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FAST NONADAPTIVE DETERMINISTIC ALGORITHM
FOR CONFLICT RESOLUTION IN A DYNAMIC

MULTIPLE-ACCESS CHANNEL∗
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Abstract. A classical problem in addressing a decentralized multiple-access channel is resolving
conflicts when a set of stations attempt to transmit at the same time on a shared communication
channel. In a static scenario, i.e., when all stations are activated simultaneously, Komlós and Green-
berg [IEEE Trans. Inform. Theory, 31 (1985), pp. 302–306] in their seminal work showed that it is
possible to resolve the conflict among k stations from an ensemble of n, with a nonadaptive determin-
istic algorithm in time O(k+ k log(n/k)) in the worst case. In this paper we show that in a dynamic
scenario, when the stations can join the channel at arbitrary rounds, there is a nonadaptive deter-
ministic algorithm guaranteeing a successful transmission for each station in only a slightly bigger
time: O(k logn log logn) in the worst case. This almost matches the Ω(k logn/ log k) lower bound
by Greenberg and Winograd [J. ACM, 32 (1985), pp. 589–596] that holds even in much stronger set-
tings: for adaptive algorithms, in the static scenario, and with additional channel feedback–collision
detection. In terms of channel utilization, our result implies throughput, understood as the average
number of successful transmissions per time unit, Ω(1/(log n log logn)) on the dynamic deterministic
channel.
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tributed algorithms, latency, throughput
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1. Introduction.

1.1. Problem and previous work. A set of stations labeled 1, 2, . . . , n are
connected to a multiple-access channel. A subset of k ≤ n stations have data packets
and can transmit on the channel at rounds (also called time steps) numbered 1, 2, . . .
and measured by a global clock accessible by each station. If m ≤ k stations transmit
at the same time, then the result of the transmission depends on m as follows:

• If m = 0, no station transmits and of course no packet is transmitted.
• If m = 1, the packet owned by the transmitting station is successfully sent to
every station.
• If m > 1, a collision occurs (the simultaneous transmissions interfere with
one another) and as a result no packet is successfully transmitted.

There is no central control: every station acts autonomously by means of a distributed
algorithm. The aim is to let each of the k stations transmit successfully its packet.
By conflict resolution algorithm in this paper we mean a distributed algorithm that
schedules the transmissions for each of the k participating stations guaranteeing that
every station eventually transmits individually (i.e., without interfering with others)
on the channel.
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NONADAPTIVE DETERMINISTIC CONFLICT RESOLUTION 869

If the stations have a collision detection mechanism, which is the case not studied
in this paper, then at each round they receive the feedback 0, 1, or 2+ from the
channel, indicating, respectively, that m is 0, 1, or ≥ 2. This way it is possible to
design an adaptive algorithm in which the behavior of any station at any given time
may depend on the feedback received in previous rounds. Namely, a deterministic
adaptive algorithm, at each step of its execution, specifies some subset of the n possible
stations chosen as a function of the feedback obtained in previous steps. Any station
that has not yet transmitted successfully, checks the chosen subset and transmits if
and only if it belongs to it. For dynamic stochastic packet injection, Capetanakis [6],
Hayes [24], and Tsybakov and Mikhailov [33] independently presented a deterministic
tree algorithm for conflict resolution with worst-case time complexityO(k+k log(n/k))
for every k and n. The worst case refers to the maximum number of rounds over all
possible choices of the subset of k stations. Greenberg and Winograd [21] proved
that the tree algorithm is close to optimal. They formalized a general framework
of deterministic algorithms to resolve conflicts and showed that any deterministic
algorithm needs Ω(k(logn)/(log k)) rounds, in the worst case, to resolve conflicts
among k stations out of n possible stations, with 2 ≤ k ≤ n. The randomized version
of the problem has also been studied and the current best randomized algorithm
resolves conflicts without error in expected time 2.14k +O(log k) [20, 19].

When collision detection is not available, which is the case considered in the
present paper, the conflict resolution algorithm has even less power. However, it
turns out that even simple nonadaptive solutions might be efficient. In nonadaptive
algorithms, the only feedback a station must adapt to is when it actually transmits
successfully, in which case it switches off. Precisely, a nonadaptive algorithm produces
a list of transmission sets (queries), Q1, Q2, . . . , Qs as a function of k and n only. At
any round t, any station examines the list and transmits if and only if x ∈ Qt (pro-
vided that none of its previous transmissions succeeded). Among many advantages of
nonadaptive algorithms are fast local processing (once the transmission schedules are
implemented), higher resiliency, and independence on collision detection and many
other physical parameters. Yet, as we show in this work, they can be very efficient.

Komlós and Greenberg [28] showed that there is a nonadaptive conflict resolution
algorithm that, for all k and n such that 2 ≤ k ≤ n, generates only O(k+ k log(n/k))
queries, surprisingly the same asymptotic number as the adaptive tree algorithm. The
proof is nonconstructive and is obtained using probabilistic methods. Later Kowal-
ski [29] showed a more constructive solution, based on selectors (cf., [11, 27]), reaching
the same asymptotic bound. Recently, Chlebus, Kowalski, and Rokick [10] developed
two deterministic conflict-resolution algorithms for a specific subclass of wake-up pat-
terns, mainly, assuming that the number of awaken stations in time intervals of a given
length is arbitrarily bounded. The first of them accomplishes the task in O(k log2 n)
rounds if the global clock is available, while the second one has time complexity inde-
pendent on n that could be as large as O(n log2 n) if the global clock is not available.

For recent results on randomized solutions one can refer to the paper by Fernandez
Anta, Mosteiro, and Munoz [17].

1.2. Our contribution. All the above mentioned papers on conflict resolution
assumed that either the k stations are all activated at the beginning and therefore can
start simultaneously their transmitting schedules or the wake-up pattern is restricted
yet they still could guarantee only O(k log2 n) time complexity or worse. While the
static scenario is particularly advantageous for designing algorithms, it is typically
not attainable without a central control. We therefore focus on a dynamic scenario
in which each station is totally independent, and consequently its activation time is
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870 GIANLUCA DE MARCO AND DARIUSZ R. KOWALSKI

locally determined and cannot be known or predicted by other stations. In such a
situation, it would be desirable to have an algorithm that allows every station to
transmit successfully, independently of its activation time. Since the activation times
can be arbitrarily distant from each other, it is natural to measure the efficiency
in terms of latency, i.e., the number of rounds necessary for a station to transmit
successfully, measured since its wake-up time.

Our contribution is to show that there is a deterministic nonadaptive conflict
resolution algorithm that, for all k and n, 2 ≤ k ≤ n, and for all possible activa-
tion times, allows k stations from an ensemble of n to transmit successfully in only
O(k logn log logn) rounds. The algorithm works without any a priori information
about k. This is very close to the Komlós and Greenberg result, despite its more
general setting, and it is nearly optimal in view of the Ω(k logk n) lower bound [21]
established in a much more favorable (from the perspective of algorithms) frame-
work: adaptive algorithms, simultaneous activations, and additional channel feedback
about collisions. Our result also substantially outperforms the previous solutions for
restricted wake-up pattern, which guarantee only O(k log2 n) time complexity [10].
In terms of channel utilization, our algorithm guarantees an average number of suc-
cessful transmissions per time unit of Ω(1/(logn log logn)). As in [28], our proof is
nonconstructive and is obtained using the probabilistic method [2].

Apart from the result itself, this paper introduces a novel approach to design and
analysis of contention resolution protocols, which can be summarized as follows. Our
main algorithm is obtained by interleaving two algorithms serving different purposes:
contention-reduction and iterative-selection. The goal of the first algorithm
is to reduce the channel stale-contention, which is at most k at the beginning, to
at most k/ logn; here, by stale-contention, we mean the number of stations that are
“long enough” on the channel, i.e., that already reached the asymptotic latency that
we want to achieve. This is done by analyzing properties of specific transmission
schedules, mainly, those which schedule transmissions with decreasing frequencies,
with additional transmissions occurring in consecutive periods of length Θ(log logn).
We show that there are transmission schedules such that for any wake-up pattern of
some k stations, starting from some point, the number of collisions will be limited,
while the additional transmissions in Θ(log logn)-length periods will increase chances
of successful transmission to an appropriate level.

As we will see in the analysis, this is a big challenge with respect to the static
case, as the algorithm does not have any control on newly awakened stations, which
number can congest the channel at any moment. As announced earlier, we use prob-
abilistic arguments over carefully defined classes of wake-up patterns to prove that
such transmission schedules exist.

The goal of algorithm iterative-selection is to efficiently and distributedly
schedule transmissions so that, under the reduced stale-contention, all stations are
successful in the desired time O(k logn log logn). This is done by using the Komlós
and Greenberg protocol [28], run in a logarithmic number of copies: the ith copy
tries to solve the contention resolution problem for the (reduced) stale-contention 2i.
Stations join the ith copy of the protocol with some delay, in order to synchronize with
the first contention-reduction protocol and to avoid a high contention (i.e., giving
a chance to most of the stations to be successfully selected by the first protocol).

1.3. Related problems. In this paper we have used the definition of nonadap-
tive algorithm given by Komlós and Greenberg [28], in which the behavior of the
stations has no dependence on feedback, but a station must adapt to the feedback
produced when it successfully transmits (in the sense that it switches off). Although
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this implies that a collision at a given round t can be detected by the stations trans-
mitting at round t, the model is different from the one where collision detection is a
feature of the system allowing all participating stations to distinguish the noise heard
in the case of two or more stations transmitting from the background noise in case
of no transmission. There is an even more restricted definition of nonadaptiveness
in the literature (strong nonadaptiveness), where transmissions are not influenced by
any feedback at all. This means that stations cannot switch off but continue to in-
terfere even after a successful transmission. This is known in combinatorial search
theory as the problem of constructing minimum length superimposed codes [14, 25].
Formally, the problem is to produce, given k and n, with 2 ≤ k ≤ n, the short-
est sequence of queries Q1, Q2, . . . , Qs such that for every subset S ⊆ {1, 2, . . . .n},
with |S| = k, the following property holds: for all x ∈ S, there exists a query Q
in the sequence such that S ∩ Q = {x}. Of course, the sequence of all singletons
{1}, {2}, . . . , {n} solves the problem for any k and n. A very interesting result by
Bassalygo (cf. [14]) is that this is optimal when k ≥ √2n + 1. In general, it is well
known that O

(
min(n, k2 + k2 log(n/k))

)
queries suffice for all k and n.

De Bonis, Gasieniec, and Vaccaro [15] considered the problem of partial contention
resolution, i.e., when all but at most r contenders need to be successfully selected on
the channel, for some given parameter 0 ≤ r < k. They proved a general lower

bound Ω
(
min

(
n, (r−1)2

k−r+1 · log(n/(k−r+1))
log((r−1)/(k−r+1))

))
for the number of rounds and showed

the existence of a protocol accomplishing the task in O
(

k2

k−r+1 log(n/k)
)
rounds. Both

results are for strongly nonadaptive algorithms. Indyk [27] showed a polynomial-time
construction of such nonadaptive transmission schedules for r = Ω(k), with a slightly
increased number of rounds by a polylogarithmic factor. This construction was later
generalized in [9] to any 0 ≤ r < k, to match, up to a polylogarithmic factor, the
lower bound in [15].

A broadcast from a synchronized start in a radio network was considered in [8,
11, 12, 13, 16, 29].

It is worth stressing that all the above mentioned results for strongly nonadaptive
algorithms hold in the static model; therefore our paper is the first to study the
contention resolution problem without any restriction on the activation times of the
stations.

Backoff protocols. When some restrictions on packet arrivals are assumed, a very
popular method of choice is the so-called backoff protocol. The idea of backoff is
that when a collision occurs in a given time slot, the packets are retransmitted in
the subsequent time slots with a diminished probability of transmission. When the
probability decreases polynomially or exponentially the method is called polynomial
or exponential backoff, respectively. This has been studied mainly under the statistical
queuing-theory model (when packet arrivals are determined by a Poisson distribution)
[31, 18, 26, 30]. For a worst-case adversarial approach the reader can consult the more
recent work by Bender at al. [4] and the references therein.

Channel with jamming. Another related line of research is the one that contem-
plates the possibility that time slots can be jammed. Awerbuch, Richa, and Scheideler
[3] studied jamming in multiple-access channels in an adversarial setting and gave an
estimation of the saturation throughput for randomized protocols. For an account
of the literature on adversarial models the interested reader can consult Richa and
Scheideler [32]. For arbitrary jamming models we refer the reader to the works by
Alistarh et al. [1] and Gilbert, Guerraoui, and Newport et al. [22]. Energy efficiency
approaches can be found in [23].
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872 GIANLUCA DE MARCO AND DARIUSZ R. KOWALSKI

2. Algorithm conflict-resolution. Throughout the paper, a station that
has been woken up and has not yet transmitted successfully will be called active.
Since we are interested in the asymptotic bound of our algorithm, we omit all the
floor and ceiling signs assuming that all derived numbers are integers. For the same
reason, we will also simplify the analysis by assuming that n is sufficiently large.

The main algorithm, called conflict-resolution, is obtained by interleaving
two algorithms, called contention-reduction and iterative-selection. They
can be conceptually understood, without loss of generality for our asymptotic result,
as run “in parallel,” although the formal analysis should be done rigorously in the
model when they are interleaved in odd-even rounds. The goal of the former al-
gorithm is to reduce the stale-contention, which is at most k at the beginning, to
at most k/ logn; here, informally, by stale-contention we mean the number of sta-
tions that are “long enough” on the channel. The goal of the latter algorithm is to
efficiently and distributedly schedule transmissions so that, under the reduced stale-
contention, all stations are successful in the desired time O(k logn log logn). We first
describe each of these two algorithms separately, and then we conclude how they col-
laborate to achieve the goals mentioned above. The analysis will be given later in
section 3.

Algorithm 1. contention-reduction(u, σ).

Require: a transmission matrix M (identical for every station)
� t denotes the current round number measured by the global clock

1: �0 ← 0
2: τ0 ← μ(σ)
3: while u is active do
4: for i = 1 to logn do
5: τi ← τi−1 + �i−1 � τi is the time at which u starts scanning row i ofM
6: for t = τi to τi + �i − 1 do
7: j ← t mod � �M is scanned circularly
8: if u ∈Mi,j then
9: transmit at time t � u transmits at round t iff its ID ∈Mi,t mod �

10: end if
11: if transmission is successful then
12: switch-off
13: end if
14: end for
15: end for
16: end while

2.1. Algorithm contention-reduction. In this algorithm, every station u pro-
ceeds according to a transmission schedule defined by a matrix whose entries are
subsets of stations.

Definition 2.1 (transmission set). A subset S ⊆ [n] = {1, 2, . . . , n} of station
IDs will be called a transmission set.

We say that a station u transmits according to a transmission set S if and only
if u ∈ S. Note that a sequence of transmission sets S1, . . . , St defines a transmission
schedule for any station; indeed, any station checks whether it belongs to set Sj, for
1 ≤ j ≤ k, and decides to transmit or stay silent accordingly.
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log n

1

2

M1,τ1

M1,τ1+�1−1

i

Mi,τi

Mi,τi+�i−1

�

M2,τ2 M2,τ2+�2−1

Fig. 1. A graphical representation of the transmission sets of a (logn× �) transmission matrix
M, according to which a station u, woken up at some time σ, transmits. The segments represent
contiguous transmission sets on the same row. For the sake of simplicity, we have omitted the
modulo � on the column indices.

Definition 2.2 (transmission matrix). A transmission matrixM is a (log n×�)
matrix, for some parameter � called the length of the transmission matrix, whose
entries Mi,j, for 1 ≤ i ≤ logn and 1 ≤ j ≤ �, are transmission sets.

Every station executing the algorithm will be provided with the same transmission
matrix. In what follows, we give a description of the protocol executed by each station.
It will be based on a generic transmission matrix. In the next section we will introduce
the contention-reducing matrix, a particular kind of transmission matrix that exhibits
some combinatorial properties that guarantee the proper functioning of the protocol.

The task of the protocol for each station is simply to match rounds with transmis-
sion sets on the matrix. For each round t there will be a correspondent transmission
set on the matrix according with which the station will transmit at round t. Let c > 0
be a sufficiently large constant.

For i = 1, 2, . . . , logn, let �i = c · 2i+1 logn log logn denote the number of con-
secutive rounds during which a station transmits according to transmission sets in
row i ofM. Starting from its wake-up time, any station transmits first for �1 rounds
(according to �1 consecutive transmission sets in row 1 of the matrix), then for �2
rounds (according to �2 consecutive transmission sets in row 2 of the matrix), and so
on, scanning the matrix circularly.

Let us now describe more formally the protocol executed by an arbitrary sta-
tion u waking up at some time σ (see Protocol 1 and Figure 1). For any j > 0,
define μ(j) = min{b ≥ j : b ≡ 0 mod 2 log logn}. Let �0 = 0 and τ0 = μ(σ).
Station u has the following transmitting behavior. It remains silent until round
τ1 = τ0 + �0 = μ(σ) and then starts transmitting according to transmission sets
M1,τ1 mod �, . . . ,M1,(τ1+�1−1) mod � (row 1 of M) for rounds τ1, . . . , τ1 + �1 − 1, re-
spectively. This ends the first iteration of the for loop on line 4.

Then, from time τ2 = τ1 + �1 = μ(σ) + �1 it starts transmitting according to row
2 of M. Namely, it transmits according to M2,τ2 mod �, . . . ,M2,(τ2+�2−1) mod � for
rounds τ2, . . . , τ2 + �2 − 1, respectively. This ends the second iteration of the for loop
on line 4. And so on until a successful transmission. When a successful transmission
occurs it shuts down (line 12) and exits the while loop.
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2.2. Algorithm iterative-selection. The following algorithm is based on the
Komlós–Greenberg algorithm [28]. For given parameters n and i, 1 ≤ i ≤ logn, the
Komlós–Greenberg algorithm guarantees that if at most 2i stations (out of n) start
the protocol simultaneously at some round, all of them will transmit successfully (and
therefore switch off) within O(2i + 2i log(n/2i)) rounds. (Repeating the execution of
the algorithm for increasing values of i will guarantee the correctness for any unknown
number of stations.)

As mentioned in the introduction, it was proved by probabilistic methods (a
constructive approach can be found in [29]).

Let (n, 2i)-KG denote the Komlós–Greenberg algorithm for parameters n and i
and let mi be its time complexity (i.e., the number of rounds in the worst case). In
[28] the existence of a constant c′ has been proved such that the time complexity
mi = c′(2i + 2i log(n/2i)) = O(2i + 2i log(n/2i)). This same hidden constant is used
in our algorithm to express the exact number of rounds required by the Komlós–
Greenberg algorithm for parameters n and i.

Let Γk =
∑

i≤log k �i = Θ(k logn log logn) be the time after which a station
switches from row log k to row log k + 1 in protocol contention-reduction. Any
station u waking up at some round σ executes protocol iterative-selection.

Algorithm 2. iterative-selection(u, σ).

� t denotes the current round number measured by the global clock
1: while u is active do
2: for i = 1 to logn do � thread i
3: j ← 
t/ logn� mod mi � round t corresponds to step j in (n, 2i)-KG
4: t′ ← smallest integer such that t′ ≥ Γ2i logn + σ and t′ = 0 mod mi logn
5: if t ≥ t′ then
6: perform step j of (n, 2i)-KG � (n, 2i)-KG run circularly
7: end if
8: if transmission is successful then
9: switch-off

10: end if
11: end for
12: end while

Analogously to the previous protocol, the task here is to match rounds with
steps of algorithm (n, 2i)-KG for parameters n and 1 ≤ i ≤ logn. The for loop
on line 2 cyclically runs logn threads until the station switches off. Each thread i,
for 1 ≤ i ≤ logn, corresponds to a step of algorithm (n, 2i)-KG. Namely, for each
thread i and round t any active (i.e., not switched off) station runs the jth step,
for j = 
t/ logn� mod mi, of algorithm (n, 2i)-KG only if the current round number
t ≥ t′ (line 5 of the pseudocode) for t′ being the smallest integer such that

1. t′ ≥ Γ2i logn + σ and
2. t′ = 0 mod mi logn.

This condition on line 5 becomes true (and will continue to hold till the end, by
monotonicity) at the first round t′ = 0 mod mi logn such that t′ is at least Γ2i logn

rounds after time σ at which u has been woken up. For any station u executing the
protocol, conditions 1 and 2 ensure, respectively, that u has switched to some row
r > 2i log n in protocol contention-reduction (run in parallel) and every execution
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of algorithm (n, 2i)-KG starts from the beginning, i.e., at step 0 of algorithm (n, 2i)-
KG (note that (n, 2i)-KG consists of mi steps, each of them executed every logn
rounds). If the condition on line 5 is satisfied we say that the station participates in
thread i of algorithm iterative-selection. This terminology will be used in the
analysis of the algorithm (subsection 3.3).

3. Analysis of the main algorithm. The analysis of our main algorithm
conflict-resolution is carried out as follows. In the next subsection we present an
outline of the analysis that will also highlight, at a high level, some properties of the
two interleaved algorithms before their rigorous study. In the subsequent two subsec-
tions we present properties of the two interleaved algorithms contention-reduction
and iterative-selection. In the final subsection we use these properties to derive
our main result.

3.1. Our approach. Throughout the paper we will say that a station is isolated
to mean that it can transmit singly (and therefore successfully) to the channel. Before
starting our high-level overview of the analysis of the main algorithm, observe that we
could restrict the analysis to the case when k < n/2; otherwise, a simple interleaving
of algorithm conflict-resolutionwith the round-robin transmission schedule could
guarantee isolation of all stations in O(n) = O(k) rounds.

The goal of the first ingredient of the main algorithm conflict-resolution,
protocol contention-reduction, is to reduce the contention of stations that stay on
the channel for a “long” time by a logarithmic factor, i.e., to O(k/ logn). Note that
the algorithm does not have any control on the number of newly awakened stations;
therefore it is impossible to ensure such a logarithmic reduction for all awakened
stations. Fortunately, stations that are on the channel for a “short” time do not
burst the worst-case latency (at least not shortly after awakening), and therefore we
can afford to wait until they become “mature.” The key concept in the analysis of
protocol contention-reduction is the notion of saturated intervals. In short, an
interval containing a large enough number, i.e., Ω(k logn), of segments of lengths
2 log logn in the beginning of which there are many stations (i.e., more than k/ logn)
executing row log k of the matrix and not so many stations (i.e., at most 2k/ logn)
that already passed that row (cf. Definitions 3.4 and 3.5). Intuitively, what we prove
is that many stations in row log k of the matrix create a chance of successful isolation
of some station, while we still control the number of stations that are “long” on the
channel, that is, that are executing rows bigger than log k.

The latter stations are simultaneously dealt with by algorithm iterative-

selectionmainly, by thread log(k/ logn)+1 in which algorithm (n, 2k/ logn)-KG of
length O(k) is circularly executed. We show in Lemma 3.9 of section 3.3 that none of
these stations stays longer than O(k logn log logn) on the channel after passing row
log k in the matrix and shortly after starting participation in thread log(k/ logn) + 1
of protocol iterative-selection.

It is important to emphasise that neither of the two algorithmic ingredients of the
main algorithm conflict-resolution could do its desired task on its own; instead,
a strong implicit collaboration between them takes place. On one hand, protocol
contention-reduction reduces the stale-contention, i.e., the number of “old” sta-
tions to allow the other protocol iterative-selection to isolate the remaining ones
quickly. On the other hand, by doing so, protocol iterative-selection guarantees
the second condition of the saturation property of protocol contention-reduction,
i.e., that there are at most 2k/ logn stations that already passed row log k of the
matrix (cf. Definition 3.4). This synergy is crucial for obtaining the final result.
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Let us briefly say why saturated segments and intervals are so important. Mainly,
because as we showed in the sequence of Lemmas 3.6, 3.2, and 3.8 in section 3.2, in
each of them we can find a round with constant probability of successful transmission,
and thus we obtain Ω(k logn) chances, each with a constant probability, to successfully
isolate a station. With this conclusion, we are ready to apply probabilistic arguments.

More precisely, in order to conclude the analysis, in section 3.4 we prove that
because of the large number of saturated intervals, for fixed parameter k, the wake-up
pattern, and sets A(j) of stations active in rounds j, the probability that the latency
will be asymptotically above k logn log logn is exponentially small in the number of
saturated segments; cf., Lemma 3.10. Since the number of possible configurations
of parameter k, the wake-up pattern, and sets of active stations A(j) in rounds j is
exponential in O(k logn), by using the union bound we obtain that the probability
of a configuration with large latency existing is small; cf. Lemma 3.11. Using the
probabilistic method and properties of protocol iterative-selection expressed in
Lemma 3.9, we derive the final theorem about a matrix existing such that using it for
instantiation of contention-reduction in the main algorithm conflict-resolution

guarantees latency O(k logn log logn).

3.2. Properties of algorithm contention-reduction. Given a parameter 1 ≤
i ≤ logn and a round j, we denote by Ai,j the set of active stations that at time j
transmit according to transmission set Mi,j mod �. Let A(t) be the set of active
stations at round t. The main effect of the nonsimultaneous starting of the k stations
is that each station in A(t), when following protocol contention-reduction, may
transmit according to transmission sets located in different rows ofM, depending on
the time at which it was woken up. Indeed, set A(t) can be partitioned using sets
Ai,j in the following way:

⎧⎨
⎩

A(t) =
⋃log n

i=1 Ai,t,

Ai,t ∩ Ai′,t = ∅ for every pair (i, i′) with i = i′.

In other words, at every round t all active stations transmit according to transmission
sets that may be in different rows of M, but that are vertically aligned on M, i.e.,
they are in the same column j = t mod � of matrixM.

We say that a station w ∈ Ai,j ⊆ A(t) is isolated at time j if and only if

logn⋃
i=1

(Ai,j ∩Mi,j mod �) = {w}.

In order to simplify the notation, in the following we will assume, without loss of
generality, that the clock starts counting when the first subset of stations is activated.
Moreover, we will avoid specifying the modulo � on the columns of the matrix: it is
understood that the matrix is scanned circularly.

Definition 3.1 (contention-reducing matrix). A contention-reducing matrixM
is a transmission matrix randomly constructed as follows. Let ρ(i, j) = max{1, i+ [j
mod (2 log logn)] − log log n} for any 1 ≤ i ≤ log n and j > 0. Any entry Mi,j is
formed by letting Prob[x ∈Mi,j ] =

1
2ρ(i,j)

for every station’s ID x ∈ [n]. All decisions
on whether x ∈Mi,j are made independently.

In the following, we assume that every station executing contention-reduction

is equipped with a contention-reducing matrix.

D
ow

nl
oa

de
d 

11
/2

3/
16

 to
 1

92
.4

1.
21

8.
17

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONADAPTIVE DETERMINISTIC CONFLICT RESOLUTION 877

Lemma 3.2. Let j be an arbitrary round. The probability that there exists a
station w ∈ A(j) isolated at round j is at least

logn∑
i=1

|Ai,j | · Prob[x ∈Mi,j ]

(
1

4

)∑log n
i=1 |Ai,j |·Prob[x∈Mi,j ]

.

Proof. Let E1(i, j) be the event “there exists w ∈ Ai,j such that Ai,j ∩Mi,j =
{w}”, and let E2(i, j) be the event “for all l with l = i, Al,j ∩Ml,j = ∅.” Clearly A(t)

is isolated at time j if and only if the event
⋃logn

i=1 E1(i, j) ∩ E2(i, j) arises.
Event E1(i, j) arises if and only if there exists at least w ∈ Ai,j such that w ∈Mi,j

and y ∈Mi,j for every y ∈ Ai,j \ {w}. Hence,
Prob[E1(i, j)] ≥ |Ai,j | · Prob[x ∈Mi,j] (1− Prob[x ∈Mi,j ])

|Ai,j |−1

≥ |Ai,j | · Prob[x ∈Mi,j] (1− Prob[x ∈Mi,j ])
|Ai,j | .

On the other hand, event E2(i, j) corresponds to the condition that for all l = i,
y ∈Ml,j for any y ∈ Al,j . Hence,

Prob[E2(i, j)] =

logn∏
l=1,l �=i

(1− Prob[x ∈Ml,j ])
|Al,j | .

Since E1(i, j) and E2(i, j) are statistically independent, it follows that

Prob[E1(i, j) ∩ E2(i, j)]

≥ |Ai,j | · Prob[x ∈Mi,j]

log n∏
i=1

(1− Prob[x ∈Mi,j ])
|Ai,j |

= |Ai,j | · Prob[x ∈Mi,j]

log n∏
i=1

(1− Prob[x ∈Mi,j ])

|Ai,j |·Prob[x∈Mi,j ]

Prob[x∈Mi,j ]

≥ |Ai,j | · Prob[x ∈Mi,j] · 4−
∑log n

i=1 |Ai,j |·Prob[x∈Mi,j ],

where in the last inequality we have used the fact that for 1 ≤ i ≤ logn,

(1− Prob[x ∈Mi,j ])
1

Prob[x∈Mi,j ] ≥ 1

4
.

By observing that for any fixed j and 1 ≤ i ≤ logn the events E1(i, j) ∩ E2(i, j)
are mutually exclusive, the result follows.

In the rest of this subsection, our goal will be to show that there are suffi-
ciently many rounds in which the probability of isolating a station is constant (cf.
Lemma 3.8). In view of Lemma 3.2, in order to estimate such a probability it will

suffice to give upper and lower bounds to the sum
∑logn

i=1 |Ai,j | · Prob[x ∈ Mi,j ] (cf.
Lemma 3.7). First we need to introduce some additional notation.

We can partition the global time in consecutive segments T0, T1, . . ., where each
time segment is a time interval that starts with a round j such that j mod (2 log logn) =
0 and ends with a round j such that j mod (2 log logn) = 2 log logn − 1. Namely,
we have the following definition.

Definition 3.3 (time segment). For r ≥ 0, the rth time segment is the following
interval of 2 log logn consecutive rounds: T = [2r log logn, 2r log logn + 1, . . . , (2r +
2) log logn− 1].
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878 GIANLUCA DE MARCO AND DARIUSZ R. KOWALSKI

Given a time segment T = [2r log logn, 2r log logn+ 1, . . . , (2r+ 2) log logn− 1],
for some r ≥ 0, we let Ai(T ) = Ai,2r log logn, for 1 ≤ i ≤ logn. That is, Ai(T ) is the
set of active stations running on row i at the first round of segment T .

Definition 3.4 (saturated time segment). A saturated time segment T is a time
segment such that the following conditions hold:

(a) |Alog k(T )| > k
logn ;

(b) for i > log k, |Ai(T )| ≤ 2k
logn .

Definition 3.5 (saturated time interval). A time interval [t1, t2] is said to be sat-
urated if it includes at least η = c·(k/2) logn saturated time segments T0, T1, . . . , Tη−1.

Given a time segment Tr = [2r log logn, 2r log logn+1, . . . , (2r+2) log logn− 1],
for some r ≥ 0, we let Ai(Tr) = Ai,2r log log n, for 1 ≤ i ≤ logn. That is, Ai(Tr)
denotes the set of active stations running on row i at the first round of Tr.

Following the algorithm, we can observe that any station starts transmitting on
row i, for i = 1, 2, . . . , logn, at time τi ≡ 0 mod (2 log logn). Therefore, an active
station can join a row only at the beginning of a time segment (i.e., on rounds j such
that j mod (2 log logn) = 0).

As a result, the number of active stations in each row of the matrix cannot increase
during a time segment. It could decrease as some active station could successfully
transmit (and consequently switch off). A time segment Tr such that there is at
least one station that transmits successfully during Tr, will be called a successful time
segment; otherwise it will be called unsuccessful. Clearly, within any unsuccessful
time segment the number of active stations remains the same for all rounds of the
segment. Namely, for any fixed unsuccessful time segment Tr, for every round j ∈ Tr,
we have

(3.1) |Ai,j | = |Ai(Tr)|,
for every 1 ≤ i ≤ logn.

Now we are ready to give upper and lower bounds to the sum
∑logn

i=1 |Ai,j | ·
Prob[x ∈ Mi,j ]. Namely, the following two lemmas aim at showing that a saturated
interval contains sufficiently many rounds in which the above sum is constant.

Lemma 3.6. Let [t1, t2] be a saturated interval. There are at least δ = c·(k/8) logn
unsuccessful time segments T0, T1, . . . , Tδ−1 such that for every Tm, 0 ≤ m ≤ δ − 1,

(3.2)
1

logn
≤

logn∑
i=1

|Ai(Tm)|
2i

≤ 8 · log n.

Proof. Let F be the family of saturated time segments included in [t1, t2]. By
Definition 3.5, we know that |F| = η = c · (k/2) logn. Let F ′ ⊆ F be the subset of
unsuccessful segments. Since there are at most k successful time segments, we must
have

(3.3) |F ′| ≥ |F| − k = η − k > η − δ = 2δ,

where the last inequality follows for n sufficiently large (namely, n > 28/c). In view of
(3.3), our aim is to show that at least half the elements in F ′ satisfy condition (3.2).

By condition (a) of Definition 3.4 we must have that |Alog k(Tm)| ≥ k/ logn for
every time segment Tm ∈ F ′. Hence, for every Tm ∈ F ′ , it holds that

log n∑
i=1

|Ai(Tm)|
2i

≥ |Alog k(Tm)|
k

≥ 1

logn
.
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It remains to prove the upper bound of (3.2).
Assume by contradiction that F ′ contains less than δ = c · (k/8) logn segments

that satisfy the rightmost inequality of (3.2). So, for at least |F ′| − c · (k/8) logn ≥
c · (k/8) logn saturated segments Tm, we must have

(3.4)

log n∑
i=1

|Ai(Tm)|
2i

> 8 · logn.

Let W be the set of all rounds included in time segments Tm that satisfies (3.4). We
know by (3.1) that |Ai,j | = |Ai(Tm)| for every j ∈ Tm. Therefore, for every round
j ∈ Tm, we have

(3.5)

logn∑
i=1

|Ai,j |
2i

=

logn∑
i=1

|Ai(Tm)|
2i

> 8 · logn.

Since there are 2 log logn rounds in each time segment, the contradiction hypothesis
implies that

(3.6) |W | > c · (k/8) logn(2 log logn) = c · (k/4) logn log logn.

Since the total number of stations that can be active at any round is upper
bounded by k, for every round j ∈ [t1, t2] we must have

(3.7)

log n∑
i=1

|Ai,j | ≤ k.

For any j ∈ [t1, t2], let U(j) =
⋃log n

i=1 Ai,j . Following the algorithm, any station
lies on row i, 1 ≤ i ≤ logn, for �i rounds. Therefore, for every row 1 ≤ i ≤ logn

�i max
t1≤j≤t2

|U(j)| ≥
t2∑

j=t1

|Ai,j | ≥
∑
j∈W

|Ai,j |.

Hence, we have

logn∑
i=1

max
t1≤j≤t2

|U(j)| ≥
logn∑
i=1

∑
j∈W

|Ai,j |
�i

=
∑
j∈W

logn∑
i=1

|Ai,j |
�i

=
1

2c logn log logn

∑
j∈W

logn∑
i=1

|Ai,j |
2i

(substituting the value of �i)

>
1

2c logn log logn

∑
j∈W

8 · logn (by (3.5))

≥ |W | · 4
c log logn

.

Therefore,

max
t1≤j≤t2

|U(j)| > |W | · 4
c logn log logn

.
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And by using (3.6) we get

max
t1≤j≤t2

|U(j)| > c(k/4) logn log logn · 4
c logn log logn

= k.

This implies that there exists j′ ∈ [t1, t2] such that

∣∣∣∣∣
logn⋃
i=1

Ai,j′

∣∣∣∣∣ > k,

which contradicts (3.7).
Lemma 3.7. Let [t1, t2] be a saturated interval. At least δ = c ·(k/8) logn log logn

rounds j ∈ [t1, t2] are such that

1

2
≤

logn∑
i=1

|Ai,j |
2ρ(i,j)

≤ 8.

Proof. By Lemma 3.6, there are at least δ = c · (k/8) logn unsuccessful time
segments T0, T1, . . . , Tδ−1 such that for every Tm, 0 ≤ m ≤ δ − 1,

(3.8)
1

logn
≤

logn∑
i=1

|Ai(Tm)|
2i

≤ 8 · log n.

Hence, by (3.1), we have that for every round j ∈ Tm, with 0 ≤ m ≤ δ − 1,

1

logn
≤

logn∑
i=1

|Ai,j |
2i
≤ 8 · logn,

with |Ai,j | that does not change for every i, 1 ≤ i ≤ logn, and j ∈ Tm. Recalling
that ρ(i, j) = max{1, i + [j mod (2 log logn)] − log logn}, we want to show that for
any time segment Tm, for 0 ≤ m ≤ δ − 1, there exists a j ∈ Tm such that

(3.9)
1

2
≤

logn∑
i=1

|Ai,j |
2ρ(i,j)

≤ 8.

Fix x =
∑logn

i=1
|Ai,j |
2i and ξ(j) =

∑logn
i=1

|Ai,j |
2ρ(i,j)

. Observe that ξ(j) = x for j = log logn.
We distinguish two cases.

Suppose first that 1/2 ≤ x ≤ 8·logn. Since x can be as large as 8·logn, our aim is
to increase the value of j, starting from j = log logn, until (3.9) is satisfied. In fact, for
every fixed i there is a one-to-one correspondence between log logn < j ≤ 2 log logn
and 1 ≤ ρ(i, j) ≤ i + log log n. Observe that for log logn < j ≤ 2 log logn the value
of ρ(i, j) is equal to i + [j mod (2 log logn)] − log logn, and thus increasing j by 1
within the considered range decreases ξ(j) by factor 2, i.e., ξ(j) = 2ξ(j + 1). It also
follows that ξ(2 log logn) = x/2log logn = x/ logn. Therefore, there must exist j, with
log logn < j ≤ 2 log logn, such that ξ(j) falls within the bounds of inequality (3.9).

Suppose now that 1
log n ≤ x < 1/2. Since for j = log logn, ξ(j) = x < 1/2, our

aim is now to decrease the value of j, starting from j = log logn, until ξ(j) rises
to within the bounds of inequality (3.9). In order to do so, we will show that there
exists 1 ≤ t < log logn such that 1/2 ≤ ξ(log logn − t) ≤ 8. By the definition of
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ρ(i, j) it follows that ρ(i, log logn− t) = 1 for i = 1, 2, . . . , t+ 1. Hence, for any fixed
1 ≤ t < log logn,

ξ(log logn− t) =

t+1∑
i=1

|Ai,log logn−t|
2

+

log n∑
i=t+2

|Ai,log logn−t|
2i−t

(3.10)

≤ x+ 2x+ · · ·+ 2tx+ 2tx < 2t+2x,(3.11)

where in the second-, last inequality we have used the fact that for i = 1, 2, . . . , t+ 1

|Ai,log logn−t|
2

= 2i−1 · |Ai,log logn−t|
2i

≤ 2i−1x.

Now we want to bound ξ(log logn− t) from below for 1 ≤ t < log logn. Consider

equation (3.10) and let S1(t) =
∑t+1

i=1
|Ai,log log n−t|

2 and S2(t) =
∑log n

i=t+2
|Ai,log log n−t|

2i−t .
Suppose first that S1(1) = 0. In such a case at least one summand in S1(1) is

larger than zero. Consequently, ξ(log logn− t) ≥ 1/2, which satisfies the lower bound
in inequality (3.9). Moreover, for t = 1, inequality (3.11) guarantees an upper bound
of 8x ≤ 4. Therefore, both lower and upper bounds of inequality (3.9) are satisfied.

Suppose now that S1(1) = 0. Let t∗ be the largest integer 1 ≤ t∗ < log logn such
that S1(t) = 0 for t = 1, 2, . . . , t∗. Then, for 1 ≤ t ≤ t∗, we must have

(3.12) ξ(log logn− t) = S2(t) = 2tx.

There are two cases to analyze. Suppose first that

(3.13) for all t ≤ t∗, ξ(log logn− t) = 2tx < 1/2.

This implies that t∗ < log logn − 1 (indeed for t∗ = log logn − 1 we would have
ξ(log logn− t∗) ≥ 1/2, since x ≥ 1/ logn). Hence, by definition of t∗, S1(t

∗ + 1) will
have at least one nonzero summant, which implies ξ(log logn−(t∗+1)) ≥ S1(t

∗+1) ≥
1/2. By (3.13) it follows that x < 1/(2t

∗+1). Plugging this into (3.11), we get that
ξ(log logn− (t∗+1)) < 2t

∗+3x < 4. Therefore, there exists a 1 ≤ t < log logn, mainly
t = t∗ + 1, such that 1/2 ≤ ξ(log logn− t) < 4.

Suppose now that (3.13) does not hold and let t′ be the smallest t ≤ t∗ such that
ξ(log logn − t) = 2tx ≥ 1/2. It follows that for t′ − 1 ≥ 0, we have 2t

′−1x < 1/2.
Applying this to the upper bound on ξ(log logn− t′) in inequality (11), we obtain

2t
′+2x = 23 · 2t′−1x < 23 · 1

2
= 4.

Therefore, there exists a 0 ≤ t ≤ log logn − 1, mainly t = t′ − 1, such that 1/2 ≤
ξ(log logn − t) < 4. In both cases ξ(log logn − t) is within the bounds defined in
inequality (3.9) and the proof is now completed.

Using Lemmas 3.7 and 3.2 we can finally estimate the number of rounds in a
saturated interval such that the probability of isolating a station is a constant.

Lemma 3.8. Let [t1, t2] be a saturated interval. There are at least δ = c·(k/8) logn
rounds j ∈ [t1, t2] such that the probability that there exists a station w ∈ A(j) isolated
at time j is at least (1/2)17.

Proof. Combining Lemmas 3.7 and 3.2, we have that there are at least c·(k/8) logn
rounds j ∈ [t1, t2] such that the probability of isolating a station at round j is at least

logn∑
i=1

|Ai,j |
2i+ρ(j)

(
1

4

)∑log n
i=1

|Ai,j |
2i+ρ(j)

≥ 1

2
·
(
1

4

)8

= (1/2)
17

.
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3.3. Properties of algorithm iterative-selection. Assume that c is suf-
ficiently large to guarantee that (c/32) · (2i + 2i log(n/2i)) > mi, for any integer
0 ≤ i ≤ logn, where mi = Θ(2i + 2i log(n/2i)) is the length of algorithm (n, 2i)-
KG used in the thread i of algorithm iterative-selection. Recall that Γk =∑

i≤log k �i = Θ(k logn log logn) and that an active station is called “participating
in thread i of algorithm iterative-selection” if it is actively running algorithm
(n, 2i)-KG, which starts at the first round t′ such that t′ = 0 mod mi logn and t′ is
at least Γ2i logn rounds after awakening. To avoid rounding, assume that k/ logn is a
power of 2.

It follows from the specification of algorithm iterative-selection that it can
isolate k stations arriving in time interval of length O((k + k log(n/k)) logn) in
O((k + k log(n/k)) logn) rounds, simply by applying the selection property of algo-
rithm (n, 2log k)-KG run in thread log k. The O((k + k log(n/k)) logn) bound comes
from the length of algorithm (n, 2log k)-KG and an additional logarithmic factor de-
riving from the number of threads in algorithm iterative-selection. By a simple
inductive argument applied to consecutive sufficiently “saturated” time intervals, we
could generalize this result to obtain maximum latency O((k + k log(n/k)) logn) for
k being the total number of awakened stations. However, if some other mechanism
ensures that we could decrease the number of stations participating in threads by a
logarithmic factor, algorithm iterative-selectionwould guarantee smaller latency.

Lemma 3.9. Consider an execution of algorithm iterative-selection. Assume
that in each interval of length (c/8)k logn log logn, no more than k/ logn stations
start participating in thread log(k/ logn) + 1 for some k ≤ n. Then the following
three conditions hold:

(a) at each time of this execution there are no more than 2k/ logn active stations
participating in thread log(k/ logn) + 1;

(b) no station participates in a thread bigger than log(k/ logn) + 1;
(c) each station has latency O(k logn log logn).
Proof. First we prove part (a). Let i = log(k/ logn). Suppose, to the contrary,

that part (a) of the lemma is not true, and let t be the first time when the number of
active stations participating in thread i+1 = log(k/ logn)+1 is bigger than 2k/ logn.
It implies that the number of active stations participating in thread i+1 in any round
smaller than t is at most 2k/ logn. Let τ = t− (c/8)k logn log logn+ 1.

By the assumptions on the execution, at most k/ logn stations have started par-
ticipating in thread i + 1 in the period [τ, t]. Hence, there are more than k/ logn
stations active and participating in thread i + 1 at round τ ; otherwise the contra-
dictory assumption on the number of active stations participating in thread i + 1 at
round t would not hold.

On the other hand, we argue that all stations active at round τ and participating
in thread i+1 become isolated by round t. To see this, consider the first round τ ′ ≥ τ
such that τ ′ = 0 mod mi+1 logn, i.e., the first round not smaller than τ in which
algorithm (n, 2i+1)-KG restarts in thread i + 1 of algorithm iterative-selection.
We have

mi+1 < (c/32) · (2i+1 + 2i+1 log(n/2i+1)) ≤ (c/8) · k

logn
log

n logn

2k
,

and thus

mi+1 logn < (c/8) · k log n logn

2k
< (1/2) · (c/8)k logn log logn = (1/2) · (t− τ + 1) ,
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where the second inequality holds for sufficiently large n. We get that τ ′ ≤ t −
mi+1 log n and consequently τ ′+mi+1 logn ≤ t. This means that algorithm (n, 2i+1)-
KG (run in thread i + 1 of algorithm iterative-selection) restarted at time τ ′

finishes by time τ ′ +mi+1 logn ≤ t. Note that

• there were less than 2i+1 = 2k
logn active stations participating in thread i+ 1

at round τ ′ (round t defined as the first round with more than 2k
logn active

stations participating in thread i+ 1 and the fact that τ ′ < t), and
• only these stations can participate in the restarted run of algorithm (n, 2i+1)-
KG (by the specification of algorithm iterative-selection), and
• all these stations become isolated during the execution of this run of algorithm
(n, 2i+1)-KG, because there are no more than 2k

logn = 2i+1 of them (this is

guaranteed by the property of algorithm (n, 2i+1)-KG).

Hence, all stations active and participating in thread i + 1 at round τ ′ are isolated
before t and so also those active and participating in thread i + 1 at round τ ≤ τ ′:
as each station active and participating in thread i + 1 at round τ is either isolated
before τ ′ or active and participating in thread i + 1 at τ ′—in both cases it becomes
isolated by round t.

To summarize, in the period [τ, t] at most k/ logn stations have started partici-
pating in thread i+1 and more than k/ logn stations (all active and participating in
thread i+1 at round τ , and perhaps some more) have been isolated. These two facts,
combined with the property that at round τ there were at most 2k/ logn stations that
were active and participated in thread i + 1 (as τ < t), imply that at round t there
are less active stations participating in thread i + 1 than at round τ , i.e., less than
2k/ logn. This is a contradiction (with the choice of t), which completes the proof of
part (a).

The proof of part (b) follows directly from part (a) and from the property of
algorithm (n, 2i+1)-KG run in thread i+1: since at each starting point of this protocol
there are at most 2k/ logn stations that are active and participating in thread i+1 (by
part (a)), algorithm (n, 2i+1)-KG will isolate them all. The additional observation that
needs to be done to support the above argument is that after starting participation in
thread i+1, it takes more than 2mi+1 logn rounds to a station to start participating
in thread i + 2 (because the difference between Γ2i+1 logn and Γ2i+2 logn is at least
�log(2i+1 logn) ≥ �k+1 that is bigger than 2mi+1 logn), which means that the station
has at least one chance to participate in a full run of algorithm (n, 2i+1)-KG before
starting participation in the next thread i + 2, and thus during this run it will be
successfully isolated.

In order to prove part (c), observe that a station starts participating in thread
i + 1 after at most Γk + mi+1 logn rounds from its wake-up. After joining, it
becomes isolated in this run, which is within another at most mi+1 logn rounds.
This is because together with it at most (2k/ logn) − 1 other stations could start
this run of algorithm (n, 2i+1)-KG, by (already proved) parts (a) and (b) of the
lemma, and thus algorithm (n, 2i+1)-KG guarantees isolation of all participating
at most 2i+1 = 2k/ logn stations (by the property of the algorithm). Finally, re-
call that Γk + 2mi+1 logn = Θ(2i+1 log(n/2i+1) logn) ≤ O(k logn log logn), since
2i+1 = 2k/ logn by definition of i. On the other hand, if a station does not par-
ticipate in thread i + 1, it means that it has already been isolated before time
Γk +mi+1 logn = O(k logn log logn). This completes the proof of part (c).
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3.4. Analysis of algorithm conflict-resolution. In the following, the ran-
dom contention-reducing matrix defined in Definition 3.1 will be referred to simply as
the random matrix. Our aim is to show the existence of a deterministic matrix that
guarantees a fast execution of algorithm conflict-resolution (Theorem 3.12). We
first need two preparatory results. Let c∗ be a constant such that c/8 < c∗ < c/4.

Lemma 3.10. The random matrix guarantees the following property. Fix the
following parameters: the total number k of awakened stations, a wake-up pattern σ
for some k stations, and the sets A(j) of active stations in rounds j. Then in algorithm
contention-reduction, for every time interval of length 2c∗k logn log logn at most
k/ logn stations switch from row log k to row log k+1 of the matrix during the interval,
with probability at least 1− exp(−(c/223)k logn).

Proof. Let us fix the following parameters:

• the number of awaken stations k ≤ n;
• a wake-up schedule σ of some k stations; without loss of generality assume
that the first station is awakened in time interval [1, 2 log logn] (since the
definition of the matrix applies operation modulo 2 log logn whenever refers
to global time);
• sets A(j) of active stations in rounds j;
• a time interval [τ1, τ2] of length 2c∗k logn log logn contained in [Γk, k · (Γn +
2mlogn logn)].

Note that Γk = �1 + · · · + �log k is the earliest possible time when a station can
switch from its row log k to row log k+1 of the matrix, while k · (Γn+2mlogn logn) is
an upper bound on the time period in which there is always some of k stations actively
running the algorithm (if there is a round between when there are no active stations,
the two sides of this round could be analyzed independently). Indeed, the latter argu-
ment is based on the property of the (n, 2logn)-KG procedure guaranteeing isolation of
all participating stations in thread logn of algorithm iterative-selection in mlogn

rounds, while it also has to be taken into account that starting participation in this
thread may take up to Γn +mlogn rounds.

In the first part of the proof of the lemma we will calculate the probability of the
following event:

(*) [τ1, τ2] is the first time interval of length 2c∗k logn log logn during
which at most k/ logn stations switch from row log k to log k + 1 of
the matrix.

Let us consider time interval [τ1 − 2(c− c∗)k logn log logn, τ1), and set up t1 = τ1 −
2(c− c∗)k logn log logn and t2 = τ1 − 1. We prove the following claim.

Claim 1. With probability 1, if the condition (*) is satisfied, then [t1, t2] is a
saturated interval.

Proof. Indeed, each station that switches from row log k to row log k + 1 in the
interval [τ1, τ2] has been in row log k for �log k preceding rounds, that is, it entered
row log k during the interval [τ1 − �log k, τ2 − �log k]. Since τ2 − �log k ≤ τ1 − 2(c −
c∗)k logn log logn − 1 = t1 − 1, there are more than k/ logn stations that are in
row log k of the matrix during the whole interval [t1, t2], for instance, all stations that
switch to row log k+1 during time interval [τ1, τ2], the number of which is bigger than
k/ logn by the assumption about time interval [τ1, τ2]. This implies that in all these
rounds condition (a) of Definition 3.4 of a saturated segment is satisfied. Next, observe
that by round τ2 the assumptions of Lemma 3.9 hold—by the choice of [τ1, τ2], which
is the first interval of length 2c∗k logn log logn > (c/2)k logn log logn violating these
assumptions, and the specification of the algorithm iterative-selection saying
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that a station starts participating in thread i + 1 = log(k/ logn) + 1 at round at
most Γk +mi+1 log n, i.e., at most mi+1 logn < (c/16) · 2k log n log logn rounds after
the station switches to row log k + 1. Hence, by parts (a) and (b) of Lemma 3.9,
the parallel run of protocol iterative-selection guarantees that the number of
active stations that in parallel execution of the matrix are below row log k is at most
2k/ logn in any round t ≤ τ2. This implies that in all these rounds condition (b) of
Definition 3.4 of a saturated segment is fulfilled. Finally, observe that the length of
[t1, t2] is 2(c− c∗)k logn log logn ≥ (3c/4)k logn · (2 log log n), which means that the
interval contains at least (c/4)k logn consecutive saturated time segments, and thus
is saturated itself; cf. Definitions 3.4 and 3.5. This concludes the proof of Claim 1.

To conclude the first part of the proof it is then sufficient to prove that [t1, t2] is
saturated with small probability. If [t1, t2] is saturated, then, by Lemma 3.8, there
are at least (c/8)k log n rounds in which the probability of isolating a station is at
least 1/217. Since the random choices made in different rounds are independent,
by applying the Chernoff bound to such rounds we obtain that the total number of
isolated stations in these rounds is valid, in particular it is at most k (as no more
than all k stations could be isolated in the whole execution), with probability at
most exp(−(c/222)k logn). Indeed, the expected number of such rounds is at least
(c/220)k logn, and deviating from this number even by a sufficiently small constant
factor occurs with probability at most exp(−(c/222)k logn). Hence, by applying Claim
1, we get that (*) holds with probability at most exp(−(c/222)k logn).

In the second part of the proof we conclude the lemma by observing that there
are at most k · (Γn + 2mlogn log n) different intervals [τ1, τ2] that could be fixed in
the first part of the proof. Therefore, after applying the union bound over all such
possibilities, the sought probability of violating the statement of the lemma for some
interval [τ1, τ2] of length 2c∗k logn log logn contained in [Γk, k · (Γn + 2mlogn logn)]
is at most exp(−(c/222)k logn) · k · (Γn + 2mlogn logn) ≤ exp(−(c/223)k logn) for
sufficiently large constant c > 0.

In the next result, we essentially generalize the statement of Lemma 3.10 to any
number of at most k awakened stations and any possible wake-up schedule and sets
of active stations within an interval of at most k · (Γn + 2mlogn logn) rounds.

Lemma 3.11. The random matrix guarantees the following property. For any
1 ≤ k ≤ n, if at most k stations awaken, then the algorithm contention-reduction

guarantees that for every time interval of length 2c∗k logn log logn at most k/ logn
stations switch from row log k to row log k+ 1 of the matrix during the interval, with
probability at least 1− exp(−Ω(k logn)).

Proof. We remove the assumptions about fixed parameters from the statement
of Lemma 3.10: parameter k, wake-up schedule of some k stations, and sets of active
stations A(j) in rounds j, all within at most k · (Γn+2mlogn logn) rounds. There are
at most n possible values of k and at most

(
n
k

)
(k · (Γn + 2mlogn logn))

k of wake-up
schedules and also rounds of isolation of some k stations (taken out of n) within at
most 2kΓn rounds. Here we used the fact that instead of fixing the wake-up pattern
and the sets A(j) of active stations in rounds j we could equivalently take the same
wake-up pattern and the isolation rounds of k stations corresponding to the sets A(j).
Thus, the number of different configurations of these objects is upper bounded by

n ·
((

n

k

)
(k · (Γn + 2mlogn logn))k

)2

≤
(ne
k

)2k

(n log2 n)4k ≤ 25k logn

for sufficiently large n. This multiplied by the probability exp(−(c/222)k logn) that
a given configuration of parameters violates the statement of Lemma 3.10 is still
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exp(−Ω(k logn)) for sufficiently large constant c > 0. This means, by the union bound
over all such configurations, that the probability that any configuration of parameters
of execution violates the statement of this lemma is exp(−Ω(k logn)).

We are now ready for the final result.

Theorem 3.12. There exists a deterministic matrixM such that the correspond-
ing (deterministic) algorithm conflict-resolution that uses M guarantees packet
latency O(k logn log logn) if at most k stations are awaken with packets. This also
implies throughput Ω(1/ logn log logn).

Proof. It is enough to prove the latency formula, as the throughput follows
immediately. The existence of a matrix that satisfies the property of Lemma 3.11
follows by a straightforward application of the probabilistic method [2]. Namely,
if we consider the probability space of random matrices from Definition 3.1, it fol-
lows that a randomly chosen element in this space has the property of Lemma 3.11
with probability at least 1 − exp(−Ω(k logn)) > 0. Consequently, a matrix with
such a property must exist. This property guarantees that in every time interval
of 2c∗k logn log logn rounds, at most k/ logn stations switch from row log k to row
log k + 1. This switch takes place Γk = Γ(k/ logn) logn rounds after the awakening of
these nodes, which is a necessary condition to participate in thread log(k/ logn) + 1.
Hence, by Lemma 3.9(c), under such an assumption every station becomes isolated in
O(k logn log logn) rounds during the parallel run of algorithm iterative-selection

after switching row log k+1 in the contention-reduction matrix. Hence, its latency is
at most Γk+O(k logn log logn) = O(k logn log logn). Obviously a station that never
switches row log k+1 in the run of the contention-reduction matrix must have been iso-
lated by the time it could have reached that row, i.e., before Γk = O(k logn log logn)
rounds after its wake-up. This completes the proof.

4. Open problems. Surprisingly, there are still a number of important open
problems in this area. The first is to close the gaps for latency of deterministic
contention-resolution protocols, practically in all the settings (included the case of
strongly nonadaptive protocols). The second interesting twist is to deliver an efficient
implementation of our protocol or even an entirely new solution, where by “efficient”
we understand polynomially computable (of all used transmission sequences) and
using small constants. Further, a vibrant question is how to improve latency of non-
adaptive randomized protocols, in particular, identifying the most restricted settings
for which O(k) expected latency is achievable. Considering worst-case scenarios with
dynamic packet arrivals is also a challenging topic, recently started in [10] and [5].
Finally, we conjecture that our nonadaptive protocol can also tolerate random channel
failures, at the cost of only slightly increasing the time complexity (and thus, decreas-
ing channel utilization) by a constant factor depending on the (fixed) probability of
failures.
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