consider the possibility of performing synchronizations
producing approximate views, mainly needed in presence of capacity reducing modifi-
cations. GMM based approaches face these cases by either overlooking views referring
to deleted constructs, or by adopting ad hoc solutions with the assistance of the DBA,
since s/he has the necessary knowledge to decide which parts of the view definition can
be dropped.

The introduction of default schema mappings aims at understanding how to produce
meaningful answers to queries relying on information lost during the schema evolution
[Polese and Vacca 2009b; Lakshmanan et al. 1993], enabling the mapping-based QVS
upon the occurrence of capacity reducing modifications. The whole approach is based
on the inverse solution of the GMM approach, and originates from the idea that when
information is lost upon a schema evolution, an attempt should be made to recover data
from the source schema, even tolerating some errors. This can be done by means of
default mappings [Polese and Vacca 2009b], a formalism based on default logic [Reiter
1980], which is suitable to express rules allowing exceptions. More formally, a default
rule is a formula like

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:25

(α(x) : β1(x), . . . , βn(x))

γ(x)
(12)

where α(x) is the default prerequisite, β1(x), . . . , βn(x), n ≥ 0, are the justifications, and
γ(x) is the consequence. The formula says that if the prerequisite is true and there not
exist information contradicting the justifications, then it can be assumed that also the
consequence is true.

A Default Mapping (DM) is defined as a triple (S, S′,ΣSS′), in which the first two
elements represent the source and the target schemas, respectively, whereas ΣSS′ rep-
resents the pair (B,D), where B is the set of mappings represented through the logic
formalism of FullTGD, and D is the set of default rules.

As an example, let us consider the evolution S′→S′′ of Figure 1, and the following two
default rules determining that the first three ATMs of a specific branch are internal,
whereas the others are external

(AtmPoint(ATMcode, address, branch) ∧N ≤ 3 : N = (lastNumber(ATMcode)))

AtmBranchPoint(ATMcode, address, branch, “internal′′)

and

(AtmPoint(ATMcode, address, branch) ∧N > 3 : N = (lastNumber(ATMcode)))

AtmBranchPoint(ATMcode, address, branch, “external′′)
.

The QVS of the view AtmBrPos given in (7) can be accomplished by means of these
default rules, which permit to approximate the semantics of the original view, preserv-
ing the information in the attribute positioning.

The semantic issues of the approach can be summarized as follows:

- The synchronization process is based on the application of operators in the direct
and the inverse solution.

- The automation level of the synchronization is complete.
- The default mappings enable the management of information loss, by allowing to
define approximate queries/views.

- Queries based on older versions of a schema can be performed by using the inverse
solution, which guarantees the transparency of evolution.

- The policy of synchronization is global.

5.3. The SchemaLog approach (sLogS)

SchemaLog (sLogS) is a logic language developed for integrating Heterogeneous
DataBase Systems (HDBSs) [Lakshmanan et al. 1993; Papoulis 1994; Andrews et al.
1996; Lakshmanan et al. 1997; Gingras et al. 1997]. It can be used for schema evolu-
tion purposes, since a schema evolution can be viewed as a special case of schema in-
tegration. With respect to the specific schema evolution problem, in [Polese and Vacca
2009a] the authors aimed at guaranteeing an evolution transparency enabling users
to submit queries on the schema version that they know, even if this is an old version.
Approaches based on SchemaLog can achieve such goal, except for capacity reducing
modifications, since they yield (meta-)information loss. In order to tackle such prob-
lem, the authors use a cooperative approach to querying [Cuppens and Demolombe
1988], by proposing a query synchronization process based on Hintikka interrogative
logic [Hintikka and Bachman 1991]. In particular, in presence of capacity reducing

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:26

modifications, instead of providing direct answers, heuristics are exploited to produce
approximate answers, which are submitted to the user or the DBA for approval. Such
a process exploits a dialogue for information seeking, in which participants (user and
system) aim at finding an adequate mapping between the query and the modified
schema. The dialogue starts with a user provided meta-query, from which the sys-
tem will derive deductions. Moreover, the system will ask the user to provide missing
information, starting a dialogue that will lead to the creation of new deductions, and
that will terminate only when the user receives an answer to the main meta-query, or
when s/he decides to stop.

As an example, let us consider the evolution S→S′ of Figure 1, and the following
meta-query

? - Bank(x)← AtmBranchPoint(x, “external”)

which extracts all the banks with an external ATM. According to the sLogS approach,
the user can submit such query to S, by ignoring the evolution, while the following
process, representing a dialogue between the system and the user, will permit to rein-
terpret the query:

USER: ? - Bank(x)← AtmBranchPoint(x, “external”)
SYSTEM: Error message: “AtmBranchPoint” doesn’t exist
USER: Principal meta-query - Can you map “AtmBranchPoint” in some relation?
SYSTEM: Is “Branch(branch, bank)” good?
USER: Yes
USER: ? - Bank(x)← Branch(“external”, x)
SYSTEM: No values for x
USER: Principal meta-query - Which relations involve “external”?
SYSTEM: “AtmPoint(ATMcode, address, branch, “external”)”
USER: ? - Bank(x)← Branch(y,x) ∧ AtmPoint(y, “external”)

The semantic issues of the approach can be summarized as follows:

- The synchronization process is based on the following idea: when it is not possible
to achieve a correct QVS, the DBA needs to interact with the system to establish the
correct query to be executed. To this end, the authors have based the synchroniza-
tion process on the Hintikka interrogative logic.

- The information loss is managed using cooperative query answering.
- Consequently, the automation level of the synchronization is semi.
- An evolved schema is considered as a new schema that must be mapped to its older
version, which guarantees transparency of evolution.

- The policy of synchronization is global.

5.4. Attribute domain evolution using Mesodata (MesEv)

The concept of database evolution goes beyond evolutions related to structural modifi-
cations of the database schema. Particularly important is also the concept of evolution
related to modifications of the schema semantics, identified as evolution of attribute
domains. This type of evolution can be subdivided in the following classes of modifi-
cations: 1) modifications of the attribute representations, 2) modifications of domain
constraints, like for example feasible minimum or maximum value, and 3) modifica-
tions of the meaning (perception).

Based on the above considerations, [de Vries and Roddick 2004; De Vries et al. 2004;
de Vries and Roddick 2007] defined an approach for the relational data model by in-
troducing complex data structures, which can be viewed as information on attribute
domains, at a level between the data and the metadata. Such structures can also be

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:27

used to support domain modifications. In other words, Mesodata layer extracts the do-
main in a separated level, namely the Mesodata Domain (Mdom), making it possible
to access the semantics of information, even not directly from the database. In fact, it
is not possible to directly access the mesodata type through the attributes; rather it
is possible to access the Mesodata type through an external mapping on the database,
which relates the intended concept and the data values.

Although this approach does not try to directly find a solution to the QVS problem,
it allows to reduce its complexity in case of modifications involving the domain of data,
by introducing the mesodata level.

As an example, let us consider the attribute ATMCode from the relation ATM-
BranchPoint of Figure 1, which stores the ATM identification code. Let us also suppose
new standards prescribe that such codes i) be transformed from the numeric to the
alphanumeric format, and ii) be started with the first letter of the city where they are
located. In order to accomplish such modification without the mesodata layer it would
entail 1) adding a new CHAR attribute, 2) modifying the old values to be assigned to
the new attribute, and finally 3) deleting the old attribute. Vice versa, a solution based
on the use of the mesodata layer would only require the use of the mesodata type LIST,
which will map existing integer values to new CHAR values as follows

ATMCode = Mdom(1234) = ′S1234′ (13)

In this way, it will no longer be necessary to change the attribute ATMCode in the
relation schema, since both the application and the operators will access it through the
mesodata type. Moreover, both values will result accessible and valid.

The semantic issues of the approach can be summarized as follows:

- The synchronization process is based on the construction of an additional domain
definition layer, which permits to manage the domain evolution. This layer is com-
posed of several data structures that are useful to define mesodata layer mappings
between schema versions, guaranteeing transparency of evolution.

- For this reason, the automation of the synchronization is complete.
- The policy of synchronization is global.

5.5. The synchronization of XPath views (XPathS)

A particular class of data sources is represented by XML sources, whose popularity is
growing, also due to the necessity of modeling huge quantities of semi-structured data
available on the Web. Such data sources are composed of documents containing data
structured according to a schema defined through simple formalisms, like Document
Type Definitions (DTDs), or more complex formalisms, like XML schemas.

In order to access data stored within XML documents, it is necessary to use a query
language enabling the retrieval of elements from them. To this end, one of the most
popular languages is XPath, which allows the specification of powerful queries. It is a
Unix-like language, since the basic syntax of an XPath query resembles that of a file
path in Unix. Thus, the access to parts of XML documents is realized by defining views
on data by means of XPath. The schema of an XML document can either be contained
in an external file identified by an URL, or it can be embedded in the document itself.
In both cases, a modification of the document might invalidate the views defined on it,
requiring a synchronization process to adapt them to the new schema.

This problem has been analyzed by Pedersen et al. [Pedersen and Pedersen 2004a;
2004b], who faced the automatic update of parameterized XPath queries. In their work
they aimed at finding modifications to the XML source schema, and at updating XPath-

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:28

based views to reflect such modifications. Moreover, they defined a prototype imple-
menting basic algorithms for XPath query synchronization.

The approach for finding possible modifications to XML schemas is based on the
analysis of query results. However, such queries might return empty results, because
of possible modifications to the schema, or they might return incorrect results. For this
reason, the approach also provides an algorithm to detect such cases, by comparing
the result of the current query with that of the previous one. Once a modification to
the XML schema is found, an heuristic algorithm determines the query that best ap-
proximates the original one, by exploiting a policy that evaluates similarity of queries,
based on the similarity of their results.

Although the approach has been implemented for OLAP based systems and XML
data sources (Extended TARGIT system [Pedersen and Pedersen 2004b; Pedersen et al.
2008]), it provides general techniques that are applicable to all those situations in
which there are views defined on XML data, like in Web services, B2B applications,
and XML-based web sites.

The semantic issues of the approach can be summarized as follows:

- The synchronization process is based on an heuristic algorithm that finds the
best synchronization based on the query-results. Consequently, the algorithm must
choose among several synchronization options.

- The query-result is analyzed, also to get the traceability of changes.
- The automation of synchronization is complete, and it applies approximations when
necessary.

- The policy of synchronization is global.

5.6. Comparison of mapping-based approaches

The tables shown in Figure 9 summarize the structural and semantic issues of the
mapping-based approaches.

It immediately appears evident that there is only one completely implemented ap-
proach (XPathS), and one with a prototype implementation (GMM). Moreover, as op-
posed to operation-based approaches, all the surveyed mapping-based approaches have
been employed in generic database applications, and most of them (three out of five)
are based on the relational data model, except XPathS that is based on XML, and
GMM that is applicable to all data models.

As with operation-based approaches, even in the mapping-based ones there are suffi-
ciently different underlying models and techniques employed. As expected, since map-
pings and change operations are basically different paradigms, also models and tech-
niques used in these two types of approaches are considerably different. In mapping-
based approaches they include direct/inverse operators, default rules, cooperative
query answering, and so forth. Moreover, two out of the five mapping-based approaches
use mapping-based queries/views definition languages, whereas two approaches use
the languages of the specific applications. Only XPathS is based on XPath, since it is
targeted at XML.

As for schema change languages, except for GMM and DSMS, which use algebraic
mapping operators, each the remaining three approaches uses a different mapping
language, such as matching formulas, local and external mappings. Finally, concerning
the managed changes, MesEv handles changes to attribute representations, domain
constraints, and domain meanings, and the remaining four approaches handle all the
possible changes.

Concerning semantic issues, except for sLogS, which provides a partial automated
support, the remaining ones all provide a complete support. Only two approaches,
namely DSMS and sLogS, support the management of information loss, through de-

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0
:2

9

Type of

approach

Applica!on

area

Supported

models

Resource -

Technique

QV defini!on

language

Schema

change

language

Prototype Generic DB All possible
Direct/invers

e operators
Mapping

Algebrical

mapping op.

Not

implemented
Generic DB Rela!onal

Inverse op.

default rules
Default

Algebrical

mapping op.

Generic DB

Generic DB Rela!onal
External

mapping

System Generic DB XML Heuris!cs XPath
Matching

formulas

MesEv

Sec�on 5.4

XPathS

Sec�on 5.5

GMM

Sec�on 5.1

DSMS

Sec�on 5.2

sLogS
Sec�on 5.3

All possible

 Structural issues

.

Approaches .

Managed changes

All possible

All possible

Automa!sm of

synchroniza!on

Management of

informa!on loss

Global/Local

synchroniza!on

to QV

 Transparency of

evolu!on

Choice among

several

synchroniza!on

Evalua!on of

evolu!on

impact

Traceability of

changes

Iden!fica!on of

QVs to be

synchronized

Propaga!on to

view extent

Complete N. H. Global Inverse solu!on N. H. N. H. N. H. N. H. N. H.

Complete
Default

mappings
Global Inverse solu!on N. H. N. H. N. H. N. H. N. H.

Semi Global N. H. N. H. N. H.

Global N. H. N. H. N. H. N. H. N. H.

Complete N. H. Global Query results N. H. N. H. N. H.

 Seman!c issues

.

Approaches .

GMM

Sec�on 5.1

DSMS

Sec�on 5.2

sLogS

Sec�on 5.3

MesEv

Sec�on 5.4

XPathS

Sec�on 5.5

* N. H. = Not Handled

implemented
Not

(heterogen.) Rela!onal
Copera!ve
Query Ans.

Logical
Mapping

Logical
Mapping

Not
implemented structures

Data
Default

Domain evolu!on: a"ribute representa!on changes, domain

constraints changes, domain percep!on (meaning) changes

All possible

Coop. query

answering

Mapping to

older version
N. H. N. H.

Complete N. H.
Mesodata Layer

mappings

N. H. Query results

Fig. 9. Comparison tables of structural issues and semantic issues of the mapping-based approaches.

A
C

M
T

ra
n

sa
ctio

n
s

o
n

D
a

ta
b

a
se

S
y
ste

m
s,

V
o
l.

0
,

N
o
.
0

,
A

rticle
0

,
P

u
b

lica
tio

n
d

a
te

:
0

.

0:30

fault mappings and cooperative query answering, respectively. All the surveyed ap-
proaches provide a global synchronization strategy of queries/views.

Except for XPathS, all the surveyed mapping-based approaches handle transparency
of evolution, but only GMM and DSMS use the same method, namely, the inverse so-
lution. To this end, sLogs uses mappings to older database versions, whereas MesEv
exploits mesodata layer mappings. Finally, for the remaining semantic issues, simi-
lar considerations made for operation-based approaches also apply to mapping-based
ones, since they have been introduced for domain specific problems. In fact, except for
XPathS, which handles traceability of changes and choice of synchronization based on
query results, the remaining surveyed approaches do not handle any of them.

6. HYBRID APPROACHES

The last class of QVS approaches are the so called hybrid approaches, which try to
exploit the strength points of both operation and mapping-based approaches described
above. Thus, in the following we will describe approaches facing the QVS problem by
merging concepts of mapping and of schema modifications guided by a set of predefined
operations.

6.1. PRISM

PRISM is one of the tools designed in the context of the macro project Pantha Rei,
which includes several research projects concerning schema evolutions and related
data management problems [Curino et al. 2008]. In particular, the approach underly-
ing PRISM aims at reducing the gap between ideal solutions to schema evolution and
the real world [Curino et al. 2008b; 2008c; 2008a; Moon et al. 2008; Curino et al. 2009;
Curino et al. 2009; Curino et al. 2010; 2013]. To this end, the authors provide several
guidelines on what a system should offer to adequately support schema evolution and
related problems. PRISM has been developed based on such guidelines, and it assists
a DBA in the design of the schema evolution, guaranteeing the automatic processing
of related queries. It accomplishes this task by devoting particular attention to infor-
mation preservation, redundancy control, and reversibility.

In order to let the DBA specify modifications to the schema, PRISM provides a modi-
fication language exploiting Schema Modification Operators (SMO), which represent a
key element within the system. More specifically, a SMO is a function taking in input
a relational data schema and an instance of it, and returning the modified version of
them. For each SMO it can be proved that it is possible to find a perfect and unique
inverse.

The approach prescribes the conversion of SMO operators in the logic language Dis-
junctive Embedded Dependencies (DED), aiming at exploiting the power of logic lan-
guages in query reformulation. DED enables the definition of forward and backward
mappings that permit to determine how to switch from the old version of a schema to
the new one, and vice versa. Thus, PRISM can be considered as a hybrid approach, due
to the use of SMO operators, and local mappings based on DED. The QVS is performed
through the query reformulation algorithm Mixed And Redundant Storage (MARS)
[Deutsch and Tannen 2003], exploiting a technique named Chase & Backchase, which
finds equivalent queries by only using DED rules and executing the two phases Chase
and Backchase. In particular, during the Chase phase new conjunctions are added to
the query based on DED rules, so deriving a universal plan. Vice versa, during the
Backchase phase, all the possible atoms are removed from the universal plan, so as to
derive an equivalent query.

As an example, let us consider the evolution S→S′ of Figure 1, which can be defined
through the following operator

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:31

DECOMPOSE TABLE ATMBranchPoint INTO
ATMPoint(ATMcode, address, branch, positioning),
Branch(branch, bank)

The modification is converted into the correspondent DED, which is used by the
algorithm MARS in order to automatically reformulate the queries/views. For instance,
the view given in (3) is automatically synchronized into

NewIsInternal(ATMcode, bank)

←(ATMPoint(ATMcode, address, branch, positioning) ∧

Branch(branch, bank)) ∧

∧ ATMPoint.branch = Branch.branch ∧

∧ positioning = “internal”

The semantic issues of the approach can be summarized as follows:

- The synchronization process uses the query reformulation algorithm MARS, which
rewrites queries based on DED mappings associated to the modification operators.
For each operator, two DED mappings (forward and backward) have been defined,
which determine the operator invertibility. For this reason, by using DED mappings
it is possible to get transparency of evolution.

- The evolution can be managed by users through an interface that contains interface
operators, allowing to evaluate the evolution impact, and to manage the information
loss through the DBA supervision prior to the evolution.

- The policy of synchronization is global.
- The automation level of the synchronization is complete.

6.2. The AutoMed project

As already specified in Section 2.2, Data Integration (DI) methodologies aim at inte-
grating data from several local and autonomous data sources into a single schema, by
using mappings between the global and the local schema. The AutoMed system rep-
resents a pioneer implementation of the Both-As-View (BAV) integration approach, in
which mappings between N source schemas, S1, . . . , Sn, and a global schema S, are
defined as Step-by-Step pathways of N transformation primitives [Boyd et al. 2004]:

T1 : S1→S; . . . ;Tn : Sn→S

The BAV approach differs from its predecessors in that it enables the integra-
tion of data sources based on different data models. In particular, AutoMed sup-
ports a low level, hypergraph based, data model, namely the Hypergraph Data
Model (HDM), which enables the representation of a schema by means of a triple
< Nodes,Edges, Constraints > [Poulovassilis and McBrien 1998]; AutoMed provides
the Automated Intermediate Query Language (AIQL) for query definition.

The use of transformation primitives in AutoMed provides the basis for the inte-
gration of local schemas versus a global one, facilitating possible future evolutions
of all of them [McBrien and Poulovassilis 1998; 1999a; 1999b; Brien and Poulovas-
silis 2001; Jasper 2002; McBrien and Poulovassilis 2002; Fan and Poulovassilis 2003;
McBrien and Poulovassilis 2003]. Transformation primitives can be subdivided into
elementary primitives that apply to simple constructs of a schema (insertion, deletion,
and renaming of nodes, edges, and constraints), and complex primitives, which can be
derived through the application of a composition operator to elementary primitives.
In general, also the primitives of schema modification languages can be transformed

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:32

into transformation primitives of AutoMed, enabling the definition of a transformation
path from a source schema to the global one.

One of the strength points of AutoMed is the reversibility of transformations, which
enables the reversibility of transformation paths. In order to apply a transformation
primitive to a schema, it is necessary to define a query q specifying the semantics of
the transformation. Thus, the user/DBA willing to perform a transformation of the
schema should precisely know the characteristics and the semantics of the schema
itself [Velegrakis et al. 2004a].

The QVS in AutoMed is accomplished by defining synchronization policies based on
three types of evolutions. The first one, defined as equivalence-preserving, prescribes
that views be reformulated by using inversion and composition of transformations.
The second one, defined as contraction, yields a reduction of the information capacity,
and it prescribes the construction of an approximated view including only constructs
belonging to all the sources. Finally, the last policy, defined as extension, requires the
user intervention, or alternatively, the use of meta-knowledge.

The semantic issues of AutoMed can be summarized as follows:

- The synchronization process is based on the application of transformation primitives
defining the logical mapping concerning the evolution of a schema Si into Si

′, and
the application of synchronization policies based on the specific type of evolution.

- One category of policies invokes the DBA intervention in order to determine how to
manage the schema evolution. For this reason, the automation level of the synchro-
nization is semi.

- The reversibility of transformation primitives guarantees transparency of evolution.
- The policy of synchronization is local, because transformation primitives are applied
to local schema mappings.

6.3. The ToMAS tool

The Toronto Mapping Adaptation System (ToMAS) [Velegrakis et al. 2003a; 2003b;
2004a; Velegrakis et al. 2004b] is a tool devised with the aim of adapting mappings
upon the evolution of one of the involved data schemas. The problem of mapping adap-
tation is to keep consistency of mappings when a schema evolves, aiming to find se-
mantic preserving rewrites of mappings [Velegrakis et al. 2003b]. Since this is a wide
problem, in this work we will limit the discussion to the QVS aspects.

The general goal of the approach underlying ToMAS is to detect the mappings af-
fected by the schema evolution and to deterministically generate semantically valid
rewrites of them. Such rewrites ought to be consistent not only with the semantics and
the structure of the affected schemas, but also with past user choices, which belong
to previous mappings. To this end, the authors provided several algorithms capable of
computing the semantics of a schema upon a change, in an efficient and incremental
way. The concept of incrementality is introduced since the approach describes a schema
evolution as a sequence of primitive modifications, classified according to the following
three categories: schema semantics modifications (insertion/deletion of schema con-
straints), schema structure modifications (insertion/deletion of schema constructs),
and schema reorganization modifications (copy/renaming of schema constructs). In
general, it is possible to find more than one semantically valid rewrite for a specific
mapping, in which case the choice falls on the rewrite guaranteeing a minimal change,
and the choice is made on the basis of this result.

It is worth noting the hybrid nature of this approach, since it aims to readapt map-
pings, based on a specific classification of modification primitives.

The user/designer interacts with ToMAS through a visual interface enabling him/her
to visualize schemas, mappings, and those mappings becoming inconsistent upon a

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:33

modification. The user interface represents one of the components of the modular ar-
chitecture of ToMAS, which also contains: i) an evolution engine (the core of the whole
architecture), implementing algorithms for each type of modification, ii) a mapping an-
alyzer, storing user provided associations contained within the mappings, iii) a wrap-
per handling discrepancies among different schema models, and iv) a ranker classify-
ing rewrites of mappings based on the concept of minimal change.

Finally, ToMAS can be applied effectively to other scenarios, such as data integra-
tion, data exchange, model management, physical data design, and so forth. Moreover,
the tool has achieved excellent results in terms of performances, so making it possible
to use interactive applications in mapping adaptation even for big data schemas.

The semantic issues of ToMAS can be summarized as follows:

- The synchronization process is based on several algorithms that detect the
queries/views (represented as mappings) to be synchronized, and it manages map-
ping rewrites that are consistent with the semantics of both the evolution and the
existing mappings. The mappings are defined in terms of user defined logical as-
sociations, provided through the mapping analyzer component, which guarantees a
local synchronization of queries/views.

- The evolution can be managed by users through a visual interface, which allows
them to evaluate the evolution impact.

- It is possible to have more semantically valid rewrites of mappings, so that the choice
among several synchronizations will be based on the concept of minimal changes.

- The automation of the synchronization is complete.

6.4. Coupled Software Transformation (CST)

Another important problem that must be tackled to ensure a correct evolution of soft-
ware systems is the so called Coupled Software Transformation [Cunha and Visser
2007a; 2007b; Visser 2008]. This concept highlights the fact that schema evolutions
affect several artifacts of a system, which must be updated in a tightly coupled way to
keep global consistency [Lämmel 2004]. A typical example of coupled transformation
is the migration of a database instance coherently with a schema modification.

The project 2 Transformation Level (2TL) aims at conceptualizing coupled transfor-
mations, yielding their formalization in terms of two level transformations: type-level
and value-level. They enable the optimization of the query migration process, which
can be described as a type-level transformation, from a type of source data to a type of
destination data, assisted by a set of conversion functions to and from between source
and destination data.

Finally, in CST the QVS problem can be viewed as a special case of coupled trans-
formations between the schema and the queries, where source and target schemas
are viewed as the data types, and the transformations are modeled as inequalities
between data types, through the two functions to (representation relation) and from
(abstraction relation). Figure 10 shows a schematization of the coupled transforma-
tion schema-query, where S ≤ S′ means that the schema evolution S→S′ preserves or
increases the information capacity variation of the schema and that the query q′ can
be derived by composing q and from, i.e. q′ = q • from.

The semantic issues of the approach can be summarized as follows:

- The synchronization process is based on the composition of from and to functions.
- The automation level of the synchronization is complete.
- The bi-directionality of transformations guarantees transparency of evolution.
- The policy of synchronization is global.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:34

S S’

Q

≤

to

from
q

q’

Fig. 10. Coupled transformation of schema-query.

6.5. Breaks queries under ontology changes (BQOC)

Ontologies represent a methodology for knowledge representation. As opposed to
databases, they conceptually model the real world by focusing on entities rather than
on instances. Thus, an ontology contains entities, relationships among them, rules, ax-
ioms, and domain specific constraints, and enables the extension of real world knowl-
edge by means of inference rules. Ontologies and instances together represent the
Knowledge Base.

Evolution is a complex task even for ontologies, since it is necessary to evaluate the
correctness of instances, applications, and services. In the context of ontology evolution
the research has focused on the creation and the management of mappings between
different versions of the ontology, and on how to make instances consistent upon a
modification. However, research has almost entirely overlooked the impact of a modi-
fication on the applications/services depending on it.

The first approach facing the problem of query breaking upon the modification of an
ontology uses a log of ontology modifications, aiming to analyze and modify incoming
RDF Data Query Language (RDQL) queries, based on modifications stored in the log
[Liang et al. 2006]. Moreover, a system prototype accomplishing the following steps has
been developed: 1) Capture changes between two versions of the ontology (by means
of the algorithm PROMPTDIFF [Noy and Musen 2002]); 2) Instantiate modifications
within the log of modifications; 3) Analyze the queries submitted by the applications,
verifying whether they are affected by modifications, before submitting them to the
ontology; 4) Replace affected queries with the new ones, allowing to Update the entities
referred within the queries and those affected by modifications, then submitting them
to the ontology; 5) Enable the ontology to answer the so-modified queries.

The semantic issues of the approach can be summarized as follows:

- The synchronization process uses a log of modifications in order to dynamically
rewrite incoming RDQL queries with their synchronizations based on recoded
changes. For this reason, the changes log guarantees transparency of evolution.

- The automation level of the synchronization is complete.
- The algorithm PROMPTDIFF provides the traceability of changes.
- The policy of synchronization is global.

6.6. Schema versioning/evolution approach in object-oriented databases (OOSVE)

Schema evolution can be considered a special case of Schema versioning, where only
the current version of a schema is maintained. In fact, in schema evolution the goal
is to ensure the possibility to perform schema modifications without losing existing
data and preserving the semantics of queries/views, which is much more a reduced

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:35

goal with respect to schema versioning, where the aim is to preserve the semantics of
queries/views on any schema version.

Based on the premises above, in [Franconi et al. 2001; Franconi et al. 2000] the
authors have defined a formal approach for handling schema versioning within the
Object Oriented data model. They focus on the definition of an extended model, on the
formulation of interesting reasoning tasks to support schema evolution, and on the
introduction of a code for solving schema versioning tasks. In this way, even though
the approach was originally intended for supporting schema versioning, it can also be
used in the context of QVS upon schema evolution.

First of all, the authors define a model enabling the representation of multiple
schema versions. In particular, they define an evolving schema S as a set of class names
(Cs), of attributes (As), and a partially ordered set of schema versions. A version of the
schema S is defined through the application of a sequence of modifications to some
previous version of the schema. Moreover, they define a mechanism enabling the def-
inition of version coordinates that can be used as querying interfaces, or to refer to
specific versions.

Finally, the authors define a method to assign a possible legal state to each database
version. This is a state in which all the constraints imposed by the sequence of modifi-
cations performed from the initial version of the database schema are satisfied. More-
over, data level materialized views are introduced upon a schema modification, in order
to specify how to compile classes of the new version starting from the data of the pre-
vious one.

The semantic issues of the approach can be summarized as follows:

- The synchronization process is based on the definition of change semantics with a
specific Description Logic (DL) language; it is possible to define a schema version
through the application of a sequence of modifications to a previous version, which
guarantees transparency of evolution.

- The automation level of the synchronization is complete.
- The policy of synchronization is global.

6.7. Comparison of hybrid approaches

The tables shown in Figure 11 summarize the structural and semantic issues of the
hybrid approaches.

As it could be expected, hybrid approaches mix the characteristics of both operation-
based and mapping-based approaches. In fact, we find more implemented systems
(three out of six), even though two of them (CST and OOSVE) are not implemented,
and one has a prototype implementation. Also for the application area we can mix
the considerations made for two other types of approaches, hence the majority of ap-
proaches are applied to generic databases, except for AutoMed, which is applied in DI,
and ToMAS, which is applied in DI and DE.

Concerning the data model, the six surveyed hybrid approaches can be divided into
three categories: those supporting all the data models (AutoMed and CST), those sup-
porting the relational one (ToMAS and PRISM), and those supporting specific data
models, such as ontology (BQOC) and the object-oriented data model (OOSVE).

Also hybrid approaches are based on many different models and techniques that
have little in common with the other two classes of approaches. Thus, one important
conclusion about this survey is that there has been no leading model or technique that
has conditioned the development of QVS approaches.

As for the query/view definition languages, they are all different among the sur-
veyed approaches, and like in mapping-based ones, there is a reduced use of SQL

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0
:3

6
Type of

approach

Applica!on

area

Supported

models

Resource -

Technique

QV defini!on

language

Schema

change

language

System
DED

mappings
SQL

System

System Rela!onal

Not

implemented
Generic DB All possible

Rewrite

system

Point-free

func!ons

Point-free

func!ons

Prototype Generic DB Ontologies PROMPTDIFF RDQL
schema

matching

Generic DB
Object-

oriented

Descrip!on

Logic
Default

change

operators

CST

Sec�on 6.4

BQOC

Sec�on 6.5

OOSVE

Sec�on 6.6

PRISM

Sec�on 6.1

AutoMed

Sec�on 6.2

ToMAS

Sec�on 6.3

add/drop/change name of/change type of a"ribute,

add/drop/change name of/change type of class, add/drop is-a

All possible

 Structural issues

.

Approaches .

Managed changes

All possible

Automa!sm of

synchroniza!on

Management of

informa!on loss

Global/Local

synchroniza!on

to QV

 Transparency of

evolu!on

Choice among

several

synchroniza!on

Evalua!on of

evolu!on

impact

Traceability of

changes

Iden!fica!on of

QVs to be

synchronized

Propaga!on to

view extent

DBA Supervision N. H. N. H. N. H. N. H.

N. H. N. H. N. H.

Complete N. H. N. H.

Complete N. H. Global
Transforma!on

bi-direc!onality
N. H. N. H. N. H. N. H. N. H.

Complete N. H. Global Changes log N. H. N. H.
PROMPTDIFF

algorithm
N. H. N. H.

Complete N. H. Global
Seq. of modif.

on older vers.
N. H. N. H. N. H. N. H. N. H.

OOSVE

Sec�on 6.6

PRISM

Sec�on 6.1

AutoMed

Sec�on 6.2

ToMAS

Sec�on 6.3

CST

Sec�on 6.4

BQOC

Sec�on 6.5

 Seman!c issues

.

Approaches .

* N. H. = Not Handled

add/drop/rename column,

create/drop/rename/copy/merge/par!!on/decompose/join table

add/remove constraints, schema pruning or expansion, schema

restructuring

All possible

DI, DE
changes

Minimal
Mapping

primi!ves

Modifica!on

DI All possible
composi!on

HDM, Transf.
AIQL

mappings

Logical

Generic DB Rela!onal SMO

N. H.
analyzer

Local: mapping
N. H. Minimal change Visual interface Algorithms

Semi
Local: Transf.

Primi!ves reversibility

Transforma!on
N. H. N. H. N. H.

Complete Global DED mappings
Interface

operator

Not

implemented

Fig. 11. Comparison tables of structural issues and semantic issues of the hybrid approaches.

A
C

M
T

ra
n

sa
ct

io
n

s
o
n

D
a

ta
b

a
se

S
y
st

e
m

s,
V

o
l.

0
,
N

o
.

0
,

A
rt

ic
le

0
,

P
u

b
li

ca
ti

o
n

d
a

te
:

0
.

0:37

(only PRISM). In this context, it is worth mentioning RDQL for dealing with ontologies
(BQOC), and mappings in ToMAS.

As for schema change languages, we find a mix of languages used in operation
and mapping-based approaches. Also for managed changes, half of the surveyed ap-
proaches reflect the characteristics of the mapping-based ones, enabling to manage
all possible changes, and the remaining half ones enable the management of common
schema change operations mentioned in operation-based approaches.

Concerning the semantic issues, we cannot say that hybrid approaches always ex-
ploit the advantages of both operation and mapping-based approaches. In fact, al-
though we find more complete automated support for synchronizations, there is only
one approach (PRISM) supporting the management of information loss w.r.t. about
60% in operation-based, and 50% in mapping-based approaches. The synchronization
policies reflect more the mapping aspect, since four out of six use global synchroniza-
tion policies. This is more evident for the support of the transparency of evolution,
since no operation-based approach supports it, whereas like mapping-based ones, also
in hybrid approaches we find five of them supporting it. However, they use completely
different techniques.

7. DISCUSSION AND FINAL REMARKS

The QVS problem can be considered a critical one, since its resolution enables the
possibility of continuing to use information systems when schemas evolve.

The analysis of the existing approaches reveals that a considerable research effort
has been devoted to this area, which has led to the proliferation of many different
approaches and tools. The interesting thing here is that each research activity has led
to both the definition of a technique, tool or system to solve the problem, and a better
comprehension of the characteristics of the problem itself.

One of the main goals of this work has been to provide a means to group and ana-
lyze QVS approaches and systems, enabling a critical comparison of them. To this end,
a classification framework has been introduced, whose parameters have been used to
characterize the approaches and the systems analyzed in the previous sections. Fig-
ures 12 and 13 show two tables summarizing the syntactic and semantic characteris-
tics of the surveyed approaches, based on the parameters defined in the classification
framework.

The classification framework allows us to perform an in depth analysis of the sur-
veyed approaches from different points of view. Nevertheless, it turns out to be impossi-
ble to precisely evaluate each single approach, given the many factors to be considered.
Thus, although the proposed analysis does not allow us to determine which is the best
approach, it enables us to perform both a general comparison based on relevant char-
acteristics and to detect the most useful and suitable approach for a given application
context. However, from the analysis made in this work we can affirm that there is still a
low number of implemented approaches that are effectively usable in practice. In fact,
as shown in Figure 12, many approaches are either not implemented or implemented
only at a prototype level. Thus, the QVS problem has been deeply analyzed in all of its
aspects, but there is still no evidence about which tool(s) is (are) capable of completely
solving the problem. This is mainly due to the fact that the implemented approaches
are either too specific for a given application context (as for example, the studies on
XPath views and on ontologies, of Section 5.5. and 6.5, respectively), still immature or
rudimentary, hence they do not enable some types of modification operations, or they
handle the problem through different data models. In fact, although some of the sur-
veyed approaches seem to be perfect from a theoretical and an architectural point of
view, they still lack implementation accuracy and completeness.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0
:3

8

Type of

approach

Applica!on

area

Supported

models

Resource -

Technique

QV defini!on

language

Schema

change

language

ARSC

Sec�on 4.1

Not

implemented
Generic DB Rela!onal

System

architecture
Default

Transform.

primi!ves

EVE

Sec�on 4.2
System DI

Rela!onal

XML

SVS, CVS,

POC, HD-SV

Evolvable

SQL

Change

operators

BellApp

Sec�on 4.3
Prototype DW Rela!onal

Containment

rewri!ngs
Extended SQL

Transform.

primi!ves

EMQ

Sec�on 4.4
Prototype

DI

(GAV)

Rela!onal

XML

IMGQ, ECA,

X-En!ty

Media!on

queries

Change

operators

AQF

Sec�on 4.5
System Generic DB Rela!onal Graph model SQL

Change

events

eLDWS

Sec�on 4.6.1
Prototype

DW

(e-learning)
Rela!onal

Mobile

agents

Evolvable

SQL

Change

operators

MDWS

Sec�on 4.6.2

Not

implemented

DW

(mul!-dim)

Star

Snowflakes
N. H.

Browse -

aggregate

Change

operators

GMM

Sec�on 5.1
Prototype Generic DB All possible

Direct/invers

e operators
Mapping

Algebrical

mapping op.

DSMS

Sec�on 5.2

Not

implemented
Generic DB Rela!onal

Inverse op.

default rules
Default

Algebrical

mapping op.

sLogS

Sec�on 5.3

Generic DB Logical

Mapping

MesEv

Sec�on 5.4
Generic DB Rela!onal

Data

structures

External

mapping

XPathS

Sec�on 5.5
Generic DB XML Heuris!cs XPath

Matching

formulas

PRISM

Sec�on 6.1
System

DED

mappings
SQL

AutoMed

Sec�on 6.2
System All possible AIQL

Logical

mappings

ToMAS

Sec�on 6.3
System Rela!onal

Minimal

changes
Mapping

CST

Sec�on 6.4

Not

implemented
Generic DB All possible

Rewrite

system

Point-free

func!ons

Point-free

func!ons

BQOC

Sec�on 6.5
Prototype Generic DB Ontologies PROMPTDIFF RDQL

schema

matching

OOSVE

Sec�on 6.6
Generic DB

Object-

oriented

Descrip!on

Logic
Default

change

operators

add/drop/change name of/change type of a#ribute,

add/drop/change name of/change type of class, add/drop is-a

All possible

All possible

 Structural issues

.

Approaches .

O
p

e
ra

!
o

n
 b

a
se

d
M

a
p

p
in

g
 b

a
se

d
H

y
b

ri
d

Managed changes

add/delete a#ributes, merge/compose/decompose, change name,

import/export/extract/remove dependency, promote/demote key

add/delete/change name a#ribute, add/delete/change name

rela!on

add/delete/modify a#ributes, delete rela!on

add/remove a#ribute, add/remove rela!on, add_ref/remove_ref

constraint

add/delete a#ribute, add/delete/update condi!on, delete rela!on

add/delete/change name a#ribute, add/delete/change name

rela!on

insert into fact/delete dimension, insert/delete level,

connect/disconnect a#ribute from dimension level, add/delete

All possible

All possible

All possible

* N. H. = Not Handled

Domain evolu!on: a#ribute representa!on changes, domain

constraints changes, domain percep!on (meaning) changes

All possible

Not

implemented (heterogen.)
Rela!onal

Copera!ve

Query Ans.

Logical

Mapping

Not

implemented
Default

System

add/drop/rename column,

create/drop/rename/copy/merge/par!!on/decompose/join table

restructuring

add/remove constraints, schema pruning or expansion, schema

All possible

DI, DE
Modifica!on

primi!ves

DI
HDM, Transf.

composi!on

Generic DB Rela!onal SMO

Not

implemented

Fig. 12. Comparison table of the structural issues of the approaches.

A
C

M
T

ra
n

sa
ct

io
n

s
o
n

D
a

ta
b

a
se

S
y
st

e
m

s,
V

o
l.

0
,
N

o
.

0
,

A
rt

ic
le

0
,

P
u

b
li

ca
ti

o
n

d
a

te
:

0
.

0
:3

9

Automa�sm of

synchroniza�on

Management of

informa�on loss

Global/Local

synchroniza�on

to QV

 Transparency of

evolu�on

Choice among

several

synchroniza�on

Evalua�on of

evolu�on

effects

Traceability of

changes

Iden�fica�on of

QVs to be

synchronized

Propaga�on to

view extent

ARSC

Sec�on 4.1
Semi DBA supervision Global N. H. N. H. N. H. N. H. N. H. N. H.

EVE

Sec�on 4.2
Complete VEP and VE

Local: Evolvable

SQL
N. H. N. H. N. H. N. H. N. H.

View

Maintainer

BellApp

Sec�on 4.3
Complete N. H. Global N. H. N. H. N. H. N. H. N. H.

Containment

control

EMQ

Sec�on 4.4
Complete N. H.

Local: Opera!on

graph
N. H. N. H. N. H. Lookup process Opera!on graph N. H.

AQF

Sec�on 4.5
Semi

Policy

specifica!on

Local: Policy

specifica!on
N. H.

Policy

prevalence
What-if analysis N. H. N. H. N. H.

eLDWS

Sec�on 4.6.1
Complete VEP and VE

Local: Evolvable

SQL
N. H. N. H. N. H. N. H. VKB agent N. H.

MDWS

Sec�on 4.6.2
N. H. N. H. N. H. N. H. N. H.

QV evolu!on

seman!cs
N. H. N. H. N. H.

GMM

Sec�on 5.1
Complete N. H. Global Inverse solu!on N. H. N. H. N. H. N. H. N. H.

DSMS

Sec�on 5.2
Complete

Default

mappings
Global Inverse solu!on N. H. N. H. N. H. N. H. N. H.

sLogS

Sec�on 5.3
Semi Global N. H. N. H. N. H.

MesEv

Sec�on 5.4
Global N. H. N. H. N. H. N. H. N. H.

XPathS

Sec�on 5.5
Complete N. H. Global N. H. N. H. N. H.

PRISM

Sec�on 6.1
DBA Supervision

DED

mappings
N. H. N. H.

AutoMed

Se�onc 6.2
N. H. N. H. N. H.

ToMAS

Sec�on 6.3
Complete N. H. N. H.

CST

Sec�on 6.4
Complete N. H. Global

Transforma!on

bi-direc!onality
N. H. N. H. N. H. N. H. N. H.

BQOC

Sec�on 6.5
Complete N. H. Global Changes log N. H. N. H.

PROMPTDIFF

algorithm
N. H. N. H.

OOSVE

Sec�on 6.6
Complete N. H. Global

Seq. of modif.

on older vers.
N. H. N. H. N. H. N. H. N. H.

O
p

e
ra

�
o

n
 b

a
se

d
M

a
p

p
in

g
 b

a
se

d
H

y
b

ri
d

 Seman�c issues

.

Approaches .

* N. H. = Not Handled

Query results Query results

N. H. N. H.
Coop. query

answering

Mapping to

older version

Complete N. H.
Mesodata Layer

mappings

N. H.

Interface

operator

Visual interfaceMinimal change Algorithms

N. H.

N. H.

N. H.

N. H.

N. H.

N. H.
analyzer

Local: mapping
N. H.

Semi
Local: Transf.

Primi!ves

Transforma!on

reversibility

Complete Global

Fig. 13. Comparison table of the semantic issues of the approaches.

A
C

M
T

ra
n

sa
ctio

n
s

o
n

D
a

ta
b

a
se

S
y
ste

m
s,

V
o
l.

0
,

N
o
.
0

,
A

rticle
0

,
P

u
b

lica
tio

n
d

a
te

:
0

.

0:40

The shortage of effectively implemented approaches also prevented us from making
considerations and analyses concerning performances. In fact, only for few approaches
efficiency/performance aspects are documented [Jalel 2007; Velegrakis et al. 2004b].

It is also important to notice that some parameters of the proposed framework allow
us to highlight both the choices characterizing adopted solutions and strength/weak
points of the approaches as a consequence of such choices. As an example, approaches
with a global synchronization policy will provide the advantage of simplicity, but will
not be suitable for handling specific cases of the problem, like in the case of approaches
keeping a local synchronization policy, which are able to refer to the single query/view.
A similar consideration can be made for the parameter automation level of the syn-
chronization. In fact, although manual approaches are not considered useful, there is
a gap between the simplicity of use for automatic approaches, and the completeness
of semi-automatic ones. Moreover, although the VE and VEP parameters contribute to
raise the automation level of the QVS process, the specification of such parameters is
only possible when the DBA knows the schema semantics, which is not possible in big
environments like the Web.

Given the current state of the art, the QVS research area can proceed in one of two
directions. The former yields the definition of approaches and systems that are specific
with respect to single application domains. The second one yields the definition of
approaches and systems that seek a global solution to the QVS problem, taking into
consideration all the relevant aspects. These can be viewed as the basis from which to
start the needed specialization for the application to specific contexts.

REFERENCES

Serge Abitebul, Richard Hull, and Victor Vianu. 1995. Foundation of Databases. (1995).

Alanoly J Andrews, Nematollaah Shiri, Laks VS Lakshmanan, and Iyer N Subramanian. 1996. On imple-
menting schemaLoga database programming language. In Proceedings of the 5th International Confer-
ence on Information and Knowledge Management (CIKM). ACM, 309–316.

Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F Korth. 1987. Semantics and implementation of
schema evolution in object-oriented databases. Vol. 16. ACM Press. 311–322 pages.

Jonas Barklund, Pierangelo DellAcqua, Stefania Costantini, and Gaetano A Lanzarone. 1997. Metareason-
ing agents for query-answering systems. In Flexible query answering systems. Springer, 103–121.

Zohra Bellahsene. 2002. Schema evolution in data warehouses. Knowledge and Information Systems 4, 3
(2002), 283–304.

Philip A Bernstein. 2001. Generic model management: A database infrastructure for schema manipulation.
In Cooperative Information Systems. Springer, 1–6.

Philip A Bernstein. 2003. Applying model management to classical meta data problems. In CIDR.

Phillip A Bernstein, Alon Y Halevy, and Rachel A Pottinger. 2000. A vision for management of complex
models. ACM Sigmod Record 29, 4 (2000), 55–63.

Philip A Bernstein and Sergey Melnik. 2007. Model management 2.0: manipulating richer mappings. In
Proceedings of the ACM SIGMOD International Conference on Management of Data (COMAD). ACM,
1–12.

Philip A Bernstein and Erhard Rahm. 2000. Data warehouse scenarios for model management. In Concep-
tual ModelingER 2000. Springer, 1–15.

Elisa Bertino. 1992. A view mechanism for object-oriented databases. In Advances in Database Technolo-
gyEDBT’92. Springer, 136–151.

Mokrane Bouzeghoub, Bernadette Farias Lóscio, Zoubida Kedad, and Ana Carolina Salgado. 2003. Manag-
ing the evolution of mediation queries. In On The Move to Meaningful Internet Systems 2003: CoopIS,
DOA, and ODBASE. Springer, 22–37.

Michael Boyd, Sasivimol Kittivoravitkul, Charalambos Lazanitis, Peter McBrien, and Nikos Rizopoulos.
2004. AutoMed: A BAV data integration system for heterogeneous data sources. In Advanced Informa-
tion Systems Engineering. Springer, 82–97.

Peter Mc Brien and Alexandra Poulovassilis. 2001. A semantic approach to integrating XML and structured
data sources. In Advanced Information Systems Engineering. Springer, 330–345.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:41

Alcino Cunha and Joost Visser. 2007a. Strongly typed rewriting for coupled software transformation. Elec-
tronic Notes in Theoretical Computer Science 174, 1 (2007), 17–34.

Alcino Cunha and Joost Visser. 2007b. Transformation of structure-shy programs: applied to XPath queries
and strategic functions. In Proceedings of the 2007 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation. ACM, 11–21.

Frédéric Cuppens and Robert Demolombe. 1988. Cooperative answering: A methodology to provide intel-
ligent access to databases. In Proceedings of 2nd International Conference Expert Database Systems.
621–643.

Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. 2013. Automating the database schema
evolution process. The VLDB Journal The International Journal on Very Large Data Bases 22, 1 (2013),
73–98.

Carlo Curino, Hyun Jin Moon, and Carlo Zaniolo. 2008a. Managing the History of Metadata in Support for
DB Archiving and Schema Evolution. In Proceedings of Advances in Conceptual Modeling – Challenges
and Opportunities. Springer, 78–88.

Carlo Curino, Hyun J Moon, and Carlo Zaniolo. 2009. Automating database schema evolution in information
system upgrades. In Proceedings of the 2nd International Workshop on Hot Topics in Software Upgrades.
ACM, 5.

Carlo A Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. 2010. Update rewriting and integrity
constraint maintenance in a schema evolution support system: Prism++. Proceedings of the VLDB En-
dowment 4, 2 (2010), 117–128.

Carlo A Curino, Hyun Jin Moon, MyungWon Ham, and Carlo Zaniolo. 2009. The PRISM Workwench:
Database Schema Evolution without Tears. In Proceedings of 25th International Conference on Data
Engineering (ICDE). IEEE, 1523–1526.

Carlo A Curino, Hyun J Moon, and Carlo Zaniolo. 2008b. Graceful database schema evolution: the prism
workbench. Proceedings of the VLDB Endowment 1, 1 (2008), 761–772.

Carlo A Curino, Hyun J Moon, and Carlo Zaniolo. 2008c. Managing the history of metadata in support for
db archiving and schema evolution. In Advances in Conceptual Modeling–Challenges and Opportunities.
Lecture Notes in Computer Science, Vol. 5232. Springer, 78–88.

Carlo A Curino, Letizia Tanca, Hyun J Moon, and Carlo Zaniolo. 2008. Schema evolution in wikipedia:
toward a web information system benchmark. In In International Conference on Enterprise Information
Systems (ICEIS). Citeseer, 323–332.

Krzysztof Czarnecki, J Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr, and James F Terwilliger.
2009. Bidirectional transformations: A cross-discipline perspective. In Theory and Practice of Model
Transformations. Springer, 260–283.

Cristina De Castro, Fabio Grandi, and Maria Rita Scalas. 1997. Schema versioning for multitemporal rela-
tional databases. Information Systems 22, 5 (1997), 249–290.

Denise De Vries, Sally Rice, and John F Roddick. 2004. In support of mesodata in database management
systems. In Database and Expert Systems Applications. Springer, 663–674.

Denise de Vries and John F Roddick. 2004. Facilitating database attribute domain evolution using mesodata.
In Evolution and Change in Data Management (ECDM) - ER 2004 Workshops, Vol. 3289.

Denise de Vries and John F Roddick. 2007. The case for mesodata: An empirical investigation of an evolving
database system. Information and Software Technology 49, 9 (2007), 1061–1072.

Alin Deutsch and Val Tannen. 2003. MARS: A system for publishing XML from mixed and redundant stor-
age. In Proceedings of the 29th international conference on Very Large Data Bases (VLDB), Vol. 29. VLDB
Endowment, 201–212.

Ronald Fagin. 2006. Inverting schema mappings. In Principles of database systems (PODS), Vansummeren
(Ed.). 50–59.

Ronald Fagin, Phokion G Kolaitis, Lucian Popa, and Wang-Chiew Tan. 2005. Composing schema mappings:
Second-order dependencies to the rescue. ACM Transactions on Database Systems (TODS) 30, 4 (2005),
994–1055.

Hao Fan and Alexandra Poulovassilis. 2003. Using AutoMed metadata in data warehousing environments.
In Proceedings of the 6th ACM international workshop on Data warehousing and OLAP. ACM, 86–93.

Fabrizio Ferrandina, Thorsten Meyer, and Roberto Zicari. 1994. Implementing lazy database updates for
an object database system. In International Conference on Very Large Data Bases (VLDB). Citeseer,
261–261.

Enrico Franconi, Fabio Grandi, and Federica Mandreoli. 2000. A semantic approach for schema evolution
and versioning in object-oriented databases. In Computational LogicCL 2000. Springer, 1048–1062.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:42

Enrico Franconi, Fabio Grandi, Federica Mandreoli, and others. 2001. Schema evolution and versioning: A
logical and computational characterisation. Lecture notes in computer science (2001), 85–99.

Frédéric Gingras, Laks VS Lakshmanan, Iyer N Subramanian, Despina Papoulis, and Nematollaah Shiri.
1997. Languages for multi-database interoperability. In ACM SIGMOD Record, Vol. 26. ACM, 536–538.

Fabio Grandi and Federica Mandreoli. 2003. A formal model for temporal schema versioning in object-
oriented databases. Data & Knowledge Engineering 46, 2 (2003), 123–167.

Peter Haase and Boris Motik. 2005. A mapping system for the integration of owl-dl ontologies. In Proceedings
of the 1st international workshop on Interoperability of heterogeneous information systems. ACM, 9–16.

Alon Y Halevy, Zachary G Ives, Peter Mork, and Igor Tatarinov. 2003. Piazza: Data management infrastruc-
ture for semantic web applications. In Proceedings of the 12th international conference on World Wide
Web. ACM, 556–567.

Mark Hansen, Stuart Madnick, and Michael Siegel. 2003. Data integration using web services. Springer.

Jean-Marc Hick and Jean-Luc Hainaut. 2006. Database application evolution: a transformational approach.
Data & Knowledge Engineering 59, 3 (2006), 534–558.

Jaakko Hintikka and James Bachman. 1991. What If-?: Toward Excellence in Reasoning. Mayfield Publish-
ing Company.

Richard Hull. 1986. Relative information capacity of simple relational database schemata. SIAM J. Comput.
15, 3 (1986), 856–886.

Akaichi Jalel. 2007. E-learning data warehouse maintenance system for collaborative learning availability
resources optimization. International Journal of Education and Development using ICT 3, 3 (2007),
16–29.

Edgar Jasper. 2002. Global Query Processing in the AutoMed Heterogeneous Database Environment. In
Proceedings of the 19th British National Conference on Databases, BNCOD. Springer, 46–49.

Ole Guttorm Jensen and Michael Böhlen. 2002. Current, legacy, and invalid tuples in conditionally evolving
databases. In Advances in Information Systems (ADVIS). Springer, 65–82.

Peter Sune Jørgensen and Michael Böhlen. 2007. Versioned relations: support for conditional schema
changes and schema versioning. In Advances in Databases: Concepts, Systems and Applications.
Springer, 1058–1061.

Christian Kaas, Torben Bach Pedersen, and Bjørn Rasmussen. 2004. Schema evolution for stars and
snowflakes. ICEIS (2004), 425–433.

Zoubida Kedad and Mokrane Bouzeghoub. 1999. Discovering view expressions from a multi-source informa-
tion system. In International Conference on Cooperative Information Systems (IFCIS). IEEE, 57–68.

Andreas Koeller and Elke A Rundensteiner. 2000. History-driven view synchronization. In Data Warehous-
ing and Knowledge Discovery, Y. Kambayashi, M. K. Mohania, and A. M. Tjoia (Eds.). Lecture Notes in
Computer Science, Vol. 1874. Springer, 168–177.

Andreas Koeller and Elke A Rundensteiner. 2005. A history-driven approach at evolving views under meta
data changes. Knowledge and information systems 8, 1 (2005), 34–67.

Andreas Koeller, Elke A Rundensteiner, and Nabil Hachem. 1998. Integrating the rewriting and ranking
phases of view synchronization. In Proceedings of the 1st ACM international workshop on Data ware-
housing and OLAP (DOLAP). ACM, 60–65.

Phokion G Kolaitis. 2005. Schema mappings, data exchange, and metadata management. In Proceedings
of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems
(PODS), C. Li (Ed.). ACM, 61–75.

Laks VS Lakshmanan, Fereidoon Sadri, and Iyer N Subramanian. 1993. On the logical foundations of
schema integration and evolution in heterogeneous database systems. In Deductive and Object-Oriented
Databases (DOOD). Springer, 81–100.

Laks VS Lakshmanan, Fereidoon Sadri, and Iyer N Subramanian. 1997. Logic and algebraic languages for
interoperability in multidatabase systems. The Journal of Logic Programming 33, 2 (1997), 101–149.

Ralf Lämmel. 2004. Coupled software transformations. In 1st international workshop on software evolution
transformations. 31–35.

Amy J Lee, Andreas Koeller, Anisoara Nica, and Elke A Rundensteiner. 1999a. Data warehouses evolution:
trade-offs between quality and cost of query rewritings. In Proceedings of 15th International Conference
on Data Engineering (ICDE). IEEE, 255.

Amy J Lee, Andreas Koeller, Anisoara Nica, and Elke A Rundensteiner. 1999b. Non-Equivalent Query
Rewritings. In In International Database Conference. Citeseer.

Amy J. Lee, Anisoara Nica, and Elke A. Rundensteiner. 2002. The EVE approach: view synchronization
in dynamic distributed environments. IEEE Transactions on Knowledge and Data Engineering 14, 5
(2002), 931–954.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:43

Maurizio Lenzerini. 2002. Data integration: A theoretical perspective. In Proceedings of the 21st ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS), L. Popa (Ed.). ACM,
233–246.

Barbara Staudt Lerner. 2000. A model for compound type changes encountered in schema evolution. ACM
Transactions on Database Systems (TODS) 25, 1 (2000), 83–127.

Xue Li. 1999. A survey of schema evolution in object-oriented databases. In Proceedings of Technology of
Object-Oriented Languages and Systems, (TOOLS). IEEE, 362–371.

Yaozhong Liang, Harith Alani, and Nigel Shadbolt. 2006. Changing ontology breaks queries. In The Se-
mantic Web-ISWC, I. F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold, and
L. Aroyo (Eds.). Lecture Notes on Computer Science, Vol. 4275. Springer, 982–985.

Bernadette Farias Lóscio and Ana Carolina Salgado. 2004. Evolution of XML-based mediation queries in a
data integration system. In Conceptual Modeling for Advanced Application Domains, S. Wang, D. Yang,
K Tanaka, F. Grandi, S Zhou, E. E. Mangina, T. W. Ling, I.-Y. Song, J. Guan, and H. C. Mayr (Eds.).
Lecture Notes in Computer Science, Vol. 3289. Springer, 402–414.

Jayant Madhavan, S Jeffery, Shirley Cohen, X Dong, David Ko, Cong Yu, and Alon Halevy. 2007. Web-scale
data integration: You can only afford to pay as you go. In Proceedings of CIDR. 342–350.

Andy Maule, Wolfgang Emmerich, and David S Rosenblum. 2008. Impact analysis of database schema
changes. In Proceedings of the 30th International Conference on Software Engineering (ICSE). ACM,
451–460.

Peter McBrien and Alexandra Poulovassilis. 1998. A formalisation of semantic schema integration. Infor-
mation Systems 23, 5 (1998), 307–334.

Peter McBrien and Alexandra Poulovassilis. 1999a. Automatic Migration and Wrapping of Database Ap-
plications - A Schema Transformation Approach. In Proceedings of 18th International Conference on
Conceptual Modeling. Springer, 96–113.

Peter McBrien and Alexandra Poulovassilis. 1999b. A uniform approach to inter-model transformations. In
Advanced Information Systems Engineering. Springer, 333–348.

Peter McBrien and Alexandra Poulovassilis. 2002. Schema evolution in heterogeneous database architec-
tures, a schema transformation approach. In Advanced Information Systems Engineering. Springer,
484–499.

Peter McBrien and Alexandra Poulovassilis. 2003. Data integration by bi-directional schema transformation
rules. In Proceedings of 19th International Conference on Data Engineering. IEEE, 227–238.

Sergey Melnik. 2004. Generic model management: concepts and algorithms. Vol. 2967. Springer-Verlag New
York Incorporated.

Sergey Melnik. 2005. Model management: First steps and beyond. BTW, LNI 65 (2005), 455–464.

Sergey Melnik, Erhard Rahm, and Philip A Bernstein. 2003a. Developing metadata-intensive applications
with Rondo. Web Semantics: Science, Services and Agents on the World Wide Web 1, 1 (2003), 47–74.

Sergey Melnik, Erhard Rahm, and Philip A Bernstein. 2003b. Rondo: A programming platform for generic
model management. In Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, A. Y. Halevy, Z. G. Ives, and Doan A. (Eds.). ACM, 193–204.

Renée J Miller, Yannis E Ioannidis, and Raghu Ramakrishnan. 1993. The use of information capacity in
schema integration and translation. In VLDB, Vol. 93. Citeseer, 120–133.

Hyun J Moon, Carlo A Curino, Alin Deutsch, Chien-Yi Hou, and Carlo Zaniolo. 2008. Managing and querying
transaction-time databases under schema evolution. Proceedings of the VLDB Endowment 1, 1 (2008),
882–895.

Mirella M Moro, Susan Malaika, and Lipyeow Lim. 2007. Preserving XML queries during schema evolution.
In Proceedings of the 16th international conference on World Wide Web, C. L. Williamson, M. E. Zurko,
P. F. Patel-Schneider, and P. J. Shenoy (Eds.). ACM, 1341–1342.

Anisoara Nica, Amy J Lee, and Elke A Rundensteiner. 1998. The CVS algorithm for view synchronization
in evolvable large-scale information systems. In Advances in Database Technology (EDBT), H.-J. Schek,
F. Saltor, I. Ramos, and G. Alonso (Eds.). Lecture Notes in Computer Science, Vol. 1377. Springer, 357–
373.

Anisoara Nica and Elke A Rundensteiner. 1998. Using containment information for view evolution in dy-
namic distributed environments. In Ninth International Workshop on Database and Expert Systems
Applications (DEXA). IEEE, 212–217.

Natalya F Noy and Mark A Musen. 2002. PROMPTDIFF: A fixed-point algorithm for comparing ontology
versions. In Proceedings of the national conference on artificial intelligence (AAAI/IAAI). 744–750.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:44

George Papastefanatos, Fotini Anagnostou, Yannis Vassiliou, and Panos Vassiliadis. 2008. Hecataeus: A
what-if analysis tool for database schema evolution. In 12th European Conference on Software Mainte-
nance and Reengineering (CSMR). IEEE, 326–328.

George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and Yannis Vassiliou. 2007. What-if analysis for
data warehouse evolution. In Data Warehousing and Knowledge Discovery. Springer, 23–33.

George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and Yannis Vassiliou. 2009. Policy-regulated man-
agement of ETL evolution. In Journal on Data Semantics XIII. Springer, 147–177.

George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and Yannis Vassiliou. 2010. HECATAEUS: Reg-
ulating schema evolution. In IEEE 26th International Conference on Data Engineering (ICDE). IEEE,
1181–1184.

George Papastefanatos, Panos Vassiliadis, and Yannis Vassiliou. 2006. Adaptive Query Formulation to Han-
dle Database Evolution. In 18th International Conference on Advanced Information Systems Engineer-
ing (CAiSE) (CEUR Workshop Prooceedings), N. Boudjilida, D. Cheng, and N. Guelfi (Eds.), Vol. 231.

Despina Papoulis. 1994. Realizing SchemaLog. Technical Report. Department of Computer Science, Concor-
dia University, Montreal, Canada.

Dennis Pedersen and Torben Bach Pedersen. 2004a. Synchronizing XPath Views. In International Database
Engineering and Applications Symposium (IDEAS). IEEE, 149–160.

Dennis Pedersen and Torben Bach Pedersen. 2004b. Synchronizing XPath Views. Technical Report 7. DBTR.

Torben Bach Pedersen and Christian S Jensen. 2001. Multidimensional database technology. IEEE Com-
puter 34, 12 (2001), 40–46.

Torben Bach Pedersen, Dennis Pedersen, and Jesper Pedersen. 2008. Integrating XML data in the TARGIT
OLAP system. International Journal of Web Engineering and Technology (IJWET) 4, 4 (2008), 495–533.

Randel J Peters and M Tamer Özsu. 1997. An axiomatic model of dynamic schema evolution in objectbase
systems. ACM Transactions on Database Systems (TODS) 22, 1 (1997), 75–114.

Giuseppe Polese and Mario Vacca. 2009a. A dialogue-based model for the query synchronization problem. In
IEEE 5th International Conference on Intelligent Computer Communication and Processing (ICCP).

Giuseppe Polese and Mario Vacca. 2009b. Notes on View Synchronization using Default Logic. In Proceed-
ings of 17th Italian Symposium on Advanced Database Systems (SEBD). 253–260.

Alexandra Poulovassilis and Peter McBrien. 1998. A general formal framework for schema transformation.
Data & Knowledge Engineering 28, 1 (1998), 47–71.

Erhard Rahm, Andreas Thor, David Aumueller, Hong-Hai Do, Nick Golovin, and Toralf Kirsten. 2005.
iFuice-Information fusion utilizing instance correspondences and peer mappings. In Proceedings of 8th
WebDB. Citeseer, 7–12.

Sudha Ram and G Shankaranarayanan. 2003. Research issues in database schema evolution: the road not
taken. Boston University School of Management, Department of Information Systems, Working Paper
2003-15 (2003).

Raymond Reiter. 1980. A logic for default reasoning. Artificial intelligence 13, 1 (1980), 81–132.

John F Roddick, Noel G Craske, and Thomas J Richards. 1993. A taxonomy for schema versioning based on
the relational and entity relationship models. In Entity-Relationship Approach (ER). Springer, 137–148.

Elke A Rundensteiner, A Koeller, A Lee, Y Li, A Nica, and X Zhang. 1998. Evolvable View Environment
(EV E) Project: Synchronizing Views over Dynamic Distributed Information Sources. In Demo Session
Proceedings of International Conference on Extending Database Technology (EDBT). Citeseer, 41–42.

Elke A Rundensteiner, Andreas Koeller, and Xin Zhang. 2000. Maintaining data warehouses over changing
information sources. Commun. ACM 43, 6 (2000), 57–62.

Elke A Rundensteiner, Andreas Koeller, Xin Zhang, Amy J Lee, Anisoara Nica, A Van Wyk, and Y Lee.
1999. Evolvable view environment (EVE): non-equivalent view maintenance under schema changes. In
SIGMOD Conference, A Delis, C Faloutsos, and S Ghandeharizadeh (Eds.), Vol. 28. ACM Press, 553–
555.

Elke A Rundensteiner, Amy J Lee, and Anisoara Nica. 1997. On preserving views in evolving environments.
In Knowledge Representation meets DataBases (KRDB) (CEUR Workshop Proceedings), F Baader, M A
Jeusfeld, and W Nutt (Eds.), Vol. 8. 13.11–13.11.

Ben Shneiderman and Glenn Thomas. 1982a. An architecture for automatic relational database sytem con-
version. ACM Transactions on Database Systems (TODS) 7, 2 (1982), 235–257.

Ben Shneiderman and Glenn Thomas. 1982b. Automatic database system conversion: schema revision, data
translation, and source-to-source program transformation. In Proceedings of national computer confer-
ence. ACM, 579–587.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

0:45

Balder Ten Cate and Phokion G Kolaitis. 2009. Structural characterizations of schema-mapping languages.
In Proceedings of the 12th International Conference on Database Theory (ICDT) (ACM International
Conference Proceeding), R Fagin (Ed.), Vol. 361. ACM, 63–72.

James F Terwilliger, Anthony Cleve, and Carlo A Curino. 2012. How clean is your sandbox? In Theory and
Practice of Model Transformations. Springer, 1–23.

Andreas Thor, David Aumueller, and Erhard Rahm. 2007. Data Integration Support for Mashups. (2007).

Yannis Velegrakis, Renée J Miller, and Lucian Popa. 2003a. Adapting mappings in frequently changing
environments. CSRG 468. University of Toronto, Department of Computer Science.

Yannis Velegrakis, Renée J Miller, and Lucian Popa. 2003b. Mapping adaptation under evolving schemas.
In Proceedings of the 29th international conference on Very Large Data Bases (VLDB), Vol. 29. VLDB
Endowment, 584–595.

Yannis Velegrakis, Renée J Miller, and Lucian Popa. 2004a. Preserving mapping consistency under schema
changes. The VLDB Journal 13, 3 (2004), 274–293.

Yannis Velegrakis, Renée J Miller, Lucian Popa, and John Mylopoulos. 2004b. Tomas: A system for adapting
mappings while schemas evolve. In 20th International Conference on Data Engineering (ICDE). IEEE
Computer Society, 862.

Joost Visser. 2008. Coupled transformation of schemas, documents, queries, and constraints. Electronic
Notes in Theoretical Computer Science 200, 3 (2008), 3–23.

Michael Weiss and GR Gangadharan. 2010. Modeling the mashup ecosystem: Structure and growth. R&d
Management 40, 1 (2010), 40–49.

Jin Yu, Boualem Benatallah, Fabio Casati, and Florian Daniel. 2008. Understanding mashup development.
Internet Computing, IEEE 12, 5 (2008), 44–52.

Roberto Zicari. 1991. A framework for schema updates in an object-oriented database system. In 7th Inter-
national Conference on Data Engineering (ICDE). IEEE Computer Society, 2–13.

Received ; revised ; accepted

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.

