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We study Thouless pumping out of the adiabatic limit. Our findings show that despite its topolog-
ical nature, this phenomenon is not generically robust to non-adiabatic effects. Indeed we find that
the Floquet diagonal ensemble value of the pumped charge shows a deviation from the topologically
quantized limit which is quadratic in the driving frequency for a sudden switch-on of the driving.
This is reflected also in the charge pumped in a single period, which shows a non-analytic behaviour
on top of an overall quadratic decrease. Exponentially small corrections are recovered only with
a careful tailoring of the driving protocol. We also discuss thermal effects and the experimental
feasibility of observing such a deviation.

Introduction. The quantization of the charge trans-
ported upon a cyclic adiabatic driving of a band insulat-
ing system, known as Thouless topological pumping, is
a cornerstone of condensed matter physics [1], recently
experimentally realized in systems of ultracold atoms in
optical lattices [2, 3]. It laid the foundations of the field
of charge pumping in mesoscopic systems [4] and played
a central role in the development of the modern theory
of polarization [5, 6]. Moreover, despite being a dynam-
ical phenomenon, it is a conceptual key for understand-
ing many equilibrium properties related to the topol-
ogy of the bands in momentum space. Most famously,
the quantization of the Hall conductance in the Integer
Quantum Hall effect (IQHE), through Laughlin’s argu-
ment [7, 8], can be seen as a Thouless topological pump.
The quantization of the transported charge due to quan-
tum topological effects crucially differentiates Thouless
pumping from related phenomena. For example, para-
metric pumping [9] can be of geometric origin [10], but
is in general not characterized by a topological quantiza-
tion. Furthermore, some types of parametric pumping,
as ratchets [11] or piston-like pumps [12] — which share
some formal analogies with Thouless pumping — have
a classical counterpart. On the contrary, quantum tun-
nelling effects are essential in making the charge quanti-
zation in Thouless pumping insensitive to a fine tuning
of the model parameters [13]. Having a topological na-
ture, the quantization of the transported charge shows
robustness to various factors, such as disorder or interac-
tions [14]. Non-adiabatic effects are also believed to be
unimportant — exponentially small in the driving fre-
quency ω [15, 16] — in analogy with the IQHE, where
the Hall plateaus show corrections that are exponentially
small in the longitudinal electric field [17]. Theoretically,
this follows from the fact that the quantized Chern num-
ber expression for the Hall conductivity, usually obtained
through a Kubo formula in linear response, is valid at all
orders in perturbation theory [18, 19].

In this letter we study Thouless pumping out of the
perfect adiabatic limit ω → 0. In order to do that,
we perform a careful Floquet analysis of a closed, clean,
non-interacting system — the driven Rice-Mele model
— in the thermodynamic limit. By analyzing the charge
pumped after many cycles when the system starts from
the initial ground-state Slater determinant, we find that
for a suddenly switched-on driving, the pumped charge
shows a deviation from perfect quantization that is al-
ways polynomial in the driving frequency ω, contradict-
ing the expected topological robustness. This quadratic
deviation is present also after a finite number of pumping
cycles, even if apparently hidden under a highly oscilla-
tory non-analytic behaviour [19] in ω. An exponentially
small deviation would be obtained only if one was able to
prepare the system in a specific Floquet state, which can
be approximately obtained only with a suitable switch-
on of the driving. We also discuss the effects of a thermal
initial state.

Model and Method. A paradigmatic model for Thou-
less pumping is the driven Rice-Mele (RM) [20] model:

ĤRM(t) = −
N∑
j=1

(
J1(t) b̂†j âj + J2(t) â†j+1b̂j + H.c.

)

+

N∑
j=1

∆(t)
(
â†j âj − b̂†j b̂j

)
. (1)

Here â†j and b̂†j create a spinless fermion at cell j in sub-
lattice A and B, respectively, and we assume a half-filling
situation. This simple tight-binding model describes the
physics of cold atoms experiments in some regimes [2, 3].
The instantaneous spectrum becomes gapless for J1 = J2

and ∆ = 0, and a quantized adiabatic pumping is real-
ized when a closed path in the (J1 − J2,∆) parameter
space encloses such a degeneracy point [21]. In the follow-
ing, we will parameterize J1

2
(t) = J0 ± δ0 cos(ϕ(t)), and

∆(t) = ∆0 sin(ϕ(t)). By choosing ϕ(t) = ωt we realize
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FIG. 1. Top left: quasienergy spectrum of Rice-Mele model
∆0 = 3J0, δ0 = J0, ω = 0.2J0/~. The thick band is the
lowest-energy Floquet band εLE,k. Top right: (solid line)
zoom of the previous figure close to the upper border of
the FBZ around ka = 1.3664; the dashed line denotes the
quasienergies in the adiabatic limit ε0α,k. Notice the gap of

order 10−6. Bottom: A cartoon of the Rice-Mele model (left)
and a path in parameters space.

a sudden switch-on of the driving. (We will also discuss
different choices of ϕ(t).) We impose periodic boundary
conditions (PBC), and use momentum k in the Brillouin
Zone (BZ) [−πa , πa ) to reduce the dynamics to N inde-
pendent 2-dimensional Schrödinger problems, which can
be numerically integrated by a fourth-order Runge-Kutta
method.

Floquet theory of the Thouless pump. Given the time-
periodicity of the Hamiltonian in a Thouless pump, with
period τ = 2π/ω, it is natural to employ a Floquet
analysis [16, 19, 22–24]. Because of the discrete time-
translation invariance, there exists a basis of solutions
of the time-dependent Schrödinger equation, that are
periodic up to a phase: the Floquet states |ψα(t)〉 =

e−
i
~ εαt|φα(t)〉 [25, 26]. The τ -periodic states |φα(t)〉 are

the so-called Floquet modes and εα are the quasiener-
gies: they are defined modulo an integer number of
~ω = 2π~/τ , hence it is possible to restrict them to the
first Floquet Brillouin zone (FBZ) [−~ω/2, ~ω/2).

In a PBC ring geometry, the total current operator
Ĵ(t) is obtained as a derivative of Ĥ(t) with respect to a
flux Φ threading the ring, Ĵ = ∂κĤ/~, where κ = 2π

L
Φ
Φ0

,
L is the length of the system and Φ0 the flux quantum.
As a consequence, the charge pumped in one period τ
by a single Floquet state |ψα(t)〉 is [16, 19, 22, 23]
Qα(τ) = 1

L

∫ τ
0

dt 〈ψα(t)|Ĵ(t)|ψα(t)〉 = τ
~L∂κεα. For a

translationally-invariant system, each completely filled

Floquet-Bloch band with (single-particle) quasienergy
dispersion εα,k would contribute to the charge pumped
(in the thermodynamic limit L→∞) as

Qα(τ) =
1

~ω

∫ +π
a

−πa
dk

∂εα,k
∂k

(2)

where we have replaced the κ-derivative with a k-
derivative, since εα,k depends on k + κ. Thus, if εα,k
wraps around the FBZ in a continuous way as a func-
tion of k, Qα(τ) is equivalent to the winding number of
the band, i.e., the number n of times εα,k goes around
the FBZ, εα,+π

a
− εα,−πa = n~ω, and Qα(τ) is there-

fore quantized: Qα(τ) = n. This is what happens
in the extreme adiabatic limit ω → 0: if |Ψα(t)〉 is a
Slater determinant made up of the instantaneous Hamil-
tonian Bloch eigenstates eikxuα,k(x, t) belonging to a
filled band Eα,k(t), the adiabatic theorem guarantees
that such a state returns onto itself after a period τ ,
|Ψα(τ)〉 = ei

∑BZ
k (γα,k−θα,k)|Ψα(0)〉, by acquiring a geo-

metric (Berry) phase γα,k =
∫ τ

0
dt i〈uα,k|∂tuα,k〉 and a

dynamical one θα,k =
∫ τ

0
dt Eα,k(t)/~. This in turn im-

plies that |Ψα(t)〉 is a Floquet state with quasienergy
ε0
α,k = ~(−γα,k + θα,k)/τ . Substituting in Eq. (2), only

the geometric phase survives, leading to the Thouless’
formula [1]

Qα(τ) =

∫ +π
a

−πa

dk

2π

∫ τ

0

dt i(〈∂kuα,k|∂tuα,k〉 − c.c.) (3)

identifying the pumped charge with a Chern number [19].
Let us see what happens away from the adiabatic limit

ω → 0. We consider a lattice model with a finite num-
ber of bands, such as Eq. (1). The sum of the wind-
ing numbers of all bands will be zero, since the sum of
Chern numbers of a finite-dimensional Hamiltonian must
be zero [19]. This fact, as noticed in Ref. [19], implies that
the quasienergy spectrum must contain some crossings if
at least one quasienergy band has non vanishing wind-
ing number. These crossings, however, are not stable
[19]: according to Wigner and von Neumann [27], a true
crossing requires, for the present case of a complex 2× 2
unitary operator, the tuning of at least three real param-
eters, while the quasienergy spectrum depends only on
two, τ and k. Hence one expects, generically, that cross-
ings turn into avoided crossings with opening of gaps for
any finite τ — in the present case at the border of the
FBZ — implying a deviation from perfect quantization
of the pumped charge for the Floquet band under con-
sideration.

To better understand this point, let us focus on the
Floquet-Bloch band whose pumped charge is closest to
the integer value of the adiabatic limit. This band can
be constructed [16] by choosing, for each k, the Floquet
mode with (period-averaged) lowest-energy expectation
|φLE,k(t)〉. In the left panel of Fig. 1 we show a typical
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quasienergy spectrum of the RM model: the bold line de-
notes the lowest-energy Floquet band. In the right panel
we zoom in the region around an avoided crossing (solid
line),comparing with the perfect crossing occurring for
the adiabatic approximation ε0

α,k (dashed line): the vis-
ible gap is exponentially small in 1/ω — as it happens
for all the gaps that open at such avoided crossings [28].
This implies that the lowest-energy Floquet band does
not wrap continuously around the FBZ. Accordingly, its

pumped charge QLE = (~ω)−1
∫ +π

a

−πa
dk ∂kεLE,k deviates

from an integer by terms proportional to the sum of the
gaps when ω > 0. This deviation is therefore exponen-
tially small in 1/ω (a similar result was found in Ref. [16]
for a different model), see Fig. 2(a). Summarizing, if we
were able to prepare an initial state coinciding with the
lowest-energy Floquet band, the deviation from perfect
quantization would be exponentially small. Nevertheless,
in any real situation, the initial state |Ψ(0)〉 of the sys-
tem is not a Floquet state: a more realistic starting point
would be to assume that |Ψ(0)〉 is the ground state of
the initial Hamiltonian Ĥ(0) before pumping is started.
Whichever the initial state, any local observable attains,
upon periodic driving and in the thermodynamic limit,
a periodic steady state with the same periodicity as the
driving [29]. This asymptotic regime is described by the
Floquet diagonal density matrix [29, 30]; in an integrable
system this density matrix is not thermal, but is given by
a generalized Gibbs ensemble. Let us denote by Q(mτ)
the total charge pumped in the first m periods starting
from the initial ground state |Ψ(0)〉 of Ĥ(0). The asymp-
totic charge pumped in a single cycle, obtained from the
infinite time limit, is given by the Floquet diagonal en-
semble [31]:

Qdiag ≡ lim
m→∞

Q(mτ)

m
=

1

~ω
∑
α

∫ +π
a

−πa
dk nα,k

∂εα,k
∂k

(4)

where nα,k = 〈Ψ(0)|f̂†α,kf̂α,k|Ψ(0)〉 is the initial ground-
state occupation of the Floquet-Bloch (α, k)-mode, with

f̂†α,k|0〉 = |φα,k(0)〉. The occupations nα,k can give rise
to a stronger deviation from quantization than the gaps,
as we are now showing.

Results. In Fig. 2(b) we plot the diagonal pumped
charge Qdiag, calculated from Eq. (4), for the RM model
(1) as a function of the driving frequency ω, close to the
adiabatic limit ω → 0, for the same parameters as Fig. 1.
The driving is suddenly switched on: ϕ(t) = 0 when
t < 0 and ϕ(t) = ωt for t ≥ 0, as realized in the exper-
imental setting of Ref. 2. The numerically determined
points show a clear quadratic deviation with ω from the
fully adiabatic integer value 1. We now show that this
power-law deviation essentially originates from the Flo-
quet bands occupations nα,k. To understand this point,
consider the lowest-energy Floquet band εLE,k, and the

associated occupations nLE,k = 〈Ψ(0)|f̂†
LE,kf̂LE,k|Ψ(0)〉.
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FIG. 2. (a) The deviation from 1 of the charge pumped by
the lowest-energy Floquet band (proportional to the sum of
gaps) as a function of 1/~ω, with its exponential fit (red
solid straight line). (b) Deviations from 1 of the diagonal
pumped charge Qdiag in the RM model for a sudden switch-
on of the driving. The smooth curve 9

128
(~ω/J0)2 is obtained

from Eq. (6). The model parameters are ∆0 = 3J0, δ0 = J0.

One can develop a perturbation theory in ω for the Flo-
quet modes, along the lines of Ref. [33], to show that for
our model

nLE,k = 1−
∣∣∣∣~ω〈u1,k(0)|∂su0,k(0)〉
E1,k(0)− E0,k(0)

∣∣∣∣2 +O(ω3). (5)

Here s = t/τ is a rescaled time, while Eα,k(t) and
|uα,k(t)〉, with α = 0, 1, are the energy and the peri-
odic part of the two instantaneous Bloch eigenfunctions.
The analytic calculation is simple:

nLE,k = 1− 1

64

(
~ω∆0

J2
0 + δ2

0 + (J2
0 − δ2

0) cos(ka)

)2

+ ... (6)

leading to quadratic corrections to Qdiag. When δ0 = J0,
Eq. (6) predicts that nLE,k is k-independent and can be
taken out of the integral in Eq. (4): we can calculate
the charge deviation given by 1

128 (~ω∆0/J
2
0 )2, which per-

fectly fits the numerical data points, as shown in Fig. 2(a)
for ∆0 = 3J0. It is apparent from Eq. (6) that the non-
adiabatic corrections can be more or less pronounced,
depending on the parameters of the driving (∆0, δ0). Fig-
ure 3 illustrates how the deviation from quantization for
a fixed value of frequency, ω = 0.05J0/~, depends on
(∆0, δ0). In the main plot, we fix the value δ0 = J0 as
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FIG. 3. Deviations from the integer value of the diagonal
pumped charge Qdiag in the RM model versus the aspect ratio
r = ∆0/δ0 of the driving ellipse for δ0 = J0, for a sudden
switch-on of the driving with frequency ω = 0.05J0/~. The
smooth curve is 1

128
(~ω/J0)2 r2 and it was calculated with the

first order perturbative calculation of the main text. In the
inset, the deviation from 1 of Qdiag for a fixed r = 3 as a
function of δ0: The minimum sits at δ0 = J0.

before and we vary the dimensionless ratio r = ∆0/δ0.
According to Eq. (6), the deviation increases with r as
~2ω2

128J2
0
r2. The agreement with the numerical data for this

choice of ω is very good up to r . 12, where higher
orders of the perturbation theory (5) become relevant.
Conversely, in the inset of Fig. 3 we fix r = ∆0/δ0 = 3
and we consider the dependence on δ0/J0: we see that
the deviation shows a minimum around δ0 = J0. Summa-
rizing, the deviation should be more noticeable for paths
in parameters space flattened on the ∆ axis and far from
δ0 = J0. Note that a small δ0/J0 corresponds to a weak
pumping regime: quite surprisingly, this seems to imply
a stronger non-adiabaticity. The possibility of controlling
Hamiltonian parameters in ultracold atoms experiments
makes the detection of these non-adiabatic effects likely
feasible.

It is however possible to devise driving schemes that
lead to a better filling of the lowest-energy Floquet band.
The Floquet adiabatic theorem [34–37] suggests that a
sufficiently smooth variation of the instantaneous driv-
ing frequency ω(t) = ϕ̇(t) would lead to a much smaller
deviation of the population nLE,k, and hence of Qdiag,
from an integer value. This is what a detailed analysis of
these issues, presented elsewhere [38], finds. Incidentally,
a smoother switch-on of the periodic driving is what the
experimental realization of Ref. 3 adopts.

We now address the issue of non-adiabatic deviation
for a finite number of pumping cycles. Diagonal expecta-
tion values are indeed attained after some transient and
become exact only after an infinite number of pumping
cycles. In Fig. 4 we plot the charge pumped after a sin-
gle cycle, Q(τ), as a function of ω: we see that Q(τ)
exhibits remarkable beating-like oscillations, on top of
the overall quadratic decrease of Qdiag, which become
faster and faster as ω → 0. The theoretical prediction,

0.984

0.988

0.992

0.996

1

1.004

0 0.1 0.2 0.3 0.4

Q(τ)

h̄ω/J0

FIG. 4. The charge pumped after the first period, Q(τ), as a
function of the frequency ω, for the RM model with a suddenly
switched-on driving (smooth blue line). The red dotted line
is the corresponding diagonal ensemble value Qdiag, reported
in Fig. 2(b). The model parameters are ∆0 = 3J0, δ0 = J0.

according to a theorem of Ref. [19], is that the finite-
time pumped charge must have an essential singularity
in ω = 0. The behaviour that we find is indeed compati-
ble with the presence of non-analyticities, possibly of the
kind of sin(c/ω).

An alternative source of deviation from perfect quan-
tization is finite temperature. In ultracold atoms exper-
iments, it is reasonable to consider the dynamics to be
coherent even if the initial state is a thermal density ma-
trix ρ̂T at temperature T . The zero-temperature unitary
evolution results of Eq. (4) get modified only through the
replacement of the occupations nα,k with thermal ones

nTα,k = Tr
(
ρ̂T f̂

†
α,kf̂α,k

)
. The final result is

nTα,k = tanh(−βE0,k(0))nα,k +
eβE0,k(0)

2 cosh(−βE0,k(0))
, (7)

where we used that E0,k = −E1,k in the RM model.
Thus, the ω2 behaviour of the deviation is preserved, but
can be hidden by thermal effects. They are exponentially
small when the temperature T is much smaller than the
initial gap. For the specific choice used before, δ0 = J0,
thermal corrections only amount to multiplying the T =
0 result by a factor tanh(βE1,k(0)), which turns out to be
k-independent. In this case E1,k(0) = 2J0 and thermal
effects start to compete with the non-adiabatic ones only
when T is of the order of the gap, kBT ≈ J0.

Conclusions. We have studied what happens to the
quantization of the Thouless pumped charge out of the
perfect adiabatic limit. Within a Floquet framework, we
have found that this transport phenomenon is in general
not robust to non-adiabatic effects despite its topologi-
cal nature. When the driving is switched on suddenly,
φ(t) = ωt, or too fast [38], we see that the long-time
asymptotic value of the pumped charge deviates from
the quantized value in a polynomial fashion, i.e. quadrat-
ically in the driving frequency. This observation is, we
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believe, model-independent, since it requires only that
the initial state is the ground state (or any other eigen-
state) of the initial Hamiltonian. The fact that a topo-
logically robust property can be ruined by the occupa-
tion factors of the Floquet bands is in line with what
was found in a resonantly driven graphene layer [39].
Our findings should be in principle observable in ultra-
cold atoms experiments (for instance with the methods
used in [2, 3]). Perspectives of future work include the
study of the pumped charge in the pre-thermal regime of
a non-integrable system [28] and the analysis of disorder,
especially in connection with the stabilization of charge
pumping in a many-body localized system. Another im-
portant point will be understanding the switch-on time-
scale marking the crossover between power-law and ex-
ponentially small deviations from quantized pumping.
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